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ON SOME NONLOCAL BOUNDARY VALUE PROBLEMS
FOR LINEAR SINGULAR DIFFERENTIAL EQUATIONS OF

HIGHER ORDER

Abstract. For a higher order linear singular differential equation a class of
nonlocal problems having the Fredholm property is described, and unim-
provable in a sense sufficient conditions of unique solvability of those prob-
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Consider the boundary value problem

u(n) =

n∑

k=1

hk(t)u(k−1) + h0(t), (1)

u(i−1)(a) = ci (i = 1, . . . , n− 1),
m∑

j=1

b∫

a0

u(j−1)(s) dϕj(s) = cn, (2)

where n ≥ 2, ci ∈ R (i = 1, . . . , n), hk : (a, b) → R (k = 0, . . . , n) are
locally integrable functions, a0 ∈ (a, b), m ∈ {1, . . . , n}, and ϕj : [a0, b] → R

(j = 1, . . . , m) are functions satisfying the conditions

ϕj(t) ≥ ϕj(s) for a0 ≤ s ≤ t ≤ b (j = 1, . . . , m),
m∑

j=1

(
ϕj(b)− ϕj(a)

)
> 0.

(3)

In the regular case, where

b∫

a

|hk(t)| dt < +∞ (k = 0, . . . , n)
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problems of type (1), (2) and similar problems for nonlinear differential equa-
tions were studied rather thoroughly (see [5], [6], [11], [23] and the literature
cited therein). Mainly we concentrate our attention on singular case, where
at least one of the coefficients of the differential equation (1) is nonintegrable
on (a, b) having singularities at the endpoints of that interval.

In the present paper we prove that problem (1), (2) has the Fredholm
property if hk (k = 0, 1, . . . , n) are integrable with certain weights. These
conditions are provided in Theorems 1 and 3 below. As for Theorems 2
and 4, they contain new unimprovable conditions of unique solvability of
singular problem (1), (2) different from previously known ones (see, e.g.,
[1–4], [7–10], [12–22]).

In the present paper the following notations will be used.

[x]+ =
|x|+ x

2
, [x]

−
=
|x| − x

2
.

C̃n−1
loc ((a, b); R) is a space of (n − 1)–times continuously differentiable

functions u : (a, b) → R whose derivative of (n − 1)–th order is absolutely
continuous on [a + ε, b− ε] for arbitrary ε ∈ (0, b−a

2 ).

If u ∈ C̃n−1
loc ((a, b); R), then for any i ∈ {1, . . . , n} by u(i−1)(a) (by

u(i−1)(b)) we understand the right (left) limit of u(i−1) at point a (point
b) provided that such limit exists.

A function u ∈ C̃n−1
loc ((a, b); R) is called a solution of equation (1), if it

satisfies (1) almost everywhere on (a, b).
A solution u of equation (1) is called a solution of problem (1), (2), if

there exist u(i−1)(a) (i = 1, . . . , n − 1) and u(j−1)(b) (j = 1, . . . , m), and
equalities (2) hold.

Along with problem (1), (2) consider its corresponding homogeneous prob-
lem

u(n) =

n∑

k=1

hk(t)u(k−1), (10)

u(i−1)(a) = 0 (i = 1, . . . , n− 1),

m∑

j=1

b∫

a0

u(j−1)(s) dϕj(s) = 0. (20)

Theorem 1. Let conditions (3) hold and

b∫

a

(s− a)nk(b− s)mk |hk(s)| ds < +∞ (k = 0, . . . , n), (4)

where nk = 1− [k + 1− n]+, mk = n−m− [k −m]+ (k = 1, . . . , n). Then

problem (1), (2) is uniquely solvable if and only if the homogeneous problem

(10), (20) has only a trivial solution.
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Theorem 2. If along with (3) and (4) the condition

n∑

k=1

b∫

a

(s− a)nk

(n− k)!
[hk(s)]

−
ds ≤ 1 (5)

holds, then problem (1), (2) is uniquely solvable.

Corollary 1. Let condition (3) hold, ci > 0 (i = 1, . . . , n− 1),

hk(t) ≥ 0 for a < t < b (k = 0, . . . , n), (6)

b∫

t0

(b−s)mkhk(s) ds<+∞ (k=0, . . . , n),

t0∫

a

hn(s) ds<+∞, t0∈(a, b).

Then problem (1), (2) is uniquely solvable if and only if

t0∫

a

(s− a)hk(s) ds < +∞ (k = 0, . . . , n− 1).

Now consider the case where problem (1), (2) is not solvable for certain
ci ∈ R (i = 1, . . . , n) but is uniquely solvable if only

ci = 0 (i = 1, . . . , n0), (7)

where n0 ∈ {1, . . . , n− 1}.

Theorem 3. Let along with (3) and (7) the conditions

b∫

a

(b− s)n−m|h0(s)| ds < +∞,

b∫

a

(s− a)n0k (b− s)mk |hk(s)| ds < +∞ (k = 1, . . . , n)

(8)

hold, where n0 ∈ {1, . . . , n−1}, n0k = [n0 +1−k]+, mk = n−m− [k−m]+
(k = 1, . . . , n). Then problem (1), (2) is uniquely solvable if and only if the

homogeneous problem (10), (20) has only a trivial solutions.

Theorem 4. If conditions (3), (5), (7) and (8) hold, then problem (1), (2)
has one and only one solution.

Corollary 2. Let conditions (3), (6), (7) hold, n ≥ 3, n0 ∈ {1, . . . , n−2},
ci > 0 (i = n0 + 1, . . . , n− 1),

b∫

a

(b−s)n−mh0(s) ds<+∞,

b∫

t0

(b− s)mkhk(s) ds<+∞ (k=1, . . . , n),

t0∫

a

hk(s) ds < +∞ (k = n0 + 1, . . . , n), t0 ∈ (a, b).
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Then problem (1), (2) is uniquely solvable if and only if

t0∫

a

(s− a)n0+1−khk(s) ds < +∞ (k = 1, . . . , n0).
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