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ON THE EXISTENCE OF BOUNDED SOLUTIONS FOR
SYSTEMS OF NONLINEAR IMPULSIVE EQUATIONS

Abstract. Necessary conditions are given for the existence of bounded
solutions for systems of nonlinear impulsive equations.� � � � � � � � � � 	 
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In this paper we investigate the question of the existence of solutions for
the system of impulsive equations

dx

dt
= f(t, x) for almost all t ∈ R+ \ {τ1, τ2, . . .}, (1)

x(τk+)− x(τk−) = Ik(x(τk−)) (k = 1, 2, . . .) (2)

satisfying the condition

sup
{ n∑

i=1

|xi(t)| : t ∈ R+

}
< ∞, (3)

where x = (xi)
n
i=1, 0 < τ1 < τ2 < · · · , τk → ∞ (k → ∞) (we will assume

τ0 = 0 if necessary), f = (fi)
n
i=1 ∈ Kloc(R+ × R

n, Rn), and Ik = (Iki)
n
i=1 :

R
n → R

n (k = 1, 2, . . .) are continuous operators.
Sufficient conditions are given for the existence of solutions of the bound-

ary value problem (1), (2); (3). Analogous results are contained in [5]–[10]
for systems of ordinary differential and functional differential equations.

Throughout the paper the following notation and definitions will be used.
R = ]−∞, +∞[ , R+ = [0, +∞[ ; [a, b] (a, b ∈ R) is a closed segment.
R

n×m is the set of all real n×m-matrices X = (xij)
n,m
i,j=1

.

R
n = R

n×1 is the set of all real column n-vectors x = (xi)
n
i=1; R

n
+ =

R
n×1
+ .
diag(λ1, . . . , λn) is the diagonal matrix with diagonal elements λ1, . . . , λn.
b
∨
a
(X) is the total variation of the matrix-function X : [a, b] → R

n×m, i.e.,

the sum of total variations of the latter’s components.
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X(t−) and X(t+) are the left and the right limit of the matrix-function
X : [a, b] → R

n×m at the point t (we will assume X(t) = X(a) for t ≤ a

and X(t) = X(b) for t ≥ b, if necessary);

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).

A matrix-function is said to be measurable, integrable, nondecreasing
etc. if each of its components is such.

BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation

X : [a, b] → R
n×m (i.e., such that

b
∨
a
(X) < +∞).

BVloc(R+, Rn×m) is the set of all matrix-functions of X : R+ → R
n×m

whose restrictions to an arbitrary closed interval [a, b] from R+ belong to
BV([a, b], Rn×m).

C̃([a, b], D), where D ⊂ R
n×m, is the set of all absolutely continuous

matrix-functions X : [a, b] → D.

C̃loc(R+ \ {τ1, τ2, . . . }, D) is the set of all matrix-functions X : R+ → D

whose restrictions to an arbitrary closed interval [a, b] from R+ \{τ1, τ2, . . .}

belong to C̃([a, b], D).
L([a, b], D) is the set of all matrix-functions X : [a, b] → D, measurable

and integrable.
Lloc(R+ \ {τ1, τ2, . . .}, D) is the set of all matrix-functions X : R+ → D

whose restrictions to an arbitrary closed interval [a, b] from R+ \{τ1, τ2, . . .}

belong to C̃([a, b], D).
If D1 ⊂ R

n and D2 ⊂ R
n×m, then K([a, b] × D1, D2) is the Carathéo-

dory class, i.e., the set of all mappings F = (fkj)
n,m
k,j=1

: [a, b] × D1 → D2

such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . , m} and k ∈ {1, . . . , n}: a)
the function fkj(·, x) : [a, b] → D2 is measurable for every x ∈ D1; b) the
function fkj(t, ·) : D1 → D2 is continuous for almost all t ∈ [a, b], and
sup

{
|fkj(·, x)| : x ∈ D0

}
∈ L([a, b], R; gik) for every compact D0 ⊂ D1.

Kloc(R+ ×D1, D2) is the set of all mappings F : R+ ×D1 → D2 whose
restrictions to an arbitrary closed interval [a, b] from R+\{τ1, τ2, . . .} belong
to K([a, b]×D1, D2).

By a solution of the impulsive system (1), (2) we understand a continuous

from the left vector-function x ∈ C̃loc(R+ \ {τ1, τ2, . . .}) ∩ BVloc s(R+, Rn)
satisfying both the system (1) for almost all t ∈ R+ \ {τk}

m0

k=1
and the

relation (2) for every k ∈ {1, 2, . . .}.
Quite a number of issues of the theory of systems of differential equations

with impulsive effect (both linear and nonlinear) have been studied suffi-
ciently well (for survey of the results on impulsive systems see, e.g.,[1]–[3],
[11]–[15], and references therein). But the above-mentioned works do not
contain the results analogous to those obtained in [6] for ordinary differential
equations.

Using the theory of so called generalized ordinary differential equations
(see, e.g., [1], [4] and references therein), we extend these results to systems
of impulsive equations.
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To establish the results dealing with the boundary value problems for the
impulsive system (1), (2), we use the following concept.

It is easy to show that the vector-function x is a solution of the impulsive
system (1), (2) if and only if it is a solution of the following system of
generalized ordinary differential equations (see, e.g., [1], [4] and references
therein)

dx(t) = dA(t) · f(t, x(t)),

where

A(t) ≡ diag(a11(t), . . . , ann(t)),

aii(t) =

{
t for 0 ≤ t ≤ τ1,

t + k for τk < t ≤ τk+1 (k = 1, 2, . . .);
(i = 1, . . . , n)

f(τk, x) ≡ Ik(x) (k = 1, 2, . . .).

It is evident that the matrix-function A is continuous from the left,
d2A(t) = 0 if t ∈ R+ \ {τ1, τ2, . . .} and d2A(τk) = 1 (k = 1, 2, . . .).

We will assume that f = (fi)
n
i=1 ∈ Kloc(R+ × R

n, Rn).
The following theorem follows from the corresponding theorem for the

system of generalized ordinary differential equations (see [4]).

Theorem 1. Let there exist numbers σi∈{−1, 1} (i=1, . . . , n), continu-

ous from the left vector-functions αm=(αmi)
n
i=1∈ C̃loc(R+\{τ1, τ2, . . .}, R

n)∩
BVloc(R+, Rn) (m = 1, 2) such that the conditions

α1(t) ≤ α2(t) for t ∈ R+,

(−1)jσi

(
fi

(
t, x1, . . . , xi−1, αji(t), xi+1, . . . , xn

)
− α′ji(t)

)
≤ 0

for almost all t ∈ R+ \ {τ1, τ2, . . .},

α1(t) ≤ (xl)
n
l=1 ≤ α2(t) (j = 1, 2; i = 1, . . . , n),

(−1)m
(
xi − Iki(x1, . . . , xn)− αmi(τk+)

)
≤ 0

for α1(τk) ≤ (xl)
n
l=1 ≤ α2(τk) (m = 1, 2; i = 1, . . . , n; k = 1, 2, . . .)

and

sup
{
|αmi(t)| : t ∈ R+

}
< ∞ (m = 1, 2; i = 1, . . . , n) (4)

hold. Then the problem (1), (2); (3) is solvable.
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