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INTERACTION PROBLEMS OF METALLIC AND

PIEZOELECTRIC MATERIALS WITH REGARD

TO THERMAL STRESSES



Abstract. We investigate linear three-dimensional boundary transmis-
sion problems related to the interaction of metallic and piezoelectric ceramic
media with regard to thermal stresses. Such type of physical problems
arise, e.g., in the theory of piezoelectric stack actuators. We use the Voigt’s
model and give a mathematical formulation of the physical problem when
the metallic electrodes and the piezoelectric ceramic matrix are bonded
along some proper parts of their boundaries. The mathematical model
involves different dimensional physical fields in different sub-domains, occu-
pied by the metallic and piezoceramic parts of the composite. These fields
are coupled by systems of partial differential equations and appropriate
mixed boundary transmission conditions. We investigate the corresponding
mixed boundary transmission problems by variational and potential meth-
ods. Existence and uniqueness results in appropriate Sobolev spaces are
proved. We present also some numerical results showing the influence of
thermal stresses.
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List of Notation

R
k – k–dimensional space of real numbers;

Ck – k–dimensional space of complex numbers;

a · b =
k∑

j=1

ajbj – the scalar product of two vectors a = (a1, . . . , ak),

b = (b1, . . . , bk) ∈ C
k;

Ω – domain occupied by a piezoceramic material;
Ωm – domain occupied by a metallic material;
Γm = ∂Ωm ∩Ω – contact interface surface between metallic and piezoce-

ramic parts;
Π := Ω∪Ω1∪Ω2∪· · ·∪Ω2N – domain occupied by a composite structure;
n = (n1, n2, n3) – unit normal vector to ∂Ω and ∂Ωm;
∂ = ∂x = (∂1, ∂2, ∂3), ∂j = ∂/∂xj , ∂t = ∂/∂t – partial derivatives with

respect to the spatial and time variables;
%, %(m) – mass densities;

cijkl , c
(m)
ijkl – elastic constants;

λ(m), µ(m) – Lamé constants;
ekij – piezoelectric constants;
εkj , ε – dielectric (permittivity) constants;

γkj , γ
(m)
kj , γ(m) – thermal strain constants;

κkj , κ
(m)
kj , κ(m) – thermal conductivity constants;

c̃, c̃(m)– specific heat per unit mass;

T0, T
(m)
0 – initial (reference) temperature (temperature in the natural

state, i.e., in the absence of deformation and electromagnetic fields);
α := %c̃, α(m) := %(m)c̃(m) – thermal material constants;
gi (i = 1, 2, 3) – constants characterizing the relation between thermody-

namic processes and piezoelectric effect (pyroelectric constants);

X = (X1, X2, X3)
>, X(m) = (X

(m)
1 , X

(m)
2 , X

(m)
3 )> – mass force densities;

X4, X
(m)
4 – heat source densities;

X5 – charge density;

u = (u1, u2, u3)
>, u(m) = (u

(m)
1 , u

(m)
2 , u

(m)
3 )> – displacement vectors;

ϕ – electric potential;
E := −gradϕ – electric field vector;
D – electric displacement vector;

ϑ = T − T0, ϑ
(m) = T (m) − T

(m)
0 – relative temperature (temperature

increment);

q = (q1, q2, q3), q
(m) = (q

(m)
1 , q

(m)
2 , q

(m)
3 ) – heat flux vector;

skj = skj(u) := 1
2 (∂kuj+∂juk), s(m) = s

(m)
kj (u(m)) := 1

2 (∂ku
(m)
j +∂ju

(m)
k )

– strain tensors;

σ
(m)
kj = σ

(m)
kj (u(m), ϑ(m)) – mechanical stress tensor in the theory of ther-

moelasticity;



10 T. Buchukuri, O. Chkadua, D. Natroshvili, and A.-M. Sändig

σkj = σkj(u, ϑ, ϕ) – mechanical stress tensor in the theory of thermoelec-
troelasticity;
S, S(m) – entropy densities;

U (m) := (u
(m)
1 , u

(m)
2 , u

(m)
3 , u

(m)
4 )> with u

(m)
4 = ϑ(m);

U := (u1, u2, u3, u4, u5)
> with u4 = ϑ and u5 = ϕ;

U := (U (1), . . . , U (2N), U);
Lp, W

r
p , and Hs

p (r ≥ 0, s ∈ R, 1 < p < ∞) – the Lebesgue, Sobolev–
Slobodetski, and Bessel potential spaces;
W1

N := [W 1
2 (Ω1)]

4 × · · · × [W 1
2 (Ω2N )]4 × [W 1

2 (Ω)]5;
rM – restriction operator on a set M;
{· }±∂Ω, {· }±∂Ωm

– trace operators on ∂Ω and ∂Ωm;

H1
2 (Ω,M) :=

{
w ∈ H1

2 (Ω) : rM{w}+∂Ω = 0, M⊂ ∂Ω
}
;

V1
N := [H1

2 (Π,Σ−3 )]4 ×H1
2 (Ω, S− ∪ S+), Σ−3 ⊂ ∂Π, S− ∪ S+ ⊂ ∂Ω;

H̃s
p(M) :=

{
f : f ∈ Hs

p(M0), supp f ⊂M
}

for M⊂M0;

Hs
p(M) :=

{
rMf : f ∈ Hs

p(M0)
}

– space of restrictions on M⊂M0;
‖ · ‖B – norm in a Banach space B;
B∗ – dual Banach space to B;
〈· , · 〉 – duality pairing between the Banach spaces B and B∗;
τ – complex wave number;
A(m)(∂, τ) – 4 × 4 matrix differential operator of thermoelasticity (see

Appendix A);
A(∂, τ) – 5× 5 matrix differential operator of thermopiezoelasticity (see

Appendix A);
T (m)(∂, n) – 4×4 matrix stress operator of thermoelasticity (see Appen-

dix A);
T (∂, n) – 5× 5 matrix stress operator of thermopiezoelasticity (see Ap-

pendix A).

1. Introduction

The interaction of electrical and mechanical fields yields the well known
piezo-effects in piezoelastic materials. Due to this properties, they are
widely used in electro-mechanical devices and many technical equipments,
in particular, in sensors and actuators.

The corresponding mathematical problems for homogeneous media, based
on W. Voigt’s model [41], were considered by many authors.

In their works R. Toupin and R. Mindlin suggested new, more refined
models of an elastic medium, where a polarization vector occurs [38], [39],
[23], [24]. Furthermore, effects caused by thermal field and hysteresis effects
are considered in [22], [34], [16] (see also [31], [32], [35]). We refer also to the
book [36] (see also the references therein), where the distribution of stresses
near crack tips in the ceramics are studied in the two-dimensional case.

To our knowledge, only few results are known for composed complex
structures consisting of piezoelectric and metallic parts (see [37], [7] and
[42]).
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In [12], [12], and [5] two- and three-dimensional models for composites are
derived and analysed for the static case without the influence of temperature
fields.

In the present paper we study a linear mathematical model for piezoelas-

tic and metallic composites (in particular, stack actuators) and, in addition,
we take into consideration the influence of thermal effects. In this case, driv-
ing forces are given by electrical charges at electrodes which are embedded
as metallic plates in the ceramic matrix. Note that here we have different
dimensional unknown fields in the metallic and ceramic sub-domains. This
leads to an additional complexity of the model.

Thus, it was challenging to formulate the mathematical model by a cou-
pled system of linear partial differential equations which are completed by
appropriate boundary and transmission conditions.

The paper presented now can be considered as a continuation and exten-
sion of [12] and [5].

The main goals of this paper are:

• Mathematical formulation of the boundary-transmission problem
for a metallic-piezoceramic composite structure (see Figure 1) in an
efficient way.

• Derivation of existence and uniqueness results by variational and
potential methods.

• Numerical algorithms for computations of the electric and thermo-
mechanical fields, visualization of the influence of temperature.

The paper is organized as follows:
In Section 2 we give the mathematical formulation of the mixed bound-

ary transmission problem (MBTP) describing the interaction of metallic
and piezoelectric materials with regard to thermal stresses and prove the
corresponding uniqueness theorem.

In Sections 3 we introduce the sesquilinear form related to the weak
formulation of our mixed boundary transmission problem and show its co-
ercivity in an appropriate function space. Further, we prove the unique
solvability of the weak formulated MBTP.

In Section 4 by the potential method we reduce the MBTP to the equiva-
lent system of boundary integral equations. We show that the corresponding
boundary integral operator has Fredholm properties and prove its invert-
ibility. As a consequence of these results, we obtain an existence theorem
for the MBTP on the one hand and representation formulas of the corre-
sponding solutions by the layer potentials on the other hand.

In Section 5 we establish the standard finite element approximation of
solutions to the boundary transmission problem.

For the reader’s convenience, in the beginning of the paper we exhibit the
list of notation used in the text. In Appendix A we collect the field equations
of the linear theory of thermoelasticity and thermopiezoelasticity. Here we
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introduce also the corresponding matrix partial differential operators gen-
erated by the field equations and the generalized matrix boundary stress
operators. Various versions of Green’s formulas needed in the main text are
gathered in Appendix B. In Appendix C we construct explicitly the funda-
mental matrices of equations of thermoelasticity and thermopiezoelasticity.

2. Mathematical Formulation of the Boundary-Transmission

Problem and Uniqueness Theorem

We will consider a composed piecewise homogeneous multi-structure which
models a multi-layer stack actuator (for detailed description of multi-layer
actuators see, e.g., [12] and the references therein).

PSfrag replacements

Σ−3

clamped support

Sk

Sk

Sm

Σ−1

Σ−2

Σ+
2

−b2
−b1
+b2
+b1

x1

x2

x3

Γk

Γm

Σ+
1

Σ+
3

2b2

2b1

2b3

Figure 1. The parallelepiped Π occupied by the composed
body (Γm - interface submanifold between metallic and
piezoelastic media)

By Π we denote a rectangular parallelepiped in R3 which is occupied by a
composed multi-structure consisting of metallic electrodes and a piezoelastic
ceramic matrix (see Figure 1):

Π :=
{
− b1 < x1 < b1, −b2 < x2 < b2, −b3 < x3 < b3

}
,
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whose faces are

Σ̃−1 :=
{
x1 = −b1, −b2 < x2 < b2, −b3 < x3 < b3

}
,

Σ̃+
1 :=

{
x1 = b1, −b2 < x2 < b2, −b3 < x3 < b3

}
,

Σ̃−2 :=
{
x2 = −b2, −b1 < x1 < b1, −b3 < x3 < b3

}
,

Σ̃+
2 :=

{
x2 = b2, −b1 < x1 < b1, −b3 < x3 < b3

}
,

Σ̃−3 :=
{
x3 = −b3, −b1 < x1 < b1, −b2 < x2 < b2

}
,

Σ̃+
3 :=

{
x3 = b3, −b1 < x1 < b1, −b2 < x2 < b2

}
.

Let Ωm (m = 1, 2N) be an even number of rectangular parallelepipeds
occupied by some metallic medium (electrodes) where alternating negative
(for m = 1, N) and positive (for m = N + 1, 2N) charges are applied:

Ωm :=
{
− b1<x1<b1, −b2<x2<b2,m, b

′

3,m<x3<b
′′

3,m

}
, m=1, N,

Ωm :=
{
− b1<x1<b1, b2,m<x2<b2, b

′

3,m<x3<b
′′

3,m

}
, m=N+1, 2N ;

here −b2 < b2,m < b2, m = 1, 2N , and

− b3 < b
′

3,1 < b
′′

3,1 < b
′

3,N+1 < b
′′

3,N+1 < b
′

3,2 < b
′′

3,2 < b
′

3,N+2 < b
′′

3,N+2 <

< · · · < b
′

3,N < b
′′

3,N < b
′

3,2N < b
′′

3,2N < b3.

Note that the polarization direction is alternating too.
Further, by Ω we denote the connected sub-domain of Π occupied by a

ceramic medium

Ω := Π \
[ 2N⋃

m=1

Ωm

]
.

For the boundaries of the above domains we introduce the following decom-
position:

∂Ωm := Sm ∪ Γm, ∂Ω :=
[ 3⋃

k=1

Σ−k

]
∪

[ 3⋃

k=1

Σ+
k

]
∪

[ 2N⋃

m=1

Γm

]
, (2.1)

where Γm is an interface submanifold between metallic (Ωm) and the piezoe-
lastic (Ω) subdomains,

Γm := ∂Ωm ∩ Π, Sm := ∂Ωm \ Γm,

Σ−k := Σ̃−k \
[ 2N⋃

m=1

∂Ωm

]
, Σ+

k := Σ̃+
k \

[ 2N⋃

m=1

∂Ωm

]
.

Note that Σ−3 = Σ̃−3 and Σ+
3 = Σ̃+

3 , and they represent the lower and upper
basis of the parallelepiped Π.

It is evident that the metallic and ceramic bodies interact with each other
along the surfaces Γm. Moreover, in the “metallic” domain Ωm we consider
a usual four–dimensional thermoelastic field described by the displacement

vector u(m) = (u
(m)
1 , u

(m)
2 , u

(m)
3 )> and the temperature ϑ(m), while in the
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piezoelectric domain Ω we have a five–dimensional physical field described
by the displacement vector u = (u1, u2, u3)

>, the temperature ϑ, and the
electric potential ϕ. Here and in what follows the superscript > denotes
transposition.

Throughout the paper we employ the Einstein summation convention
(with summation from 1 to 3) over repeated indices, unless stated otherwise.
Also, to avoid some misunderstanding related to the directions of normal
vectors on the contact surfaces Γm, throughout the paper we assume that
the normal vector to ∂Ωm is directed outward, while on ∂Ω it is directed

inward. Further, the symbol {· }+ denotes the interior one-sided limit on
∂Ω (respectively ∂Ωm) from Ω (respectively Ωm). Similarly, {· }− denotes
the exterior one-sided limit on ∂Ω (respectively ∂Ωm) from the exterior of
Ω (respectively Ωm). We will use also the notation {· }±∂Ω and {· }±∂Ωm

for
the trace operators on ∂Ω and ∂Ωm.

2.1. Formulation of the boundary transmission problem. By Lp,
W r

p , and Hs
p (with r ≥ 0, s ∈ R, 1 < p < ∞) we denote the well–known

Lebesgue, Sobolev–Slobodetski, and Bessel potential function spaces, re-
spectively (see, e.g., [40], [20], [21]). We recall that Hr

2 = W r
2 and Hk

p = W k
p

for any r ≥ 0 and for any non-negative integer k.
Let M0 be a surface without boundary. For a submanifold M ⊂ M0,

by H̃s
p(M) we denote the subspace of Hs

p(M0): H̃s
p(M) =

{
g : g ∈

Hs
p(M0), supp g ⊂ M

}
, while Hs

p(M) denotes the space of restrictions

on M of the functions from Hs
p(M0): H

s
p(M) =

{
rMf : f ∈ Hs

p(M0)
}
,

where rM stands for the restriction operator on M.
We will use the notation introduced in Appendix A and consider the

following model mixed boundary-transmission problem:
Find the vector-functions

U (m) =
(
u

(m)
1 , u

(m)
2 , u

(m)
3 , u

(m)
4

)>
: Ωm → C

4

with u(m) :=
(
u

(m)
1 , u

(m)
2 , u

(m)
3

)
, u

(m)
4 := ϑ(m), m = 1, 2N,

and

U=(u1, u2, u3, u4, u5)
> : Ω→C

5 with u :=(u1, u2, u3), u4 :=ϑ, u5 :=ϕ,

belonging to the spaces [W 1
2 (Ωm)]4 and [W 1

2 (Ω)]5, respectively, and satisfy-
ing

(i) the systems of partial differential equations :

[
A(m)(∂, τ)U (m)

]
j

= 0 in Ωm, j = 1, 4, m = 1, 2N, (2.2)
[
A(∂, τ)U

]
k

= 0 in Ω, k = 1, 5, (2.3)
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that is (see Appendix A),

c
(m)
ijlk∂i∂lu

(m)
k −%(m)τ2u

(m)
j −γ(m)

ij ∂iϑ
(m) = 0, j=1, 2, 3,

−τT (m)
0 γ

(m)
il ∂lu

(m)
i + κ

(m)
il ∂i∂lϑ

(m) − τα(m)ϑ(m) = 0,



 (2.4)

in Ωm, m = 1, 2N,

and

cijlk∂i∂luk−%τ2uj−γij∂iϑ+elij∂l∂iϕ=0, j=1, 2, 3,

−τT0γil∂lui + κil∂i∂lϑ− ταϑ+ τT0gi∂iϕ = 0,

−eikl∂i∂luk − gi∂iϑ+ εil∂i∂lϕ = 0,





in Ω, (2.5)

(ii) the boundary conditions :
{
[T (m)U (m)]j

}+
= 0 on Sm, j = 1, 4, m = 1, 2N, (2.6)

{
[T U ]j

}+
= 0 on Σ±1 ∪ Σ±2 ∪ Σ+

3 , j = 1, 4, (2.7)

β1

{
[T U ]5

}+
+ β2{u5}+ = 0 on Σ±1 ∪ Σ±3 , (2.8)

{u5}+ = −Φ0 on Σ−2 ∪
[ N⋃

m=1

Γm

]
, (2.9)

{u5}+ = +Φ0 on Σ+
2 ∪

[ 2N⋃

m=N+1

Γm

]
, (2.10)

{uj}+ = 0 on Σ−3 , j = 1, 4, (2.11)

(iii) the transmission conditions (m = 1, 2N):
{
u

(m)
j

}+ −
{
uj

}+
= 0 on Γm, j = 1, 4, (2.12)

{
[ T (m) U (m) ]l

}+ −
{
[ T U ]l

}+
= 0 on Γm, l = 1, 3, (2.13)

{ 1

T
(m)
0

[ T (m) U (m) ]4

}+

−
{ 1

T0
[ T U ]4

}+

= 0 on Γm, (2.14)

where the differential operators A(m)(∂, τ), A(∂, τ), T (m)(∂, n), and T (∂, n)
are defined in Appendix A,

T (m)U (m) =
(
σ

(m)
i1 ni, σ

(m)
i2 ni, σ

(m)
i3 ni,−q(m)

i ni

)>
,

T (∂, n)U =
(
σi1ni, σi2ni, σi3ni,−qini,−Dini)

>,

Φ0 is a constant, β1 and β2 are sufficiently smooth real functions, and from
now on throughout the paper we assume that

|β1| ≥ β0 > 0, β1 β2 ≤ 0 (2.15)

with some positive constant β0.
The boundary conditions (2.6)–(2.11) can be interpreted as follows. The

lower basis Σ−3 of the composed parallelepiped Π is mechanically fixed
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(clamped) along a dielectric basement, and the remaining part of its bound-
ary is mechanically traction free. Moreover, the temperature distribution
is given on the lower basis, and on the remaining part of the boundary the
heat flux influence is neglected. On the mutually opposite lateral faces Σ−2
and Σ+

2 , which are assumed to be covered with a vaporized thin metallic film
having no mechanical influence, electric voltage is applied. Mathematically
this is described by the nonhomogeneous boundary conditions (2.9) and
(2.10) for the electric potential function u5 = ϕ. The boundary conditions
(2.8) for the electric field given on the faces Σ±1 ∪ Σ±3 show a relationship
between the electric potential function and the electric displacement vector.
An alternative formulation of this relationship by more complicated analyt-
ical functions, however, can be found in the corresponding literature (see,
e.g., [18], [12], [13]).

Finally, the transmission conditions (2.12)–(2.14) show the usual conti-
nuity of the mechanical displacement vector, mechanical stress vector, tem-
perature distribution and heat flux along the interface surfaces Γm.

A vector function

U :=(U (1), . . . , U (2N), U)∈W1
N :=[W 1

2 (Ω1)]
4×· · ·×[W 1

2 (Ω2N )]4×[W 1
2 (Ω)]5

will be referred to as a weak solution to the boundary-transmission problem

(2.2)–(2.14). Here and in what follows the symbol × denotes the direct
product of spaces, unless stated otherwise.

The pseudo-oscillation differential equations (2.2) and (2.3) in Ωm and Ω,
respectively, are understood in the distributional sense, in general. However,
we remark that in the case of homogeneous equations actually we have
U (m) ∈ [W 1

2 (Ωm)]4 ∩ [C∞(Ωm)]4 and U ∈ [W 1
2 (Ω)]5 ∩ [C∞(Ω)]5 due to the

ellipticity of the corresponding differential operators. In fact, U (m) and U
are analytic vectors of the real spatial variables x1, x2, x3 in Ωm and Ω,
respectively.

The above boundary and transmission conditions involving boundary
limiting values of the vectors U (m) and U are understood in the usual trace
sense, while the conditions involving boundary limiting values of the vectors
T (m)U (m) and T U are understood in the functional sense defined by the
relations (related to Green’s formulae, see (B.2), (B.6))

〈
{T (m)U (m)}+, {V (m)}+

〉
∂Ωm

:=

∫

Ωm

A(m)(∂, τ)U (m) · V (m) dx +

+

∫

Ωm

[
E(m)(u(m), v(m)) + %(m)τ2u(m) · v(m) + κ

(m)
lj ∂ju

(m)
4 ∂lv

(m)
4 +

+τα(m)u
(m)
4 · v(m)

4 +γ
(m)
jl

(
τT

(m)
0 ∂ju

(m)
l v

(m)
4 −u(m)

4 ∂jv
(m)
l

)]
dx, (2.16)

〈
{T U}+, {V }+

〉
∂Ω

:=−
∫

Ω

A(∂, τ)U · V dx−
∫

Ω

[
E(u, v) + %τ2u · v +
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+γjl

(
τT0∂julv4−u4∂jvl

)
+κjl∂ju4∂lv4+elij

(
∂lu5∂ivj−∂iuj∂lv5

)
+

+ταu4v4 − gl

(
τT0∂lu5v4 + u4∂lv5

)
+ εjl∂ju5∂lv5

]
dx, (2.17)

where V (m) ∈ [W 1
2 (Ωm)]4 and V ∈ [W 1

2 (Ω)]5 are arbitrary vector-functions.
Here 〈· , · 〉∂Ωm

(respectively 〈· , · 〉∂Ω) denotes the duality between the spaces

[H
−1/2
2 (∂Ωm)]4 and [H

1/2
2 (∂Ωm)]4 (respectively [H

−1/2
2 (∂Ω)]5 and

[H
1/2
2 (∂Ω)]5), which extends the usual L2-scalar product:

〈f, g〉M =

∫

M

M∑

j=1

fjgj dM for f, g ∈ [L2(M)]M , M∈ {∂Ωm, ∂Ω}.

By standard arguments it can easily be shown that the functionals

{T (m)(∂, n)U (m)}+ ∈ [H
−1/2
2 (∂Ωm)]4 and {T (∂, n)U} ∈ [H

−1/2
2 (∂Ω)]5 are

correctly determined by the above relations, provided that A(m)(∂, τ)U (m) ∈[
L2(Ωm)

]4
and A(∂, τ)U ∈

[
L2(Ω)

]5
.

2.2. Uniqueness theorem. There holds the following uniqueness

Theorem 2.1. Let τ = σ + iω, and either σ > 0 or τ = 0.
The homogeneous version of the boundary–transmission problem (2.2)–

(2.14) (Φ0 = 0) has then only the trivial solution in the space W1
N .

Proof. Let U ∈ W1
N be a solution to the homogeneous boundary-transmis-

sion problem (2.2)–(2.13).
Green’s formulae (B.4) and (B.8) with V (m) = U (m) and V = U along

with the homogeneous boundary and transmission conditions then imply

2N∑

m=1

∫

Ωm

[
E(m)(u(m), u(m) ) + %(m)τ2|u(m)|2+

+
τ

|τ |2T (m)
0

κ
(m)
lj ∂lu

(m)
4 ∂ju

(m)
4 +

α(m)

T
(m)
0

|u(m)
4 |2

]
dx+

+

∫

Ω

[
E(u, u) + %τ2|u|2 +

α

T0
|u4|2 + εjl∂lu5∂ju5 +

τ

|τ |2T0
κjl∂lu4∂ju4−

−2<{glu4∂lu5 }
]
dx−

∫

Σ±1 ∪Σ±3

β2

β1

∣∣{u5}+
∣∣2 dS = 0. (2.18)

Note that due to the relations (A.7), (A.39), and (A.40) and the positive
definiteness of the matrix εlj we have

E(m)(u(m), u(m)) = c
(m)
ijkl∂iu

(m)
j ∂ku

(m)
l ≥ 0,

E(u, u) = cijkl∂iuj∂kul ≥ 0,

κ
(m)
lj ∂lu

(m)
4 ∂ju

(m)
4 ≥ 0, κjl∂lu4∂ju4 ≥ 0, εjl∂lu5∂ju5 ≥ 0

(2.19)
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with the equality only for complex rigid displacement vectors, constant tem-
perature distributions and a constant potential field:

u(m)=a(m)×x+b(m), u
(m)
4 =a

(m)
4 , u=a×x+b, u4 =a4, u5 =a5, (2.20)

where a(m), b(m), a, b ∈ C3, a
(m)
4 , a4, a5 ∈ C, and × denotes the usual cross

product of two vectors.
Take into account the above inequalities and separate the real and imag-

inary parts of (2.18) to obtain

2N∑

m=1

∫

Ωm

[
E(m)(u(m), u(m) ) + %(m)(σ2 − ω2)|u(m)|2 +

α(m)

T
(m)
0

|u(m)
4 |2 +

+
σ

|τ |2T (m)
0

κ
(m)
lj ∂lu

(m)
4 ∂ju

(m)
4

]
dx+

+

∫

Ω

[
E(u, u) + %(σ2 − ω2)|u|2 +

α

T0
|u4|2 +

σ

|τ |2T0
κjl∂lu4∂ju4 −

−2<{glu4∂lu5 }+εjl∂lu5∂ju5

]
dx−

∫

Σ±1 ∪Σ±3

β2

β1

∣∣{u5}+
∣∣2 dS = 0, (2.21)

2N∑

m=1

∫

Ωm

[
2%(m)σω|u(m)|2 +

ω

|τ |2T (m)
0

κ
(m)
lj ∂lu

(m)
4 ∂ju

(m)
4

]
dx+

+

∫

Ω

[
2%σω|u|2 +

ω

|τ |2T0
κjl∂lu4∂ju4

]
dx = 0. (2.22)

First, let us assume that σ > 0 and ω 6= 0. With the help of the homo-
geneous boundary and transmission conditions we easily derive from (2.22)

that u
(m)
j = 0 (j = 1, 4) in Ωm and uj = 0 (j = 1, 4) in Ω. From (2.21) we

then conclude that ∫

Ω

εjl∂lu5∂ju5 dx = 0,

whence u5 = 0 in Ω follows due to (2.19) and the homogeneous boundary
condition on Γm.

Thus U (m) = 0 in Ωm and U = 0 in Ω.
The proof for the case σ > 0 and ω = 0 is quite similar. The only

difference is that now, in addition to the above relations, we have to apply
the inequality in (A.41) as well.

For τ = 0, by adding the relations (B.9) and (B.10) with c/T
(m)
0 and

c/T0 for c1 and c, respectively, we arrive at the equality

2N∑

m=1

∫

Ωm

[
E(m)(u(m), u(m))+

c

T
(m)
0

κ
(m)
lj ∂lu

(m)
4 ∂ju

(m)
4 −γ(m)

jl u
(m)
4 ∂ju

(m)
j

]
dx+
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+

∫

Ω

[
E(u, u)+

c

T0
κjl∂lu4∂ju4−γjlu4∂luj−glu4∂lu5+εjl∂lu5∂ju5

]
dx−

−
∫

Σ±1 ∪Σ±3

β2

β1

∣∣{u5}+
∣∣2 dS = 0, (2.23)

where c is an arbitrary constant parameter.
Dividing the equality by c and sending c to infinity we conclude that

u
(m)
4 = 0 in Ωm and u4 = 0 in Ω due to the homogeneous boundary and

transmission conditions for the temperature distributions. This easily yields
in view of (2.23) that U (m) = 0 in Ωm and U = 0 in Ω due to the homoge-
neous boundary conditions on Σ−3 . Thus U = 0. �

Note that for τ = i ω (i.e., for σ = 0 and ω 6= 0) the homogeneous
problem may possess a nontrivial solution, in general.

3. Weak Formulation of the Boundary-Transmission Problem

and Existence Results

In this section we give a weak formulation of the transmission problem
(2.2)–(2.14). To this end, it is convenient to reduce the nonhomogeneous
Dirichlet type boundary conditions (2.9) and (2.10) to the homogeneous
ones preserving at the same time the continuity property (2.12).

Below we will consider only the case <τ > 0. However, we remark that
the case τ = 0 can be treated quite similarly (and is even a simpler case).

Denote by S− and S+ the subsurfaces where the electric potential func-
tion ϕ is prescribed and takes on constant values−Φ0 and +Φ0, respectively:

S− :=Σ−2 ∪
[ N⋃

m=1

Γm

]
, S+ :=Σ+

2 ∪
[ 2N⋃

m=N+1

Γm

]
, S±=S± \ ∂S ±. (3.1)

Further, let B−4δ and B+
4δ be the following spatial disjoint neighbourhoods

of S− and S+:

B−4δ :=
⋃

x∈S
−

B(x, 2δ), B+
4δ :=

⋃

x∈S
+

B(x, 2δ), B−4δ ∩ B+
4δ = ∅, (3.2)

where B(x, 2δ) is a ball centered at x and of radius 2δ with sufficiently small
δ > 0.

Choose a real function u∗5 ∈ Cν(R3) (ν ≥ 3) with a compact support
such that

r
B
−
2δ

u∗5 = −Φ0, r
B

+
2δ

u∗5 = +Φ0, r
R3\[B+

4δ
∪B

−
4δ

]
u∗5 = 0. (3.3)

We set

U∗ := (0, 0, 0, 0, u∗5)
>. (3.4)
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In view of (A.36), (A.45), and (A.46) we get

A(∂, τ)U∗=
([
elij∂l∂iu

∗
5

]3

j=1
, τT0gi∂iu

∗
5, εil∂i∂lu

∗
5

)>
∈ [Cν−2(R3)]5,

{T U∗}+ =
{([

elijni∂lu
∗
5

]3
j=1

, 0, εilni∂lu
∗
5

)>}+

on ∂Ω.

(3.5)

Due to the property (3.3) of the function u∗5, we see that

r
[S−∪S+]

{T U∗}+ = 0 (3.6)

and, moreover, the set supp{T U∗}+ is a proper part of Σ±1
⋃

Σ±3 , i.e.,

supp {T U∗}+ ∩ ∂
[
Σ±1 ∪ Σ±3

]
= ∅.

Now, assuming U := (U (1), · · · , U (2N), U) ∈ W1
N to be a solution to the

transmission problem (2.2)–(2.14), we can reformulate the problem for the

vectors U (m) and Ũ := U − U∗ as follows: Find the vector–functions

U (m) =
(
u

(m)
1 , u

(m)
2 , u

(m)
3 , u

(m)
4

)>
: Ωm → C

4

with u(m) := (u
(m)
1 , u

(m)
2 , u

(m)
3 ), u

(m)
4 := ϑ(m), m = 1, 2N,

and

Ũ = (ũ1, ũ2, ũ3, ũ4, ũ5)
> : Ω → C

5

with ũ := (ũ1, ũ2, ũ3), ũl = ul, l = 1, 2, 3,

ũ4 := u4 = ϑ, ũ5 := u5 − u∗5 = ϕ− u∗5,

belonging to the spaces [W 1
2 (Ωm)]4 and [W 1

2 (Ω)]5, respectively, and satisfy-

ing

the differential equations :
[
A(m)(∂, τ)U (m)

]
j

= 0 in Ωm, j = 1, 4, m = 1, 2N, (3.7)
[
A(∂, τ)Ũ

]
k

= X∗
k in Ω, k = 1, 5, (3.8)

the boundary conditions :
{
[T (m)U (m)]j

}+
= 0 on Sm, j=1, 4, m=1, 2N, (3.9)

{
[T Ũ ]l

}+
=F ∗l and

{
[T Ũ ]4

}+
= 0 on Σ±1 ∪ Σ±2 ∪ Σ+

3 , l=1, 3, (3.10)

β1

{
[T Ũ ]5

}+
+ β2

{
ũ5

}+
= F ∗5 on Σ±1 ∪ Σ±3 , (3.11)

{
ũ5

}+
= 0 on Σ−2 ∪

[ N⋃

m=1

Γm

]
, (3.12)

{
ũ5

}+
= 0 on Σ+

2 ∪
[ 2N⋃

m=N+1

Γm

]
, (3.13)

{
ũj

}+
= 0 on Σ−3 , j = 1, 4, (3.14)
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the transmission conditions (m = 1, 2N):
{
u

(m)
j

}+ −
{
ũj

}+
= 0 on Γm, j = 1, 4, (3.15)

{
[T (m)U (m)]l

}+ −
{
[T Ũ ]l

}+
= 0 on Γm, l = 1, 3, (3.16)

{ 1

T
(m)
0

[T (m)U (m)]4

}+

−
{ 1

T0
[T Ũ ]4

}+

= 0 on Γm, (3.17)

where
X∗

k := −
[
A(∂, τ)U∗

]
k

in Ω, k = 1, 5,

F ∗j := −
{
[T U∗]j

}+
on Σ±1 ∪ Σ±2 ∪ Σ+

3 , j = 1, 3,

F ∗5 := −β1

{
[T U∗]5

}+ − β2

{
u∗5

}+
on Σ±1 ∪ Σ±3 .

(3.18)

In accordance with (3.5) and (3.6), we have

X∗
k := Cν−2(Ω), k = 1, 5,

F ∗j := −
{
[T U∗]j

}+ ∈ H̃−1/2(∂Ω \ [S− ∪ S+]), j = 1, 2, 3, 5.
(3.19)

Remark 3.1. It is evident that if Ũ := (U (1), . . . , U (2N), Ũ) ∈ W1
N solves

the boundary transmission problem (3.7)–(3.17), then

U := (U (1), . . . , U (2N), Ũ + U∗) ∈ W1
N

solves the original transmission problem (2.2)–(2.14).

In what follows, we give a weak formulation of the problem (3.7)–(3.17)
and show its solvability by the standard Hilbert space method.

First, let us introduce the sesquilinear forms:

E(m)(U (m), V (m)) :=

∫

Ωm

[
E(m)(u(m), v(m)) + %(m)τ2u(m) · v(m)+

+
α(m)

T
(m)
0

u
(m)
4 v

(m)
4 +

1

τT
(m)
0

κ
(m)
jl ∂ju

(m)
4 ∂lv

(m)
4 +

+ γ
(m)
jl

(
∂ju

(m)
l v

(m)
4 − u

(m)
4 ∂jv

(m)
l

)]
dx, (3.20)

E(U, V ) :=

∫

Ω

[
E(u, v) + %τ2u · v +

1

τT0
κjl∂ju4∂lv4 +

α

T0
u4v4+

+ εjl∂ju5∂lv5 + γjl(∂julv4 − u4∂jvl)+

+ elij(∂lu5∂ivj − ∂iuj∂lv5)− gl(∂lu5v4 + u4∂lv5)
]
dx. (3.21)

These forms coincide with the volume integrals in the right-hand side of

Green’s formulae (B.2) and (B.6) if we put there the functions v
(m)
4 and v4

multiplied by [τT
(m)
0 ]−1 and [τT0]

−1, respectively. Note that we have the
same type factors in the transmission conditions (3.17) (see also (2.14)).
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We put

A(U,V) :=

2N∑

m=1

E(m)
(
U (m), V (m)

)
+ E(U, V ). (3.22)

We apply Green’s formulae (B.2), (B.6), and the above introduced forms
to write:

A(U,V)=−
2N∑

m=1

∫

Ωm

{ 3∑

j=1

[
A(m)U (m)

]
j
v
(m)
j +

1

τT
(m)
0

[
A(m)U (m)

]
4
v
(m)
4

}
dx−

−
∫

Ω

{ 3∑

j=1

[AU ]jvj +
1

τT0
[AU ]4v4 + [AU ]5v5

}
dx+

+

2N∑

m=1

∫

∂Ωm

{ 3∑

j=1

{[
T (m)U (m)

]
j

}+{
v
(m)
j

}+
+

+
1

τT
(m)
0

{[
T (m)U (m)

]
4

}+{
v
(m)
4

}+
}
dS−

−
∫

∂Ω

{ 3∑

j=1

{
[T U ]j

}+{vj}++
1

τT0

{
[T U ]4

}+{v4}++
{
[T U ]5

}+{v5}+
}
dS, (3.23)

where we assume that

U :=(U (1), . . . , U (2N), U), V :=(V (1), . . . , V (2N), V ), U, V∈W1
N ,

and A(m)(∂, τ)U (m)∈ [L2(Ωm)]4, A(∂, τ)U ∈ [L2(Ω)]5.
(3.24)

Taking into consideration the Dirichlet type homogeneous boundary and
transmission conditions of the problem (3.7)–(3.17), we define the following
closed subspace of W1

N :

V1
N :=

{
V ∈ W1

N : {v5}+ = 0 on S−, {v5}+ = 0 on S+,

{vj}+=0 on Σ−3 , {v
(m)
j }+−{vj}+=0 on Γm, j=1, 4, m=1, 2N

}
,

(3.25)

where S− and S+ are as in (3.1), and Σ−3 and Γm are defined in the begin-
ning of Section 2 (see Figure 1).

Further, for any Lipschitz domain D ⊂ R3 and any sub-manifold M ⊂
∂D with Lipschitz boundary ∂M we set

H1
2 (D,M) :=

{
w ∈ H1

2 (D) : rM{w}+∂D = 0, M⊂ ∂D
}

=

=
{
w ∈ H1

2 (D) : {w}+∂D ∈ H̃1/2
2 (∂D \M)

}
.

If for arbitrary V ∈ V1
N we define V := (V1,V2,V3,V4,V5)

> with

Vj :=

{
V m

j in Ωm, m = 1, 2N, j = 1, 4,

Vj in Ω, j = 1, 4,
V5 := V5 in Ω,
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then actually we have V ∈ [H1
2 (Π,Σ−3 )]4 ×H1

2 (Ω, S+ ∪ S−).
Therefore, we can write (in the sense just described)

V1
N =

[
H1

2 (Π,Σ−3 )
]4 ×H1

2 (Ω, S+ ∪ S−). (3.26)

Clearly, any solution to the problem (3.7)–(3.17) belongs to the space V1
N .

It is evident that W1
N and V1

N are Hilbert spaces with the standard scalar
product and the corresponding norm associated with the Sobolev spacesW 1

2 :

(
U,V

)
W1

N

:=

2N∑

m=1

(
U (m), V (m)

)
[W 1

2 (Ωm)]4
+ (U, V )[W 1

2 (Ω)]5 ,

‖U‖2W1
N

:=

2N∑

m=1

‖U (m)‖2[W 1
2 (Ωm)]4 + ‖U‖2[W 1

2 (Ω)]5 .

(3.27)

For V ∈ V1
N we have the evident equality

‖V‖2V1
N

:= ‖V‖2W1
N

=

2N∑

m=1

‖V (m)‖2[W 1
2 (Ωm)]4 + ‖V ‖2[W 1

2 (Ω)]5 =

=

4∑

j=1

‖Vj‖2H1
2 (Π) + ‖V5‖2H1

2 (Ω).

Now, having in hand the relation (3.23), we are in the position to formu-
late the weak setting of the above transmission problem (3.7)–(3.17):

Find a vector Ũ ∈ V1
N such that

A(Ũ,V) + B(Ũ,V) = F(V) for all V ∈ V1
N , (3.28)

where A is defined by (3.22),

B(Ũ,V) := −
∫

Σ±1 ∪Σ±3

β2

β1
{ũ5}+{v5}+ dS, (3.29)

F(V) := −
3∑

l=1

∫

Σ±1 ∪Σ+
3

F ∗l {vl}+ dS −
∫

Σ±1 ∪Σ±3

1

β1
F ∗5 {v5}+ dS

−
∫

Ω

{ 3∑

j=1

X∗
j vj +

1

τT0
X∗

4v4 +X∗
5 v5

}
dx. (3.30)

All the integrals in the right-hand side of (3.29) and (3.30) are well defined
and, moreover, the anti-linear functional F : V1

N → C is continuous, since
the functions involved belong to appropriate spaces.

With the help of the equality (3.23) by standard arguments it can easily
be shown that the transmission problem (3.7)–(3.17) is equivalent to the
variational equation (3.28).
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Moreover, due to the relations (A.7), (A.39), (A.40), (A.41), and Korn’s
inequality ([30], [17]) from (3.20)-(3.22), (3.25), and (2.15) it follows that

<
[
A(U,U) + B(U,U)

]
≥ C1‖U‖2V1

N
− C2‖U‖2V0

N
for all U ∈ V1

N . (3.31)

It is also evident that the sesquilinear form A + B : V1
N × V1

N → C is
continuous.

Theorem 3.2. Let τ = σ+ iω with σ > 0. Then the variational problem

(3.28) possesses a unique solution.

Proof. On the one hand, since for the sesquilinear formA+B there holds the
coerciveness property (3.31), due to the well known results from the theory
of variational equations in Hilbert spaces we conclude that the operator

P : V1
N → {V1

N}∗ (3.32)

corresponding to the variational problem (3.28) is Fredholm with zero index
(see, e.g., [21]). Therefore, the uniqueness implies the existence of a solution.

On the other hand, by the word for word arguments as in the proof
of Theorem 2.1 we can show that the homogeneous variational equation
possesses only the trivial solution for arbitrary τ = σ+ iω with σ > 0. Thus
the nonhomogeneous equation (3.28) is uniquely solvable. �

Due to Theorem 3.2 and the above mentioned equivalence, we con-
clude that the modified problem (3.7)-(3.17), and, consequently, the original
transmission problem (2.2)–(2.14) are uniquely solvable. The relation be-
tween these solutions is described in Remark 3.1.

Remark 3.3. As it can be seen from (3.20), (3.21), (3.22), and (3.29), if

σ > 0 and σ ≥ |ω|, (3.33)

then we can take C2 = 0 in (3.31) and the real part of the sesquilinear
form A(· , · ) + B(· , · ) becomes strictly positive definite, i.e., it satisfies the
conditions of the Lax-Milgram theorem. However, Theorem 3.1 gives a
wider range for the parameter τ yielding the unique solvability of the equa-
tion (3.28).

Remark 3.4. As we have mentioned above, the electric boundary con-
ditions are still debated (see, e.g. [36]) and in the literature one can find
different versions. For example, instead of the above considered Robin type
linear boundary operator relating the normal component of electric displace-
ment vector and the corresponding electric potential function on Σ±1 ∪ Σ±3 ,
in [12] and [13], the following nonlinear boundary operator is considered

R(U) :=
{
[T Ũ ]5

}+
+ β2

(
{ũ5}+

)
, (3.34)

where

β2 : H̃
1/2
2 (Σ±1 ∪ Σ±3 ) → H

−1/2
2 (Σ±1 ∪ Σ±3 )

is a well defined monotone operator.
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4. Boundary Integral Equations Method

Here we investigate the boundary transmission problem formulated in
Section 2 (see (2.2)-(2.14)) by the potential method. To this end, first
we present basic mapping and jump properties of potential type operators,
and reduce the transmission problem under consideration to an equivalent
system of integral equations. Next we show the invertibility of the corre-
sponding matrix integral operators and prove the existence results for the
original boundary transmission problem. At the same time, we obtain that
the solutions can be represented by surface potentials.

4.1. Properties of potentials of thermoelasticity. Here we collect the
well-known properties of the single layer, double layer, and volume poten-
tials of the theory of thermoelasticity and the corresponding boundary in-
tegral operators (for details see [14] and [15]; see also [9], [8], [26], [21], [27],
[1], [2]).

Denote by Ψ(m)(·, τ) := [Ψ
(m)
kj (·, τ)]4×4 a fundamental matrix of the dif-

ferential operator A(m)(∂, τ):

A(m)(∂, τ)Ψ(m)(x, τ) = I4δ(x), (4.1)

where δ(·) is Dirac’s distribution. The explicit expressions of Ψ(m)(·, τ) and
their properties for the general anisotropic and isotropic cases are given in
Appendix C.

Let us introduce the following surface and volume potentials

V (m)
τ (`(m))(x):=

∫

∂Ωm

Ψ(m)(x− y, τ)`(m)(y) dSy, (4.2)

W (m)
τ (h(m))(x):=

∫

∂Ωm

{
T̃ (m)(∂y, n(y), τ)[Ψ(m)(x−y, τ)]>

}>
h(m)(y) dSy, (4.3)

N (m)
τ (Φ(m))(x):=

∫

Ωm

Ψ(m)(x− y, τ)Φ(m)(y) dSy, (4.4)

where

` = (`
(m)
1 , . . . , `

(m)
4 )>, h(m) = (h

(m)
1 , . . . , h

(m)
4 )>,

Φ(m) = (Φ
(m)
1 , . . . ,Φ

(m)
4 )>

are density vectors. The matrix differential operator T̃ (m)(∂, n), τ ) is given
by (A.21)–(A.22).

With the help of Green’s identity (B.1), by standard arguments we obtain
the following integral representation formula for x ∈ Ωm (see, for example,
[14], [21])

U (m)(x) = W (m)
τ ([U (m)]+)(x)−

− V (m)
τ

(
[T (m)U (m)]+

)
(x) +N (m)

τ (A(m)U (m))(x), (4.5)
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where n is the exterior normal to ∂Ωm.
We assume here that Ωm is a Lipschitz domain with piecewise smooth

compact boundary and U (m)∈ [W 1
2 (Ωm)]4 with A(m)(∂, τ)U (m)∈ [L2(Ωm)]4.

Further we introduce the boundary operators on ∂Ωm generated by the
above potentials

H(m)
τ `(m)(x) :=

∫

∂Ωm

Ψ(m)(x − y, τ)`(m)(y) dSy,

K̃(m)∗
τ h(m)(x) :=

∫

∂Ωm

{
T̃ (m)(∂y, n(y), τ)

[
Ψ(m)(x− y, τ)

]>}>
h(m)(y) dSy ,

K(m)
τ `(m)(x) :=

∫

∂Ωm

{
T (m)(∂x, n(x))Ψ(m)(x − y, τ)

}
`(m)(y) dSy,

where x ∈ S = ∂Ωm.

In contrast to the classical elasticity theory, the operator H(m)
τ is not

self-adjoint, and neither K̃(m)∗
τ nor K(m)

τ are mutually adjoint.
The basic mapping and jump properties of the potentials are give by the

following

Theorem 4.1. Let ∂Ωm be a Lipschitz surface and n be its exterior

normal. Then

(i) the single and double layer potentials have the following mapping prop-

erties

V (m)
τ :

[
H
− 1

2
2 (∂Ωm)

]4 →
[
H1

2 (Ωm)
]4
,

W (m)
τ :

[
H

1
2
2 (∂Ωm)

]4 →
[
H1

2 (Ωm)
]4

;

(ii) for any `(m) ∈ [H
− 1

2
2 (∂Ωm)]4 and any h(m) ∈ [H

1
2
2 (∂Ωm)]4 there hold

the jump relations
[
V (m)

τ (`(m))
]+

=
[
V (m)

τ (`(m))
]−

= H(m)
τ `(m),

[
W (m)

τ (h(m))
]±

=
[
± 2−1I4 + K̃(m)∗

τ

]
h(m),

[
T (m)(∂, n)V (m)

τ (`(m))
]±

=
[
∓ 2−1I4 +K(m)

τ

]
`(m),

[
T (m)(∂, n)W (m)

τ (h(m))
]+

=
[
T (m)(∂, n)W (m)

τ (h(m))
]−

=: L(m)
τ h(m);

(iii) the above introduced boundary operators have the following mapping

properties

H(m)
τ :

[
H
− 1

2
2 (∂Ωm)

]4 →
[
H

1
2
2 (∂Ωm)

]4
,

±2−1I4 + K̃(m)∗
τ :

[
H

1
2
2 (∂Ωm)

]4 →
[
H

1
2
2 (∂Ωm)

]4
,

∓2−1I4 +K(m)
τ :

[
H
− 1

2
2 (∂Ωm)

]4 →
[
H
− 1

2
2 (∂Ωm)

]4
,

L(m)
τ :

[
H

1
2
2 (∂Ωm)

]4 →
[
H
− 1

2
2 (∂Ωm)

]4
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for <τ = σ > 0 all these operators are isomorphisms;

(iv) for arbitrary Φ(m) ∈ [L2(Ωm)]4 the volume potential N
(m)
τ (Φ(m))

belongs to the space [W 2
2 (Ωm)]4 and

A(m)(∂, τ)N (m)
τ (Φ(m)) = Φ(m) in Ωm;

(v) the following operator equalities hold in the corresponding function

spaces:

K̃(m)∗
τ H(m)

τ = H(m)
τ K(m)

τ , K(m)
τ L(m)

τ = L(m)
τ K̃(m)∗

τ ,

L(m)
τ H(m)

τ =
[
− 4−1I4 + (K(m)

τ )2
]
, H(m)

τ L(m)
τ =

[
− 4−1I4 + (K̃(m)∗

τ )2
]
;

(vi) for the corresponding Steklov–Poincaré type operator

A(m)
τ :=

[
− 2−1I4 +K(m)

τ

] [
H(m)

τ

]−1
=

[
H(m)

τ

]−1[− 2−1I4 + K̃(m)∗
τ

]

and for arbitrary h(m) ∈ [H
1
2
2 (∂Ωm)]4 we have the following inequality

<
〈
A(m)

τ h(m), h(m)
〉
≥ c′‖h(m)‖2

[H

1
2
2 (∂Ωm)]4

− c′′‖h(m)‖2
[H0

2(∂Ωm)]4

with some positive constants c′ and c′′ independent of h(m).

We only note here that the injectivity of the operators in item (iii) of
Theorem 4.1 and their adjoint ones follows from the uniqueness results for
the corresponding homogeneous Dirichlet and Neumann boundary value
problems for the domains Ω+

m := Ωm and Ω−m := R3 \ Ωm. Fredholm
properties with index equal to zero then follow since the ranges of these
operators in the corresponding function spaces are closed (for details see,
e.g., [14], [21]).

4.2. Properties of potentials of thermopiezoelasticity. In this sub-
section we collect the well-known properties of the single layer, double layer
and volume potentials of the theory of thermopiezoelasticity and the corre-
sponding boundary integral operators (for details see [3]; see also [21], [1],
[2]).

Denote by Ψ(· , τ) := [Ψkj(· , τ)
]
5×5

a fundamental matrix of the differ-

ential operator A(∂, τ): A(∂, τ)Ψ(x, τ) = I5δ(x). The explicit expressions
of Ψ(·, τ) for the general anisotropic and transversally isotropic cases and
their properties are given in Appendix C.

Let us introduce the corresponding surface and volume potentials

Vτ (`)(x) :=

∫

∂Ω

Ψ(x− y, τ)`(y) dSy, (4.6)

Wτ (h)(x) :=

∫

∂Ω

{
T̃ (∂y, n(y), τ )

[
Ψ(x− y, τ)

]>}>
h(y) dSy, (4.7)

Nτ (Φ)(x) :=

∫

Ω

Ψ(x− y, τ)Φ(y) dSy , (4.8)
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where ` = (`1, . . . , `5)
>, h = (h1, . . . , h5)

>, and Φ = (Φ1, . . . ,Φ5)
> are

density vectors.
Recall that due to our agreement, on ∂Ω the normal vector n is directed

inward.
With the help of Green’s identity (B.5), by standard arguments we obtain

the following integral representation formula

U(x) = −Wτ ([U ]+)(x)+

+ Vτ

(
[T (∂, n)U ]+

)
(x) +Nτ

(
A(∂, τ)U

)
(x), x ∈ Ω, (4.9)

We assume here that Ω is a Lipschitz domain with a piecewise smooth
compact boundary and U ∈ [H1(Ω]5 with A(∂, τ)U ∈ [L2(Ω)]5.

Further we introduce the boundary operators on ∂Ω generated by the
above potentials

Hτ`(x) :=

∫

∂Ω

Ψ(x− y, τ)`(y) dSy,

K̃∗τh(x) :=

∫

∂Ω

{
T̃ (∂y, n(y), τ )

[
Ψ(x− y, τ)

]>}>
h(y) dSy,

Kτ `(x) :=

∫

∂Ω

{
T (∂x, n(x))Ψ(x − y, τ)

}
`(y)dSy,

where x ∈ S = ∂Ω.
The basic mapping and jump properties of the potentials are given by

the following

Theorem 4.2. Let ∂Ω be a Lipschitz surface and n be its interior nor-

mal. Then

(i) the single and double layer potentials have the following mapping prop-

erties

Vτ :
[
H
− 1

2
2 (∂Ω)

]5 →
[
H1

2 (Ω)
]5
, Wτ :

[
H

1
2
2 (∂Ω)

]5 →
[
H1

2 (Ω)
]5

;

(ii) for any h ∈ [H
− 1

2
2 (∂Ω)]5 and any ` ∈ [H

1
2
2 (∂Ω)]5 there hold the jump

relations

[Vτ (`)]+ = [Vτ (`)]− =: Hτ`,
[
T (∂, n)Vτ (`)

]±
=:

[
± 2−1I5 +Kτ

]
`,

[Wτ (h)]±=:
[
∓ 2−1I5+K̃∗τ

]
h,

[
T (∂, n)Wτ (h)

]+
=

[
T (∂, n)Wτ (h)

]−
=: Lτh;

(iii) the above introduced boundary operators have the following mapping

properties

Hτ :
[
H
− 1

2
2 (∂Ω)

]5 →
[
H

1
2
2 (∂Ω)

]5
,

±2−1I5 + K̃∗τ :
[
H

1
2
2 (∂Ω)

]5 →
[
H

1
2
2 (∂Ω)

]5
,

∓2−1I5 +Kτ :
[
H
− 1

2
2 (∂Ω)

]5 →
[
H
− 1

2
2 (∂Ω)

]5
,
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Lτ :
[
H

1
2
2 (∂Ω)

]5 →
[
H
− 1

2
2 (∂Ω)

]5

the operator Hτ is an isomorphism for <τ = σ > 0;
(iv) for arbitrary Φ ∈ [L2(Ω)]5 the volume potential Nτ (Φ) belongs to the

space [W 2
2 (Ω)]5 and

A(∂, τ)Nτ (Φ) = Φ in Ω;

(v) the following operator equalities hold in the corresponding function

spaces:

K̃∗τHτ = HτKτ , KτLτ = Lτ K̃∗τ ,
LτHτ =

[
− 4−1I5 + (Kτ )2

]
, HτLτ =

[
− 4−1I5 + (K̃∗τ )2

]
;

(vi) for the corresponding Steklov–Poincaré type operator

Aτ := −
[
2−1I5 +Kτ

]
H−1

τ = −H−1
τ

[
2−1I5 + K̃∗τ

]

and for arbitrary h ∈ [H
1
2
2 (∂Ω)]5 we have the following inequality

<
〈
Aτh, h

〉
≥ c′‖h‖2

[H

1
2
2 (∂Ω)]5

− c′′‖h‖2
[H0

2(∂Ω)]5

with some positive constants c′ and c′′ independent of h.

We only note here that the injectivity of the operator Hτ and its adjoint
one follows from the uniqueness results for the corresponding homogeneous
Dirichlet boundary value problems for the domains Ω+ := Ω and Ω− :=
R3 \ Ω. Fredholm properties with index equal to zero then follow since
the range of the operator in the corresponding function space is closed (for
details see, e.g., [3], [21]).

4.3. Representation formulas for solutions. Throughout this subsec-
tion we assume that <τ = σ > 0. Here we consider two auxiliary problems

needed for our further purposes.

4.3.1. Auxiliary problem I. Find a vector function

U (m) = (u
(m)
1 , u

(m)
2 , u

(m)
3 , u

(m)
4 )> : Ωm → C

4

which belongs to the space [W 1
2 (Ωm)]4 and satisfies the following differential

equation and boundary conditions:

A(m)(∂, τ)U (m) = 0 in Ωm, (4.10)
{
T (m)U (m)

}+
= `(m) on ∂Ωm, (4.11)

where `(m) = (`
(m)
1 , `

(m)
2 , `

(m)
3 , `

(m)
4 )> ∈ [H

− 1
2

2 (∂Ωm)]4. With the help of
Green’s formulae it can easily be shown that the homogeneous version of
this auxiliary BVP I possesses only the trivial solution.

Recall that on ∂Ωm the normal vector n is directed outward.
From Theorem 4.1 and the above mentioned uniqueness result for the

BVP (4.10)-(4.11) immediately follows
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Corollary 4.3. Let <τ=σ>0. An arbitrary solution U (m)∈ [W 1
2 (Ωm)]4

to the homogeneous equation (4.10) can be uniquely represented by the single

layer potential

U (m)(x) = V (m)
τ

([
− 2−1I4 +K(m)

τ

]−1
`(m)

)
(x), x ∈ Ωm,

where the density vector `(m) satisfies the relation `(m) = [T (m)U (m)]+ on

∂Ωm.

4.3.2. Auxiliary problem II. Find a vector function U=(u1, u2, u3, u4, u5)
> :

Ω → C5 which belongs to the space [W 1
2 (Ω)]5 and satisfies the following

conditions:

A(∂, τ)U = 0 in Ω, (4.12)
{
[T U ]j

}+
= `j on ∂Ω, j = 1, 4, (4.13)

{U5}+ = `5 on ∂Ω, (4.14)

where `j ∈ H− 1
2

2 (∂Ω) for j = 1, 4, and `5 ∈ H
1
2
2 (∂Ω).

Denote `′ := (`1, `2, `3, `4)
> ∈ [H

− 1
2

2 (∂Ω)]4.
By the same arguments as in the proof of Theorem 2.1, we can easily show

that the homogeneous version of this boundary value problem possesses only
the trivial solution.

We look for a solution to the auxiliary BVP II as a single layer potential,

U(x) = Vτ (f)(x), where f = (f1, f2, f3, f4, f5)
> ∈ [H

− 1
2

2 (∂Ω)]5 is a sought
density.

The boundary conditions (4.13) and (4.14) lead then to the system of
equations: [

(2−1I5 +Kτ )f
]
j
= `j on ∂Ω, j = 1, 4,

[
Hτf

]
5

= `5 on ∂Ω.
(4.15)

Denote the operator generated by the left hand side expressions of these
equations by Pτ and rewrite the system as

Pτf = `,

where

Pτ :=

[[
(2−1I5 +Kτ )jk

]
4×5[

(Hτ )5k

]
1×5

]

and ` = (`′, `5)
> ∈ [H

− 1
2

2 (∂Ω)]4 ×H
1
2
2 (∂Ω).

Lemma 4.4. Let <τ = σ > 0. The operator

Pτ :
[
H
− 1

2
2 (∂Ω)

]5 →
[
H
− 1

2
2 (∂Ω)

]4 ×H
1
2
2 (∂Ω)

is an isomorphism.
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Proof. The injectivity of the operator Pτ follows from the uniqueness result
of the auxiliary BVP II.

To show that Pτ is surjective, we proceed as follows.

Due to Theorem 4.2(iii) the operator Hτ : [H
− 1

2
2 (∂Ω)]5 → [H

1
2
2 (∂Ω)]5

is invertible and we can introduce a new unknown vector function h =

(h1, h2, h3, h4, h5)
> by the relation h := Hτf ∈ [H

1
2
2 (∂Ω)]5. From the equa-

tions (4.15) we then have:
[
(2−1I5 +Kτ )H−1

τ h
]
j
= `j on ∂Ω, j = 1, 4,

h5 = `5 on ∂Ω.
(4.16)

Recall that for the SteklovPoincaré operator

Aτ = [(Aτ )jk ]5×5 := −
[
2−1I5 +Kτ

]
H−1

τ (4.17)

there holds the following inequality (see Theorem 4.2, item (v))

<
〈
Aτh

∗, h∗
〉
≥ c′‖h∗‖2

[H

1
2
2

(∂Ω)]5

− c′′‖h∗‖2
[H0

2
(∂Ω)]5

, (4.18)

for all h∗ ∈ [H
1
2
2 (∂Ω)]5 with positive constants c′ and c′′.

Set h′ := (h1, h2, h3, h4)
>. Take into consideration that h5 = `5 and

rewrite the first four equations in (4.16) as follows:

Ãτh
′ = `∗, (4.19)

where `∗ = (`∗1, `
∗
2, `

∗
3, `

∗
4)
>, and where `∗j := −`j − [(Aτ )j5`5] ∈ H

− 1
2

2 (∂Ω),

j = 1, 4, are known functions. Here Ãτ := [(Aτ )jk ]4×4, where (Aτ )jk are
the entries of the Steklov–Poincaré operator (4.17).

The equation (4.19) can be written componentwise as

4∑

k=1

(Aτ )jkhk = `∗j , j = 1, 4.

If in (4.18) we substitute h∗ = (h′, 0)> with arbitrary h′ ∈ [H
1
2
2 (∂Ω)]4, then

we get

<
〈
Ãτh

′, h′
〉
≥ c′‖h′‖2

[H

1
2
2 (∂Ω)]4

− c′′‖h′‖2
[H0

2
(∂Ω)]4

. (4.20)

Therefore, the operator

Ãτ :
[
H

1
2
2 (∂Ω)

]4 →
[
H
− 1

2
2 (∂Ω)

]4
(4.21)

is a Fredholm operator with index zero (see, e.g., [21], Ch. 2).
Clearly, to show the invertibility it suffices to prove that the equation

Ãτh
′ = 0, i.e.,

[
Aτ h̃

]
j

= 0, j = 1, 4 (4.22)

with h̃ := (h′, 0)> has only the trivial solution.
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Assume that h′∈ [H
1
2
2 (∂Ω)]4 solves the equation (4.22) and f∈ [H

− 1
2

2 (∂Ω)]5

is a vector such that

Hτf = h̃, i.e., f = H−1
τ h̃. (4.23)

From (4.22) and (4.23) we have
[
(2−1I5 +Kτ )f

]
j

= 0, j = 1, 4, [Hτf ]5 = 0,

i.e., Pτf = 0.
Since Pτ is injective, we conclude that f = 0 and, consequently, h′ = 0

in accordance to (4.23).
Thus we have shown that the operator (4.21) is invertible, which in its

turn implies that the operator

Pτ :
[
H
− 1

2
2 (∂Ω)

]5 →
[
H
− 1

2
2 (∂Ω)

]4 ×H
1
2
2 (∂Ω) (4.24)

is invertible as well. �

Corollary 4.5. Let <τ = σ > 0. An arbitrary solution U ∈ [W 1
2 (Ω)]5 to

the homogeneous equation (4.12) can be uniquely represented by the single

layer potential for x ∈ Ω: U(x) = V τ (P−1
τ `)(x), where

` =
(
[T U ]+1 , [T U ]+2 , [T U ]+3 , [T U ]+4 , [U ]+5

)>
on ∂Ω.

4.4. Existence results. Here we again assume that τ = σ+ iω with <τ =
σ > 0.

Let us look for a solution of the transmission problem (2.2)–(2.14) in the
form of single layer potentials:

U (m)(x)=V (m)
τ

(
[−2−1I4+K(m)

τ ]−1`(m)
)
(x), x∈Ωm, m=1, 2N, (4.25)

U(x)=Vτ

(
P−1

τ `
)
(x), x ∈ Ω, (4.26)

where the unknown densities `(m) and ` have the following properties (due
to Corollaries 4.3 and 4.5)

`(m) =
{
T (m)U (m)

}+
on ∂Ωm, m = 1, 2N, (4.27)

`(m) = (`
(m)
1 , `

(m)
2 , `

(m)
3 , `

(m)
4 )> ∈

[
H̃
− 1

2
2 (Γm)

]4
, m = 1, 2N, (4.28)

` =
(
{T U}+1 , {T U}+2 , {T U}+3 , {T U}+4 , {U}+5

)
on ∂Ω, (4.29)

` = (`′, `5)
>, `′ = (`1, `2, `3, `4)

> ∈
[
H̃
− 1

2
2 (Σ−3 ∪ Γ)

]4
, (4.30)

Γ =
2N⋃

m=1

Γm. (4.31)

Note that the unknown function `5 can be represented in the form

`5 = ψ5 + Φ5 with ψ5 ∈ H̃
1
2
2 (Σ±1 ∪ Σ±3 ) and Φ5 ∈ H

1
2
2 (∂Ω), (4.32)

where Φ5 is a fixed extension onto the whole boundary ∂Ω of the constant
functions +Φ0 (on S+) and −Φ0 (on S−), i.e., r

S±
Φ5 = ±Φ0.
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It is evident that

{U (m)}+ = R(m)
τ `(m) on ∂Ωm, m = 1, 2N, (4.33)

{
T (m)U (m)

}+
= `(m) on ∂Ωm, m = 1, 2N, (4.34)

{U}+ = Rτ ` =
(
[Rτ `]1, [Rτ`]2, [Rτ `]3, [Rτ `]4, `5

)>
on ∂Ω, (4.35)

{T U}+ = B` =
(
`1, `2, `3, `4, [Bτ`]5

)>
on ∂Ω, (4.36)

where

R(m)
τ := H(m)

τ

[
− 2−1I4 +K(m)

τ

]−1
=

[
A(m)

τ

]−1
,

Rτ := HτP−1
τ , Bτ :=

[
2−1I5 +Kτ

]
P−1

τ .

Note that

Bτ =
[
(Bτ )jk

]
5×5

, (Bτ )jk = 0, j 6= k, j = 1, 4, k = 1, 5,

(Bτ )jj = 1, j = 1, 4, (Bτ )5k =
[
2−1I5 +Kτ

]
5l

(
P−1

τ

)
lk
, k = 1, 5.

Clearly, the operators

R(m)
τ :

[
H
− 1

2
2 (∂Ωm)

]4 →
[
H

1
2
2 (∂Ωm)

]4
,

Rτ :
[
H
− 1

2
2 (∂Ω)

]4 ×H
1
2
2 (∂Ω) →

[
H

1
2
2 (∂Ω)

]5
,

are invertible due to Theorems 4.1, 4.2, and Lemma 4.4, while the operator

Bτ :
[
H
− 1

2
2 (∂Ω)

]4 ×H
1
2
2 (∂Ω) →

[
H
− 1

2
2 (∂Ω)

]5

is bounded.
We assume that the restrictions of the unknown densities `(m) and ` on

the interface Γm satisfy the following conditions

r
Γm
`
(m)
j = r

Γm
`j , j = 1, 2, 3, m = 1, 2N, (4.37)

[T
(m)
0 ]−1r

Γm
`
(m)
4 = [T0]

−1r
Γm
`4, m = 1, 2N. (4.38)

Let us introduce new unknown vectors

ψ(m) =
(
ψ

(m)
1 , ψ

(m)
2 , ψ

(m)
3 , ψ

(m)
4

)> ∈
[
H̃
− 1

2
2 (Γm)

]4
, m = 1, 2N, (4.39)

ψ =
(
ψ1, ψ2, ψ3, ψ4

)> ∈
[
H̃
− 1

2
2 (Σ−3 )

]4
, (4.40)

where ψ(m) is defined on ∂Ωm ∪ ∂Ω, while ψ is defined on ∂Ω, and

r
Γm
ψ

(m)
j := r

Γm
`
(m)
j = r

Γm
`j , j = 1, 2, 3, m = 1, 2N, (4.41)

r
Γm
ψ

(m)
4 := [T

(m)
0 ]−1r

Γm
`
(m)
4 = [T0]

−1r
Γm
`4, m = 1, 2N, (4.42)

r
Σ
−
3

ψj := r
Σ
−
3

`j , j = 1, 4. (4.43)
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The original unknown vectors then can be written as

`(m) =
(
ψ

(m)
1 , ψ

(m)
2 , ψ

(m)
3 , T

(m)
0 ψ

(m)
4

)>
=I4(T

(m)
0 )ψ(m), m=1, 2N,

`=(`′, `5)
>=

( 2N∑

m=1

I4(T0)ψ
(m)+ψ, ψ5+Φ5

)>
.

(4.44)

Here I4(a) := diag [1, 1, 1, a].
The potentials (4.25) and (4.26) can be rewritten as follows

U (m)(x) = V (m)
τ

([
− 2−1I4 +K(m)

τ

]−1I4(T
(m)
0 )ψ(m)

)
(x), (4.45)

x ∈ Ωm, m = 1, 2N,

U(x) =Vτ

(
P−1

τ

[ 2N∑

m=1

I4(T0)ψ
(m)+ψ, ψ5+Φ5

]>)
(x), x∈Ω. (4.46)

They have to satisfy the conditions of the boundary-transmission problem
(2.2)–(2.14).

It can easily be shown that the conditions (2.2)–(2.7) are satisfied auto-
matically.

The boundary condition (2.8) leads to the equation

β1{T U}+5 + β2{u}+5 ≡

≡ β1

([
2−1I5 +Kτ

]
P−1

τ

[ 2N∑

m=1

I4(T0)ψ
(m) + ψ, ψ5 + Φ5

]>)

5

+

+ β2(ψ5 + Φ5) = 0 on Σ±1 ∪ Σ±3 . (4.47)

The conditions (2.9) and (2.10) are also satisfied automatically. The condi-
tion (2.11) implies

{u}+j ≡
(
HτP−1

τ

[ 2N∑

m=1

I4(T0)ψ
(m) + ψ, ψ5 + Φ5

]>)

j

= 0 (4.48)

on Σ−3 , j = 1, 4.

The condition (2.12) gives

{u(m)}+j − {u}+j ≡
(
H(m)

τ

[
− 2−1I4 +K(m)

τ

]−1I4(T
(m)
0 )ψ(m)

)
j
−

−
(
H(m)

τ P−1
τ

[ 2N∑

l=1

I4(T0)ψ
(l) + ψ, ψ5 + Φ5

]>)

j

= 0 (4.49)

on Γm, m = 1, 2N, j = 1, 4.

Finally, the conditions (2.13) and (2.14) are also automatically satisfied.
Thus we have to find the unknown vector functions ψ(1), ψ(2), . . . , ψ(2N), ψ,

and the scalar function ψ5 satisfying the equations (4.47), (4.48), (4.4). We
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can rewrite these equations as the following system

rΓm

(
R(m)

τ I4(T
(m)
0 )ψ(m)

)
j
− rΓm

(
Rτ

[ 2N∑

l=1

I4(T0)ψ
(l) + ψ, ψ5

]>)

j

=

= F
(m)
j on Γm, m = 1, 2N, j = 1, 4, (4.50)

r
Σ
−
3

(
Rτ

[ 2N∑

l=1

I4(T0)ψ
(l) + ψ, ψ5

]>)

j

= Fj on Σ−3 , j = 1, 4, (4.51)

r
Σ
±
1 ∪Σ

±
3

{(
Bτ

[2N∑

l=1

I4(T0)ψ
(l)+ψ, ψ5

]>)

5

+βψ5

}
=F5 on Σ±1 ∪ Σ±3 , (4.52)

where (for j = 1, 4, m = 1, 2N)

F
(m)
j := r

Γm

[
Rτ Φ̃

]
j
, F (m) =

(
F

(m)
1 , F

(m)
2 , F

(m)
3 , F

(m)
4

)
∈

[
H

1
2
2 (Γm)

]4
,

Fj := −r
Σ
−
3

[
Rτ Φ̃

]
j
,

F5 := −r
Σ
±
1 ∪Σ

±
3

{[
(2−1I5 +Kτ )P−1

τ Φ̃
]
5
+ βΦ5

}
, β = β2β

−1
1 ,

F := (F1, F2, F3, F4)∈
[
H

1
2
2 (Σ−3 )

]4
, Φ̃ :=(0, 0, 0, 0,Φ5)

>∈
[
H

1
2
2 (∂Ω)

]5
.

Denote by Nτ the linear operator generated by the left-hand side ex-
pressions in the system (4.4)–(4.52) and rewrite the latter in matrix form
as

NτΨ = F, (4.53)

where
Ψ :=

(
ψ(1), ψ(2), . . . , ψ(2N), ψ, ψ5

)>
(4.54)

is an 8N + 5 dimensional sought vector function and

F :=
(
F (1), F (2), . . . , F (2N), F, F5

)>
(4.55)

is an 8N + 5 dimensional known vector function.
Let us introduce the following 8N + 5 dimensional function space X and

its dual space X∗,

X :=
[
H̃
− 1

2
2 (Γ1)

]4 × · · · ×
[
H̃
− 1

2
2 (Γ2N )

]4 ×
[
H̃
− 1

2
2 (Σ−3 )

]4 × H̃
1
2
2 (Σ±1 ∪ Σ±3 ),

X∗ :=
[
H

1
2
2 (Γ1)

]4×· · ·×
[
H

1
2
2 (Γ2N )

]4×
[
H

1
2
2 (Σ−3 )

]4×H− 1
2

2 (Σ±1 ∪ Σ±3 ).

Note that X is a reflexive Hilbert space: (X∗)∗ = X.
Due to the properties of the surface potentials and its inverses involved

in the left hand side expressions of the system (4.4)–(4.52), the operator Nτ

has the mapping property Nτ : X → X∗.
Now we investigate the solvability of the system (4.53) (i.e., (4.4)–(4.52)).

Theorem 4.6. The operator

Nτ : X → X∗ (4.56)

is invertible.
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Proof. From the uniqueness result (see Theorem 2.1) and the invertibility of

the operators H(m)
τ , (−2−1I4 + K(m)

τ ), Hτ , and Pτ , it immediately follows
that the linear bounded operator (4.56) is injective for arbitrary τ with
<τ = σ > 0.

Further we show that it is surjective, Nτ (X) = X∗.
First we show the invertibility of the operator (4.56) when σ2 − ω2 is a

positive number and afterwards we consider the general case.
We prove this in several steps.
Step 1. Let us apply Green’s formulae (B.3) and (B.7) to the potentials

(4.25) and (4.26), where `(m) and ` are related to the vectors-functions ψ(m),
ψ, and ψ5 by the equations (4.32) and (4.44) with Φ5 = 0. We get

2N∑

m=1

∫

∂Ωm

[ 3∑

j=1

{
T (m)U (m)

}+

j

{
u

(m)
j

}+
+

1

τT
(m)
0

{
T (m)U (m)

}+

4

{
u

(m)
4

}+
]
dS−

−
∫

∂Ω

[ 3∑

j=1

{T U}+j {uj}++
1

τT0
{T U}+4 {u4}+

{
T U

}+

5
{u5}+

]
dS = Q1+iQ2,

where

Q1 + iQ2 :=

2N∑

m=1

∫

Ωm

[
E(m)(u(m), u(m)) + %(m)τ2|u(m)|2 +

α(m)

T
(m)
0

|u(m)
4 |2+

+
τ

|τ |2T (m)
0

κ
(m)
jl ∂ju

(m)
4 ∂lu

(m)
4 + γ

(m)
jl

(
∂ju

(m)
l u

(m)
4 − u

(m)
4 ∂ju

(m)
l

)]
dx+

+

∫

Ω

[
E(u, u) + %τ2|u|2 + γjl

(
∂julu4 − u4∂jul

)
+

+
τ

|τ |2T0
κjl∂ju4∂lu4 +

α

T0
|u4|2 + elij

(
∂lu5∂iuj − ∂iuj∂lu5

)
−

− `l
(
∂lu5u4 + u4∂lu5

)
+ εjl∂ju5∂lu5

]
dx.

The left-hand side expression involving the surface integrals can be rep-

resented in terms of the operators R(m)
τ , Rτ and Bτ , and the vectors `(m)

and ` (see (4.25)–(4.36)):

2N∑

m=1

∫

∂Ωm

[ 3∑

j=1

`
(m)
j

(
R(m)

τ `(m)
)
j
+

1

τT
(m)
0

`
(m)
4

(
R(m)

τ `(m)
)
4

]
dS−

−
∫

∂Ω

[ 3∑

j=1

`j
(
Rτ`

)
j
+

1

τT0
`4

(
Rτ`

)
4

+
(
Bτ`

)
5
`5

]
dS = Q1 + iQ2.
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Apply (4.44) and take the complex conjugate of this equation to obtain

Q1 − iQ2 =

=

2N∑

m=1

∫

Γm

[ 3∑

j=1

{(
R(m)

τ I4(T
(m)
0 )ψ(m)

)
j
−

(
Rτ

[ 2N∑

l=1

I4(T0)ψ
(l)+ψ, ψ5

]>)
j

}
ψ

(m)
j +

+
1

τ

{(
R(m)

τ I4(T
(m)
0 )ψ(m)

)
4
−

(
Rτ

[ 2N∑

l=1

I4(T0)ψ
(l) + ψ, ψ5

]>)
4

}
ψ

(m)
4

]
dS

−
∫

Σ−3

[ 3∑

j=1

(
Rτ

[ 2N∑

l=1

I4(T0)ψ
(l) + ψ, ψ5

]>)
j
ψj+

+
1

τT0

(
Rτ

[ 2N∑

l=1

I4(T0)ψ
(l) + ψ, ψ5

]>)
4
ψ4

]
dS−

−
∫

Σ±1 ∪Σ±3

[(
Bτ

[ 2N∑

l=1

I4(T0)ψ
(l)+ψ, ψ5

]>)
5
+βψ5

]
ψ5 dS+β

∫

Σ±1 ∪Σ±3

|ψ5|2 dS.

This equality can be rewritten in the form

〈ÑτΨ,Ψ〉+ β

∫

Σ±1 ∪Σ±3

|ψ5|2dS = Q1 − iQ2, (4.57)

where the operator Ñτ is generated by the expressions in the left-hand
side of the system (4.4)–(4.52) if we multiply the fourth equations in (4.4)
and (4.51) by the numbers 1

τ and 1
τT0

respectively. That is, the equation

ÑτΨ = F̃ , where Ψ ∈ X and F̃ ∈ X∗, corresponds to the system (cf.
(4.4)–(4.52))

rΓm

[
R(m)

τ I4(T
(m)
0 )ψ(m)

]
j
− rΓm

[
Rτ

( 2N∑

l=1

I4(T0)ψ
(l) + ψ, ψ5

)>]
j

= F̃
(m)
j

on Γm, m = 1, 2N, j = 1, 2, 3,

r
Γm

[1

τ
R(m)

τ I4(T
(m)
0 )ψ(m)

]
4
−r

Γm

[1

τ
Rτ

( 2N∑

l=1

I4(T0)ψ
(l)+ψ, ψ5

)>]
4
= F̃

(m)
4

on Γm, m = 1, 2N,

r
Σ
−
3

[
Rτ

( 2N∑

l=1

I4(T0)ψ
(l) + ψ, ψ5

)>]
j

= F̃j on Σ−3 , j = 1, 2, 3,

r
Σ
−
3

[ 1

τT0
Rτ

( 2N∑

l=1

I4(T0)ψ
(l) + ψ, ψ5

)>]
4

= F̃4 on Σ−3 ,
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r
Σ
±
1
∪Σ
±
3

{[
Bτ

( 2N∑

l=1

I4(T0)ψ
(l) + ψ, ψ5

)>]
5

+ βψ5

}
= F̃5 on Σ±1 ∪ Σ±3 .

Therefore, the mapping and Fredholm properties of the operatorsNτ and

Ñτ are absolutely the same. In particular, the invertibility of Ñτ yields the
same property for the operator Nτ .

Step 2. Here we give the estimate from below for Q1. Let us note that
for the function u5 the H1

2 (Ω) norm is equivalent to the semi-norm [30]

3∑

j=1

‖∂ju5‖L2(Ω)

since the support of u5 is contained in Σ±1 ∪Σ±3 which is a proper submanifold
of ∂Ω.

Note also that the vector

ũ :=

{
u(m) in Ωm, m = 1, 2N

u in Ω

belongs to the space
[
H1

2 (Π)
]3

due to the transmission conditions (2.12) on

Γm and vanishes on Σ−3 .
Therefore, due to the inequalities (A.7), (A.39), (A.40), (A.41), and the

well known Korn’s inequality we derive

Q1 = <{Q1 + iQ2} =

2N∑

m=1

∫

Ωm

[
E(m)(u(m), u(m)) + %(m)(σ2 − ω2)|u(m)|2+

+
σ

|τ |2T (m)
0

κ
(m)
jl ∂ju

(m)
4 ∂lu

(m)
4 +

α(m)

T
(m)
0

|u(m)
4 |2

]
dx+

+

∫

Ω

[
E(u, u) + %(σ2 − ω2)|u|2 +

σ

|τ |2T0
κjl∂ju4∂lu4 +

α

T0
|u4|2−

−2<
{
`l∂lu5u4

}
+ εjl∂ju5∂lu5

]
dx ≥

≥ c1(τ)
[ 2N∑

m=1

‖U (m)‖[H1
2 (Ωm)]4 + ‖U‖[H1

2 (Ω)]5

]
+

+%(m)(σ2 − ω2)

2N∑

m=1

∫

Ωm

|u(m)|2 dx+ %(σ2 − ω2)

∫

Ω

|u|2 dx.

Here and in what follows ck(τ) are some positive constants independent of
U (m) and U .

Provided that σ2 − ω2 ≥ 0 we arrive at the relation

Q1 ≥ c1(τ)
[ 2N∑

m=1

‖U (m)‖[H1
2 (Ωm)]4 + ‖U‖[H1

2 (Ω)]5

]
.
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Whence by the trace theorem

Q1 ≥ c2(τ)
[ 2N∑

m=1

∥∥{U (m)}+
∥∥

[H
1
2
2 (∂Ωm)]4

+
∥∥{U}+

∥∥
[H

1
2
2 (∂Ω)]5

]
.

From this inequality, with the help of the representations (4.45) and (4.46)

with Φ5 = 0 and the invertibility properties of the operators H(m)
τ , Hτ , Pτ ,

and − 1
2I4 +K(m)

τ (see Theorems 4.1, 4.2 and Lemma 4.4), we conclude

Q1 ≥ c3(τ)‖Ψ‖2X. (4.58)

Step 3. Taking into account that β < 0, from the relations (4.57) and
(4.58) we finally get

<〈ÑτΨ,Ψ〉 ≥ Q1 ≥ c3(τ)‖Ψ‖2X for all Ψ ∈ X. (4.59)

From this inequality it follows that the operator

Ñτ : X → X∗ (4.60)

is invertible.
Thus, the operator (4.56) is also invertible for σ2 − ω2 ≥ 0 due to the

above mentioned equivalence of the operators Ñτ and Nτ .
Step 4. Now let τ be an arbitrary complex number with <τ = σ > 0.

It can easily be seen that the entries of the differences of the fundamental
matrices Ψ(m)(x − y, τ) − Ψ(m)(x − y, τ0) and Ψ(x − y, τ) − Ψ(x − y, τ0)
either have a logarithmic singularity or are bounded for arbitrary τ0 with
<τ0 = σ0 > 0 (see Appendix C). Therefore, the operators

H(m)
τ −H(m)

τ0
:
[
H
− 1

2
2 (∂Ωm)

]4 →
[
H

1
2
2 (∂Ωm)

]4
,

K(m)
τ −K(m)

τ0
:
[
H
− 1

2
2 (∂Ωm)

]4 →
[
H
− 1

2
2 (∂Ωm)

]4
,

Hτ −Hτ0 :
[
H
− 1

2
2 (∂Ω)

]5 →
[
H

1
2
2 (∂Ω)

]5
,

Kτ −Kτ0 :
[
H
− 1

2
2 (∂Ω)

]5 →
[
H
− 1

2
2 (∂Ω)

]5
,

Pτ −Pτ0 :
[
H
− 1

2
2 (∂Ω)

]5 →
[
H
− 1

2
2 (∂Ω)

]4 ×H
1
2
2 (∂Ω)

are compact.
Clearly the differences of the corresponding inverse operators (when they

exist) are also compact. Indeed, if the operators A,B : B1 → B2 are
invertible and A − B : B1 → B2 is compact, then the compactness of the
operator A−1 − B−1 ≡ A−1(B −A)B−1 : B2 → B1 follows immediately.

From these results it immediately follows that the operators

R(m)
τ −R(m)

τ0
:
[
H
− 1

2
2 (∂Ωm)

]4 →
[
H

1
2
2 (∂Ωm)

]4
,

Rτ −Rτ0 :
[
H
− 1

2
2 (∂Ω)

]4 ×H
1
2
2 (∂Ω) →

[
H

1
2
2 (∂Ω)

]5
,

Bτ − Bτ0 :
[
H
− 1

2
2 (∂Ω)

]4 ×H
1
2
2 (∂Ω) →

[
H
− 1

2
2 (∂Ω)

]5

are compact.
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Having these results in hand, we can easily conclude that the operator
Nτ − Nτ0 : X → X∗ is compact. Now let us choose τ0 = σ0 + iω0 such
that σ2

0 − ω2
0 ≥ 0. The operator Nτ0 : X → X∗ is then invertible and the

operator Nτ = Nτ0 + (Nτ −Nτ0) represents a compact perturbation of the
invertible operator. Therefore, its index equals to zero and the injectivity
implies the surjectivity. This shows that Nτ (X) = X∗ and, consequently,
(4.56) is invertible. The proof is complete. �

Now from Theorem 4.6 the existence result for the original mixed bound-
ary transmission problem follows directly.

Theorem 4.7. The MBTP (2.2)–(2.14) has a unique solution
(
U (1), U (2), · · · , U (2N), U

)

which can be represented in the form of single layer potentials (4.45)–(4.46),
where the unknown densities (ψ(1), ψ(2), . . . , ψ(2N), ψ, ψ5) solve the system

(4.4)–(4.52).

5. Numerical Algorithms

In this section we describe the standard finite element approximation of
solutions to the boundary transmission problem (2.2)–(2.14). Our consid-
eration relies on the weak formulation of the problem given in Section 3.

5.1. Finite element approximation. Let us recall the weak setting of
the mixed boundary transmission problem given by the equation (3.28).
Under the notation introduced in Section 3, it reads as follows:

Find a vector Ũ ∈ V1
N such that

A(Ũ,V) + B(Ũ,V) = F(V) for all V ∈ V1
N , (5.1)

where A, B, and F are defined by (3.22), (3.29) and (3.30), respectively.

If τ = σ + iω and σ > 0, then this problem possesses a unique solution
due to Theorem 3.2.

Now we describe the discrete counterpart of the problem.
Let us divide the parallelepiped Π into the small parallelepipeds (ele-

ments) Πα of dimension lα1 × lα2 × lα3 , α = (α1, α2, α3). We assume that
for some p > 0

p−1 ≤ lαi
/lαj

≤ p, i, j = 1, 2, 3.

Denote h := max
i

sup
αi

lαi
.

Let V1
N,h ⊂ C(Π) be the subspace of V1

N consisting of the continuous
functions whose restrictions on each element Πα represent a linear combi-
nation of first order polynomials. It can be easily proved that

⋃
h

V1
N,h is

dense in V1
N .

Consider the equation (3.28) in the finite-dimensional space V1
N,h:

A(Ũh,Vh) + B(Ũh,Vh) = F(Vh) for all Vh ∈ V1
N,h. (5.2)
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Theorem 5.1. The equation (5.1) has the unique solution Ũh ∈ V1
N,h

for all h > 0. This solution converges in V1
N to the solution Ũ of (5.1) as

h→ 0.

Proof. Let us replace the fifth equation of (2.3) by its complex conjugate
in the mixed boundary-transmission problem formulation (2.2)–(2.14) and
repeat word for word the considerations adduced in Section 3. Instead of
(3.28) (that is, (5.1)) we arrive then at the relation:

Ac(Ũc,V) + Bc(Ũc,V) = Fc(V) for all V ∈ V1
N . (5.3)

Here Ac, Bc, and Fc are properly modified expressions A, B, and F , respec-
tively.

The equations (5.1) and (5.3) are equivalent in the following sense:

Ũ :=
(
U

(1)
1 , . . . , U

(1)
4 , . . . , U

(2N)
1 , . . . , U

(2N)
4 , U1, U2, U3, U4, U5

)

is a solution of the equation (5.1) if and only if

Ũc :=
(
U

(1)
c1 , . . . , U

(1)
c4 , . . . , U

(2N)
c1 , . . . , U

(2N)
c4 , Uc1, Uc2, Uc3, U c4, Uc5

)

is a solution of the equation (5.3).
Note that the equation (5.2) is not linear due to the complex conjugation

operation involved.
For each τ with <τ > 0 we can choose a positive number c1(τ) such that

c−1
1 ‖Ũc‖2V1

N
≤ Ac(Ũc, Ũc) + Bc(Ũc, Ũc) for all Ũc ∈ V1

N . (5.4)

This inequality can be proved in the same way as the inequality (3.31).

Let Ũh be the solution of the homogeneous equation (5.2):

A(Ũh,Vh) + B(Ũh,Vh) = 0 for all Vh ∈ V1
N,h.

Then due to (5.4) ‖Ũch‖V1
N

= 0 and Ũh = 0. Therefore the equation (5.2)

has a unique solution which due to (5.4), (5.3) satisfies the inequality

c−1
1 ‖Ũh‖2V1

N
= c−1

1 ‖Ũch‖2V1
N
≤ Ac(Ũch, Ũch) + Bc(Ũch, Ũch) =

= Fc(Ũch) ≤ c2|Ũch‖V1
N

= c2|Ũh‖V1
N

for some positive c2 independent of h.

Hence the sequence {‖Ũh‖V1
N
} is bounded and we can extract a subse-

quence {Ũhk
} which weakly converges to some W ∈ V1

N .
Let us take arbitrary V ∈ V1

N and for each h > 0 choose Vh ∈ V1
N,h such

that Vh → V in V1
N . From (5.2) we then have

A(W,V) + B(W,V) = F(V).

Hence W solves (5.1). Note that since each subsequence converges weakly

to the same solution W, the whole sequence {Ũh} also converges weakly to

W = Ũ. Now let us prove that it converges in the space V1
N .

Denote A(1)
c (U,V) := Ac(U,V)+Bc(U,V). Due to (5.1)–(5.4), we have:
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c−1
1 ‖Ũh − Ũ‖2V1

N
= c−1

1 ‖Ũch − Ũc‖2V1
N
≤

∣∣A(1)
c (Ũch − Ũc, Ũch − Ũc)

∣∣ =

=
∣∣∣A(1)

c (Ũch, Ũch)−A(1)
c (Ũch, Ũc)−A(1)

c (Ũc, Ũch − Ũc)
∣∣∣ =

=
∣∣∣Fc(Ũch)−A(1)

c (Ũch, Ũc)−Fc(Ũch − Ũc)
∣∣∣ →

→
∣∣Fc(Ũc)−A(1)

c (Ũc, Ũc)
∣∣ = 0,

which completes the proof. �

6. Appendix A: Field Equations

6.1. Thermoelastic field equations in Ωm. Here we collect the field
equations of the linear theory of thermoelasticity and introduce the corre-
sponding matrix partial differential operators (cf. [33], [19]).

6.1.1. General anisotropy. The basic governing equations of the classical
thermoelasticity read as follows (see the list of notation and take into con-
sideration the symmetry condition (A.6) below):

Constitutive relations:

σ
(m)
ij = σ

(m)
ji = c

(m)
ijlks

(m)
lk − γ

(m)
ij ϑ(m) = c

(m)
ijlk∂lu

(m)
k − γ

(m)
ij ϑ(m), (A.1)

S(m) = γ
(m)
ij s

(m)
ij + α(m)[T

(m)
0 ]−1ϑ(m); (A.2)

Fourier Law:

q
(m)
j = −κ

(m)
jl ∂lT

(m); (A.3)

Equations of motion:

∂iσ
(m)
ij +X

(m)
j = %(m)∂2

t u
(m)
j ; (A.4)

Equation of the entropy balance:

T (m)∂tS(m) = −∂jq
(m)
j +X

(m)
4 . (A.5)

Constants involved in the above equations satisfy the symmetry condi-
tions:

c
(m)
ijkl = c

(m)
jikl = c

(m)
klij , γ

(m)
ij = γ

(m)
ji , κ

(m)
ij = κ

(m)
ji , i, j, k, l = 1, 2, 3. (A.6)

Moreover, we assume that there are positive constants c0 and c1 such that

c
(m)
ijklξijξkl ≥ c0ξijξij , κ

(m)
ij ξiξj ≥ c1ξiξi (A.7)

for all ξij = ξji, ξj ∈ R, i, j = 1, 2, 3.
In particular, the first inequality implies that the density of potential

energy corresponding to the displacement vector u(m),

E(m)(u(m), u(m)) = c
(m)
ijlks

(m)
ij s

(m)
lk (A.8)

is positive definite with respect to the symmetric components of the strain
tensor

s
(m)
lk = 2−1(∂lu

(m)
k + ∂ku

(m)
l ).
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Substitution of (A.1) into (A.4) leads to the equation:

c
(m)
ijlk∂i∂lu

(m)
k − γ

(m)
ij ∂iϑ

(m) +X
(m)
j = %(m)∂2

t u
(m)
j , j = 1, 2, 3. (A.9)

Taking into account the Fourier law (A.3) and the relation (A.2) from the
equation of the entropy balance (A.5), we obtain the heat transfer equation

κ
(m)
jl ∂j∂lϑ

(m) +X
(m)
4 =

= T (m)
(
γ

(m)
jl ∂ts

(m)
jl + α(m)[T

(m)
0 ]−1∂tϑ

(m)
)
, j = 1, 2, 3. (A.10)

Assuming that |ϑ(m)/T
(m)
0 | � 1 and taking into consideration the equality

T (m) = T
(m)
0 (1 + ϑ(m)/T

(m)
0 ), we can linearize the equation (A.10):

κ
(m)
il ∂i∂lϑ

(m) − α(m)∂tϑ
(m) − T

(m)
0 γ

(m)
il ∂t∂lu

(m)
i +X

(m)
4 = 0. (A.11)

The simultaneous equations (A.9) and (A.11) represent the basic system of
dynamics of the theory of thermoelasticity. If all the functions involved in
these equations are harmonic time dependent with the multiplier exp{τt},
where τ = σ + iω is a complex parameter, we have the pseudo-oscillation

equations of the theory of thermoelasticity. If τ = iω is a pure imaginary
number, with the so called oscillation parameter ω ∈ R, we obtain the steady

state oscillation equations. Finally, if τ = 0, we get the equations of statics.
Combining all these cases, we arrive at the equations (cf. (A.9) and (A.11))

c
(m)
ijlk∂i∂lu

(m)
k −γ(m)

ij ∂iϑ
(m)+X

(m)
j =





%(m)∂2
t u

(m)
j ,

%(m)τ2u
(m)
j ,

0,

j = 1, 2, 3, (A.12)

κ
(m)
il ∂i∂lϑ

(m) +X
(m)
4 =





α(m)∂tϑ
(m) + T

(m)
0 γ

(m)
il ∂t∂lu

(m)
i ,

τα(m)ϑ(m) + τT
(m)
0 γ

(m)
il ∂lu

(m)
i ,

0.

(A.13)

We will consider the system of pseudo-oscillations

c
(m)
ijlk∂i∂lu

(m)
k − %(m)τ2u

(m)
j − γ

(m)
ij ∂iϑ

(m) +X
(m)
j = 0, j = 1, 2, 3,

−τT (m)
0 γ

(m)
il ∂lu

(m)
i + κ

(m)
il ∂i∂lϑ

(m) − τα(m)ϑ(m) +X
(m)
4 = 0,

(A.14)

which in matrix form can be rewritten as

A(m)(∂x, τ)U
(m)(x) + X̃(m)(x) = 0 in Ωm, (A.15)

where U (m) := (u(m), ϑ(m))> is the sought vector,

X̃(m) =
(
X

(m)
1 , X

(m)
2 , X

(m)
3 , X

(m)
4

)>
, X(m) =

(
X

(m)
1 , X

(m)
2 , X

(m)
3

)>

is a given mass force density, X
(m)
4 is a given heat source density, A(m)(∂x, τ)

is the matrix differential operator generated by the equations (A.14)

A(m)(∂x, τ) =
[
A

(m)
jk (∂x, τ)

]
4×4

, A
(m)
jk (∂x, τ) = c

(m)
ijlk∂i∂l − %(m)τ2δjk,

A
(m)
4k (∂x, τ) = −τT (m)

0 γ
(m)
kl ∂l, A

(m)
j4 (∂x, τ) = −γ(m)

ij ∂i, (A.16)
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A
(m)
44 (∂x, τ) = κ

(m)
il ∂i∂l − α(m)τ,

where j, k = 1, 2, 3, and δjk is the Kronecker delta.

By [A(m)(∂, τ)]∗ we denote the 4×4 matrix differential operator formally

adjoint to A(m)(∂, τ): [A(m)(∂, τ)]∗ = [A(m)(−∂, τ)]>, where the over-bar
denotes the complex conjugation.

With the help of the inequalities (A.7) it can easily be shown that
A(m)(∂, τ) is an elliptic operator with a positive definite principal homo-
geneous symbol matrix.

Components of the mechanical thermostress vector acting on a surface
element with a normal n = (n1, n2, n3) read as follows

σ
(m)
ij ni = c

(m)
ijlkni∂lu

(m)
k − γ

(m)
ij niϑ

(m), j = 1, 2, 3, (A.17)

while the normal component of the heat flux vector (with opposite sign) has
the form

−q(m)
i ni = κ

(m)
il ni∂lϑ

(m). (A.18)

We introduce the following generalized thermostress operator

T (m)(∂, n) =
[
T (m)

jk (∂, n)
]
4×4

, (A.19)

where (for j, k = 1, 2, 3)

T (m)
jk (∂, n) = c

(m)
ijlkni∂l, T (m)

j4 (∂, n) = −γ(m)
ij ni,

T (m)
4k (∂, n) = 0, T (m)

44 (∂, n) = κ
(m)
il ni∂l.

For the four–vector U (m) = (u(m), ϑ(m))> we have

T (m)U (m) =
(
σ

(m)
i1 ni, σ

(m)
i2 ni, σ

(m)
i3 ni,−q(m)

i ni

)>
. (A.20)

Clearly, the components of the vector T (m)U (m) given by (A.20) have the
physical sense: the first three components correspond to the mechanical
stress vector in the theory of thermoelasticity, while the forth one is the
normal component of the heat flux vector (with opposite sign).

We introduce also the boundary operator associated with the adjoint
operator [A(m)(∂, τ)]∗ which appears in Green’s formulae:

T̃ (m)(∂, n, τ) =
[
T̃ (m)

jk (∂, n, τ)
]
4×4

, (A.21)

where (for j, k = 1, 2, 3)

T̃ (m)
jk (∂, n, τ) = c

(m)
ijlkni∂l, T̃ (m)

j4 (∂, n, τ) = τT
(m)
0 γ

(m)
ij ni,

T̃ (m)
4k (∂, n, τ) = 0, T̃ (m)

44 (∂, n, τ) = κ
(m)
il ni∂l.

(A.22)
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6.1.2. Isotropic bodies. For an isotropic medium the thermomechanical co-
efficients are

c
(m)
ijlk = λ(m)δijδlk + µ(m)(δilδjk + δikδjl),

γ
(m)
ij := γ(m)δij , κ

(m)
ij = κ

(m)δij ,
(A.23)

and the basic equations (A.14) of the theory of thermoelasticity are written
in the form (see, e.g., [33], [19]):

µ(m)∆u(m) + (λ(m) + µ(m))graddivu(m)−
−γ(m)gradϑ(m) − τ2%(m)u(m) +X(m) = 0,

κ
(m)∆ϑ(m) − τα(m)ϑ− τT

(m)
0 γ(m)divu(m) +X

(m)
4 = 0,

(A.24)

where ∆ = ∂2
1 + ∂2

2 + ∂2
3 is the Laplace operator.

The matrix differential operator generated by these equations is (cf. (6.1.1))

A(m)(∂, τ) =
[
A

(m)
jk (∂, τ)

]
4×4

,

A
(m)
jk (∂, τ) = δjk(µ(m)∆− %(m)τ2) + (λ(m) + µ(m))∂j∂k,

A
(m)
j4 (∂, τ) = −γ(m)∂j ,

A
(m)
4k (∂, τ) = −τT (m)

0 γ(m)∂k, A
(m)
44 (∂, τ) = κ

(m)∆− τα(m),

(A.25)

for j, k = 1, 2, 3, while the corresponding thermostress operator reads as

T (m)(∂, n) =
[
T (m)

jk (∂, n)
]
4×4

(A.26)

with

T (m)
jk (∂, n) = λ(m)nj∂k + µ(m)nk∂j + µ(m)δjk∂n, T (m)

4k (∂, n) = 0,

T (m)
j4 (∂, n) = −γ(m)nj , T (m)

44 (∂, n) = κ
(m)∂n, j, k = 1, 2, 3. (A.27)

Here ∂n = ni∂i denotes the usual normal derivative.

Clearly, in this case we have T̃ (m)(∂, n, τ) = [T̃ (m)
jk (∂, n, τ)]4×4, where

(cf. (A.21)–(A.22))

T̃ (m)
jk (∂, n, τ) = λ(m)nj∂k + µ(m)nk∂j + µ(m)δjk∂n, T̃ (m)

4k (∂, n, τ) = 0,

T̃ (m)
j4 (∂, n, τ) = τT

(m)
0 γ(m)nj , T̃ (m)

44 (∂, n, τ) = κ
(m)∂n, j, k = 1, 2, 3.

6.2. Thermopiezoelastic field equations in Ω. In this subsection we
collect the field equations of the linear theory of thermopiezoelasticity and
introduce the corresponding matrix partial differential operators (cf. [31],
[36]).
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6.2.1. General anisotropy. In the thermopiezoelasticity we have the follow-
ing governing equations (see the list of notation):

Constitutive relations:

σij = σji = cijklskl − elijEl − γijϑ =

= cijkl∂luk + elij∂lϕ− γijϑ, i, j = 1, 2, 3, (A.28)

S = γijsij + glEl + α[T0]
−1ϑ, (A.29)

Dj = ejklskl + εjlEl + gjϑ =

= ejkl∂luk − εjl∂lϕ+ gjϑ, j = 1, 2, 3. (A.30)

Fourier Law:

qi = −κil∂lT, i = 1, 2, 3. (A.31)

Equations of motion:

∂iσji +Xj = %∂2
t uj , j = 1, 2, 3. (A.32)

Equation of the entropy balance:

T∂tS = −∂jqj +X4. (A.33)

Equation of static electric field:

∂iDi −X5 = 0. (A.34)

From the relations (A.28)–(A.34) we derive the linear system of dynamics
of the theory of thermopiezoelasticity:

cijlk∂i∂luk − γij∂iϑ+ elij∂l∂iϕ+Xj = %∂2
t uj , j = 1, 2, 3,

−T0γil∂t∂lui + κil∂i∂lϑ− α∂tϑ+ T0gi∂t∂iϕ+X4 = 0,

−eikl∂i∂luk − gi∂iϑ+ εil∂i∂lϕ+X5 = 0.

(A.35)

In particular, the corresponding pseudo-oscillation equations read as

cijlk∂i∂luk − %τ2uj − γij∂iϑ+ elij∂l∂iϕ+Xj = 0, j = 1, 2, 3,

−τT0γil∂lui + κil∂i∂lϑ− ταϑ + τT0gi∂iϕ+X4 = 0,

−eikl∂i∂luk − gi∂iϑ+ εil∂i∂lϕ+X5 = 0,

(A.36)

or in matrix form

A(∂, τ)U(x) + X̃(x) = 0 in Ω, (A.37)

where U := (u, ϑ, ϕ)>, X̃ = (X1, X2, X3, X4, X5)
>, X = (X1, X2, X3)

> is
a given mass force density, X4 is a given heat source density, X5 is a given
charge density, A(∂, τ) is the matrix differential operator generated by the
equations (A.36)

A(∂, τ) = [Ajk(∂, τ)]5×5, Ajk(∂, τ) = cijlk∂i∂l − %τ2δjk ,

Aj4(∂, τ) = −γij∂i, Aj5(∂, τ) = elij∂l∂i, A4k(∂, τ) = −τT0γkl∂l,

A44(∂, τ) = κil∂i∂l − ατ, A45(∂, τ) = τT0gi∂i, A5k(∂, τ) = −eikl∂i∂l,

A54(∂, τ) = −gi∂i, A55(∂, τ) = εil∂i∂l, j, k = 1, 2, 3. (A.38)
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Clearly, from (A.36)–(6.2.1) we obtain the equations and operators of statics
if τ = 0.

The constants involved in these equations satisfy the symmetry condi-
tions:

cijkl = cjikl = cklij , eijk = eikj , εij = εji,

γij = γji, κij = κji, i, j, k, l = 1, 2, 3.

Moreover, from the physical considerations it follows that (see, e.g., [31]):

cijklξijξkl ≥ c0ξijξij for all ξij = ξji ∈ R, (A.39)

εijηiηj≥c1|η|2, κijηiηj≥c2|η|2 for all η=(η1, η2, η3)∈R
3, (A.40)

where c0, c1, and c2 are positive constants. In addition, we require that (cf.,
e.g., [31])

εijηiηj+
α

T0
|ζ|2−2<(ζglηl)≥c3(|ζ|2+|η|2) for all ζ∈C and η∈C

3 (A.41)

with a positive constant c3. A sufficient condition for (A.41) to be satisfied
reads as follows

αc1
3T0

− g2 > 0, (A.42)

where g = max
{
|g1|, |g2|, |g3|

}
and c1 is the constant involved in (A.40).

ByA∗(∂, τ) we denote the operator formally adjoint to A(∂, τ): A∗(∂, τ) =

[A(−∂, τ)]>.
With the help of the inequalities (A.39) and (A.40), it can easily be shown

that the principal part of the operator A(∂, τ) is strongly elliptic, but not
self-adjoint.

In the theory of thermopiezoelasticity the components of the three-dimen-
sional mechanical stress vector acting on a surface element with a normal
n = (n1, n2, n3) have the form

σijni = cijlkni∂luk + elijni∂lϕ− γijniϑ for j = 1, 2, 3, (A.43)

while the normal components of the electric displacement vector and the
heat flux vector (with opposite sign) read as

−Dini = −eiklni∂luk + εilni∂lϕ− giniϑ, −qini = κilni∂lϑ. (A.44)

Let us introduce the following matrix differential operator

T (∂, n) =
[
Tjk(∂, n)

]
5×5

, (A.45)

where (for j, k = 1, 2, 3)

Tjk(∂, n) = cijlkni∂l, Tj4(∂, n) = −γijni, Tj5(∂, n) = elijni∂l,

T4k(∂, n) = 0, T44(∂, n) = κilni∂l, T45(∂, n) = 0,

T5k(∂, n)=−eiklni∂l, T54(∂, n)=−gini, T55(∂, n)=εilni∂l. (A.46)

For a vector U = (u, ϕ, ϑ)> we have

T (∂, n)U =
(
σi1ni, σi2ni, σi3ni,−qini,−Dini

)>
. (A.47)
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Clearly, the components of the vector T U given by (A.47) have the physical
sense: the first three components correspond to the mechanical stress vector
in the theory of thermoelectroelasticity, the forth and fifth ones are the
normal components of the heat flux vector and the electric displacement
vector (with opposite sign), respectively.

In Green’s formulas there appear also the following boundary operator
associated with the differential operator A∗(∂, τ):

T̃ (∂, n, τ) =
[
T̃jk(∂, n, τ)

]
5×5

, (A.48)

where (for j, k = 1, 2, 3)

T̃jk(∂, n, τ)=cijlkni∂l, T̃j4(∂, n, τ)=τT0γijni,

T̃j5(∂, n, τ)=−elijni∂l,

T̃4k(∂, n, τ) = 0, T̃44(∂, n, τ) = κilni∂l, T̃45(∂, n, τ) = 0,

T̃5k(∂,n,τ)=eiklni∂l, T̃54(∂,n, τ)=−τT0gini, T̃55(∂,n,τ)=εilni∂l.

(A.49)

6.2.2. Special classes of anisotropy (transversally isotropic case). Consider
a thermopiezoelectric medium with crystal symmetry of the class
C6ν=6mm. In particular, piezoceramic materials belong to this class [10].
To simplify the notation, we introduce the standard two-index symbols:

cf(ij)f(kl) := cijkl, eif(kl) := eikl, γf(ij) := γij ,

where

f(11) = 1, f(22) = 2, f(33) = 3,

f(23) = f(32) = 4, f(13) = f(31) = 5, f(12) = f(21) = 6.

For crystals of the class 6mm the following relations then hold:

c11 = c22, c13 = c23, c44 = c55,

c11 − c66 = c66 + c12, cij = 0 for i 6= j and i, j = 4, 5, 6;

e24 = e15, e31 = e32, e1i = e2j = e3k = 0 for i 6= 5, j 6= 4, k > 3;

ε11 = ε22, ε12 = ε13 = ε23 = 0;

κ11 = κ22, κ12 = κ13 = κ23 = 0;

γ1 = γ2, γ4 = γ5 = γ6 = 0; g1 = g2 = 0.

In this case the equations (A.36) have the form:

(c11∂
2
1 + c66∂

2
2 + c44∂

2
3)u1 + (c11 − c66)∂1∂2u2+

+(c13 + c44)∂1∂3u3 − γ1∂1ϑ+

+(e31 + e15)∂1∂3ϕ− %τ2u1 +X1 = 0,

(c11 − c66)∂2∂1u1 + (c66∂
2
1 + c11∂

2
2 + c44∂

2
3)u2+

+(c13 + c44)∂2∂3u3 − γ1∂2ϑ+

+(e31 + e15)∂2∂3ϕ− %τ2u2 +X2 = 0, (A.50)
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(c13 + c44)∂3∂1u1 + (c13 + c44)∂3∂2u2+

+(c44∂
2
1 + c44∂

2
2 + c33∂

2
3)u3 − γ3∂3ϑ+

+(e15∂
2
1 + e15∂

2
2 + e33∂

2
3)ϕ− %τ2u3 +X3 = 0,

−τT0(γ1∂1u1 + γ1∂2u2 + γ3∂3u3) + (κ11∂
2
1 + κ11∂

2
2 + κ33∂

2
3)ϑ−

−ταϑ + τT0g3∂3ϕ+X4 = 0,

−(e31 + e15)∂1∂3u1 − (e31 + e15)∂2∂3u2−
−(e15∂

2
1 + e15∂

2
2 + e33∂

2
3)u3 − g3∂3ϑ+

+(ε11∂
2
1 + ε11∂

2
2 + ε33∂

2
3)ϕ+X5 = 0.

The matrix operators T and T̃ defined by the relations (A.45)–(A.46)
and (A.48)–(A.49) in this particular case read as follows

T (∂, n) =
[
Tjk(∂, n)

]
5×5

, T̃ (∂, n, τ) =
[
T̃jk(∂, n, τ)

]
5×5

, (A.51)

where

T11(∂, n) = T̃11(∂, n, τ) = c11n1∂1 + c66n2∂2 + c44n3∂3,

T12(∂, n) = T̃12(∂, n, τ) = (c11 − 2c66)n1∂2 + c66n2∂1,

T13(∂, n) = T̃13(∂, n, τ) = c13n1∂3 + c44n3∂1,

T14(∂, n) = −[τT0]
−1T̃14(∂, n, τ) = −γ1n1,

T15(∂, n) = −T̃15(∂, n, τ) = e15n3∂1 + e31n1∂3,

T21(∂, n) = T̃21(∂, n, τ) = c66n1∂2 + (c11 − 2c66)n2∂1,

T22(∂, n) = T̃22(∂, n, τ) = c66n1∂1 + c11n2∂2 + c44n3∂3,

T23(∂, n) = T̃23(∂, n, τ) = c13n2∂3 + c44n3∂2,

T24(∂, n) = −[τT0]
−1T̃24(∂, n, τ) = −γ1n2,

T25(∂, n) = −T̃25(∂, n, τ) = e15n3∂2 + e31n2∂3,

T31(∂, n) = T̃31(∂, n, τ) = c44n1∂3 + c13n3∂1,

T32(∂, n) = T̃32(∂, n, τ) = c44n2∂3 + c13n3∂2, (A.52)

T33(∂, n) = T̃33(∂, n, τ) = c44n1∂1 + c44n2∂2 + c33n3∂3,

T34(∂, n) = −[τT0]
−1T̃34(∂, n, τ) = −γ3n3,

T35(∂, n) = −T̃35(∂, n, τ) = e15(n1∂1 + n2∂2) + e33n3∂3,

T4j(∂, n) = T̃4j(∂, n, τ) = 0 for j = 1, 2, 3,

T44(∂, n) = T̃44(∂, n, τ) = κ11(n1∂1 + n2∂2) + κ33n3∂3,

T45(∂, n) = T̃45(∂, n, τ) = 0,

T51(∂, n) = −T̃51(∂, n, τ) = −e15n1∂3 − e31n3∂1,
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T52(∂, n) = −T̃52(∂, n, τ) = −e15n2∂3 − e31n3∂2,

T53(∂, n) = −T̃53(∂, n, τ) = −e15(n1∂1 + n2∂2)− e33n3∂3,

T54(∂, n) = [τT0]
−1T̃54(∂, n, τ) = −g3n3,

T55(∂, n) = T̃55(∂, n, τ) = ε11(n1∂1 + n2∂2) + ε33n3∂3.

7. Appendix B: Green’s formulae

As it has been mentioned in the introduction of Section 2, to avoid some
misunderstanding related to the directions of normal vectors on the contact
surfaces Γm we assume that the normal vector to ∂Ωm is directed outward,

while on ∂Ω it is directed inward.
Here we recall Green’s formulae for the differential operators A(m)(∂, τ)

and A(∂, τ) in Ωm and Ω, respectively (see, e.g., , [14], [15], [6], [3]).
Let Ωm and Ω be smooth domains and

U (m) = (u
(m)
1 , u

(m)
2 , u

(m)
3 , u

(m)
4 )>∈ [C2(Ωm)]4, u(m) =(u

(m)
1 , u

(m)
2 , u

(m)
3 )>,

V (m) = (v
(m)
1 , v

(m)
2 , v

(m)
3 , v

(m)
4 )>∈ [C2(Ωm)]4, v(m) =(v

(m)
1 , v

(m)
2 , v

(m)
3 )>.

Then we have the following integral identities (Green’s formulae) related to
the differential equations and the boundary operators of the thermoelasticity
theory:

∫

Ωm

[
A(m)(∂, τ)U (m) · V (m)−U (m) ·A(m)∗(∂, τ)V (m)

]
dx =

=

∫

∂Ωm

[
{T (m)U (m)}+ · {V (m)}+−{U (m)}+ · {T̃ (m)V (m)}+

]
dS, (B.1)

∫

Ωm

A(m)(∂, τ)U (m) · V (m) dx =

∫

∂Ωm

{T (m)U (m)}+ · {V (m)}+ dS −

−
∫

Ωm

[
E(m)(u(m), v(m))+%(m)τ2u(m) · v(m)+κ

(m)
jl ∂ju

(m)
4 ∂lv

(m)
4 +

+τα(m)u
(m)
4 v

(m)
4 + γ

(m)
jl

(
τrT

(m)
0 ∂ju

(m)
l v

(m)
4 − u

(m)
4 ∂jv

(m)
l

)]
dx, (B.2)

∫

Ωm

[ 3∑

j=1

[
A(m)(∂, τ)U (m)

]
j
v
(m)
j +

1

τT
(m)
0

[
A(m)(∂, τ)U (m)

]
4
v
(m)
4

]
dx =

=

∫

∂Ωm

[ 3∑

j=1

{
T (m)U (m)

}+

j

{
v
(m)
j

}+
+

1

τT
(m)
0

{
T (m)U (m)

}+

4

{
v
(m)
4

}+
]
dS −

−
∫

Ωm

[
E(m)(u(m), v(m))+%(m)τ2u(m) · v(m)+

1

τT
(m)
0

κ
(m)
jl ∂ju

(m)
4 ∂lv

(m)
4 +
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+
α(m)

T
(m)
0

u
(m)
4 v

(m)
4 + γ

(m)
jl

(
∂ju

(m)
l v

(m)
4 − u

(m)
4 ∂jv

(m)
l

)]
dx, (B.3)

∫

Ωm

[ 3∑

j=1

[
A(m)(∂, τ)U (m)

]
j
u

(m)
j +

τ

|τ |2T (m)
0

[
A(m)(∂, τ)U (m)

]
4
u

(m)
4

]
dx=

= −
∫

Ωm

[
E(m)(u(m), u(m)) + %(m)τ2|u(m)|2 +

α(m)

T
(m)
0

|u(m)
4 |2 +

+
τ

|τ |2T (m)
0

κ
(m)
lj ∂lu

(m)
4 ∂ju

(m)
4

]
dx

+

∫

∂Ωm

[ 3∑

j=1

{
T (m)U (m)

}+

j

{
u

(m)
j

}+
+

τ

|τ |2T (m)
0

{
T (m)U (m)

}+

4

{
u

(m)
4

}+
]
dS, (B.4)

where E(m)(u(m), v(m)) = c
(m)
ijlk∂iu

(m)
j ∂lv

(m)
k and the operators A(m), A(m)∗,

T (m) and T̃ (m) are defined in Appendix A.
For arbitrary vector-functions

U = (u1, u2, u3, u4, u5)
> ∈ [C2(Ω)]5, u = (u1, u2, u3)

>,

V = (v1, v2, v3, v4, v5)
> ∈ [C2(Ω)]5, v = (v1, v2, v3)

>,

we have the similar Green formulae related to the differential equations and
boundary operators of the thermoelectroelasticity theory:

∫

Ω

[
A(∂, τ)U · V − U · A∗(∂, τ)V

]
dx =

= −
∫

∂Ω

[
{T U}+ · {V }+ − {U}+ · {T̃ V }+

]
dS, (B.5)

∫

Ω

A(∂, τ)U · V dx = −
∫

∂Ω

{T U}+ · {V }+ dS−

−
∫

Ω

[
E(u, v) + %τ2u · v + γjl(τT0∂julv4 − u4∂jvl)+

+κjl∂ju4∂lv4 + ταu4v4 + elij(∂lu5∂ivj − ∂iuj∂lv5)−

−gl(τT0∂lu5v4 + u4∂lv5) + εjl∂ju5∂lv5

]
dx, (B.6)

∫

Ω

[ 3∑

j=1

[A(∂, τ)U ]jvj +
1

τT0
[A(∂, τ)U ]4v4 + [A(∂, τ)U ]5 v5

]
dx =

= −
∫

∂Ω

[ 3∑

j=1

{
T U

}+

j
{vj}+ +

1

τT0

{
T U

}+

4
{v4}+ +

{
T U

}+

5
{v5}+

]
dS



52 T. Buchukuri, O. Chkadua, D. Natroshvili, and A.-M. Sändig

−
∫

Ω

[
E(u, v)+%τ2u · v+γjl(∂julv4−u4∂jvl)+

1

τT0
κjl∂ju4∂lv4+

α

T0
u4v4+

+elij(∂lu5∂ivj − ∂iuj∂lv5)− gl(∂lu5v4 + u4∂lv5) + εjl∂ju5∂lv5

]
dx, (B.7)

∫

Ω

[ 3∑

j=1

[A(∂, τ)U ]juj +
τ

|τ |2T0
[A(∂, τ)U ]4u4 + [A(∂, τ)U ]5u5

]
dx

= −
∫

Ω

[
E(u, u) + %τ2|u|2 +

α

T0
|u4|2 +

τ

|τ |2T0
κjl∂lu4∂ju4−

−2<{glu4∂lu5}+ εjl∂lu5∂ju5

]
dx−

−
∫

∂Ω

[ 3∑

j=1

{
T U

}+

j
{uj}++

τ

|τ |2T0

{
T U

}+

4
{u4}++

{
T U

}+

5
{u5}+

]
dS, (B.8)

where E(u, v) = cijlk∂iuj∂lvk and the operatorsA, A∗, T , and T̃ are defined
in Appendix A.

Note that in front of the surface integrals in the formulas (B.5)–(B.8) the
minus sign appeared due to the inward direction of the normal vector on
∂Ω.

For τ = 0, Green’s formulae (B.1), (B.2), (B.6), and (B.5) remain valid
and, in addition, there hold the following identities

∫

Ωm

[ 3∑

j=1

[A(m)(∂)U (m)]ju
(m)
j + c1[A

(m)(∂)U (m)]4u
(m)
4

]
dx =

=−
∫

Ωm

[
E(m)(u(m), u(m))+c1κ

(m)
lj ∂lu

(m)
4 ∂ju

(m)
4 −γ(m)

jl u
(m)
4 ∂ju

(m)
l

]
dx+

+

∫

∂Ωm

[ 3∑

j=1

[T (m)(∂, n)U (m)]+j [u
(m)
j ]++c1[T (m)(∂, n)U (m)]+4 [u

(m)
4 ]+

]
dS, (B.9)

∫

Ω

[ 3∑

j=1

[A(∂)U ]juj + c[A(∂)U ]4u4 + [A(∂)U ]5u5

]
dx =

=−
∫

Ω

[
E(u, u)+cκjl∂lu4∂ju4−γjlu4∂luj−glu4∂lu5+εjl∂lu5∂ju5

]
dx−

−
∫

∂Ω

[ 3∑

j=1

{T U}+j {uj}+ + c{T U}+4 {u4}+ + {T U}+5 {u5}+
]
dS, (B.10)

where A(m)(∂) := A(m)(∂, 0) and A(∂) := A(∂, 0), and c1 and c are arbitrary
constants.
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Remark that the above Green’s formulae (B.2), (B.4), (B.6), and (B.8)
by standard limiting procedure can be generalized to the Lipschitz domains
and to the vector–functions

U (m) ∈ [W 1
p (Ωm)]4, V (m) ∈ [W 1

p′(Ωm)]4, U ∈ [W 1
p (Ω)]5, V ∈ [W 1

p′(Ω)]5

with

A(m)(∂, τ)U (m) ∈ [Lp(Ωm)]4, A(∂, τ)U ∈ [Lp(Ω)]5, 1/p+ 1/p
′

= 1.

Moreover, in addition, if A(m)∗(∂, τ)V (m) ∈ [Lp′ (Ωm)]4, A∗(∂, τ)V ∈
[Lp′ (Ω)]5, then the formulae (B.1) and (B.5) hold true as well (for details

see [30], [26], [11]).

8. Appendix C: Fundamental Matrices

Here we present the explicit expressions of the fundamental matrices of
the differential operators A(m)(∂, τ) and A(∂, τ) for the general anisotropic
case as well as for the isotropic and transversally isotropic cases.

8.1. Fundamental matrix of thermoelasticity: general anisotropy.

Denote by Ψ(m)(· , τ) := [Ψ
(m)
kj (· , τ)]4×4 a fundamental matrix of the differ-

ential operator A(m)(∂, τ),

A(m)(∂, τ)Ψ(m)(x, τ) = I4δ(x), (C.1)

where δ(· ) is Dirac’s distribution.
Denote by A(m,0)(∂) the principal homogeneous part of the operator

A(m)(∂, τ)

A(m,0)(∂x) =

[[
c
(m)
ijlk∂i∂l

]
3×3

[0]3×1

[0]1×3 κ
(m)
il ∂i∂l

]

4×4

. (C.2)

Clearly, A(m,0)(∂) is a strongly elliptic formally self-adjoint operator. We
the corresponding symbol matrices denote by A(m)(−iξ, τ) and A(m,0)(−iξ)
= −A(m,0)(ξ), respectively. Note that A(m,0)(ξ) is a positive definite ma-
trix for arbitrary ξ ∈ R3 \ {0} due to the relations (A.7). The following
assertions can easily be checked with the help of (6.1.1) (for details see [14],
Lemma 1.1).

Lemma 8.1. Let τ = σ + iω, σ > 0, and ω ∈ R. Then

(i) for arbitrary ξ ∈ R3

detA(m)(−iξ, τ) 6= 0; (C.3)

(ii) for sufficiently large |ξ| there holds the asymptotic relation

detA(m)(−iξ, τ) = a(ξ̃)|ξ|8 +O(|ξ|6), (C.4)

where ξ̃ = ξ/|ξ| and 0 < a1 ≤ a(ξ̃) ≤ a2 for arbitrary ξ 6= 0 with positive

constants a1 and a2 depending only on the material constants;

(iii) for arbitrary ξ ∈ R3 \ {0} there holds the equality

detA(m,0)(−iξ) = a(ξ̃)|ξ|8
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with the same a(ξ̃) as in (C.4); the entries of the matrix [A(m,0)(ξ)]−1 are

C∞(R3 \ {0})-regular homogeneous functions of order −2;
(iv) the entries of the inverse matrix [A(m)(· , τ)]−1 are rational, C∞(R3)-

regular functions and belong to the space L2(R
3).

By Fx→ξ and F−1
ξ→x we denote the generalized Fourier and inverse Fourier

transforms which for summable functions on Rn are defined as follows

Fx→ξ[f ] =

∫

Rn

f(x)eixξ dx, F−1
ξ→x[g] = (2π)−n

∫

Rn

g(ξ)e−ixξ dξ.

Due to the equation (C.1) we can represent Ψ(m)(x, τ) by the Fourier
integral

Ψ(m)(x, τ) = F−1
ξ→x

([
A(m)(−iξ, τ)

]−1)
=

= (2π)−3 lim
R→∞

∫

|ξ|<R

[
A(m)(−iξ, τ)

]−1
e−ixξdξ. (C.5)

From Lemma 8.1 and properties of the Fourier transform it follows that
the entries of the matrix Ψ(m)(x, τ) together with all derivatives decrease
more rapidly than any negative power of |x| as |x| → +∞.

In a neighbourhood of the origin (say |x| < 1/2) the matrix Ψ(m)(x, τ) has
a singularity of the type O(|x|−1) and its principal singular part Ψ(m,0)(x),
which is independent of τ , can be written explicitly (for details see [29], [14],
Lemma 2.1)

Ψ(m,0)(x)=F−1
ξ→x

(
[A(m,0)(ξ)

]−1)
=− 1

8π2|x|

2π∫

0

[
A(m,0)(a(x)η)

]−1
dφ, (C.6)

where x ∈ R3 \ {0}, a(x) = [akj(x)]3×3 is an orthogonal matrix with

property a>(x)x> = (0, 0, |x|)>, η = (cosφ, sin φ, 0)>. Clearly, Ψ(m,0)(· )
is the fundamental matrix of the operator A(m,0)(∂) whose entries are ho-
mogeneous functions of order −1 (note that by this homogeneity property
Ψ(m,0)(· ) is defined uniquely). Moreover, Ψ(x) = Ψ(−x) = [Ψ(x)]>.

There is a positive constant c0 > 0 (depending on the material constants
and on the parameter τ) such that in a neighbourhood of the origin (say
|x| < 1/2) there hold the estimates

∣∣Ψ(m)
kj (x, τ) −Ψ

(m,0)
kj (x)

∣∣ ≤ c0 log |x|−1,
∣∣∂α

[
Ψ

(m)
kj (x, τ) −Ψ

(m,0)
kj (x)

]∣∣ ≤ c0|x|−|α| for |α| = 1, 2 and k, j = 1, 4,

where α = (α1, α2, α3) is a multi-index and |α| = α1 + α2 + α3.
Note that if by Ψ(m)∗(· , τ) we denote the fundamental matrix of the

adjoint operator A(m)∗(∂, τ), represented by the Fourier integral similar to
(C.5), then we have the evident equalities:

Ψ(m)∗(x, τ) =
[
Ψ(m)(x, τ )

]>
, Ψ(m)(−x, τ ) = Ψ(m)(x, τ),
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Ψ(m)(x, τ) =
[
Ψ(m)∗(−x, τ)

]>
.

8.2. Fundamental matrix of thermoelasticity: isotropic case. The

entries of the fundamental matrix Ψ(m)(x, τ) := [Ψ
(m)
kj (x, τ)]

4×4
for the

isotropic case (see the Appendix A, Subsection 6.1.2) read as follows (see
[19], Ch. II)

Ψ
(m)
kj (x, τ) = −1

2

3∑

l=1

{
(1− δk4)(1− δj4)

[
(2πµ(m))−1δkjδl3 − a

(m)
l ∂k∂j

]

−b(m)
l

[
τδk4

T
(m)
0 γ(m)

κ(m)
(1− δj4)∂j + γ(m)δj4(1− δk4)∂k

]
− δj4δk4c

(m)
l

}
×

×exp(id
(m)
l |x|)
|x| , k, j = 1, 4,

a
(m)
l =

(−1)l(κ(m)[d
(m)
l ]2 + τ)(δ1l + δ2l)

2π(λ(m) + 2µ(m))κ(m) [d
(m)
l ]2([d

(m)
2 ]2 − [d

(m)
1 ]2)

+
δ3l

2π%(m)τ2
,

b
(m)
l =

(−1)l(δ1l + δ2l)

2π(λ(m) + 2µ(m))([d
(m)
2 ]2 − [d

(m)
1 ]2)

,

c
(m)
l =

(−1)l([d
(m)
l ]− [k

(m)
1 ]2)(δ1l + δ2l)

2π([d
(m)
2 ]2 − [d

(m)
1 ]2)

,

3∑

l=1

a
(m)
l = 0,

3∑

l=1

b
(m)
l = 0,

3∑

l=1

c
(m)
l = 1,

[k
(m)
1 ]2 = − %(m)τ2

λ(m) + 2µ(m)
, [k

(m)
2 ]2 = [d

(m)
3 ]2 = −%

(m)τ2

µ(m)
,

[d
(m)
1 ]2[d

(m)
2 ]2 = −τ [k

(m)
1 ]2α(m)

κ(m)
,

[d
(m)
2 ]2 + [d

(m)
1 ]2 = −τα

(m)

κ(m)
− τT

(m)
0 (γ(m))2

κ(m)(λ(m) + 2µ(m))
+ [k

(m)
1 ]2.

Here we assume that [d
(m)
2 ]2 6= [d

(m)
1 ]2. The case [d

(m)
2 ]2 = [d

(m)
1 ]2 can

be obtained from the above formulas by the limiting procedure ([d
(m)
2 ]2 →

[d
(m)
1 ]2).
Remark that by the limiting procedure as τ → 0 we obtain the funda-

mental matrix Ψ(m)(x, 0) := [Ψ
(m)
kj (x, 0)]4×4 of the operator of thermoelas-

tostatics A(m)(∂, 0):

Ψ
(m)
kj (x, 0) = (1− δk4)(1− δj4)

[λ(m)∗δkj

|x| +
µ(m)∗xkxj

|x|3
]
−

− γ(m)δj4(1− δk4)

8π(λ(m) + 2µ(m))

xk

|x| −
δk4δj4

4π

1

|x| , k, j = 1, 4,
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λ(m)∗ = − λ(m) + 3µ(m)

8πµ(m)(λ(m) + 2µ(m))
,

µ(m)∗ = − λ(m) + µ(m)

8πµ(m)(λ(m) + 2µ(m))
.

8.3. Fundamental matrix of thermopiezoelasticity: general aniso-

tropic case. We denote by Ψ(· , τ) := [Ψkj(· , τ)
]
5×5

the fundamental ma-

trix of the differential operatorA(∂, τ), i.e., A(∂, τ)Ψ(x, τ) = δ(x)I5. Apply-

ing here the Fourier transform we get A(−iξ, τ)Ψ̂(ξ, τ) = I5, where Ψ̂(ξ, τ)
is the Fourier transform of Ψ(x, τ) and A(−iξ, τ) = [Akj(−iξ, τ)]5×5 is the
symbol matrix of the operator A(∂, τ):

A(−iξ, τ) :=

:=




[
− cijlkξiξl − ρτ2δjk

]
3×3

[
iγjlξl

]
3×1

[
− elkjξlξk

]
3×1[

iτT0γklξl
]
1×3

−κklξkξl − ατ −iτT0gkξk[
ejklξjξl

]
1×3

igkξk −εklξkξl




5×5

. (C.7)

Denote byA(0)(∂) the principal homogeneous part of the operatorA(∂, τ).
Then the symbol matrix A(0)(−iξ) is the principal homogeneous symbol
matrix of the operator A(∂, τ),

A(0)(−iξ) :=




[
− cijlkξiξl

]
3×3

[0]3×1

[
− elkjξlξk

]
3×1

[0]1×3 −κklξkξl 0[
ejklξjξl

]
1×3

0 −εklξkξl




5×5

. (C.8)

Note that

detA(0)(−iξ) = −κjlξjξl det Ã(−iξ) 6= 0 for |ξ| = 1, (C.9)

where

Ã(−iξ) :=

[[
− cijlkξiξl

]
3×3

[
− elkjξlξk

]
3×1[

ejklξjξl
]
1×3

−εklξkξl

]

4×4

is the symbol matrix of the strongly elliptic operator Ã(∂) generated by the
equations of statics of piezoelectricity.

It can be shown that the fundamental matrix of the operator A(0)(∂) is
representable in the form (cf. [29])

Ψ(0)(x) := F−1
ξ→x

(
[A(0)(−iξ)]−1

)
= − 1

8π2|x|

2π∫

0

[A(0)(a(x)η)]−1 dφ (C.10)

with the same a(x) and η as in (C.6). The entries of this matrix are homo-
geneous functions of order −1.

We start the study of the near and far field properties of the fundamental
matrix Ψ(· , τ) by the following auxiliary lemma.
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Lemma 8.2. Let τ = σ + iω with σ > 0 and ω ∈ R. Then

detA(−iξ, τ) 6= 0 (C.11)

for arbitrary ξ ∈ R
3, ξ 6= 0.

Proof. Let ζ = (ζ1, . . . , ζ5) be a solution of the homogeneous system of
linear equations

5∑

k=1

Ajk(−iξ, τ)ζk = 0, j = 1, 5. (C.12)

Consider the expression

E :=

3∑

j=1

( 5∑

k=1

Ajk(−iξ, τ)ζk
)
ζj−

− 1

τT0

5∑

k=1

A4k(−iξ, τ)ζkζ4 +
5∑

k=1

A5k(−iξ, τ)ζkζ5 =

= −
3∑

n,j,l,k=1

cnjlkξnξlζkζj −
3∑

j=1

ρτ2ζjζj−

− 1

τT0

3∑

j,l=1

κjlξjξl|ζ4|2 −
α

T0
|ζ4|2+

+ i

3∑

j=1

gjξj(ζ4ζ5 − ζ4ζ5)−
3∑

j,l=1

εjlξjξl|ζ5|2, (C.13)

which in view of (C.12) equals to zero. Taking into account (A.39)–(A.40),
from (C.13) we get

=E = −2ρσω

3∑

j=1

ζjζj −
ω

|τ |2T0

3∑

j,l=1

κjlξjξl|ζ4|2 = 0. (C.14)

If ω 6= 0 and σ > 0, ξ 6= 0, from (C.14) it follows ζj = 0, j = 1, . . . , 4.
Then from (C.13) we easily get ζ5 = 0.

If ω = 0, then from (C.13), (A.39), (A.40), and (A.41) we obtain

−<E = ρσ2
3∑

j=1

ζjζj +
1

σT0

3∑

j,l=1

κjlξjξl|ζ4|2 +E1 +E2 = 0, (C.15)

where

E1 =

3∑

n,j,l,k=1

cnjlkξnξlζkζj ≥ 0,

E2 =
α

T0
|ζ4|2 − i

3∑

j=1

gjξj(ζ4ζ5 − ζ4ζ5) +

3∑

j,l=1

εjlξjξl|ζ5|2 ≥ 0.
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If σ > 0 and ξ 6= 0, then we conclude that ζj = 0, j = 1, 5. Hence the
system (C.12) has only the trivial solution and (C.11) holds. �

Lemma 8.2 enables us to represent the matrix Ψ(x, τ) in the form

Ψ(x, τ) = F−1
ξ→x

(
[A(−iξ, τ)]−1

)
=

= (2π)−3 lim
R→∞

∫

|ξ|<R

[A(−iξ, τ)]−1e−ixξ dξ. (C.16)

Note that the matrix Ψ∗(x, τ) := [Ψ(x, τ )]> represents the fundamental

matrix of the adjoint operator A∗(∂, τ), and Ψ(x, τ) = [Ψ∗(−x, τ)]>, since

Ψ(−x, τ) = Ψ(x, τ).

Theorem 8.3. Let τ = σ + iω, with σ > 0 and ω ∈ R. Then the

fundamental matrix Ψ(· , τ) in a neighbourhood of the origin (say |x| < 1/2)
can be represented as

Ψ(x, τ) = Ψ(0)(x) + Ψ(r)(x, τ), (C.17)

where Ψ(0)(x) is the fundamental matrix of the operator A(0)(∂) given by

(C.10), and the following estimates hold

|Ψ(r)(x, τ)| ≤ c0 log(|x|−1), |∂αΨ(r)(x, τ)| ≤ c0|x|−|α|, |α| = 1, 2 (C.18)

with some constant c0 > 0.

Proof. Note, that detA(−iξ, τ) can be written as the sum of the homoge-
neous functions with respect to ξ,

Λ(ξ, τ) := detA(−iξ, τ) =

5∑

n=1

Λ(2n)(ξ, τ), (C.19)

where
Λ(2n)(tξ, τ) = t2nΛ(2n)(ξ, τ), t ∈ R, k = 1, . . . , 5.

In particular,

Λ(2)(ξ, τ) = −ρ3τ7
3∑

j,l=1

(αεjl − T0gjgl)ξjξl, (C.20)

Λ(10)(ξ, τ) = Λ(ξ, 0) = detA(−iξ, 0) = detA(0)(−iξ), (C.21)

and there is a positive constant c such that
∣∣Λ(2)(ξ, τ)

∣∣ ≥ c|τ |7|ξ|2, (C.22)
∣∣Λ(10)(ξ, τ)

∣∣ ≥ c|ξ|10. (C.23)

The equalities (C.19)-(C.21) can be checked directly. To derive (C.22), it
suffices to insert

ηl = ξl, ζ =
T0

α

3∑

l=1

glξl

into (A.41). The relation (C.23) follows from the equality (C.9).
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Expansions similar to (C.19) hold also for the co-factors Λkj(ξ, τ) of the
matrix A(−iξ, τ):

Λkj(ξ, τ) =
8∑

n=0

Λ
(n)
kj (ξ, τ), k, j = 1, . . . , 5, (C.24)

where the functions Λ
(n)
kj (ξ, τ) are homogeneous with respect to ξ of order

n, and

Λ
(n)
kj (ξ, τ)=0, n=0, 1, k, j=1, 5, k+j 6=10, Λ

(8)
kj (ξ, τ)=Λ̃

(8)
kj (ξ); (C.25)

here Λ̃
(8)
kj (ξ) are the co-factors of the corresponding entries of the matrix

A(0)(−iξ).
Now we derive some asymptotic expansions of the matrix A−1(−iξ, τ) at

infinity. To this end, note that if P = Q+R, then

1

P
=

1

R
+

s∑

l=1

(−1)lQl

Rl+1
+ (−1)s+1 Qs+1

PRs+1
. (C.26)

If we insert here s = 1, P = Λ(ξ, τ), Q = Q(1) :=
∑4

n=1 Λ(2n)(ξ, τ), R =

Λ(10)(ξ, τ), and multiply both sides by Λkj(ξ, τ), we get

A−1
jk (−iξ, τ) =

Λkj(ξ, τ)

Λ(ξ, 0)
− Λkj(ξ, τ)Q

(1)(ξ, τ)

[Λ(ξ, 0)]2
+

Λkj(ξ, τ)[Q
(1)(ξ, τ)]2

Λ(ξ, τ)[Λ(ξ, 0)]2
=

=
[
A(0)(−iξ)

]−1

jk
+

7∑

n=0

Λ
(n)
kj (ξ, τ)

Λ(ξ, 0)
− Λkj(ξ, τ)Q

(1)(ξ, τ)

[Λ(ξ, 0)]2
+

+
Λkj(ξ, τ)[Q

(1)(ξ, τ)]2

Λ(ξ, τ)[Λ(ξ, 0)]2
.

By the homogeneity property of the functions Λ(2n)(ξ, τ) and Λ
(n)
kj (ξ, τ),

and the relations (C.19), (C.21), (C.24) and (C.25), we can rewrite the last
equality as follows

A−1
jk (−iξ, τ) =

[
A(0)(−iξ)

]−1

jk
+

−5∑

n=−3

f
(n)
jk (ξ, τ) + f

(−6)
jk (ξ, τ), (C.27)

where f
(n)
jk (ξ, τ) for n = −3, . . . ,−5, are homogeneous functions of order n

with respect to ξ and

|f (−6)
jk (ξ, τ)| ≤ c(τ)|ξ|−6, ξ ∈ R

3\{0}. (C.28)

Let ν(· ) be some cut-off function: ν ∈ C∞(R3), ν(ξ) = 1 for |ξ| ≤ 1 and
ν(ξ) = 0 for |ξ| ≥ 2. Multiply both sides of (C.27) by (−iξ)α and apply the
inverse Fourier transform to obtain

∂α
x Ψjk(x, τ) =

= ∂α
x Ψ

(0)
jk (x) + F−1

ξ→x

(
ν(ξ)(−iξ)α

([
Ajk(ξ, τ)

]−1 − [Ajk(ξ, 0)]−1
))

(x)+
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+

−5∑

n=−3

F−1
ξ→x

(
(1− ν(ξ))(−iξ)αf

(n)
jk (ξ, τ)

)
(x)+

+F−1
ξ→x

(
(1− ν(ξ))(−iξ)αf

(−6)
jk (ξ, τ)

)
(x), (C.29)

where Ψ(x, τ) and Ψ(0)(x) are the fundamental matrices of the operators
A(∂, τ) and A(0)(∂), respectively (see (C.16), (C.10)).

Note that the expression ν(ξ)(−iξ)α(A−1
jk (ξ, τ)−A−1

jk (ξ, 0)) has a compact

support and therefore its inverse Fourier transform belongs to C∞(R3).

The summand F−1
ξ→x

(
(1− ν(ξ))(−iξ)αf

(n)
jk (ξ, τ)

)
(x) can be rewritten as

F−1
ξ→x

(
(1− ν(ξ))χ(ξ)(−iξ)αf

(n)
jk (ξ, τ)

)
(x) + F

(n)
jk (x, τ), (C.30)

where χ(ξ) is the indicator function of the set |ξ| ≤ 2 and

F
(n)
jk (x, τ) = (2π)−3

∫

|ξ|≥2

e−ixξ(−iξ)αf
(n)
jk (ξ, τ) dξ.

The first summand in (C.30) belongs to C∞(R3) as the inverse Fourier
transform of a distribution with compact support. For the second summand
the following estimates hold (see, e.g., [28]:

|F (n)
jk (x, τ)| ≤ c(τ)|x|−(n+|α|+3), if |α| > −n− 3,

|F (n)
jk (x, τ)| ≤ c(τ) log(|x|−1), if |α| = −n− 3,

|F (n)
jk (x, τ)| ≤ c(τ), if |α| < −n− 3.

(C.31)

Provided that |α| ≤ 2, the last summand in (8.3) is continuous since it is the

inverse Fourier transform of the summable function (1−ν(ξ))(−iξ)αf
(−6)
jk (ξ,τ).

This completes the proof. �

Theorem 8.4. For arbitrary multi-index α the fundamental matrix

Ψ(x, τ) admits the following estimates at infinity (as |x| → ∞)

|∂αΨkj(x, τ)| ≤ c1|x|−3−|α|, k, j = 1, . . . , 5, k + j 6= 10, (C.32)

|∂αΨ55(x, τ)| ≤ c1|x|−1−|α| (C.33)

with some constant c1 > 0 depending on the material constants, the multi-

index α and the parameter τ .

Proof. To prove the theorem we need the following representation of
[A(−iξ, τ)]−1 in a neighbourhood of the origin:

[Ajk(−iξ, τ)]−1 =

0∑

n=−2

g
(n)
jk (ξ, τ) + g

(1)
jk (ξ, τ), (C.34)

where g
(n)
jk (ξ, τ) for n = −2,−1, 0, are homogeneous functions of order n

with respect to ξ and g
(n)
jk (ξ, τ) = 0 for n = −2,−1, and k + j 6= 10.
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Moreover, the estimates
∣∣∂α

ξ g
(1)
jk (ξ, τ)

∣∣ ≤ c(τ)|ξ|1−|α| for |ξ| < 1 and
∣∣∂α

ξ g
(1)
jk (ξ, τ)

∣∣ ≤ c(τ)|ξ|N−|α| for |ξ| ≥ 1

hold for some N .
The representation (C.34) can be obtained from (C.26) with

P = Λ(ξ, τ), Q = Q(2) :=

5∑

n=2

Λ(2n)(ξ, τ), R = Λ(1)(ξ, τ).

Applying the inverse Fourier transform to both sides of (C.34), we get

Ψjk(x, τ) =

0∑

n=−2

F−1
ξ→x

(
g
(n)
jk (ξ, τ)

)
(x) + F−1

ξ→x

(
ν(ξ)g

(1)
jk (ξ, τ)

)
(x) +

+F−1
ξ→x

(
(1− ν(ξ))g

(1)
jk (ξ, τ)

)
(x), (C.35)

where ν(· ) is the cut-off function introduced in the proof of Theorem 8.3.

It is evident that the expressions F−1
ξ→x(g

(n)
jk (ξ, τ))(x) are inverse Fourier

transforms of homogeneous functions of order n and hence are homogeneous

of order −3 − n; note that F−1
ξ→x(g

(n)
jk (ξ, τ))(x) = 0 for n = −1,−2, and

k + j 6= 10.

If |β| ≤ |α| + 3, then (−iξ)α∂β
ξ (ν(ξ)g

(1)
jk (ξ, τ)) belongs to L1(R

3) and

xβ∂α
xF−1

ξ→x(ν(ξ)g
(1)
jk (ξ, τ)) vanishes at infinity, i.e.,

∣∣∣∂α
xF−1

ξ→x

(
ν(ξ)g

(1)
jk (ξ, τ)

)∣∣∣ ≤ c|x|−3−|α|.

For the last summand in (C.35) we have

|∂α
xF−1

ξ→x

(
(1− ν(ξ))g

(1)
jk (ξ, τ)

)
(x)| ≤ c′|x|−N , c′ = const > 0, (C.36)

for sufficiently large |x| and for arbitrary α and N . To prove this, note that

if |β| ≥ N + 4 + |α|, then (−iξ)α∂β
ξ ((1− ν(ξ))g

(1)
jk (ξ, τ)) ∈ L1(R

3). Hence
∣∣∣∂α

xF−1
ξ→x

(
(1− ν(ξ))g

(1)
jk (ξ, τ)

)∣∣∣ ≤ c′′|x|−|β|, c′′ = const > 0.

This completes the proof. �

8.4. Fundamental matrices of statics of thermopiezoelectricity:

transversally isotropic case. The equation of thermopiezoelectricity in
matrix form for a transversally isotropic medium can be rewritten as
A(∂)U = F, where A(∂) = A(∂, 0) = [Aik(∂)]5×5 with

A11(∂) = c11∂
2
1 + c66∂

2
2 + c44∂

2
3 , A12(∂) = A21(∂) = (c11 − c66)∂1∂2,

A13(∂) = A31(∂) = (c13 + c44)∂1∂3, A14(∂) = −γ1∂1,

A15(∂) = −A51(∂) = (e15 + e31)∂1∂3, A22(∂) = c66∂
2
1 + c11∂

2
2 + c44∂

2
3 ,

A23(∂) = A32(∂) = (c13 + c44)∂2∂3, A24(∂) = −γ1∂2,
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A25(∂) = −A52(∂) = (e15 + e31)∂2∂3, A33(∂) = c44(∂
2
1 + ∂2

2) + c33∂
2
3 ,

A34(∂) = −γ3∂3, A35(∂) = −A53(∂) = e15(∂
2
1 + ∂2

2) + e33∂
2
3 ,

A4k(∂) = 0, k = 1, 2, 3, A44(∂) = κ11(∂
2
1 + ∂2

2) + κ33∂
2
3 ,

A45(∂) = 0, A54(∂) = −g3∂3, A55(∂) = ε11(∂
2
1 + ∂2

2) + ε33∂
2
3 .

Denote by A(−iξ) the symbol matrix of the operator A(∂). We get

detA(−iξ) = −
[
c66(ξ1

2 + ξ2
2) + c44ξ3

2
] [

κ11(ξ1
2 + ξ2

2) + κ33ξ3
2
]
×

×
{
c11(e15

2 + c44ε11) + (ξ1
2 + ξ2

2)
3
+

[
c11(2e15e33 + c33ε11)− c13

2ε11−

− 2c13
(
e15(e15+e31)+c44ε11

)
+c44(e31

2+c11ε33)
]
(ξ1

2+ξ2
2)

2
ξ3

2+

+
[
e33

(
c11e33 − 2c44e31 − 2c13(e15 + e31)

)
− c13(c13 + 2c44)ε33+

+ c33
(
(e15 + e31)

2 + c44ε11 + c11ε33
)]

(ξ1
2 + ξ2

2)ξ3
4+

+ c44(e33
2+c33ε33)ξ3

6

}
. (C.37)

Let ak (k = 1, 2, 3) be the roots of the equation with respect to ζ

c11(e15
2 + c44ε11)ζ

3 −
{
− c13

2ε11 + c11(2e15e33 + c33ε11)−

− 2c13
[
e15(e15 + e31) + c44ε11

]
+ c44(e31

2 + c11ε33)
}
ζ2+

+
{
e33

[
− 2c44e31 − 2c13(e15 + e31) + c11e33

]
−

− c13(c13 + 2c44)ε33 + c33
[
(e15 + e31)

2
+ c44ε11 + c11ε33

]}
ζ−

− c44(e33
2 + c33ε33) = 0, (C.38)

and let a4 = c44/c66, a5 = κ33/κ11. We can then rewrite (C.37) in the
form:

detA(−iξ) =

= −a(ρ2 + a1ξ
2
3)(ρ2 + a2ξ

2
3)(ρ2 + a3ξ

2
3)(ρ2 + a4ξ

2
3)(ρ2 + a5ξ

2
3), (C.39)

where a = c11c66κ11(e15
2 + c44ε11), ρ

2 = ξ1
2 + ξ2

2. In what follows, we
assume that aj 6= ak for k 6= j, k, j = 1, 5.

Note that A(∂) is an elliptic operator: detA(ξ) 6= 0 for all ξ ∈ R3\{0}.
Therefore, aj ∈ C \ (−∞, 0], j = 1, 5.

We have to find a fundamental matrix Ψ = [Ψkj ]5×5 of the operator
A(∂): A(∂)Ψ(· ) = δ(· )I5, where δ is Dirac’s distribution.

To this end, let us find a solution ϕ of the scalar equation

detA(∂)ϕ(· ) := a(∆2 + a1∂
2
3)(∆2 + a2∂

2
3)×

× (∆2 + a3∂
2
3)(∆2 + a4∂

2
3)(∆2 + a5∂

2
3)ϕ(· ) = δ(· ) (C.40)
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with ∆2 = ∂2
1 + ∂2

2 .
Applying the Fourier transform to both sides of (C.40), we get

−a(ρ2 + a1ξ
2
3)(ρ2 + a2ξ

2
3)(ρ2 + a3ξ

2
3)(ρ2 + a4ξ

2
3)(ρ2 + a5ξ

2
3)ϕ̂ = 1, (C.41)

where ϕ̂ is the Fourier transform of ϕ.
Let bj , j = 1, n, be different complex numbers (bi 6= bj for i 6= j) and

show that

ξ
2(n−1)
3 =

n∑

k=1

dk(ρ2 + b1ξ
2
3)(ρ2 + b2ξ

2
3) · · · (ρ2 + bnξ

2
3)

1

ρ2 + bkξ23
, (C.42)

where

dk =
[
(b1 − bk)(b2 − bk) · · · (bk−1 − bk)(bk+1 − bk) · · · (bn − bk)

]−1

. (C.43)

We can prove (C.42) as follows. Let C(r) be a circle in the complex λ plane
with the radius r which encloses the points b0 = −ρ2/ξ23 and bk, k = 1, n.
Due to the Cauchy theorem, we have

ξ
2(n−1)
3 −

n∑

k=1

dk(ρ2 + b1ξ
2
3)(ρ2 + b2ξ

2
3) · · · (ρ2 + bnξ

2
3)

1

(ρ2 + bkξ23)
=

= lim
r→∞

1

2πi

∫

C(r)

(ρ2 + b1ξ
2
3) · · · (ρ2 + bnξ

2
3)

(ρ2 + λξ23)(b1 − λ) · · · (bn − λ)
dλ = 0.

Consider the identity (C.42) for n = 5 and bk = ak, where ak are the above
introduced roots of the equation (C.38). By multiplying the both sides by
ϕ̂ and taking into account (C.41), we derive

ξ83ϕ̂ = −1

a

5∑

k=1

dk

ρ2 + akξ23
,

whence by the inverse Fourier transform

∂8
3ϕ(x) = −1

a

5∑

k=1

dkF
−1
ξ→x

[ 1

ξ21 + ξ22 + akξ23

]
= − 1

4πa

5∑

k=1

dk

|x|k
, (C.44)

where |x|k =
√
ak(x2

1 + x2
2) + x2

3. If ak is complex, then we choose that

branch of
√
z for which

√
1 = 1 (−π < arg z < π). This implies that

<|x|k ≥ 0 for all x ∈ R3.
One of the solutions of the equation (C.44) has the form

ϕ =
1

4πa

5∑

k=1

dkϕk, (C.45)

where

ϕk =
1

2822400

{[
256a3

k(x2
1 + x2

2)
3 − 5175a2

k(x
2
1 + x2

2)
2x2

3+

+ 8132ak(x
2
1 + x2

2)x
4
3 − 1452x6

3

]
|x|k+
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+ 35
[
− 35a3

k(x2
1 + x2

2)
3 + 210a2

k(x1
2 + x2

2)
2
x2

3−

− 168ak(x
2
1 + x2

2)x
4
3 + 16x6

3

]
x3 log(|x|k + x3)

}
=

= |x|kP (x, ak) +Q(x, ak) log(|x|k + x3) (C.46)

with

P (x, ak) =
1

2822400

[
256a3

k(x2
1 + x2

2)
3 − 5175a2

k(x
2
1 + x2

2)
2x2

3+

+ 8132ak(x
2
1 + x2

2)x
4
3 − 1452x6

3

]
, (C.47)

Q(x, ak) =
35

2822400
x3

[
− 35a3

k(x2
1 + x2

2)
3 + 210a2

k(x1
2 + x2

2)
2
x2

3−

− 168ak(x
2
1 + x2

2)x
4
3 + 16x6

3

]
. (C.48)

Here we choose the branch of log z in accordance with −π < arg z < π
and log 1 = 0.

It is clear, that the functions ϕk, k = 1, 5, as well as ϕ are infinitely
differentiable functions in the set D = {x ∈ R3 : x3 6∈ (−∞, 0]}. Now
we prove that the function ϕ can be extended to an infinitely differentiable
function in R3 \ {0}. From (C.46) then it follows that ϕ is a homogeneous
function of degree 7 in R

3 \ {0}.
If x2

1 + x2
2 6= 0, then

log(|x|k + x3) = log
(ak(x2

1 + x2
2)

|x|k − x3

)
=

= log ak + log(x2
1 + x2

2)− log(|x|k − x3) + 2nπi

with some integer n. Recalling that ak 6= (−∞, 0], we can conclude that
actually n = 0, i.e.,

log(|x|k +x3)=log
(ak(x2

1+x2
2)

|x|k−x3

)
=log ak+log(x2

1+x2
2)−log(|x|k−x3).

Using this equality, ϕ can be represented as

ϕ(x) =
1

4πa

5∑

k=1

dk|x|kP (x, ak) +
1

4πa

5∑

k=1

dkQ(x, ak) log ak −

− 1

4πa

5∑

k=1

dkQ(x, ak) log(|x|k−x3)+
1

4πa

5∑

k=1

dkQ(x, ak) log(x2
1+x2

2).

All the terms in the right hand side of this equality except the fourth
summand are infinitely differentiable functions in a neighborhood of an ar-
bitrary point of the set

{
x ∈ R3 : −∞ < x3 < 0

}
. As for the last sum, we

can prove that
5∑

k=1

dkQ(x, ak) = 0. (C.49)
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Indeed, assume that bj , j = 1, . . . , n, are different complex numbers, dk

are given by (C.43) and the degree of the polynomial Q is less then n− 1.
Then by Cauchy’s theorem

n∑

k=1

dkQ(bk) = − lim
r→∞

1

2πi

∫

C(r)

Q(λ)

(b1 − λ) · · · (bn − λ)
dλ = 0, (C.50)

whence (C.49) follows due to (C.48).
So we have

ϕ(x) =
1

4πa

5∑

k=1

dk|x|kP (x, ak) +
1

4πa

5∑

k=1

dkQ(x, ak) log ak −

− 1

4πa

5∑

k=1

dkQ(x, ak) log(|x|k − x3). (C.51)

The function ϕ given by (C.51) can be extended onto the half-space x3 < 0
as an infinitely differentiable function. Moreover, (C.51) implies that the
extended function (denote it again by ϕ) is a homogeneous function of
degree 7.

It can easily be checked that for x3 6∈ (−∞, 0)

(∂2
1 + ∂2

2 + ak∂
2
3)ϕk(x) =

=
1

960
akx3

[
− 5a2

k(x2
1 + x2

2)
2 + 20ak(x

2
1 + x2

2)x
2
3 − 8x4

3

]
. (C.52)

Therefore, ϕ is well defined in R
3 \ {0} and solves the equation

detA(∂)ϕ = a(∆2 + a1∂
2
3)(∆2 + a2∂

2
3)(∆2 + a3∂

2
3)×

× (∆2 + a4∂
2
3)(∆2 + a5∂

2
3)ϕ = 0 (C.53)

in R3 \{0}. Taking into account that ϕ is a homogeneous function of degree
7 and that the support of the distribution detA(∂)ϕ is an isolated point
(the origin), we can conclude that detA(∂)ϕ = cδ(· ) with some c 6= 0.

From (C.40)–(C.44) it can be deduced that

∂8
3ϕ =

1

4πa

5∑

k=1

dkF
−1
ξ→x

[ 1

ξ21 + ξ22 + akξ23

]
= − c

4πa

5∑

k=1

dk
1

|x|k
, (C.54)

which together with (C.44) yields c = 1. Thus detA(∂)ϕ = δ(· ).
Let us set Ψ := M(∂)(ϕI5), where M(−iξ) is the matrix of co-factors

corresponding to the matrix A(−iξ). This means that M(∂) is the matrix
operator constructed by the formal co-factors of the matrix operator A(∂),
i.e., A(∂)M(∂) = M(∂)A(∂) = detA(∂)I5. Clearly we have

A(∂)Ψ = A(∂)M(∂)(ϕI5) = (detA(∂)ϕ)I5 = δ(· )I5,
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i.e., Ψ is a fundamental matrix of the operator A(∂) and it can be written
in the form

Ψ(x) =

[ 5∑

k=1

dkMij(∂)ϕk(x)

]

5×5

= − 1

4πa
[Φij ]5×5. (C.55)

Here

M11(∂) = (κ11∆ + κ33∂
2
3)

{
−

[
(e15 + e31)(c13e15 − c44e31)∆ +

+
[
c33(e15 + e31)− (c13 + c44)e33

]
∂2
3

]
∂2
2∂

2
3 +

+(ε11∆ + ε33∂
2
3)

[
− (c13 + c44)

2∂2
2∂

2
3 + (c44∆ +

+c33∂
2
3)(c66∂

2
1 + c11∂

2
2 + c44∂

2
3)

]
+

+(e15∆ + e33∂
2
3)

[
− (c13 + c44)(e15 + e31)∂

2
2∂

2
3 +

+(c66∂
2
1 + c11∂

2
2 + c44∂

2
3)(e15∆ + e33∂

2
3)

]}
,

M12(∂) = M21(∂)=−(κ11∆+κ33∂
2
3)

{
− (e15+e31)

[
(c13e15−c44e31)∆−

−
[
c33(e15 + e31)− (c13 + c44)e33

]
∂2
3

]
∂2
3 +

+(ε11∆ + ε33∂
2
3)

[
− (c13 + c44)

2∂2
3 + (c11 − c66)(c44∆ + c33∂

2
3)

]
+

+(e15∆ + e33∂
2
3)

[
− (c13 + c44)(e15 + e31)∂

2
3 +

+(c11 − c66)(e15∆ + e33∂
2
3)

]}
∂1∂2,

M13(∂) = M31(∂)=−(c66∆+c44∂
2
3)

[[
e15(e15+e31)+(c13+c44)ε11

]
∆ +

+
[
(e15 + e31)e33 + (c13 + c44)ε33

]
∂2
3

]
(κ11∆ + κ33∂

2
3)∂1∂3,

M14(∂) = (c66∆ + c44∂
2
3)

{[
(c13e15 − c44e31)∆−

−
[
c33(e15 + e31)− (c13 + c44)e33

]
∂2
3

]
g3∂

2
3 +

+(e15∆ + e33∂
2
3)

[
e15γ1∆ +

[
e33γ1 − (e15 + e31)γ3

]
∂2
3

]
+

+
[
c44γ1∆ +

[
c33γ1 − (c13 + c44)γ3

]
∂2
3

]
(ε11∆ + ε33∂

2
3)

}
∂1,

M15(∂) = −M51(∂) = −(c66∆ + c44∂
2
3)

[
(−c13e15 + c44e31)∆ +

+
[
c33(e15 + e31)− (c13 + c44)e33

]
∂2
3

]
(κ11∆ + κ33∂

2
3)∂1∂3,
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M22(∂) = (κ11∆ + κ33∂
2
3)

{
−

[
(e15 + e31)(c13e15 − c44e31)∆ +

+
[
c33(e15 + e31)− (c13 + c44)e33

]
∂2
3

]
∂2
1∂

2
3 +

+(ε11∆ + ε33∂
2
3)

[
− (c13 + c44)

2∂2
1∂

2
3 +

+(c44∆ + c33∂
2
3)(c11∂

2
1 + c66∂

2
2 + c44∂

2
3)

]
+

+(e15∆ + e33∂
2
3)

[
− (c13 + c44)(e15 + e31)∂

2
1∂

2
3 +

+(c11∂2
1+c66

∂2
2 + c44∂

2
3)(e15∆ + e33∂

2
3)

]}
,

M23(∂) = M32(∂)=−(c66∆+c44∂
2
3)

{[
e15(e15+e31)+(c13+c44)ε11

]
∆ +

+
[
(e15 + e31)e33 + (c13 + c44)ε33

]
∂2
3

}
(κ11∆ + κ33∂

2
3)∂2∂3,

M24(∂) = (c66∆ + c44∂
2
3)

{[
(c13e15 − c44e31)∆−

−
[
c33(e15 + e31)− (c13 + c44)e33

]
∂2
3

]
g3∂

2
3 +

+(e15∆ + e33∂
2
3)

[
e15γ1∆ +

[
e33γ1 − (e15 + e31)γ3

]
∂2
3

]
+

+
[
c44γ1∆ +

[
c33γ1 − (c13 + c44)γ3]∂

2
3

]
(ε11∆ + ε33∂

2
3)

}
∂2,

M25(∂) = −M52(∂) = −(c66∆ + c44∂
2
3)

[
(−c13e15 + c44e31)∆ +

+
[
c33(e15 + e31)− (c13 + c44)e33

]
∂2
3

]
(κ11∆ + κ33∂

2
3)∂2∂3,

M33(∂) = (c66∆ + c44∂
2
3)(κ11∆ + κ33∂

2
3)

[
c11ε11∆

2 +

+
[
(e15 + e31)

2 + c44ε11 + c11ε33
]
∆∂2

3 + c44ε33∂
4
3

]
,

M34(∂) = −(c66∆ + c44∂
2
3)

{
γ1

[
e15(e15 + e31) + (c13 + c44)ε11

]
∆2 +

+
[
(e15 + e31)

[
− e33γ1 + (e15 + e31)γ3

]
+

+c13
[
(e15+e31)g3 − γ1ε33

]
+c44(e31g3 + γ3ε11−γ1ε33)

]
∆∂2

3 −
−c44(e33g3 − γ3ε33)∂

4
3 − c11

[
(e15g3 − γ3ε11)∆ +

+(e33g3 − γ3ε33)∂
2
3

]
∆

}
∂3,

M35(∂) = −M53(∂) = −(c66∆ + c44∂
2
3)(κ11∆ + κ33∂

2
3)

[
c11e15∆

2 −

−
[
c44e31 + c13(e15 + e31)− c11e33

]
∆∂2

3 + c44e33∂
4
3

]
,
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M41(∂) = M42(∂) = M43(∂) = M45(∂) = 0,

M44(∂) = (c66∆ + c44∂
2
3)

{
c11(e

2
15 + c44ε11)∆

3 +

+
[
− c213ε11 + c11(2e15e33 + c33ε11)−

−2c13
[
e15(e15 + e31) + c44ε11

]
+ c44(e

2
31 + c11ε33)

]
∆2∂2

3 +

+
[
e33

[
− 2c44e31−2c13(e15+e31)+c11e33

]
−c13(c13+2c44)ε33 +

+c33
[
(e15+e31)

2+c44ε11+c11ε33
]]

∆∂4
3 +c44(e

2
33+c33ε33)∂

6
3

}
,

M54(∂) = (c66∆+c44∂
2
3)

{[
(−c13e15+c44e31)γ1+c11(c44g3+e15γ3)

]
∆2 −

−
[
c213g3 −

[
c33(e15 + e31)− c44e33

]
γ1 + c44e31γ3 +

+c13
[
2c44g3 + e33γ1 + (e15 + e31)γ3

]
− c11(c33g3 + e33γ3)

]
∆∂2

3 +

+c44(c33g3 + e33γ3)∂
4
3

}
∂3,

M55(∂) = (c66∆ + c44∂
2
3)(κ11∆ + κ33∂

2
3)×

×
[
c11c44∆

2 − (c213 − c11c33 + 2c13c44)∆∂
2
3 + c33c44∂

4
3

]
.

To calculate explicitly the entries of the matrix M(∂)(ϕI5), we note that

(∂2
1 + ∂2

2)ϕk(x) =

= −ak∂
2
3ϕk(x) +

1

960
akx3

[
− 5a2

k(x2
1 + x2

2)
2 + 20ak(x

2
1 + x2

2)x
2
3 − 8x4

3

]

for x3 6∈ (−∞, 0]. This shows that the sixth order derivatives of ∆2ϕk =
(∂2

1 + ∂2
2)ϕk and −ak∂

2
3ϕk(x) coincide.

We need also to simplify the first and the second order derivatives of the
functions

ψk = ∂6
3ϕk = x3 log(x3 +

√
ak(x1

2 + x2
2) + x3

2
)
−

−
√
ak(x1

2 + x2
2) + x3

2, k = 1, 5.

It can easily be shown that

∂iψk =− ak

(|x|k+x3)
, i=1, 2, ∂2

1ψk =− ak

(|x|k+x3)
+

a2
kx

2
1

|x|k(|x|k+x3)2
,

∂2
2ψk = − ak

(|x|k + x3)
+

a2
kx

2
2

|x|k(|x|k + x3)2
, ∂1∂2ψk =

ak
2x1x2

|x|k(|x|k + x3)2
,

∂1∂3ψk =
akx1

|x|k(|x|k + x3)
, ∂2∂3ψk =

akx2

|x|k(|x|k + x3)
.
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Moreover, taking into account that if the degree of a polynomial Q(z) is less
than 4, then by virtue of (C.49) we can derive

5∑

k=1

dkakQ(ak)

|x|k + x3
=

4∑

k=1

dkQ(ak)
|x|k − |x|5
x2

1 + x2
2

=

4∑

k=1

dkQ(ak)(ak − a5)

|x|k + |x|5
, (C.56)

5∑

k=1

dkakQ(ak)

|x|k(|x|k + x3)
=

=

4∑

k=1

dkQ(ak)

x2
1+x2

2

( |x|k−x3

|x|k
− |x|5−x3

|x|5

)
=

4∑

k=1

dkQ(ak)(ak−a5)x3

|x|k|x|5(|x|k +|x|5)
, (C.57)

5∑

k=1

dka
2
kQ(ak)

|x|k(|x|k + x3)2
=

=

4∑

k=1

dkQ(ak)

|x|k |x|5(x2
1 + x2

2)
2

(
|x|5(|x|k − x3)

2 − |x|k(|x|5 − x3)
2
)

=

=

4∑

k=1

dkQ(ak)(ak − a5)(aka5(x
2
1 + x2

2) + (ak + a5)x
2
3)

|x|k |x|5(|x|k + |x|5)(|x|k |x|5 + x2
3)

. (C.58)

Note that the element Φ34 can be written in the form

5∑

k=1

dkQ(ak) log(|x|k + x3), j = 1, 2, 3, (C.59)

whereQ(z) is some polynomial of degree less than 4. This kind of summands
need a special consideration. Namely, from (C.49) it follows that

5∑

k=1

dkQ(ak) log(|x|k + x3) =
4∑

k=1

dkQ(ak) log
( |x|k + x3

|x|5 + x3

)
. (C.60)

Further, the following identity

|x|k + x3

|x|5 + x3
= 1 +

(ak − a5)(|x|5 − x3)

a5(|x|k + |x|5)
, k = 1, . . . , 4,

shows that the expressions under the logarithmic function in the right hand
side of (C.60) are bounded and do not vanish for x 6= 0.

Taking into account (C.55)-(C.60), we obtain the explicit expressions for
the entries of the fundamental matrix

Ψ = − 1

4πa
[Φij ]5×5 :

Φ11 =

4∑

k=1

{
1

|x|2k(|x|k|x|5+x2
3)

{
(a5−ak)(e15+e31)

[
c33(e15+e31)+

+ ak(c13e15 − c44e31)− (c13 + c44)e33
]
×

×
(
a5ak|x|5|x|kx2

1(x
2
1+x2

2)+
[
1+(a5+ak)x2

1

]
|x|5|x|kx2

3+x4
3

)}
+



70 T. Buchukuri, O. Chkadua, D. Natroshvili, and A.-M. Sändig

+
(ake15 − e33)

|x|k(|x|k |x|5 + x2
3)

(a5 − ak)(c13 + c44)(e15 + e31)×

×
{
a5ak|x|5|x|kx2

1(x
2
1+x2

2)+|x|5|x|k
[
1+(a5+ak)x2

1

]
x2

3+x4
3

}
+

+
(a5 − ak)

|x|k(|x|k |x|5 + x2
3)

{
(e33 − ake15 + akε11 − ε33)×

×
[
c11(1 + akx

2
1) + c66(1 + akx

2
2)x

2
3 + (c11 + c66)x

4
3+

+ a5|x|5|x|k(c11x
2
1 + c66x

2
2)

[
ak(x2

1 + x2
2) + x2

3

]]}
|x|5|x|k

}
,

Φ12 = Φ21 =

4∑

k=1

x1x2(ak − a5)[aka5(x
2
1 + x2

2) + (ak + a5)x
2
3]

(|x|k + |x|5)(|x|k |x|5 + x2
3)

×

×
{
(e15+e31)

[
(c13+c44)e33+ak(c44c31−c13e15)−c33(e15+e31)

]
+

+ (ake15−e33)
[
−(c13+c44)(e15+e31)+(c11−c66)(e33−ake15)

]
−

−
[[
− (c13 + c44)

2 + (c33 − akc44)
2+

+ (c33 − akc44)(c11 − c66)
]
(ε33 − akε11)

]}
,

Φ13 = Φ31 =

4∑

k=1

x1x3

|x|k|x|5(|x|k + |x|5)
(ak − a5)(akc66 − c44)×

×
{
(e15+e31)e33−ak

[
e15(e15+e31)+(c13+c44)ε11

]
+(c13+c44)ε33

}
,

Φ14 =

4∑

k=1

x1

|x|k + |x|5
(a5 − ak)(c44 − akc66)×

×
{[
− c33(e15+e31)−ak(c13e15+c44e31)+(c13+c44)e33

]
g3+

+ (ake15 − e33)
[
(ake15 − e33)γ1 + (e15 + e31)γ3

]
+

+
[
(c33 − akc44)γ1 − (c13 + c44)γ3

]
(ε33 − akε11)

}
,

Φ15 = −Φ51 =

4∑

k=1

x1x3

|x|k|x|5(|x|k + |x|5)
(ak − a5)(c44 − akc66)×

×
[
− c33(e15 + e31) + ak(c44e13 − c13e15) + (c13 + c44)e33

]
,

Φ22 =

4∑

k=1

{
(a5 − ak)(e15 + e31)

|x|2k(|x|k |x|5 + x2
3)
×

×
[
c33(e15 + e31) + ak(c13e15 − c44e31)− (c13 + c44)e33

]
×

×
(
a5ak|x|5|x|kx2

2(x
2
1+x2

2)+
[
1+(a5+ak)x2

2

]
|x|5|x|kx2

3+x4
3

)
+
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+
(ake15 − e33)(a5 − ak)(c13 + c44)(e15 + e31)

|x|k(|x|k|x|5 + x2
3)

×

×
{
a5ak|x|5|x|kx2

2(x
2
1+x2

2)+|x|5|x|k
[
1+(a5+ak)x2

2

]
x2

3+x4
3

}
+

+
(a5 − ak)

|x|k(|x|k |x|5 + x2
3)

{
(e33 − ake15 + akε11 − ε33)×

×
[
c11(1 + akx

2
2) + c66(1 + akx

2
1)x

2
3 + (c11 + c66)x

4
3+

+ a5|x|5|x|k(c11x
2
2 + c66x

2
1)

[
ak(x2

1 + x2
2) + x2

3

]]}
|x|5|x|k

}
,

Φ23 =Φ32 =

4∑

k=1

x2x3

|x|k|x|5(|x|k +|x|5)
(ak−a5)(akc66−c44)

{
(e15+e31)e33−

− ak

[
e15(e15 + e31) + (c13 + c44)ε11

]
+ (c13 + c44)ε33

}
,

Φ24 =
4∑

k=1

x2(a5 − ak)(c44 − akc66)

|x|k + |x|5
×

×
{[
− c33(e15+e31)−ak(c13e15−c44e31)+(c13+c44)e33

]
g3+

+ (ake15 − e33)
[
(ake15 − e33)γ1 + (e15 + e31)γ3

]
+

+
[
(c33 − akc44)γ1 − (c13 + c44)γ3

]
(ε33 − akε11)

}
,

Φ25 = −Φ52 =

4∑

k=1

x2x3

|x|k|x|5(|x|k + |x|5)
(ak − a5)(c44 − akc66)×

×
[
− c33(e15 + e31) + ak(c44e13 − c13e15) + (c13 + c44)e33

]
,

Φ33 =

5∑

k=1

(c44 − akc66)

|x|k
×

×
{
a2

kc11ε11 + c44e33 − ak

[
(e15 + e31)

2 + c44 + c11ε33
]}
,

Φ34 =
4∑

k=1

log
( |x|k + x3

|x|5 + x3

)
(c44 − akc66)×

×
{
−

[
ak

2γ1(e15(e15 + e31) + (c13 + c44)ε11)
]
+

+ akc11

[
e33g3 + ak(−e15g3 + γ3ε11)− γ3ε33

]
+

+c44(−e33g3+γ3ε33)−ak

[
(e15+e31)

[
−e33γ1+(e15+e31)γ3

]
+

+ c13
[
(e15 + e31)g3 − γ1ε33

]
+ c44(e31g3 + γ3ε11 − γ1ε33)

]}
,
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Φ35 = −Φ53 = −
5∑

k=1

1

|x|k
(c44 − akc66)×

×
{
ak

[
(akc11 + c13)e15 + (c13 + c44)e31

]
− (akc11 − c44)e33

}
,

Φ41 = Φ42 = Φ43 = Φ45 = 0,

Φ44 =
1

κ11|x|5
,

Φ55 =
5∑

k=1

1

|x|k
akc44(c44 − akc66)(c

2
13 − c11 + 2akc13 + c33).

Notice that the entries of the matrix Ψ are complex functions, in general
(the equation (C.38) may have complex, mutually conjugate roots aj). It is
evident that in this case the real part <Ψ(x) is also a fundamental matrix
of the operator A(∂) since its coefficients are real.

Remark also that if the parameters aj are not distinct (that is, at list
two of them are equal to each other, aq = ap) then we can apply the
usual limiting procedure (aq → ap) in the above expression to construct the
corresponding fundamental matrix.
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