IVAN KIGURADZE

SOME BOUNDARY VALUE PROBLEMS ON INFINITE INTERVALS FOR FUNCTIONAL DIFFERENTIAL SYSTEMS

Abstract. For nonlinear functional differential systems optimal sufficient conditions for the solvability and well-posedness of boundary value problems on infinite intervals are established.

რე ზეშე, არაწრფივი ფენქტიონაღერ დიფერენტიაღერი სიხტემებისთვის დადგენილია უსაბრულო შეაღედებში სასაზღვრო ამოტანების ამოსხნადობისა და კორექტელობის ოპტიმაღერი საკმარისი პირობები.

2000 Mathematics Subject Classification: 34B40, 34K10. Key words and phrases: Boundary value problem, infinite interval, solvability, well-posedness.

In the present paper on the infinite interval I we consider the nonlinear functional differential system

$$x'(t) = f_1(x, y)(t), \quad y' = f_2(x, y)(t),$$
(1)

where f_1 and f_2 are the operators acting from the space $C_{loc}(I; \mathbb{R}^{n_1+n_2})$ to the spaces $L_{loc}(I; \mathbb{R}^{n_1})$ and $L_{loc}(I; \mathbb{R}^{n_2})$. In the case $I = \mathbb{R}_+$, for this system we investigate the problem

$$x(0) = c, \quad \sup \left\{ \|x(t)\| + \|y(t)\| : \ t \in \mathbb{R}_+ \right\} < +\infty, \tag{2}$$

and in the case $I = \mathbb{R}$ the problem

$$\sup\left\{\|x(t)\| + \|y(t)\| : t \in \mathbb{R}\right\} < +\infty.$$
(3)

Earlier, these problems were studied only in the cases, where f_1 and f_2 are either the Nemytski's operators ([3], [4], [5]), or the linear operators ([1], [2], [6]). Below, we will present new, and in a certain sense, unimprovable conditions which guarantee, respectively, the solvability and well-posedness of (1), (2) and (1), (3).

Throughout the paper, the following notation will be used;

 $\mathbb{R} =] - \infty, +\infty[, \mathbb{R}_{+} = [0, +\infty[, \mathbb{R}_{-} =] - \infty, 0].$

 \mathbb{R}^n is the space of *n*-dimensional vectors $x = (x_i)_{i=1}^n$ with components $x_i \in \mathbb{R}$ (i = 1, ..., n) and the norm

$$||x|| = \sum_{i=1}^{n} |x_i|.$$

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on May 19, 2008.

 $x \cdot y$ is the scalar product of the vectors x and $y \in \mathbb{R}^n$.

If $x = (x_i)_{i=1}^m \in \mathbb{R}^m$ and $y = (y_i)_{i=1}^n \in \mathbb{R}^n$, then z = (x, y) is the (m+n)-dimensional vector with components $z_i = x_i$ $(i = 1, \ldots, m)$ and $z_{m+i} = y_i$ $(i = 1, \ldots, n)$.

If $x = (x_i)_{i=1}^n$, then $\operatorname{sgn} x = (\operatorname{sgn} x_i)_{i=1}^n$.

 $X = (x_{ik})_{i,k=1}^n$ is the $n \times n$ -matrix with components $x_{ik} \in \mathbb{R}$ (i, k = 1, ..., n).

r(X) is the spectral radius of X.

 $C(I;\mathbb{R}^n)$ is the space of continuous and bounded on I vector functions $x:I\to\mathbb{R}^n$ with the norm

$$||x||_{C(I;\mathbb{R}^n)} = \sup \{||x(t)||: t \in I\}.$$

 $C_{loc}(I;\mathbb{R}^n)$ is the space of continuous vector functions $x: I \to \mathbb{R}^n$ with topology of uniform convergence on every compact interval contained in I.

 $L_{loc}(I;\mathbb{R}^n)$ is the space of locally Lebesgue integrable vector functions $x: I \to \mathbb{R}$ with topology of mean convergence on every compact interval contained in I.

We say that the operator $f: C_{loc}(I; \mathbb{R}^n) \to L_{loc}(I; \mathbb{R}^m)$ satisfies the local Carathéodory conditions if it is continuous and for every $\rho > 0$ there exists a nonnegative function $f_{\rho}^* \in L_{loc}(I; \mathbb{R})$, such that

$$||f(x)(t)|| \le f_{\rho}^{*}(t) \text{ for } t \in I, \ x \in C(I; \mathbb{R}^{n}), \ ||x||_{C(I; \mathbb{R}^{n})} \le \rho.$$

The vector function $g: I \times \mathbb{R}^n \to \mathbb{R}^m$ satisfies the local Carathéodory conditions if $g(\cdot, x): I \to \mathbb{R}^m$ is measurable for every $x \in \mathbb{R}^n, g(t, \cdot): \mathbb{R}^n \to \mathbb{R}^m$ is continuous for almost all $t \in I$ and for every $\rho > 0$ there exists a nonnegative function $g_{\rho}^* \in L_{loc}(I; \mathbb{R})$, such that

$$||g(t,x)|| \le g_{\rho}^{*}(t) \text{ for } t \in I, \ x \in \mathbb{R}^{n}, \ ||x|| \le \rho.$$

A particular case (1) is the differential system with deviating arguments

$$x'_{i}(t) = g_{i}(t, x(t), x(\tau_{1}(t)), y(t), y(\tau_{i}(t))) \quad (i = 1, \dots, n).$$
(4)

Everywhere below, when we will be concerned with the problem (1), (2)(with the problem (1), (3)) it will be assumed that $c \in \mathbb{R}^{n_1}$ and the operators

$$f_i: C_{loc}(I; \mathbb{R}^{n_1+n_2}) \to L_{loc}(I; \mathbb{R}^{n_i}) \ (i=1,2),$$

where $I = \mathbb{R}_+$ $(I = \mathbb{R})$ satisfy the local Carathéodory conditions.

Analogously, the problem (4), (2) (the problem (4), (3)) is considered under the assumption that $c \in \mathbb{R}^{n_1}$ and the functions

$$q_i: I \times \mathbb{R}^{2n_1 + 2n_2} \to R^{n_i} \ (i = 1, 2),$$

where $I = \mathbb{R}_+$ $(I = \mathbb{R})$ satisfy the local Carathéodory conditions.

Under the solution of the system (1) (of the system (4)) on I is meant the function $(x, y) : I \to \mathbb{R}^{n_1+n_2}$ with locally absolutely continuous components $x : I \to \mathbb{R}^{n_1}$ and $y : I \to \mathbb{R}^{n_2}$, which almost everywhere on I satisfies this system.

136

Theorem 1. Let $I = \mathbb{R}_+$ $(I = \mathbb{R})$ and there exist operators $p_i : C(I; \mathbb{R}^{n_1+n_2}) \to L_{loc}(I; \mathbb{R}_+)$ (i = 1, 2), a nonnegative constant h_0 , and a nonnegative constant matrix $H = (h_{ik})_{i,k=1}^2$, such that

$$r(H) < 1 \tag{5}$$

and for any $(x,y) \in C(I; \mathbb{R}^{n_1+n_2})$ almost everywhere on I the inequalities

$$f_{1}(x,y)(t) \cdot \operatorname{sgn} x(t) \leq \\ \leq p_{1}(x,y)(t) \Big(-\|x(t)\| + h_{11}\|x\|_{C(I;\mathbb{R}^{n_{1}})} + h_{12}\|y\|_{C(I;\mathbb{R}^{n_{2}})} + h_{0} \Big),$$

$$f_{2}(x,y)(t) \cdot \operatorname{sgn} y(t) \leq$$

$$\leq p_2(x,y)(t) \big(\|y(t)\| - h_{11} \|x\|_{C(I;\mathbb{R}^{n_1})} - h_{12} \|y\|_{C(I;\mathbb{R}^{n_2})} - h_0 \big)$$

hold. The problem (1), (2) (the problem (1), (3)) has at least one solution.

Remark 1. For the condition (5) to be fulfilled, it is necessary and sufficient that

 $h_{11} + h_{22} < 2$, $h_{11} + h_{22} - h_{11}h_{22} + h_{12}h_{21} < 1$.

Remark 2. In the above-formulated theorem the condition (5) is unimprovable and it cannot be replaced by the condition $r(H) \leq 1$.

Corollary 1. Let for $I = \mathbb{R}_+$ (for $I = \mathbb{R}$) all the conditions of Theorem 1 be fulfilled and

$$\int_{0}^{+\infty} p_2(x,y)(s) \, ds = +\infty \quad \left(\int_{-\infty}^{0} p_1(x,y) \, ds = \int_{0}^{+\infty} p_2(x,y)(s) \, ds = +\infty \right) \quad (6)$$

for any $(x, y) \in C(I; \mathbb{R}^{n_1+n_2})$. Then every solution of the problem (1), (2) (of the problem (1), (3)) admits the estimate

$$\|x\|_{C(\mathbb{R}_{+};\mathbb{R}^{n_{1}})} + \|y\|_{C(\mathbb{R}_{+};\mathbb{R}^{n_{2}})} \le \rho(\|c\| + h_{0})$$

$$\left(\|x\|_{C(\mathbb{R};\mathbb{R}^{n_{1}})} + \|y\|_{C(\mathbb{R};\mathbb{R}^{n_{2}})} \le \rho h_{0} \right),$$

$$(7)$$

where ρ is a positive constant depending only on H.

Remark 3. The condition (6) in Corollary 1 is essential and it cannot be omitted.

For the system (4), Theorem 1 and Corollary 1 yield the following propositions.

Corollary 2. Let $I = \mathbb{R}_+$ $(I = \mathbb{R})$, and there exist functions $p_i : I \times \mathbb{R}^{2n_1+2n_2} \to \mathbb{R}_+$ (i = 1, 2), satisfying the local Carathéodory conditions, and nonnegative constants h_{ik} (i, k = 1, 2), h_0 , h_1 , h_2 such that the matrix

$$H = \begin{pmatrix} h_{11} & h_1 + h_{12} \\ h_2 + h_{21} & h_{22} \end{pmatrix}$$
(8)

satisfies the condition (5) and on the set $I \times \mathbb{R}^{2n_1+2n_2}$ the inequalities

$$g_1(t, x, \overline{x}, y, \overline{y}) \cdot \operatorname{sgn} x \leq \\ \leq p_1(t, x, \overline{x}, y, \overline{y})(-\|x\| + h_{11}\|\overline{x}\| + h_1\|y\| + h_{12}\|\overline{y}\| + h_0), \\ g_2(t, x, \overline{x}, y, \overline{y}) \cdot \operatorname{sgn} y \geq \\ \geq p_2(t, x, \overline{x}, y, \overline{y})(\|y\| - h_2\|x\| - h_{21}\|\overline{x}\| - h_{22}\|\overline{y}\| + h_0)$$

hold. Then the problem (4), (2) (the problem (4), (3)) has at least one solution.

Corollary 3. Let for $I = \mathbb{R}_+$ (for $I = \mathbb{R}$) all the conditions of Corollary 2 be fulfilled, and

$$\int_{0}^{+\infty} p_{02}(s) \, ds = +\infty \, \left(\int_{-\infty}^{0} p_{01}(s) \, ds = \int_{0}^{+\infty} p_{02}(s) \, ds = +\infty \right), \tag{9}$$

where

$$p_{0i}(t) = \inf \left\{ p_i(t, x, \overline{x}, y, \overline{y}) : (x, \overline{x}) \in \mathbb{R}^{2n_1}, (y, \overline{y}) \in \mathbb{R}^{2n_2} \right\} \quad (i = 1, 2).$$
(10)

Then every solution of the problem (4), (2) (of the problem (4), (3)) admits the estimate (7), where ρ is a positive constant depending only on H.

Now along with the functional differential system (1) consider the perturbed system

$$x'(t) = f_1(x, y)(t) + q_1(x, y)(t), \quad y'(t) = f_2(x, y)(t) + q_2(x, y)(t)$$
(1')

with the boundary conditions

$$x(a) = \tilde{c}, \quad \sup \left\{ \|x(t)\| + \|y(t)\| : t \in \mathbb{R}_+ \right\} < +\infty$$
 (2')

and (3).

Let us introduce the following

Definition. Let $I = \mathbb{R}_+$ $(I = \mathbb{R})$ and $p_i : C_{loc}(I; \mathbb{R}^{n_1+n_2}) \to L_{loc}(I; \mathbb{R}_+)$ (i = 1, 2). The problem (1), (2) (the problem (1), (3)) is said to be wellposed with the weight (p_1, p_2) if it has a unique solution (x_0, y_0) and there exists a positive constant ρ such that for arbitrary $\tilde{c} \in \mathbb{R}^{n_1}$, $q_0 \in \mathbb{R}_+$, and for any operators $q_i : C_{loc}(\mathbb{R}_+; \mathbb{R}^{n_1+n_2}) \to L_{loc}(I; \mathbb{R}^{n_i})$ (i = 1, 2), satisfying the local Carathéodory conditions and the inequalities

$$|q_i(x,y)(t)| \le p_i(x,y)(t)q_0 \ (i=1,2),$$

the problem (1'), (2') (the problem (1'), (3)) is solvable and its arbitrary solution admits the estimate

$$\begin{aligned} \|x - x_0\|_{C(\mathbb{R}_+;\mathbb{R}^{n_1})} + \|y - y_0\|_{C(\mathbb{R}_+;\mathbb{R}^{n_2})} &\leq \rho(\|c - \tilde{c}\| + q_0) \\ & \Big(\|x - x_0\|_{C(\mathbb{R};\mathbb{R}^{n_1})} + \|y - y_0\|_{C(\mathbb{R};\mathbb{R}^{n_2})} &\leq \rho q_0 \Big). \end{aligned}$$

138

Theorem 2. Let $I = \mathbb{R}_+$ $(I = \mathbb{R})$, c = 0, $f_i(0,0)(t) \equiv 0$ (i = 1, 2), and let there exist operators $p_i : C_{loc}(I; \mathbb{R}^{n_1+n_2}) \to L_{loc}(I; \mathbb{R}_+)$ (i = 1, 2) and a nonnegative constant matrix $H = (h_{ik})_{i,k=1}^2$, satisfying the conditions (5) and (6), such that for any $(x, y) \in C(I; \mathbb{R}^{n_1+n_2})$ the inequalities

$$f_{1}(x, y)(t) \cdot \operatorname{sgn} x(t) \leq \\ \leq p_{1}(x, y)(t) \Big(- \|x(t)\| + h_{11} \|x\|_{C(I;\mathbb{R}^{n_{1}})} + h_{12} \|y\|_{C(I;\mathbb{R}^{n_{2}})} \Big), \\ f_{2}(x, y)(t) \cdot \operatorname{sgn} y(t) \geq \\ \geq p_{2}(x, y)(t) \Big(\|y(t)\| - h_{21} \|x\|_{C(I;\mathbb{R}^{n_{1}})} - h_{21} \|y\|_{C(I;\mathbb{R}^{n_{2}})} \Big)$$

hold almost everywhere on I. Then the problem (1), (2) (the problem (1), (3)) is well-posed with the weight (p_1, p_2) .

Corollary 4. Let $I = \mathbb{R}_+$ $(I = \mathbb{R})$, c = 0, $g_i(t, 0, 0, 0, 0) \equiv 0$ (i = 1, 2), and on the set $I \times \mathbb{R}^{2n_1+2n_2}$ the inequalities

$$g_{1}(t, x, \overline{x}, y, \overline{y}) \cdot \operatorname{sgn} x \leq \\ \leq p_{1}(t, x, \overline{x}, y, \overline{y}) \left(- \|x\| + h_{11} \|\overline{x}\| + h_{1} \|y\| + h_{12} \|\overline{y}\| \right), \\ g_{2}(t, x, \overline{x}, y, \overline{y}) \cdot \operatorname{sgn} y \geq \\ \geq p_{2}(t, x, \overline{x}, y, \overline{y}) \left(\|y\| - h_{2} \|x\| - h_{21} \|\overline{x}\| - h_{22} \|\overline{y}\| \right)$$

hold, where h_i , h_{ik} (i, k = 1, 2) are nonnegative constants, and $p_i : I \times \mathbb{R}^{2n_1+2n_2} \to \mathbb{R}_+$ (i = 1, 2) are functions, satisfying the local Carathéodory conditions. Let, moreover, the matrix H and the functions p_{0i} (i = 1, 2), given by the equalities (8) and (10), satisfy the conditions (5) and (9). Then the problem (4), (2) (the problem (4), (3)) is well-posed with the weight (p_1, p_2) .

Acknowledgement

This work is supported by the Georgian National Science Foundation (Grant No. GNSF/ST06/3-002).

References

- R. HAKL, On bounded solutions of systems of linear functional differential equations. Georgian Math. J. 6 (1999), No. 5, 429–440.
- R. HAKL, On nonnegative bounded solutions of systems of linear functional differential equations. Mem. Differential Equations Math. Phys. 19 (2000), 154–158.
- I. KIGURADZE, Boundary value problems for systems of ordinary differential equations. (Russian) Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 (1987), 3-103; English transl.: J. Sov. Math. 43 (1988), No. 2, 2259–2339.
- I. KIGURADZE, On some boundary value problems with conditions at infinity for nonlinear differential systems. Bull. Georgian National Acad. Sci. 175 (2007), No. 1, 27–33.
- I. KIGURADZE AND B. PŮŽA, On some boundary value problems for a system of ordinary differential equations. (Russian) Differentsial'nye Uravneniya 12 (1976), No. 12, 2139–2148; English transl.: Differ. Equations 12 (1976), 1493–1500.

6. I. KIGURADZE AND B. PŮŽA, Boundary value problems for systems of linear functional differential equations. *Masaryk University, Brno*, 2003.

(Received 30.05.2008)

Author's address: A. Razmadze Mathematical Institute 1, M. Aleksidze St., Tbilisi 0193 Georgia E-mail: kig@rmi.acnet.ge

140