Mikheil Usanetashvili

ON THE PROBLEM WITH A SLOPING
DERIVATIVE FOR A MIXED TYPE EQUATION IN THE CASE OF A TWO-DIMENSIONAL DEGENERATION DOMAIN


#### Abstract

The paper considers a mixed type equation when the parabolic degeneration is two-dimensional. For this equation we study the problem with a sloping derivative and show that this problem is Noetherian.

2000 Mathematics Subject Classification. 35J70. Key words and phrases. Problem with a sloping derivative, integral equation with Cauchy kernel, mixed type equation.

^[ ©   ]


We consider the equation

$$
\begin{equation*}
K(y) u_{x x}+u_{y y}+p(x, y) u_{y}+q(x, y) u=0 \tag{1}
\end{equation*}
$$

where

$$
K(y)= \begin{cases}1 & \text { for } y>0 \\ 0 & \text { for }-\delta<y<0 \\ -1 & \text { for } y<-\delta\end{cases}
$$

For $\delta>0$ equation (1) is a mixed type model equation with two independent variables, whose domain of parabolicity, like the domains of ellipticity and hyperbolicity, is two-dimensional.

Let $\Omega$ be a finite domain bounded by a simple arc $\sigma \in C^{2}$ with ends $C_{1}(0,0)$ and $C_{2}(1,0)$ that lies in a half-plane $y>0$, by the segments $x=0$, $x=1$ and by the characteristics $C_{1 \delta} C: y=-x-\delta$ and $C_{2 \delta} C: y=x-1-\delta$, $\delta=$ const $>0$, of equation (1), where $p$ and $q$ are the given functions. These characteristics outgo from the points $C_{1 \delta}(0,-\delta)$ and $C_{2 \delta}(1,-\delta)$.

Let further $\Omega_{1}=\Omega \cap\{(x, y): y>0\}, \Omega_{2}=\Omega \cap\{(x, y):-\delta<y<0\}$, $\Omega_{3}=\Omega \cap\{(x, y): y<-\delta\}, I_{\delta}=\{(x,-\delta): \delta>0,0<x<1\}$.

Below it is assumed that the coefficients $p(x, y)$ and $q(x, y)$ of equation (1) are constant in the domain $\Omega_{2}$.

Let us consider the problem formulated as follows: find a function $u(x, y)$ with the following properties: 1) $u(x, y)$ is a regular solution of equation (1) in the domains $\left.\Omega_{1}, \Omega_{2}, \Omega_{3} ; 2\right) u(x, y)$ is continuous in the closed domain $\Omega$ and has continuous first derivatives in the same domain everywhere except perhaps for the points $C_{1}(0,0)$ and $C_{2}(1,0)$ in whose neighborhood $u_{x}$ and $u_{y}$ may reduce to infinity of order less than unity; 3$) u(x, y)$ satisfies the boundary conditions

$$
\begin{align*}
\left.\left(p_{1} u_{x}+q_{1} u_{y}+\lambda_{1} u\right)\right|_{\sigma} & =\varphi,  \tag{2}\\
\left.\left(p_{2} u_{x}+q_{2} u_{y}+\lambda_{2} u\right)\right|_{C_{1 \delta} C} & =\psi, \tag{3}
\end{align*}
$$

where $p_{i}, q_{i}, \lambda_{i}(i=1,2), \varphi, \psi$ are the given real functions.
Below it is assumed that $\partial \Omega_{1} \in C^{2, h}, \varphi, p_{i}, q_{i}, \lambda_{i} \in C^{1, h}(i=1,2)$, $\psi \in C^{2, h}, 0<h<1$.

We introduce the following notation: $u(x,-\delta)=\tau_{\delta}(x), u_{y}(x,-\delta)=$ $-\nu_{\delta}(x), u(x, 0)=\tau(x), u_{y}(x, 0)=\nu(x), 0 \leq x \leq 1,2 \alpha=-p, 2 \beta=$ $\sqrt{\left|p^{2}-4 q\right|}$. Using this notation, the solution $u(x, y)$ of problem (1), (2), (3) is representable in the domain $\Omega_{2}$ for $p^{2}-4 q=0, p^{2}-4 q>0$ and $p^{2}-4 q<0$, respectively, in the form

$$
\begin{aligned}
& u(x, y)=[(1-\alpha y) \tau(x)+y \nu(x)] \exp (\alpha y) \\
& u(x, y)=[(\beta \operatorname{ch} \beta y-\alpha \operatorname{sh} \beta y) \tau(x)+\nu(x) \operatorname{sh} \beta y] \beta^{-1} \exp (\alpha y) \\
& u(x, y)=[(\beta \cos \beta y-\alpha \sin \beta y) \tau(x)+\nu(x) \sin \beta y] \beta^{-1} \exp (\alpha y) .
\end{aligned}
$$

Hence we easily conclude that the functions $\tau_{\delta}(x)$ and $\nu_{0}(x)$ are related to the functions $\tau(x)$ and $\nu(x)$ as follows:
a) for $p^{2}-4 q=0$ by

$$
\begin{aligned}
& \tau_{\delta}(x)=[(1+\alpha \delta) \tau(x)-\delta \nu(x)] \exp (-\alpha \delta), \\
& \nu_{\delta}(x)=\left[\alpha^{2} \delta \tau(x)+(1-\alpha \delta) \nu(x)\right] \exp (-\alpha \delta)
\end{aligned}
$$

b) for $p^{2}-4 q>0$ by

$$
\begin{align*}
\tau_{\delta}(x)= & {[(\beta \operatorname{ch} \beta \delta+\alpha \operatorname{sh} \beta \delta) \tau(x)-\nu(x) \operatorname{sh} \beta \delta] \beta^{-1} \exp (-\alpha \delta), } \\
\nu_{\delta}(x)= & {\left[\left(\alpha^{2}-\beta^{2}\right) \tau(x) \operatorname{sh} \beta \delta+(\beta \operatorname{ch} \beta \delta-\alpha \operatorname{sh} \beta \delta) \nu(x)\right] }  \tag{4}\\
& \times \beta^{-1} \exp (-\alpha \delta) ;
\end{align*}
$$

c) for $p^{2}-4 q<0$ by

$$
\begin{aligned}
\tau_{\delta}(x)= & {[(\beta \cos \beta \delta+\alpha \sin \beta \delta) \tau(x)-\nu(x) \sin \beta \delta] \beta^{-1} \exp (-\alpha \delta), } \\
\nu_{\delta}(x)= & {\left[\left(\alpha^{2}+\beta^{2}\right) \tau(x) \sin \beta \delta+(\beta \cos \beta \delta-\alpha \sin \beta \delta) \nu(x)\right] } \\
& \times \beta^{-1} \exp (-\alpha \delta) .
\end{aligned}
$$

If we assume that conditions (3) are fulfilled on the characteristic $C_{1 \delta} C$ as in [1], then we obtain the following relation between $\tau_{\delta}(x)$ and $\nu_{\delta}(x)$ on $I_{\delta}$ :

$$
\begin{equation*}
\frac{1}{2}\left(p_{2}-q_{2}\right) \tau_{\delta}(x)-\frac{1}{2}\left(p_{2}-q_{2}\right) \nu_{\delta}(x)+\left[T\left(\tau_{\delta}, \nu_{\delta}\right)\right](x)=\widetilde{\psi}(x) \tag{5}
\end{equation*}
$$

where $T\left(\tau_{\delta}, \nu_{\delta}\right)$ is a completely defined linear integral operator, $\widetilde{\psi}=$ $\frac{\psi}{R(x,-x, x, 0)}$, and $R(x, y, \xi, \eta)$ is a Riemann function [2].

As will be seen below, assuming that $p_{1}\left(C_{1}\right)=0, q_{1}\left(C_{1}\right) \neq 0$ at the point $C_{1}$ we can conclude that the derivatives $u_{x}$ and $u_{y}$ of the solution of problem (1), (2), (3) are continuous. In addition to this, we assume that $p_{2}(t)-q_{2}(t) \neq 0, t \in C_{1 \delta} C$.

If $\tau_{\delta}(x)$ and $\nu_{\delta}(x)$ are sewn continuously on $I_{\delta}$ from (4), (5), then we obtain the equalities
a) $\delta \nu^{\prime}(x)+(1-\alpha \delta) \nu(x)=\frac{2(\widetilde{T}(\tau, \nu)-\widetilde{\psi})}{p_{2}-q_{2}} \exp (\alpha \delta)$

$$
+(1+\alpha \delta) \tau^{\prime}(x)-\alpha^{2} \delta \tau(x) \text { for } p^{2}-4 q=0
$$

b) $\operatorname{sh} \beta \delta \nu^{\prime}(x)+(\beta \operatorname{ch} \beta \delta-\alpha \operatorname{sh} \beta \delta) \nu(x)=\frac{2 \beta(\widetilde{T}(\tau, \nu)-\widetilde{\psi})}{p_{2}-q_{2}} \exp (\alpha \delta)$

$$
\begin{gather*}
+(\beta \operatorname{ch} \beta \delta+\alpha \operatorname{sh} \beta \delta) \tau^{\prime}(x)-\left(\alpha^{2}-\beta^{2}\right) \operatorname{sh} \beta \delta \tau(x)  \tag{6}\\
\text { for } p^{2}-4 q>0
\end{gather*}
$$

c) $\sin \beta \delta \nu^{\prime}(x)+(\beta \cos \beta \delta-\alpha \sin \beta \delta) \nu(x)=\frac{2 \beta(\widetilde{T}(\tau, \nu)-\widetilde{\psi})}{p_{2}-q_{2}} \exp (\alpha \delta)$

$$
\begin{gathered}
+(\beta \cos \beta \delta+\alpha \sin \beta \delta) \tau^{\prime}(x)-\left(\alpha^{2}+\beta^{2}\right) \sin \beta \delta \tau(x) \\
\text { for } p^{2}-4 q>0
\end{gathered}
$$

Solving (6) as a linear differential equation with respect to $\nu(x)$, the relations between $\tau(x)$ and $\nu(x)$ after some transformations can be written in the form
a) $\nu(t) \exp \left[\frac{1-\alpha \delta}{\delta} t\right]=\nu(0)$

$$
\begin{aligned}
& +\int_{0}^{t}\left[\frac{2(\widetilde{T}(\tau, \nu)-\widetilde{\psi})}{\delta\left(p_{2}-q_{2}\right)} \exp (\alpha \delta)-\alpha^{2} \tau(x)\right] \exp \left[\frac{1-\alpha \delta}{\delta} x\right] d x \\
& +\frac{1+\alpha \delta}{\delta}\left[\tau(t) \exp \left(\frac{1-\alpha \delta}{\delta} t\right)-\tau(0)\right. \\
& \left.-\frac{1-\alpha \delta}{\delta} \int_{0}^{t} \tau(x) \exp \left[\frac{(1-\alpha \delta) x}{\delta}\right] d x\right] \text { for } p^{2}-4 q=0
\end{aligned}
$$

b) $\nu(t) \exp \left[\frac{(\beta \operatorname{ch} \beta \delta-\alpha \operatorname{sh} \beta \delta)}{\operatorname{sh} \beta \delta} t\right]=\nu(0)+\int_{0}^{t}\left[\frac{2(\widetilde{T}(\tau, \nu)-\widetilde{\psi}) \beta}{\operatorname{sh} \beta \delta\left(p_{2}-q_{2}\right)} \exp (\alpha \delta)\right.$

$$
\begin{gather*}
\left.-\left(\alpha^{2}-\beta^{2}\right) \tau(x)\right] \exp \left[\frac{\beta \operatorname{ch} \beta \delta-\alpha \operatorname{sh} \beta \delta}{\operatorname{sh} \beta \delta} x\right] d x \\
+\frac{\beta \operatorname{ch} \beta \delta+\alpha \operatorname{sh} \beta \delta}{\operatorname{sh} \beta \delta}\left[\tau(t) \exp \left(\frac{\beta \operatorname{ch} \beta \delta-\alpha \operatorname{sh} \beta \delta}{\operatorname{sh} \beta \delta} t\right)-\tau(0)\right.  \tag{7}\\
\left.-\frac{\beta \operatorname{ch} \beta \delta-\alpha \operatorname{sh} \beta \delta}{\operatorname{sh} \beta \delta} \int_{0}^{t} \tau(x) \exp \left[\frac{\beta \operatorname{ch} \beta \delta-\alpha \operatorname{sh} \beta \delta}{\operatorname{sh} \beta \delta} x\right] d x\right] \\
\text { for } p^{2}-4 q>0
\end{gather*}
$$

c) $\nu(t) \exp \left[\frac{(\beta \cos \beta \delta-\alpha \sin \beta \delta)}{\sin \beta \delta} t\right]=\nu(0)+\int_{0}^{t}\left[\frac{2(\widetilde{T}(\tau, \nu)-\widetilde{\psi}) \beta}{\sin \beta \delta\left(p_{2}-q_{2}\right)} \exp (\alpha \delta)\right.$

$$
\begin{aligned}
& \left.-\left(\alpha^{2}+\beta^{2}\right) \tau(x)\right] \exp \left[\frac{\beta \cos \beta \delta-\alpha \sin \beta \delta}{\sin \beta \delta} x\right] d x \\
& +\frac{\beta \cos \beta \delta+\alpha \sin \beta \delta}{\sin \beta \delta}\left[\tau(t) \exp \left(\frac{\beta \cos \beta \delta-\alpha \sin \beta \delta}{\sin \beta \delta} t\right)-\tau(0)\right. \\
& \left.-\frac{\beta \cos \beta \delta-\alpha \sin \beta \delta}{\sin \beta \delta} \int_{0}^{t} \tau(x) \exp \left[\frac{\beta \cos \beta \delta-\alpha \sin \beta \delta}{\sin \beta \delta} x\right] d x\right]
\end{aligned}
$$

$$
\text { for } p^{2}-4 q<0 \text { and } \sin \beta \delta \neq 0
$$

When $p^{2}-4 q<0$ and $\sin \beta \delta=0$, (6) immediately implies the relation

$$
\nu(t)=\frac{2(\widetilde{T}(\tau, \nu)-\widetilde{\psi})}{\left(p_{2}-q_{2}\right) \cos \beta \delta} \exp (\alpha \delta)+\tau^{\prime}(t)
$$

Let us use a general representation of regular solutions of equation (1) in $\Omega_{1}$ by analytic functions $\omega(z)$ [3]

$$
\begin{equation*}
u(x, y)=\operatorname{Re}\left\{\alpha(z, \bar{z}) \omega(z)+\int_{p_{0}}^{z} \beta(z, \bar{z}, t) \omega(t) d t\right\} \tag{8}
\end{equation*}
$$

where $\omega(z)$ is an arbitrary analytic function in $\Omega_{1}$ that satisfies the condition $\operatorname{Im} \omega\left(p_{0}\right)=0, p_{0} \in \Omega_{1} ; \alpha(z, \bar{z})$ and $\beta(z, \bar{z}, t)$ are entire functions of their arguments. I. Vekua proved that if $\omega(z) \in C^{1, h}\left(\Omega_{1}\right)$ is an analytic function in a 1-connected domain $\Omega_{1}$ satisfying the condition $\operatorname{Im} \omega\left(p_{0}\right)=0$, then there exists a unique real function $\mu(t) \in C^{0, h}$ such that the formula

$$
\begin{equation*}
\omega(z)=\int_{\partial \Omega_{1}} \mu(t) \log e\left(1-\frac{z}{t}\right) d S_{t} \tag{9}
\end{equation*}
$$

holds, where $d S_{t}$ are elements of an arc of the boundary $\partial \Omega_{1}$, while under $\log e\left(1-\frac{z}{t}\right), z \in \Omega_{1}, t \in \partial \Omega_{1}$, we understand a branch if this function that is equal to zero for $z=0$. Assuming that (8) is a boundary condition [4], we can rewrite (2) equivalently as

$$
\begin{align*}
\alpha_{1}(t) \mu(t) & +\beta_{1}(t) \int_{\partial \Omega_{1}} \frac{\mu\left(t_{1}\right) d t_{1}}{t_{1}-t} \\
& +\int_{\partial \Omega_{1}} K\left(t, t_{1}\right) \mu\left(t_{1}\right) d t_{1}=\varphi(t), \quad t \in \partial \Omega_{1} \backslash C_{1} C_{2} \tag{10}
\end{align*}
$$

where

$$
\begin{aligned}
\alpha_{1}(t) & =\operatorname{Re}\left[-\pi t^{\prime} \alpha(t, \bar{t})\left(p_{1}(t)+i q_{1}(t)\right),\right. \\
\beta_{1}(t) & =\operatorname{Im}\left[-i \bar{t}^{\prime}\left(p_{1}(t)+i q_{1}(t)\right) \alpha(t, \bar{t})\right], \\
\alpha(z, \bar{z}) & =\exp \left[\int_{0}^{\bar{z}} p(z, \bar{t}) d t\right] .
\end{aligned}
$$

From (8) we find that [4]

$$
\begin{align*}
\tau^{\prime}(t) & =\widetilde{\alpha}_{1}(t) \mu(t)+\widetilde{\beta}_{1}(t) \int_{\partial \Omega_{1}} \frac{\mu\left(t_{1}\right) d t_{1}}{t_{1}-t}+K_{1}(\mu),  \tag{11}\\
\nu(t) & =\widetilde{\alpha}_{2}(t) \mu(t)+\widetilde{\beta}_{2}(t) \int_{\partial \Omega_{1}} \frac{\mu\left(t_{1}\right) d t_{1}}{t_{1}-t}+K_{2}(\mu),  \tag{12}\\
\widetilde{\alpha}_{1}(t) & =\operatorname{Re}\left(-\pi i \alpha(t, \bar{t}) t^{\prime}\right), \quad \widetilde{\beta}_{1}(t)=\operatorname{Im}\left(-i \alpha(t, \bar{t}) \bar{t}^{\prime}\right), \\
\widetilde{\alpha}_{2}(t) & =\operatorname{Re}\left(\pi \alpha(t, \bar{t}) t^{\prime}\right), \quad \widetilde{\beta}_{2}(t)=\operatorname{Im}\left(\alpha(t, \bar{t}) t^{\prime}\right) .
\end{align*}
$$

Here $K_{1}(\mu), K_{2}(\mu)$ are completely defined integral operators.
Using formulas (8), (11), (12), from the boundary condition (3) we obtain a singular integral equation with Cauchy kernel which, together with equation (10) can be rewritten in the form of a singular equation on the whole boundary $\partial \Omega_{1}$

$$
\begin{equation*}
\alpha_{i}^{*}(t) \mu(t)+\beta_{i}^{*}(t) \int_{\partial \Omega_{1}} \frac{\mu\left(t_{1}\right) d t_{1}}{t_{1}-t}+K_{i}^{*}=f_{i}^{*}(t) \quad(i=1,2,3,4) \tag{13}
\end{equation*}
$$

where $K_{i}^{*}(i=1,2,3,4)$ are completely defined compact linear integral operators, $f_{i}^{*}(i=1,2,3,4)$ are the known functions, for $p^{2}-4 q=0$

$$
\begin{aligned}
& \alpha_{1}^{*}(t)= \begin{cases}\alpha_{1}(t), & t \in \partial \Omega_{1} \backslash A B \\
\widetilde{\alpha}_{2}(t) \exp \left[\frac{1-\alpha \sigma}{\sigma} f(t)\right], & t \in A B\end{cases} \\
& \beta_{1}^{*}(t)= \begin{cases}\beta_{1}(t), & t \in \partial \Omega_{1} \backslash A B \\
\widetilde{\beta}_{2}(t) \exp \left[\frac{1-\alpha \sigma}{\sigma} f(t)\right], & t \in A B\end{cases}
\end{aligned}
$$

for $p^{2}-4 q>0$

$$
\begin{aligned}
& \alpha_{2}^{*}(t)= \begin{cases}\alpha_{1}(t), & t \in \partial \Omega_{1} \backslash A B, \\
\widetilde{\alpha}_{2}(t) \exp [(\alpha-\operatorname{cth} \beta \sigma) f(t)], & t \in A B,\end{cases} \\
& \beta_{2}^{*}(t)= \begin{cases}\beta_{1}(t), & t \in \partial \Omega_{1} \backslash A B, \\
\widetilde{\beta}_{2}(t) \exp \left[\frac{1-\alpha \sigma}{\sigma} f(t)\right], & t \in A B ;\end{cases}
\end{aligned}
$$

for $p^{2}-4 q<0, \sin \beta \sigma \neq 0$

$$
\begin{aligned}
& \alpha_{3}^{*}(t)= \begin{cases}\alpha_{1}(t), & t \in \partial \Omega_{1} \backslash A B \\
\widetilde{\alpha}_{2}(t)[(\alpha-\operatorname{ctg} \beta \sigma) f(t)], & t \in A B\end{cases} \\
& \beta_{3}^{*}(t)= \begin{cases}\beta_{1}(t), & t \in \partial \Omega_{1} \backslash A B \\
\widetilde{\beta}_{2}(t)[(\alpha-\operatorname{ctg} \beta \sigma) f(t)], & t \in A B\end{cases}
\end{aligned}
$$

for $p^{2}-4 q<0, \sin \beta \sigma=0$

$$
\begin{aligned}
\alpha_{4}^{*}(t) & = \begin{cases}\beta_{1}(t), \quad t \in \partial \Omega_{1} \backslash A B \\
\left(p_{2}+q_{2}\right) \cos \sigma \widetilde{\beta}_{2}(t)-2\left(p_{2}-q_{2}\right) \cos \beta \widetilde{\alpha}_{1}(t), \quad t \in A B\end{cases} \\
f(x) & =\int_{0}^{x} \frac{p_{2}+q_{2}}{p_{2}-q_{2}} d t .
\end{aligned}
$$

So, in terms of solvability, problem (1), (2), (3) is equivalently reduced to the integral equation (13).

The solution $\mu(t)$ of the obtained singular integral equations is sought in the space $H^{*}\left(\partial \Omega_{1}\right)$ [5], assuming that the node of the curve $\partial \Omega_{1}$ is the point $C_{2}(1,0)$, while the index of $(13)$ is calculated in the same manner as in [1].

Thus the following theorem is valid.
Theorem. Let the conditions

1) $H(t)=p_{1}(t)+i q_{1}(t) \neq 0, t \in \sigma$,
2) $p_{1}\left(C_{1}\right)=0$,
3) $p_{2}^{2}(t)-q_{2}^{2}(t) \neq 0, t \in C_{1} C_{2}, \varphi(0)=\psi(0)$
be fulfilled. Then problem (1), (2), (3) is Noetherian.
In this direction a special mention should be made of work [6].

## References

1. M. Usanetashvili, Boundary value problems for some classes of degenerating second order partial differential equations. Mem. Differential Equations Math. Phys. 10(1997), 55-108.
2. S. A. Sobolev, Equations of mathematical physics. (Russian) Fourth edition. Nauka, Moscow, 1966.
3. I. N. Vekua, New Methods for Solving Elliptic Equations. (Russian) OGIZ, MoscowLeningrad, 1948.
4. B. V. Khvedelidze, Poincare's problem for a linear differential equation of second order of elliptic type. (Georgian) Trudy Tbiliss. Mat. Inst. Razmadze 12(1943), 4777.
5. N. I. Muskhelishvili, Singular integral equations. (Russian) Nauka, Moscow, 1968; English transl.: Dover Publications, Inc., New York, 1992.
6. M. M. Zainulabidov, The two-dimensional Tricomi problem when the domain of parabolicity is two-dimensional. (Russian) Differentsial'nye Uravneniya 21(1985), No. 1, 51-58.
(Received 8.07.2008)
Author's address:
Department of Mathematics Georgian Technical University
77, M. Kostava St., Tbilisi 0175
Georgia
