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ON SOLVABILITY OF BOUNDARY VALUE PROBLEMS ON
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Let c ∈ R, aik : R+ → R (i, k = 1, 2) be nondecreasing continuous from
the left functions, and let fk : R+ ×R

2 → R be a vector-function belonging
to the Carathéodory class corresponding to the aik for every i, k ∈ {1, 2}.

In this paper we investigate the question of existence of solutions for the
two dimensional generalized differential system

dxi(t) = f1(t, x1(t), x2(t)) · dai1(t)+

+ f2(t, x1(t), x2(t)) · dai2(t) for t ∈ R+ (i = 1, 2), (1)

satisfying one of the following two conditions

x1(0) = c, sup
{
|x1(t)|+ |x2(t)| : t ∈ R+

}
< ∞ (2)

and
sup

{
|x1(t)|+ |x2(t)| : t ∈ R+

}
< ∞. (3)

We give sufficient conditions for the existence of solutions of the boundary
value problems (1), (2) and (1), (3). Analogous results are contained in [10],
[11], [13]–[17] for ordinary differential and functional differential systems.

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on
July 14, 2008.
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The theory of generalized ordinary differential equations enables one to
investigate ordinary differential, impulsive and difference equations from a
common point of view (see, e.g., [1]–[9], [12], [23], and references therein).

We realize the obtained result for the following second order system of
impulsive equations

dxi

dt
= fi(t, x1, x2) for almost all t ∈ R+ \ {τ1, τ2, . . .} (i = 1, 2), (4)

xi(τk+)−xi(τk−)=αkiIki(x1(τk−), x2(τk−)) for k∈{1, 2, . . .} (i=1, 2), (5)

where 0 < τ1 < τ2 < . . . , τk → ∞ (k → ∞) (we will assume τ0 = 0 if
necessary), αki ∈ R (i = 1, 2; k = 1, 2, . . .), fi ∈ Kloc(R+×R

2, R) (i = 1, 2),
and Iki : R

2 → R (i = 1, 2; k = 1, 2, . . .) are continuous operators.
Throughout the paper the following notation and definitions will be used.
R = ]−∞, +∞[ , R+ = [0, +∞[ ; [a, b] (a, b ∈ R) is a closed segment.
R

n×m is the set of all real n×m-matrices X = (xij)
n,m
i,j=1.

R
n = R

n×1 is the set of all real column n-vectors x = (xi)
n
i=1, R

n
+ =

R
n×1
+ .
diag(λ1, . . . , λn) is the diagonal matrix with the diagonal elements

λ1, . . . , λn.
b
∨
a
(X) is the total variation of the matrix-function X : [a, b] → R

n×m, i.e.,

the sum of total variations of the latter’s components.
X(t−) and X(t+) are the left and the right limits of the matrix-function

X : [a, b] → R
n×m at the point t (we will assume X(t) = X(a) for t ≤ a

and X(t) = X(b) for t ≥ b, if necessary);

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).

BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation

X : [a, b] → R
n×m (i.e., such that

b
∨
a
(X) < +∞).

BVloc(R, Rn×m) is the set of all matrix-functions X : R → R
n×m for

which
b
∨
a
(X) < +∞) for every a, b ∈ R (a < b).

sj : BV([a, b], R) → BV([a, b], R) (j = 0, 1, 2) are the operators defined,
respectively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b

and

s0(x)(t) = x(t)− s1(x)(t) − s2(x)(t) for t ∈ [a, b].

A : BVloc(R, R)×BVloc(R, R) → BVloc(R, R) is the operator defined by

A(x, y)(0) = 0,
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A(x, y)(t) = y(t) +
∑

0<τ≤t

d1x(τ) ·
(
1− d1x(τ)

)−1
d1y(τ)−

−
∑

0≤τ<t

d2x(τ) ·
(
1 + d2x(τ)

)−1
d2y(τ) for t > 0,

A(x, y)(t) = y(t)−
∑

t<τ≤0

d1x(τ) ·
(
1− d1x(τ)

)−1
d1y(τ)+

+
∑

t≤τ<0

d2x(τ) ·
(
1 + d2x(τ)

)−1
d2y(τ) for t < 0

for every x ∈ BVloc(R, R) such that for every x ∈ BVloc(R, R) such that

1 + (−1)jdjx(t) 6= 0 for t ∈ R (j = 1, 2).

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s <

t ≤ b, then

t∫

s

x(τ) dg(τ) =

∫

]s,t[

x(τ) ds0(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) ds0(g)(τ) is the Lebesgue–Stieltjes integral over the open

interval ]s, t[ with respect to the measure µ0(s0(g)) corresponding to the
function s0(g).

If a = b, then we assume

b∫

a

x(t) dg(t) = 0.

If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then

t∫

s

x(τ) dg(τ) =

t∫

s

x(τ) dg1(τ) −

t∫

s

x(τ) dg2(τ) for s ≤ t.

L([a, b], R; g) is the set of all functions x : [a, b] → R measurable and
integrable with respect to the measures µ(gi) (i = 1, 2), i.e., such that

b∫

a

|x(t)| dgi(t) < +∞ (i = 1, 2).

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

If G = (gik)l,n
i,k=1 : [a, b] → R

l×n is a nondecreasing matrix-function

and D ⊂ R
n×m, then L([a, b], D; G) is the set of all matrix-functions X =

(xkj)
n,m
k,j=1 : [a, b] → D such that xkj ∈ L([a, b], R; gik) (i = 1, . . . , l; k =
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1, . . . , n; j = 1, . . . , m);

t∫

s

dG(τ) ·X(τ) =

( n∑

k=1

t∫

s

xkj(τ)dgik(τ)

)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sj(G)(t) ≡
(
sj(gik)(t)

)l,n

i,k=1
(j = 0, 1, 2).

If D1 ⊂ R
n and D2 ⊂ R

n×m, then K([a, b]×D1, D2; G) is the Carathé-
odory class, i.e., the set of all mappings F = (fkj)

n,m
k,j=1 : [a, b] ×D1 → D2

such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . , m} and k ∈ {1, . . . , n}: a)
the function fkj(·, x) : [a, b] → D2 is µ(gik)-measurable for every x ∈ D1;
b) the function fkj(t, ·) : D1 → D2 is continuous for µ(gik)-almost every
t ∈ [a, b], and sup

{
|fkj(·, x)| : x ∈ D0

}
∈ L([a, b], R; gik) for every compact

D0 ⊂ D1.
If Gj : [a, b] → R

l×n (j = 1, 2) are nondecreasing matrix-functions,
G = G1 −G2 and X : [a, b] → R

n×m, then

t∫

s

dG(τ) ·X(τ) =

t∫

s

dG1(τ) ·X(τ)−

t∫

s

dG2(τ) ·X(τ) for s ≤ t,

Sk(G) = Sk(G1)− Sk(G2) (k = 0, 1, 2),

L([a, b], D; G) =
2⋂

j=1

L([a, b], D; Gj),

K([a, b]×D1, D2; G) =

2⋂

j=1

K([a, b]×D1, D2; Gj).

Lloc(R, D; G) is the set of all matrix-functions X : R → D such that
its restriction on [a, b] belongs to L([a, b], D; G) for every a and b from R

(a < b).
K([a, b] × D1, D2; G) is the set of all matrix-functions F = (fkj)

n,m
k,j=1 :

R×D1 → D2 such that its restriction on [a, b] belongs to K([a, b], D; G) for
every a and b from R (a < b).

If G(t) ≡ diag(t, . . . , t), then we omit G in the notation containing G.
The inequalities between the vectors and between the matrices are un-

derstood componentwise.
A vector-function x = (xi)

2
1 ∈ BVloc(R+, R2) is said to be a solution of

the system (1) if

xi(t) = xi(s) +

t∫

s

f1(τ, x1(τ), x2(τ)) · dai1(τ)+

+

t∫

s

f2(τ, x1(τ), x2(τ)) · dai2(t) for 0 ≤ s ≤ t (s, t ∈ R) (i = 1, 2).
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If s ∈ R and β ∈ BVloc(R, R) are such that

1 + (−1)jdjβ(t) 6= 0 for (−1)j(t− s) < 0 (j = 1, 2),

then by γβ(·, s) we denote the unique solution of the Cauchy problem

dγ(t) = γ(t) dβ(t), γ(s) = 1.

It is known (see [9], [12]) that

γβ(t, s) = exp
(
ξβ(t)− ξβ(s)

) ∏

s<τ≤t

sgn
(
1− d1β(τ)

)
×

×
∏

s≤τ<t

sgn
(
1 + d2β(τ)

)
for t > s,

γβ(t, s) = γ−1
β (s, t) for t < s,

where

ξβ(t) = s0(β)(t) − s0(β)(0)−

−
∑

0<τ≤t

ln
∣∣1− d1β(τ)

∣∣ +
∑

0≤τ<t

ln
∣∣1 + d2β(τ)

∣∣ for t > 0,

ξβ(t) = s0(β)(t) − s0(β)(0)+

+
∑

t<τ≤0

ln
∣∣1− d1β(τ)

∣∣ −
∑

t≤τ<0

sgn
∣∣1 + d2β(τ)

∣∣ for t < 0.

Remark 1. Let β ∈ BV([a, b], R) be such that

1 + (−1)jdjβ(t) > 0 for t ∈ [a, b] (j = 1, 2).

Let, moreover, one of the functions β, ξβ and A(β, β) be nondecreasing
(nonincreasing). Then the other two functions will be nondecreasing (non-
increasing) as well.

Let δ > 0. We introduce the operators

ν1δ(ξ)(t) = sup
{
τ ≥ t : ξ(τ) ≤ ξ(t+) + δ

}

and

ν−1δ(η)(t) = inf
{

τ ≤ t : η(τ) ≤ η(t−) + δ
}

,

respectively, on the set of all nondecresing functions ξ : R → R and on the
set of all nonincreasing functions η : R → R.

C̃([a, b], D), where D ⊂ R
n×m, is the set of all absolutely continuous

matrix-functions X : [a, b] → D;

C̃loc(R+ \ {τ1, τ2, . . .}, D) is the set of all matrix-functions X : R+ → D

whose restriction to an arbitrary closed interval [a, b] from R+ \ {τ1, τ2, . . .}

belongs to C̃([a, b], D).
L([a, b], D) is the set of all matrix-functions X : [a, b] → D, measurable

and integrable.
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Lloc(R+ \ {τ1, τ2, . . .}, D) is the set of all matrix-functions X : R+ → D

whose restriction to an arbitrary closed interval [a, b] from R+ \ {τ1, τ2, . . .}

belongs to C̃([a, b], D).
If D1 ⊂ R

n and D2 ⊂ R
n×m, then K([a, b] × D1, D2) is the Carathéo-

dory class, i.e., the set of all mappings F = (fkj)
n,m
k,j=1 : [a, b] × D1 → D2

such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . , m} and k ∈ {1, . . . , n}: a) the
function fkj(·, x) : [a, b] → D2 is measurable for every x ∈ D1; b) the
function fkj(t, · ) : D1 → D2 is continuous for almost all t ∈ [a, b], and
sup{|fkj(· , x)| : x ∈ D0} ∈ L([a, b], R; gik) for every compact D0 ⊂ D1.

Kloc(R+ ×D1, D2) is the set of all mappings F : R+ ×D1 → D2 whose
restriction to an arbitrary closed interval [a, b] from R+\{τ1, τ2, . . .} belongs
to K([a, b]×D1, D2).

By a solution of the impulsive system (3), (4) we understand a continuous

from the left vector-function x ∈ C̃loc(R+ \ {τ1, τ2, . . .}) ∩ BVloc s(R+, Rn)
satisfying both the system (1) for a.a. t ∈ R+ \{τk}

m0

k=1 and the relation (2)
for every k ∈ {1, 2, . . .}.

Theorem 1. Let

0 ≤ d2(ai1(t) + ai2(t)) < |ηii|
−1 for t ∈ R+ (i = 1, 2),

1 + σid2aii(t) > 0 for t ∈ R+ (i = 1, 2),

σifk(t, x1, x2) sgn xi ≤ ηi1|x1|+ ηi2|x2|+ qk(t)

for µ(aik)-almost all t ∈ R+ and x1, x2 ∈ R (i, k = 1, 2),

and let the real part of every eigenvalue of the matrix (ηil)
2
i,l=1 be negative,

where σ1 = 1, σ2 = −1 (σ1 = σ2 = −1), η12, η21 ∈ R; ηii < 0 (i = 1, 2),
qk ∈ Lloc(R+, R; a1k) ∩ Lloc(R+, R; a2k) (k = 1, 2). Let, moreover,

σi lim inf
t→∞

(
ξσiaii

(t)− ξσiaii
(0)

)
> δ > 0 (i = 1, 2)

for some δ > 0,

sup

{ νi(t)∫

t

|qk(τ)| ds0(aik)(τ)+

+
∑

t<τ≤νi(t)

(1 + σid2aii(t))
−1|qk(τ)|d2aik(τ) : t ∈ R+

}
< ∞ (i, k = 1, 2),

sil =

∣∣∣∣

+∞∫

0

γσiaii
(t, s) dA(σiaii, ail)(s)

∣∣∣∣ < ∞ (i 6= l; i, l = 1, 2)

and

s1s2 < 1,

where νi(t) ≡ νσiδ(−ξσiaii
)(t) (i = 1, 2). Then the problem (1), (2) ((1), (3))

is solvable.
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Consider now the impulsive system (4), (5).
Quite a number of issues of the theory of systems of differential equa-

tions with impulsive effect (both linear and nonlinear) have been studied
sufficiently well (for survey of the results on impulsive systems see, e.g., [6],
[8], [18]–[22], and references therein).

It is easy to show that the vector-function x = (xi)
2
i=1 is a solution of

the impulsive system (4), (5) if and only if it is a solution of the system (1),
where a12(t) = a21(t) ≡ 0,

aii(t) ≡ t +
∑

k: 0≤τk<t

αki (i = 1, 2),

fi(τk, x1, x2) = Iki(x1, x2) for x1, x2 ∈ R (i = 1, 2; k = 1, 2, . . .).

It is evident that aii (i = 1, 2) are nondecreasing if αki ≥ 0, d2aii(τk) =
αki and d2aii(t) = 0 it t 6= τk (i = 1, 2; k = 1, 2, . . .). Moreover, they are
continuous from the left. In this case

ξσiaii
≡ σit +

∑

k: 0≤τk<t

ln |1 + σiαki| (i = 1, 2). (6)

Theorem 2. Let

0 ≤ αki < |ηii|
−1 (i = 1, 2; k = 1, 2, . . .), (7)

1 + σiαki > 0 (i = 1, 2; k = 1, 2, . . .), (8)

σifi(t, x1, x2) sgn xi ≤ ηi1|x1|+ ηi2|x2|+ qi(t)

for almost all t ∈ R+ and x1, x2 ∈ R (i = 1, 2; k = 1, 2, . . .),

σiIki(x1, x2) sgnxi ≤ ηi1|x1|+ ηi2|x2|+ qki

for x1, x2 ∈ R (i = 1, 2; k = 1, 2, . . .),

and let the real part of every eigenvalue of the matrix (ηil)
2
i,l=1 be negative,

where σ1 = 1, σ2 = −1 (σ1 = σ2 = −1), η12, η21 ∈ R, ηii < 0 (i = 1, 2),
qi ∈ Lloc(R+, R) (i = 1, 2). Let, moreover,

lim inf
t→∞

(
t + σi

∑

k: 0≤τk<t

ln(1 + σiαki)
)

> δ > 0 (i = 1, 2) (9)

for some δ > 0,

sup

{ νi(t)∫

t

|qi(τ)|d(τ) +
∑

k: 0≤τk<νi(t)

(1 + σiαki)
−1|qki| : t ∈ R+

}
< ∞

(i = 1, 2),

where the functions νi(t) ≡ νσiδ(−ξσiaii
)(t) (i = 1, 2) are defined according

to (6). Then the problem (4), (5); (2) ((4), (5); (3)) is solvable.

Remark 2. By condition (7), the conditions (8) and (9) are fulfilled if
σi = 1.
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