Memoirs on Differential Equations and Mathematical Physics

Volume 45, 2008, 75-83

Lamara Bitsadze

EXPLICIT SOLUTION OF THE FIRST BVP
OF THE ELASTIC MIXTURE FOR HALF-SPACE

Abstract

We consider the first BVP of elastic mixture theory for a transversally-isotropic half-space. The solution of the first BVP for the transversally-isotropic half-space is given in [1]. The present paper is an attempt to use this result for the BVP of elastic mixture theory for a transversally-isotropic elastic body. Using the potential method and the theory of integral equations, the uniqueness theorem is proved for a halfspace and the first BVP previously is solved effectively (in quadratures), which has not been solved.

2000 Mathematics Subject Classification. 74E30, 74G05. Key words and phrases. Elastic mixture, uniqueness theorem, potential method, explicit solution. Entith hitwarity ($x+1 \times 2$

The first BVP and the uniqueness theorem for a half-space. Let the plane $o x_{1} x_{2}$ be the boundary of a half-space $x_{3}>0$. Let the upper half-space be denoted by D and the boundary of D by S. Let the axis ox x_{3} be directed vertically upwards and the normal be $n(0,0,1)$.

A basic homogeneous equation of statics of transversally-isotropic elastic mixture theory can be written in the form [2]

$$
C(\partial x) U=\left(\begin{array}{cc}
C^{(1)}(\partial x) & C^{(3)}(\partial x) \tag{1}\\
C^{(3)}(\partial x) & C^{(2)}(\partial x)
\end{array}\right) U=0
$$

where the components of the matrix $C^{(j)}(\partial x)=\left\|C_{p q}^{(j)}(\partial x)\right\|_{3 x 3}$ are given in the form

$$
\begin{aligned}
& C_{p q}^{(j)}=C_{q p}^{(j)}, \quad j=1,2,3 ; \quad p, q=1,2,3, \\
& C_{11}^{(j)}(\partial x)=c_{11}^{(j)} \frac{\partial^{2}}{\partial x_{1}^{2}}+c_{66}^{(j)} \frac{\partial^{2}}{\partial x_{2}^{2}}+c_{44}^{(j)} \frac{\partial^{2}}{\partial x_{3}^{2}}, \\
& C_{12}^{(j)}(\partial x)=\left(c_{11}^{(j)}-c_{66}^{(j)}\right) \frac{\partial^{2}}{\partial x_{1} \partial x_{2}}, \\
& C_{k 3}^{(j)}(\partial x)=\left(c_{13}^{(j)}+c_{44}^{(j)}\right) \frac{\partial^{2}}{\partial x_{k} \partial x_{3}}, \quad k=1,2, \\
& C_{22}^{(j)}(\partial x)=c_{66}^{(j)} \frac{\partial^{2}}{\partial x_{1}^{2}}+c_{11}^{(j)} \frac{\partial^{2}}{\partial x_{2}^{2}}+c_{44}^{(j)} \frac{\partial^{2}}{\partial x_{3}^{2}}, \\
& C_{33}^{(j)}(\partial x)=c_{44}^{(j)}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right)+c_{33}^{(j)} \frac{\partial^{2}}{\partial x_{3}^{2}},
\end{aligned}
$$

$c_{p q}^{(k)}$ are the constants characterizing physical properties of the mixture and satisfying certain inequalities obtained due to positive definiteness of the potential energy. $U=U^{T}(x)=\left(u^{\prime}, u^{\prime \prime}\right)$ is a six-dimensional displacement vector-function, $u^{\prime}(x)=\left(u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)$ and $u^{\prime \prime}(x)=\left(u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, u_{3}^{\prime \prime}\right)$ are partial displacement vectors. Throughout this paper " T " denotes transposition.

Definition. A vector-function $U(x)$ defined in the domain D is called regular if it has integrable continuous second derivatives in D and $U(x)$ itself and its first derivatives are continuously extendable at every point of the boundary of D, i.e. $U(x) \in C^{2}(D) \cap C^{1}(D)$ and satisfies the following conditions at infinity

$$
U(x)=O\left(|x|^{-1}\right), \quad \frac{\partial U}{\partial x_{k}}=O\left(|x|^{-2}\right), \quad|x|^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \quad k=1,2,3
$$

For the equation (1) we pose the following BVP. Find a regular function $U(x)$ satisfying the equation (1) in D if on the boundary S the displacement vector U is given in the form

$$
\begin{equation*}
U^{+}=f(z), \quad z \in S \tag{2}
\end{equation*}
$$

where $(.)^{+}$denotes the limiting value from D and f is a given vector.

$$
\begin{align*}
& \left|f_{k}\right|<A R, \quad R=\sqrt{z_{1}^{2}+z_{2}^{2}} \leq 1, \quad\left|f_{k}\right|<A R^{-\alpha} \tag{3}\\
& \alpha>0, \quad R>1, \quad k=1, \ldots, 6, \quad A=\text { const }>0
\end{align*}
$$

The Uniqueness Theorem. Let us prove that the first homogeneous BVP has only a trivial solution. Note that if U is a regular solution of the equation (1) and satisfies the following conditions at infinity

$$
U(x)=O\left(|x|^{-\alpha}\right), \quad P(\partial x, n) U=O\left(|x|^{-1-\alpha}\right), \quad \alpha>0
$$

then we have the formula

$$
\begin{align*}
& U(x)= \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[(P(\partial y, n) \Gamma)^{*} u^{+}-\Gamma(y-z)(P(\partial y, n) u)^{+}\right] d y_{1} d y_{2}, \quad x \in D \tag{4}
\end{align*}
$$

where $P(\partial y, n) U$ is the generalized stress vector

$$
\begin{align*}
(P(\partial y, n) U)_{k}= & c_{44}^{(1)} \frac{\partial u_{k}^{\prime}}{\partial x_{3}}+c_{44}^{(3)} \frac{\partial u_{k}^{\prime \prime}}{\partial x_{3}}+\delta^{(1)} \frac{\partial u_{3}^{\prime}}{\partial x_{k}}+\delta^{(3)} \frac{\partial u_{3}^{\prime \prime}}{\partial x_{k}}, \quad k=1,2 \\
(P(\partial y, n) U)_{3}= & \beta^{(1)}\left(\frac{\partial u_{1}^{\prime}}{\partial x_{1}}+\frac{\partial u_{2}^{\prime}}{\partial x_{2}}\right)+\beta^{(3)}\left(\frac{\partial u_{1}^{\prime \prime}}{\partial x_{1}}+\frac{\partial u_{2}^{\prime \prime}}{\partial x_{2}}\right)+ \\
& +c_{33}^{(1)} \frac{\partial u_{3}^{\prime}}{\partial x_{3}}+c_{33}^{(3)} \frac{\partial u_{3}^{\prime \prime}}{\partial x_{3}} \\
(P(\partial y, n) U)_{k}= & c_{44}^{(3)} \frac{\partial u_{k-3}^{\prime}}{\partial x_{3}}+c_{44}^{(2)} \frac{\partial u_{k-3}^{\prime \prime}}{\partial x_{3}}+ \\
& +\delta^{(4)} \frac{\partial u_{3}^{\prime}}{\partial x_{k-3}}+\delta^{(2)} \frac{\partial u_{3}^{\prime \prime}}{\partial x_{k-3}}, k=4,5, \tag{5}\\
(P(\partial y, n) U)_{6}= & \beta^{(4)}\left(\frac{\partial u_{1}^{\prime}}{\partial x_{1}}+\frac{\partial u_{2}^{\prime}}{\partial x_{2}}\right)+\beta^{(2)}\left(\frac{\partial u_{1}^{\prime \prime}}{\partial x_{1}}+\frac{\partial u_{2}^{\prime \prime}}{\partial x_{2}}\right)+ \\
& +c_{33}^{(3)} \frac{\partial u_{3}^{\prime}}{\partial x_{3}}+c_{33}^{(2)} \frac{\partial u_{3}^{\prime \prime}}{\partial x_{3}}, \\
\beta^{(j)}+\delta^{(j)}= & \alpha_{13}^{(j)}, j=1,2,3, \quad \beta^{(4)}+\delta^{(4)}=\alpha_{13}^{(3)} \\
c_{13}^{(j)}+c_{44}^{(j)}= & \alpha_{13}^{(j)} .
\end{align*}
$$

$\Gamma(y-x)$ is the symmetric matrix of the fundamental solution of the equation (1)

$$
\Gamma(x-y)=\left(\begin{array}{ll}
\Gamma^{(1)} & \Gamma^{(3)} \tag{6}\\
\Gamma^{(3) T} & \Gamma^{(2)}
\end{array}\right)
$$

where

$$
\Gamma^{(j)}(x-y)=\sum_{k=1}^{6}\left\|\Gamma_{p q}^{j(k)}\right\|_{3 x 3}, \quad j=1,2,3, \quad \Gamma_{p q}^{j(k)}=\Gamma_{q p}^{j(k)}
$$

$$
\begin{aligned}
& \Gamma_{p q}^{1(k)}=\delta_{p q} \frac{A_{11}^{(k)}}{r_{k}}+A_{12}^{(k)} \frac{\partial^{2} \Phi_{k}}{\partial x_{p} \partial x_{q}}, \quad p=1,2 ; \quad q=1,2 \\
& \delta_{p q}=1, \quad p=q, \quad \delta_{p q}=0, \quad p \neq q, \\
& \Gamma_{p 3}^{1(k)}=A_{13}^{(k)} \frac{\partial^{2} \Phi_{k}}{\partial x_{p} \partial x_{3}}, \quad \Gamma_{33}^{1(k)}=\frac{A_{33}^{(k)}}{r_{k}}, \quad \Gamma_{p q}^{3(k)}=\delta_{p q} \frac{A_{14}^{(k)}}{r_{k}}+A_{42}^{(k)} \frac{\partial^{2} \Phi_{k}}{\partial x_{p} \partial x_{q}}, \\
& \Gamma_{p 3}^{3(k)}=A_{16}^{(k)} \frac{\partial^{2} \Phi_{k}}{\partial x_{p} \partial x_{3}}, \quad p=1,2, \quad \Gamma_{33}^{3(k)}=\frac{A_{36}^{(k)}}{r_{k}}, \quad \Gamma_{3 p}^{3(k)}=A_{34}^{(k)} \frac{\partial^{2} \Phi_{k}}{\partial x_{p} \partial x_{3}}, \\
& \Gamma_{p q}^{2(k)}=\delta_{p q} \frac{A_{44}^{(k)}}{r_{k}}+A_{45}^{(k)} \frac{\partial^{2} \Phi_{k}}{\partial x_{p} \partial x_{q}}, \\
& \Gamma_{p 3}^{2(k)}=A_{46}^{(k)} \frac{\partial^{2} \Phi_{k}}{\partial x_{p} \partial x_{3}}, \quad p=1,2, \quad \Gamma_{33}^{2(k)}=\frac{A_{66}^{(k)}}{r_{k}} .
\end{aligned}
$$

The coefficients $A_{p q}^{(k)}$ are defined as follows

$$
\begin{align*}
& A_{11}^{(k)}=(-1)^{k}\left(c_{44}^{(2)}-c_{66}^{(2)} a_{k}\right) r_{0}^{\prime}, \quad A_{14}^{(k)}=-(-1)^{k}\left(c_{44}^{(3)}-c_{66}^{(3)} a_{k}\right) r_{0}^{\prime}, \\
& A_{12}^{(k)}=\frac{A_{11}^{(k)}}{a_{k}}, \quad A_{24}^{(k)}=\frac{A_{14}^{(k)}}{a_{k}}, \quad A_{45}^{(k)}=\frac{A_{44}^{(k)}}{a_{k}}, \\
& A_{44}^{(k)}=(-1)^{k}\left(c_{44}^{(1)}-c_{66}^{(1)} a_{k}\right) r_{0}^{\prime}, \quad k=1,2, \quad r_{0}^{\prime}=\left[r_{0}\left(a_{1}-a_{2}\right)\right]^{-1}, \\
& A_{12}^{(k)}=\frac{\delta_{k}}{a_{k}}\left[-q_{3} c_{44}^{(2)}+a_{k} t_{12}-a_{k}^{2} t_{11}+c_{11}^{(2)} q_{4} a_{k}^{3}\right], \\
& A_{42}^{(k)}=\frac{\delta_{k}}{a_{k}}\left[q_{3} c_{44}^{(3)}+a_{k} t_{13}-a_{k}^{2} t_{22}-c_{11}^{(3)} q_{4} a_{k}^{3}\right], \\
& A_{45}^{(k)}=\frac{\delta_{k}}{a_{k}}\left[-q_{3} c_{44}^{(1)}+a_{k} t_{23}-a_{k}^{2} t_{33}+c_{11}^{(1)} q_{4} a_{k}^{3}\right], \tag{7}\\
& A_{33}^{((k))}=\delta_{k}\left[q_{4} c_{33}^{(2)}-a_{k} t_{42}+a_{k}^{2} t_{44}-c_{44}^{(2)} q_{1} a_{k}^{3}\right], \\
& A_{36}^{(k)}=\delta_{k}\left[-q_{4} c_{33}^{(3)}-a_{k} t_{62}+a_{k}^{2} t_{66}+c_{44}^{(3)} q_{1} a_{k}^{3}\right], \\
& A_{66}^{(k)}=\delta_{k}\left[q_{4} c_{33}^{(1)}-a_{k} t_{52}+a_{k}^{2} t_{55}-c_{44}^{(1)} q_{1} a_{k}^{3}\right], \\
& A_{13}^{(k)}=\delta_{k}\left[v_{13}-v_{11} a_{k}+v_{12} a_{k}^{2}\right], \quad A_{16}^{(k)}=\delta_{k}\left[w_{13}-w_{12} a_{k}+w_{11} a_{k}^{2}\right], \\
& A_{34}^{(k)}=\delta_{k}\left[v_{23}-v_{21} a_{k}+v_{22} a_{k}^{2}\right], \quad A_{46}^{(k)}=\delta_{k}\left[w_{34}-w_{14} a_{k}+w_{24} a_{k}^{2}\right], \\
& \delta_{k}=d_{k}\left(a_{1}-a_{k}\right)\left(a_{2}-a_{k}\right) b_{0}^{-1}, \quad k=3, \ldots, 6,
\end{align*}
$$

where a_{k} are the positive roots of the characteristic equations

$$
\begin{gathered}
\left(r_{0} a^{2}-c_{0} a+q_{4}\right)\left(b_{0} a^{4}-b_{1} a^{3}+b_{2} a^{2}-b_{3} a+b_{4}\right)=0, \\
r_{0}=c_{66}^{(1)} c_{66}^{(2)}-c_{66}^{(3) 2}, \quad c_{0}=c_{66}^{(1)} c_{44}^{(2)}+c_{44}^{(1)} c_{66}^{(2)}-2 c_{66}^{(3)} c_{44}^{(3)} .
\end{gathered}
$$

The coefficients $d_{k}, b_{k}, v_{i j}, w_{i j}, t_{i j}$ are given in [3]. The singular matrix $[P(\partial y, n) \Gamma]^{*}=\sum_{k=1}^{6}\left(M_{p q}^{(k)}\right)_{6 x 6}$, which is obtained from $P(\partial x, n) \Gamma(x-y)$ by
transposition of the columns and rows and the variables x and y, has the form

$$
[P(\partial x) \Gamma(x-y)]^{*}=\sum_{k=1}^{6}\left(\begin{array}{ll}
M^{(1 k)} & M^{(3 k)} \tag{8}\\
M^{(4 k)} & M^{(2 k)}
\end{array}\right)
$$

where the elements of the matrix $M^{(j k)}=\left\|M_{p q}^{(j k)}\right\|_{3 x 3}, j=1,2,3,4$, are written as

$$
\begin{aligned}
& M_{p j}^{(1 k)}=\delta_{p j} R_{11}^{(k)} \frac{\partial}{\partial x_{3}} \frac{1}{r_{k}}+R_{12}^{(k)} \frac{\partial^{3} \Phi_{k}}{\partial x_{p} \partial x_{j} \partial x_{3}}, \\
& \delta_{p j}=1, \quad p=j, \quad \delta_{p j}=0, \quad p \neq j, \quad p, j=1,2, \\
& M_{p 3}^{(1 k)}=R_{31}^{(k)} \frac{\partial}{\partial x_{p}} \frac{1}{r_{k}}, \quad M_{3 p}^{(1 k)}=R_{13}^{(k)} \frac{\partial}{\partial x_{p}} \frac{1}{r_{k}}, \\
& M_{33}^{(1 k)}=R_{33}^{(k)} \frac{\partial}{\partial x_{3}} \frac{1}{r_{k}}, \quad M_{p j}^{(3 k)}=\delta_{p j} R_{14}^{(k)} \frac{\partial}{\partial x_{3}} \frac{1}{r_{k}}+R_{24}^{(k)} \frac{\partial^{3} \Phi_{k}}{\partial x_{j} \partial x_{p} \partial x_{3}}, \\
& M_{p 3}^{(3 k)}=R_{61}^{(k)} \frac{\partial}{\partial x_{p}} \frac{1}{r_{k}}, \quad M_{3 p}^{(3 k)}=R_{43}^{(k)} \frac{\partial}{\partial x_{p}} \frac{1}{r_{k}}, \quad M_{33}^{(3 k)}=R_{63}^{(k)} \frac{\partial}{\partial x_{3}} \frac{1}{r_{k}}, \\
& M_{p j}^{(4 k)}=\delta_{p j} R_{41}^{(k)} \frac{\partial}{\partial x_{3}} \frac{1}{r_{k}}+R_{42}^{(k)} \frac{\partial^{3} \Phi_{k}}{\partial x_{j} \partial x_{p} \partial x_{3}}, \quad M_{p 3}^{(4 k)}=R_{34}^{(k)} \frac{\partial}{\partial x_{p}} \frac{1}{r_{k}}, \\
& M_{3 p}^{(4 k)}=R_{16}^{(k)} \frac{\partial}{\partial x_{p}} \frac{1}{r_{k}}, \quad M_{33}^{(4 k)}=R_{36}^{(k)} \frac{\partial}{\partial x_{3}} \frac{1}{r_{k}}, \\
& M_{p j}^{(2 k)}=\delta_{p j} \mu_{44}^{(k)} \frac{\partial}{\partial x_{3}} \frac{1}{r_{k}}+R_{44}^{(k)} \frac{\partial^{3} \Phi_{k}}{\partial x_{p} \partial x_{j} \partial x_{3}}, \quad M_{p 3}^{(2 k)}=R_{64}^{(k)} \frac{\partial}{\partial x_{p}} \frac{1}{r_{k}}, \\
& M_{3 p}^{(2 k)}=R_{46}^{(k)} \frac{\partial}{\partial x_{p}} \frac{1}{r_{k}}, \quad M_{33}^{(2 k)}=R_{66}^{(k)} \frac{\partial}{\partial x_{3}} \frac{1}{r_{k}}, \quad p=1,2 .
\end{aligned}
$$

The coefficients $R_{p q}^{(k)}$ satisfy the following conditions

$$
\begin{aligned}
& \sum_{k=1}^{2} \frac{R_{11}^{(k)}}{a_{k}}= \sum_{k=3}^{6} \frac{R_{33}^{(k)}}{a_{k}}=\sum_{k=3}^{6} \frac{R_{66}^{(k)}}{a_{k}}=\sum_{k=1}^{2} \frac{\mu_{44}^{(k)}}{a_{k}}=1 \\
& \sum_{k=1}^{2} \frac{R_{14}^{(k)}}{a_{k}}=\sum_{k=1}^{6} R_{12}^{(k)}=0 \\
& \sum_{k=1}^{2} \frac{R_{41}^{(k)}}{a_{k}}=\sum_{k=3}^{6} \frac{R_{36}^{(k)}}{a_{k}}=\sum_{k=1}^{6} R_{24}^{(k)}=\sum_{k=3}^{6} \frac{R_{63}^{(k)}}{a_{k}}=\sum_{k=1}^{2} R_{44}^{(k)}=\sum_{k=1}^{6} R_{42}^{(k)}=0
\end{aligned}
$$

and, after elementary calculations the coefficients $R_{13}^{(k)}, \ldots, R_{64}^{(k)}$ take the form

$$
\begin{align*}
& R_{13}^{(k)}=\delta_{0}^{(1)} A_{33}^{(k)}+\delta_{0}^{(3)} A_{36}^{(k)}+c_{44}^{(1)} A_{13}^{(k)}+c_{44}^{(3)} A_{43}^{(k)}, \\
& R_{16}^{(k)}=\delta_{0}^{(1)} A_{36}^{(k)}+\delta_{0}^{(3)} A_{66}^{(k)}+c_{44}^{(1)} A_{16}^{(k)}+c_{44}^{(3)} A_{46}^{(k)}, \\
& R_{31}^{(k)}=-a_{k} \beta_{0}^{(1)} A_{12}^{(k)}-a_{k} \beta_{0}^{(3)} A_{42}^{(k)}+c_{33}^{(1)} A_{13}^{(k)}+c_{33}^{(3)} A_{16}^{(k)}, \\
& R_{34}^{(k)}=-a_{k} \beta_{0}^{(1)} A_{42}^{(k)}-a_{k} \beta_{0}^{(3)} A_{45}^{(k)}+c_{33}^{(1)} A_{43}^{(k)}+c_{33}^{(3)} A_{46}^{(k)}, \tag{9}\\
& R_{43}^{(k)}=\delta_{0}^{(4)} A_{33}^{(k)}+\delta_{0}^{(2)} A_{36}^{(k)}+c_{44}^{(3)} A_{13}^{(k)}+c_{44}^{(2)} A_{43}^{(k)}, \\
& R_{46}^{(k)}=\delta_{0}^{(4)} A_{36}^{(k)}+\delta_{0}^{(2)} A_{66}^{(k)}+c_{44}^{(3)} A_{16}^{(k)}+c_{44}^{(2)} A_{46}^{(k)}, \\
& R_{61}^{(k)}=-a_{k} \beta_{0}^{(4)} A_{12}^{(k)}-a_{k} \beta_{0}^{(2)} A_{42}^{(k)}+c_{33}^{(3)} A_{13}^{(k)}+c_{33}^{(2)} A_{16}^{(k)}, \\
& R_{64}^{(k)}=-a_{k} \beta_{0}^{(4)} A_{42}^{(k)}-a_{k} \beta_{0}^{(2)} A_{45}^{(k)}+c_{33}^{(3)} A_{43}^{(k)}+c_{33}^{(2)} A_{46}^{(k)}, \quad k=3, \ldots, 6 .
\end{align*}
$$

We can easily prove that every column of the matrix $[P(\partial x, n) \Gamma]^{*}$ is a solution of the system (1) with respect to the point x if $x \neq y$ and all elements $M_{p q}^{(k)}$ have a singularity of type $|x|^{-2}$.

We choose $\delta_{0}^{(J)}, \beta_{0}^{(j)}, j=1, \ldots, 4$, so that

$$
\begin{array}{llll}
\sum_{k=3}^{6} \frac{R_{13}^{(k)}}{\sqrt{a_{k}}}=0, & \sum_{k=3}^{6} \frac{R_{31}^{(k)}}{\sqrt{a_{k}}}=0, & \sum_{k=3}^{6} \frac{R_{16}^{(k)}}{\sqrt{a_{k}}}=0, & \sum_{k=3}^{6} \frac{R_{34}^{(k)}}{\sqrt{a_{k}}}=0, \\
\sum_{k=3}^{6} \frac{R_{43}^{(k)}}{\sqrt{a_{k}}}=0, & \sum_{k=3}^{6} \frac{R_{46}^{(k)}}{\sqrt{a_{k}}}=0, & \sum_{k=3}^{6} \frac{R_{61}^{(k)}}{\sqrt{a_{k}}}=0, & \sum_{k=3}^{6} \frac{R_{64}^{(k)}}{\sqrt{a_{k}}}=0, \tag{10}
\end{array}
$$

After some simplification, we find from (10) that

$$
\begin{aligned}
& \Delta=\sum_{k=3}^{6} A_{12}^{(k)} \sqrt{a_{k}} \sum_{k=3}^{6} A_{45}^{(k)} \sqrt{a_{k}}-\left(\sum_{k=3}^{6} A_{42}^{(k)} \sqrt{a_{k}}\right)^{2}= \\
& =\sqrt{a_{3} a_{4} a_{5} a_{6}}\left[\sum_{k=3}^{6} \frac{A_{33}^{(k)}}{\sqrt{a_{k}}} \sum_{k=3}^{6} \frac{A_{66}^{(k)}}{\sqrt{a_{k}}}-\left(\sum_{k=3}^{6} \frac{A_{36}^{(k)}}{\sqrt{a_{k}}}\right)^{2}\right]= \\
& =\frac{B_{0}}{b_{0}^{2}}\left[\left[\left(\delta_{11} \delta_{22}+b_{0} m_{1} m_{3}\right) q_{4}+q_{1} b_{4}+\delta_{22} b_{0} m_{2}\right]\left(\sqrt{a_{3} a_{4} a_{5} a_{6}}\right)^{-1}+\right. \\
& \\
& \left.\quad+q_{1}\left(\delta_{11} \delta_{22}+b_{0} m_{1} m_{3}-k_{1}\right)+b_{0} \delta_{11} m_{2}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& q_{1}=c_{11}^{(1)} c_{11}^{(2)}-c_{11}^{(3) 2}, \quad q_{4}=c_{44}^{(1)} c_{44}^{(2)}-c_{44}^{(3) 2}, \quad b_{0}=q_{1} q_{4}, \\
& m_{1}=\sum_{k=3}^{6} \sqrt{a_{k}}, \quad m_{2}=\sum_{p \neq q} \sqrt{a_{p} a_{q}}, \\
& m_{3}=\sum_{p \neq q \neq j} \sqrt{a_{p} a_{q} a_{j}}, \quad p, q, j=3, \ldots, 6,
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{11}=c_{11}^{(1)} c_{44}^{(2)}+c_{44}^{(1)} c_{11}^{(2)}-2 c_{11}^{(3)} c_{44}^{(3)}>0 \\
& \delta_{22}=c_{33}^{(1)} c_{44}^{(2)}+c_{44}^{(1)} c_{33}^{(2)}-2 c_{33}^{(3)} c_{44}^{(3)}>0 \\
& k_{1}+k_{2}=2\left(\alpha_{13}^{(1)} \alpha_{13}^{(2)}-\alpha_{13}^{(3) 2}\right)-\alpha_{13}^{(1)} v_{11}-\alpha_{13}^{(2)} w_{14}-\alpha_{13}^{(3)}\left(w_{12}+v_{21}\right) \\
& k_{1}=\frac{1}{c_{44}^{(2) 2}}\left[c_{44}^{(2) 2} c_{13}^{(3)}-2 c_{44}^{(2)} c_{44}^{(3)} c_{13}^{(3)}+c_{44}^{(3) 2} c_{13}^{(2)}+c_{44}^{(2)}\right]^{2}+ \\
& \quad+\frac{2 q_{4}}{c_{44}^{(2) 2}}\left[c_{44}^{(2)} c_{13}^{(3)}-c_{44}^{(3)} c_{13}^{(2)}\right]^{2}+\frac{q_{4}^{2}}{c_{44}^{(2) 2}} \alpha_{13}^{(2) 2} \\
& B_{0}^{-1}=\prod_{p \neq q}\left(\sqrt{a_{p}}+\sqrt{a_{q}}\right), \quad p, q=3, \ldots, 6
\end{aligned}
$$

Taking into account the inequalities obtained from the positive definiteness the energy $E(u, u)$, we conclude that $\Delta \neq 0$. When $\delta_{0}^{(j)}, \beta_{0}^{(j)}$ are solutions of the system (10), we denote the vector $P(\partial y, n) U$, by $N(\partial y, n) U$. Then from (4), when $U^{+}=0$, we have

$$
U(x)=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Gamma(y-x) N(\partial y, n) U d y_{1} d y_{2}
$$

Hence for the vector $N U$ as $x\left(x_{1}, x_{2}, x_{3}\right) \longrightarrow z\left(z_{1}, z_{2}, 0\right)$ we find

$$
[N(\partial z, n) U]^{+}+\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} N \Gamma(y-z)(N U)^{+} d y_{1} d y_{2}=0
$$

Note that $N \Gamma(z-y)=0, z \in S$. ATherefore $(N U)^{+}=0$, and from (4) we have $U=0, x \in D$. Therefore the homogeneous equation has only the trivial solution. Thus we formulate the following

Theorem. The first BVP has at most one regular solution.
The first BVP. A solution of the first BVP will be sought in the domain D in terms of the double layer potential

$$
\begin{equation*}
U(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[N(\partial y, n) \Gamma(y-x]^{*} g(y) d y_{1} d y_{2}\right. \tag{11}
\end{equation*}
$$

where g is an unknown real vector. Taking into account the properties of the double layer potential and the boundary condition for determining g, we obtain the following Fredholm integral equation of second kind:

$$
g(z)+\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}[N(\partial y, n) \Gamma(y-z)]^{*} g(y) d y_{1} d y_{2}=f(z)
$$

Taking into account the fact that $[N \Gamma]^{*}=0, x_{3}=0$, from the latter equation we have $g(z)=f(z)$ and (11) takes the form

$$
\begin{equation*}
U(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}[N(\partial y, n) \Gamma(y-x)]^{*} f(y) d y_{1} d y_{2} \tag{12}
\end{equation*}
$$

Thus we have obtained the Poisson formula for the solution of the first BVP for the half-space. Note that (12) is valid if and only if $f \in C^{1, \alpha}(S)$ and satisfies the condition $f=O\left(\frac{A}{|x|^{1+\beta}}\right)$ at infinity, where A is a constant vector and $\beta>0$.

Acknowledgement

This project was fulfilled by the financial support from Georgian National Science Foundation (Grant No. GNSF/ST06/3-033).

References

1. V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burchuladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. Translated from the second Russian edition. Edited by V. D. Kupradze. North-Holland Series in Applied Mathematics and Mechanics, 25. North-Holland Publishing Co., Amsterdam-New York, 1979.
2. Ya. Ya. Rushchitski, Elements of Mixture Theory. (Russian) Naukova Dumka, Kiev, 1991.
3. L. Bitsadze, The basic boundary value problems of statics of the theory of elastic transversally isotropic mixtures. Semin. I. Vekua Inst. Appl. Math. Rep. $\mathbf{2 6 / 2 7}(2000 / 01), 79-87$.
(Received 22.11.2007)
Author's address:
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
Georgia
E-mail: lbits@viam.sci.tsu.ge

