Ivan Kiguradze

SOME BOUNDARY VALUE PROBLEMS ON INFINITE INTERVALS FOR FUNCTIONAL DIFFERENTIAL SYSTEMS

Abstract

For nonlinear functional differential systems optimal sufficient conditions for the solvability and well-posedness of boundary value problems on infinite intervals are established.

2000 Mathematics Subject Classification: 34B40, 34K10.
Key words and phrases: Boundary value problem, infinite interval, solvability, well-posedness.

In the present paper on the infinite interval I we consider the nonlinear functional differential system

$$
\begin{equation*}
x^{\prime}(t)=f_{1}(x, y)(t), \quad y^{\prime}=f_{2}(x, y)(t), \tag{1}
\end{equation*}
$$

where f_{1} and f_{2} are the operators acting from the space $C_{l o c}\left(I ; \mathbb{R}^{n_{1}+n_{2}}\right)$ to the spaces $L_{l o c}\left(I ; \mathbb{R}^{n_{1}}\right)$ and $L_{l o c}\left(I ; \mathbb{R}^{n_{2}}\right)$. In the case $I=\mathbb{R}_{+}$, for this system we investigate the problem

$$
\begin{equation*}
x(0)=c, \quad \sup \left\{\|x(t)\|+\|y(t)\|: t \in \mathbb{R}_{+}\right\}<+\infty \tag{2}
\end{equation*}
$$

and in the case $I=\mathbb{R}$ the problem

$$
\begin{equation*}
\sup \{\|x(t)\|+\|y(t)\|: t \in \mathbb{R}\}<+\infty \tag{3}
\end{equation*}
$$

Earlier, these problems were studied only in the cases, where f_{1} and f_{2} are either the Nemytski's operators ([3], [4], [5]), or the linear operators ([1], [2], [6]). Below, we will present new, and in a certain sense, unimprovable conditions which guarantee, respectively, the solvability and well-posedness of (1), (2) and (1), (3).

Throughout the paper, the following notation will be used;
$\mathbb{R}=]-\infty,+\infty\left[, \mathbb{R}_{+}=\left[0,+\infty\left[, \mathbb{R}_{-}=\right]-\infty, 0\right]\right.$.
\mathbb{R}^{n} is the space of n-dimensional vectors $x=\left(x_{i}\right)_{i=1}^{n}$ with components $x_{i} \in \mathbb{R}(i=1, \ldots, n)$ and the norm

$$
\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|
$$

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on May 19, 2008.
$x \cdot y$ is the scalar product of the vectors x and $y \in \mathbb{R}^{n}$.
If $x=\left(x_{i}\right)_{i=1}^{m} \in \mathbb{R}^{m}$ and $y=\left(y_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n}$, then $z=(x, y)$ is the $(m+n)$ dimensional vector with components $z_{i}=x_{i}(i=1, \ldots, m)$ and $z_{m+i}=y_{i}$ $(i=1, \ldots, n)$.

If $x=\left(x_{i}\right)_{i=1}^{n}$, then $\operatorname{sgn} x=\left(\operatorname{sgn} x_{i}\right)_{i=1}^{n}$.
$X=\left(x_{i k}\right)_{i, k=1}^{n}$ is the $n \times n$-matrix with components $x_{i k} \in \mathbb{R}(i, k=$ $1, \ldots, n)$.
$r(X)$ is the spectral radius of X.
$C\left(I ; \mathbb{R}^{n}\right)$ is the space of continuous and bounded on I vector functions $x: I \rightarrow \mathbb{R}^{n}$ with the norm

$$
\|x\|_{C\left(I ; \mathbb{R}^{n}\right)}=\sup \{\|x(t)\|: t \in I\} .
$$

$C_{\text {loc }}\left(I ; \mathbb{R}^{n}\right)$ is the space of continuous vector functions $x: I \rightarrow \mathbb{R}^{n}$ with topology of uniform convergence on every compact interval contained in I.
$L_{l o c}\left(I ; \mathbb{R}^{n}\right)$ is the space of locally Lebesgue integrable vector functions $x: I \rightarrow \mathbb{R}$ with topology of mean convergence on every compact interval contained in I.

We say that the operator $f: C_{l o c}\left(I ; \mathbb{R}^{n}\right) \rightarrow L_{l o c}\left(I ; \mathbb{R}^{m}\right)$ satisfies the local Carathéodory conditions if it is continuous and for every $\rho>0$ there exists a nonnegative function $f_{\rho}^{*} \in L_{l o c}(I ; \mathbb{R})$, such that

$$
\|f(x)(t)\| \leq f_{\rho}^{*}(t) \text { for } t \in I, \quad x \in C\left(I ; \mathbb{R}^{n}\right), \quad\|x\|_{C\left(I ; \mathbb{R}^{n}\right)} \leq \rho
$$

The vector function $g: I \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfies the local Carathéodory conditions if $g(\cdot, x): I \rightarrow \mathbb{R}^{m}$ is measurable for every $x \in \mathbb{R}^{n}, g(t, \cdot): \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{m} is continuous for almost all $t \in I$ and for every $\rho>0$ there exists a nonnegative function $g_{\rho}^{*} \in L_{l o c}(I ; \mathbb{R})$, such that

$$
\|g(t, x)\| \leq g_{\rho}^{*}(t) \text { for } t \in I, \quad x \in \mathbb{R}^{n}, \quad\|x\| \leq \rho
$$

A particular case (1) is the differential system with deviating arguments

$$
\begin{equation*}
x_{i}^{\prime}(t)=g_{i}\left(t, x(t), x\left(\tau_{1}(t)\right), y(t), y\left(\tau_{i}(t)\right)\right) \quad(i=1, \ldots, n) . \tag{4}
\end{equation*}
$$

Everywhere below, when we will be concerned with the problem (1), (2) (with the problem (1),(3)) it will be assumed that $c \in \mathbb{R}^{n_{1}}$ and the operators

$$
f_{i}: C_{l o c}\left(I ; \mathbb{R}^{n_{1}+n_{2}}\right) \rightarrow L_{l o c}\left(I ; \mathbb{R}^{n_{i}}\right) \quad(i=1,2)
$$

where $I=\mathbb{R}_{+}(I=\mathbb{R})$ satisfy the local Carathéodory conditions.
Analogously, the problem (4), (2) (the problem (4), (3)) is considered under the assumption that $c \in \mathbb{R}^{n_{1}}$ and the functions

$$
g_{i}: I \times \mathbb{R}^{2 n_{1}+2 n_{2}} \rightarrow R^{n_{i}} \quad(i=1,2)
$$

where $I=\mathbb{R}_{+}(I=\mathbb{R})$ satisfy the local Carathéodory conditions.
Under the solution of the system (1) (of the system (4)) on I is meant the function $(x, y): I \rightarrow \mathbb{R}^{n_{1}+n_{2}}$ with locally absolutely continuous components $x: I \rightarrow \mathbb{R}^{n_{1}}$ and $y: I \rightarrow \mathbb{R}^{n_{2}}$, which almost everywhere on I satisfies this system.

Theorem 1. Let $I=\mathbb{R}_{+}(I=\mathbb{R})$ and there exist operators p_{i} : $C\left(I ; \mathbb{R}^{n_{1}+n_{2}}\right) \rightarrow L_{l o c}\left(I ; \mathbb{R}_{+}\right)(i=1,2)$, a nonnegative constant h_{0}, and a nonnegative constant matrix $H=\left(h_{i k}\right)_{i, k=1}^{2}$, such that

$$
\begin{equation*}
r(H)<1 \tag{5}
\end{equation*}
$$

and for any $(x, y) \in C\left(I ; \mathbb{R}^{n_{1}+n_{2}}\right)$ almost everywhere on I the inequalities

$$
\begin{aligned}
& f_{1}(x, y)(t) \cdot \operatorname{sgn} x(t) \leq \\
& \leq p_{1}(x, y)(t)\left(-\|x(t)\|+h_{11}\|x\|_{C\left(I ; \mathbb{R}^{n_{1}}\right)}+h_{12}\|y\|_{C\left(I ; \mathbb{R}^{n_{2}}\right)}+h_{0}\right) \\
& \begin{array}{l}
f_{2}(x, y)(t) \cdot \operatorname{sgn} y(t) \leq \\
\quad \leq p_{2}(x, y)(t)\left(\|y(t)\|-h_{11}\|x\|_{C\left(I ; \mathbb{R}^{n_{1}}\right)}-h_{12}\|y\|_{C\left(I ; \mathbb{R}^{n_{2}}\right)}-h_{0}\right)
\end{array}
\end{aligned}
$$

hold. The problem (1), (2) (the problem (1), (3)) has at least one solution.
Remark 1. For the condition (5) to be fulfilled, it is necessary and sufficient that

$$
h_{11}+h_{22}<2, \quad h_{11}+h_{22}-h_{11} h_{22}+h_{12} h_{21}<1
$$

Remark 2. In the above-formulated theorem the condition (5) is unimprovable and it cannot be replaced by the condition $r(H) \leq 1$.

Corollary 1. Let for $I=\mathbb{R}_{+}($for $I=\mathbb{R})$ all the conditions of Theorem 1 be fulfilled and

$$
\begin{equation*}
\int_{0}^{+\infty} p_{2}(x, y)(s) d s=+\infty \quad\left(\int_{-\infty}^{0} p_{1}(x, y) d s=\int_{0}^{+\infty} p_{2}(x, y)(s) d s=+\infty\right) \tag{6}
\end{equation*}
$$

for any $(x, y) \in C\left(I ; \mathbb{R}^{n_{1}+n_{2}}\right)$. Then every solution of the problem (1), (2) (of the problem (1), (3)) admits the estimate

$$
\begin{align*}
&\|x\|_{C\left(\mathbb{R}_{+} ; \mathbb{R}^{n_{1}}\right)}+\|y\|_{C\left(\mathbb{R}_{+} ; \mathbb{R}^{n_{2}}\right)} \leq \rho\left(\|c\|+h_{0}\right) \tag{7}\\
&\left(\|x\|_{C\left(\mathbb{R} ; \mathbb{R}^{n_{1}}\right)}+\|y\|_{C\left(\mathbb{R} ; \mathbb{R}^{n_{2}}\right)} \leq \rho h_{0}\right),
\end{align*}
$$

where ρ is a positive constant depending only on H.
Remark 3. The condition (6) in Corollary 1 is essential and it cannot be omitted.

For the system (4), Theorem 1 and Corollary 1 yield the following propositions.

Corollary 2. Let $I=\mathbb{R}_{+}(I=\mathbb{R})$, and there exist functions $p_{i}: I \times$ $\mathbb{R}^{2 n_{1}+2 n_{2}} \rightarrow \mathbb{R}_{+}(i=1,2)$, satisfying the local Carathéodory conditions, and nonnegative constants $h_{i k}(i, k=1,2), h_{0}, h_{1}, h_{2}$ such that the matrix

$$
H=\left(\begin{array}{cc}
h_{11} & h_{1}+h_{12} \tag{8}\\
h_{2}+h_{21} & h_{22}
\end{array}\right)
$$

satisfies the condition (5) and on the set $I \times \mathbb{R}^{2 n_{1}+2 n_{2}}$ the inequalities

$$
\begin{gathered}
g_{1}(t, x, \bar{x}, y, \bar{y}) \cdot \operatorname{sgn} x \leq \\
\leq p_{1}(t, x, \bar{x}, y, \bar{y})\left(-\|x\|+h_{11}\|\bar{x}\|+h_{1}\|y\|+h_{12}\|\bar{y}\|+h_{0}\right), \\
g_{2}(t, x, \bar{x}, y, \bar{y}) \cdot \operatorname{sgn} y \geq \\
\geq p_{2}(t, x, \bar{x}, y, \bar{y})\left(\|y\|-h_{2}\|x\|-h_{21}\|\bar{x}\|-h_{22}\|\bar{y}\|+h_{0}\right)
\end{gathered}
$$

hold. Then the problem (4), (2) (the problem (4), (3)) has at least one solution.

Corollary 3. Let for $I=\mathbb{R}_{+}($for $I=\mathbb{R})$ all the conditions of Corollary 2 be fulfilled, and

$$
\begin{equation*}
\int_{0}^{+\infty} p_{02}(s) d s=+\infty\left(\int_{-\infty}^{0} p_{01}(s) d s=\int_{0}^{+\infty} p_{02}(s) d s=+\infty\right), \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{0 i}(t)=\inf \left\{p_{i}(t, x, \bar{x}, y, \bar{y}):(x, \bar{x}) \in \mathbb{R}^{2 n_{1}},(y, \bar{y}) \in \mathbb{R}^{2 n_{2}}\right\} \quad(i=1,2) \tag{10}
\end{equation*}
$$

Then every solution of the problem (4), (2) (of the problem (4), (3)) admits the estimate (7), where ρ is a positive constant depending only on H.

Now along with the functional differential system (1) consider the perturbed system

$$
x^{\prime}(t)=f_{1}(x, y)(t)+q_{1}(x, y)(t), \quad y^{\prime}(t)=f_{2}(x, y)(t)+q_{2}(x, y)(t)
$$

with the boundary conditions

$$
x(a)=\tilde{c}, \quad \sup \left\{\|x(t)\|+\|y(t)\|: t \in \mathbb{R}_{+}\right\}<+\infty
$$

and (3).
Let us introduce the following
Definition. Let $I=\mathbb{R}_{+}(I=\mathbb{R})$ and $p_{i}: C_{l o c}\left(I ; \mathbb{R}^{n_{1}+n_{2}}\right) \rightarrow L_{l o c}\left(I ; \mathbb{R}_{+}\right)$ $(i=1,2)$. The problem (1), (2) (the problem (1), (3)) is said to be wellposed with the weight $\left(p_{1}, p_{2}\right)$ if it has a unique solution $\left(x_{0}, y_{0}\right)$ and there exists a positive constant ρ such that for arbitrary $\tilde{c} \in \mathbb{R}^{n_{1}}, q_{0} \in \mathbb{R}_{+}$, and for any operators $q_{i}: C_{l o c}\left(\mathbb{R}_{+} ; \mathbb{R}^{n_{1}+n_{2}}\right) \rightarrow L_{l o c}\left(I ; \mathbb{R}^{n_{i}}\right)(i=1,2)$, satisfying the local Carathéodory conditions and the inequalities

$$
\left|q_{i}(x, y)(t)\right| \leq p_{i}(x, y)(t) q_{0} \quad(i=1,2)
$$

the problem $\left(1^{\prime}\right),\left(2^{\prime}\right)$ (the problem $\left.\left(1^{\prime}\right),(3)\right)$ is solvable and its arbitrary solution admits the estimate

$$
\begin{gathered}
\left\|x-x_{0}\right\|_{C\left(\mathbb{R}_{+} ; \mathbb{R}^{n_{1}}\right)}+\left\|y-y_{0}\right\|_{C\left(\mathbb{R}_{+} ; \mathbb{R}^{n_{2}}\right)} \leq \rho\left(\|c-\tilde{c}\|+q_{0}\right) \\
\left(\left\|x-x_{0}\right\|_{C\left(\mathbb{R} ; \mathbb{R}^{n_{1}}\right)}+\left\|y-y_{0}\right\|_{C\left(\mathbb{R} ; \mathbb{R}^{n_{2}}\right)} \leq \rho q_{0}\right) .
\end{gathered}
$$

Theorem 2. Let $I=\mathbb{R}_{+}(I=\mathbb{R}), c=0, f_{i}(0,0)(t) \equiv 0(i=1,2)$, and let there exist operators $p_{i}: C_{l o c}\left(I ; \mathbb{R}^{n_{1}+n_{2}}\right) \rightarrow L_{\text {loc }}\left(I ; \mathbb{R}_{+}\right)(i=1,2)$ and a nonnegative constant matrix $H=\left(h_{i k}\right)_{i, k=1}^{2}$, satisfying the conditions (5) and (6), such that for any $(x, y) \in C\left(I ; \mathbb{R}^{n_{1}+n_{2}}\right)$ the inequalities

$$
\begin{gathered}
f_{1}(x, y)(t) \cdot \operatorname{sgn} x(t) \leq \\
\leq p_{1}(x, y)(t)\left(-\|x(t)\|+h_{11}\|x\|_{C\left(I ; \mathbb{R}^{n_{1}}\right)}+h_{12}\|y\|_{C\left(I ; \mathbb{R}^{n_{2}}\right)}\right), \\
f_{2}(x, y)(t) \cdot \operatorname{sgn} y(t) \geq \\
\geq p_{2}(x, y)(t)\left(\|y(t)\|-h_{21}\|x\|_{C\left(I ; \mathbb{R}^{n_{1}}\right)}-h_{21}\|y\|_{C\left(I ; \mathbb{R}^{n_{2}}\right)}\right)
\end{gathered}
$$

hold almost everywhere on I. Then the problem (1), (2) (the problem (1), (3)) is well-posed with the weight $\left(p_{1}, p_{2}\right)$.

Corollary 4. Let $I=\mathbb{R}_{+}(I=\mathbb{R}), c=0, g_{i}(t, 0,0,0,0) \equiv 0(i=1,2)$, and on the set $I \times \mathbb{R}^{2 n_{1}+2 n_{2}}$ the inequalities

$$
\begin{gathered}
g_{1}(t, x, \bar{x}, y, \bar{y}) \cdot \operatorname{sgn} x \leq \\
\leq p_{1}(t, x, \bar{x}, y, \bar{y})\left(-\|x\|+h_{11}\|\bar{x}\|+h_{1}\|y\|+h_{12}\|\bar{y}\|\right), \\
g_{2}(t, x, \bar{x}, y, \bar{y}) \cdot \operatorname{sgn} y \geq \\
\geq p_{2}(t, x, \bar{x}, y, \bar{y})\left(\|y\|-h_{2}\|x\|-h_{21}\|\bar{x}\|-h_{22}\|\bar{y}\|\right)
\end{gathered}
$$

hold, where $h_{i}, h_{i k}(i, k=1,2)$ are nonnegative constants, and $p_{i}: I \times$ $\mathbb{R}^{2 n_{1}+2 n_{2}} \rightarrow \mathbb{R}_{+}(i=1,2)$ are functions, satisfying the local Carathéodory conditions. Let, moreover, the matrix H and the functions $p_{0 i}(i=1,2)$, given by the equalities (8) and (10), satisfy the conditions (5) and (9). Then the problem (4), (2) (the problem (4), (3)) is well-posed with the weight $\left(p_{1}, p_{2}\right)$.

Acknowledgement

This work is supported by the Georgian National Science Foundation (Grant No. GNSF/ST06/3-002).

References

1. R. HAKL, On bounded solutions of systems of linear functional differential equations. Georgian Math. J. 6 (1999), No. 5, 429-440.
2. R. HAKL, On nonnegative bounded solutions of systems of linear functional differential equations. Mem. Differential Equations Math. Phys. 19 (2000), 154-158.
3. I. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 (1987), 3-103; English transl.: J. Sov. Math. 43 (1988), No. 2, 2259-2339.
4. I. Kiguradze, On some boundary value problems with conditions at infinity for nonlinear differential systems. Bull. Georgian National Acad. Sci. 175 (2007), No. 1, 27-33.
5. I. Kiguradze and B. PŮŽa, On some boundary value problems for a system of ordinary differential equations. (Russian) Differentsial'nye Uravneniya 12 (1976), No. 12, 2139-2148; English transl.: Differ. Equations 12 (1976), 1493-1500.
6. I. Kiguradze and B. PŮŽa, Boundary value problems for systems of linear functional differential equations. Masaryk University, Brno, 2003.
(Received 30.05.2008)
Author's address:
A. Razmadze Mathematical Institute

1, M. Aleksidze St., Tbilisi 0193
Georgia
E-mail: kig@rmi.acnet.ge

