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1. Introduction

This paper deals with the existence and uniqueness of solutions for the
initial value problems (IVP for short) for fractional order differential equa-
tions

cDαy(t) = f(t, y), for each t ∈ J = [0, T ],

t 6= tk, k = 1, . . . ,m, 1 < α ≤ 2,
(1)

∆y
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . ,m, (2)

∆y′
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . ,m, (3)

y(0) = y0, y′(0) = y1, (4)

where cDα is the Caputo fractional derivative, f : J × R → R is a continu-
ous function, Ik, Ik : R → R, k = 1, . . . ,m, and y0, y1 ∈ R, 0 = t0 < t1 <

· · · < tm < tm+1 = T , ∆y|t=tk
= y(t+k ) − y(t−k ), y(t+k ) = lim

h→0+
y(tk + h)

and y(t−k ) = lim
h→0−

y(tk + h) represent the right and left limits of y(t) at

t = tk, k = 1, . . . ,m. Differential equations of fractional order have recently
proved to be valuable tools in the modeling of many phenomena in various
fields of science and engineering. Indeed, we can find numerous applications
in viscoelasticity, electrochemistry, control, porous media, electromagnetics,
etc. (see [16], [22], [23], [26], [34], [35], [39]). There has been a significant
development in fractional differential and partial differential equations in
recent years; see the monographs of Kilbas et al. [29], Miller and Ross [36],
Podlubny [40], Samko et al. [43] and the papers of Agarwal et al. [1], [2],
Benchohra and Hamani [5], Benchohra et al. [8], [9], Delbosco and Rodino
[15], Diethelm et al. [16], [17], [18], El-Sayed [19], [20], [21], Kaufmann
and Mboumi [27], Kilbas and Marzan [28], Mainardi [34], Momani and Ha-
did [37], Momani et al. [38], Podlubny et al. [42], Yu and Gao [45] and
Zhang [46], and the references therein. Very recently some basic theory
for the initial value problems of fractional differential equations involving
Riemann–Liouville differential operator of order 0 < α ≤ 1 has been dis-
cussed by Lakshmikantham and Vatsala [31], [32], [33]. In [4] the authors
considered a class of perturbed fractional differential equations and in [6]
a boundary value problem for differential equations involving the Caputo
fractional derivative.

Applied problems require definitions of fractional derivatives allowing
the utilization of physically interpretable initial conditions containing y(0),
y′(0), etc. The same requirements are true for boundary conditions. Ca-
puto’s fractional derivative satisfies these demands. For more details on the
geometric and physical interpretation for fractional derivatives of both the
Riemann–Liouville and Caputo types see [25], [41].

Impulsive differential equations (for α ∈ N) have become important in
recent years as mathematical models of phenomena in both physical and so-
cial sciences. There has been a significant development in impulsive theory,
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especially in the area of impulsive differential equations with fixed moments;
see for instance the monographs by Bainov and Simeonov [3], Benchohra et

al. [7], Lakshmikantham et al [30], and Samoilenko and Perestyuk [44] and
the references therein. In [10], Benchohra and Slimani have initiated the
study of fractional differential equations with impulses in which they con-
sidered a class of initial value problems for differential equations involving
the Caputo fractional derivative of order α ∈ (0, 1] and the impulsive effect.
The aim of this paper is to continue this study by giving several existence
and uniqueness results for the initial value problem (1)–(4). This paper
is organized as follows. In Section 2, we present some preliminary results
about fractional derivation and integration needed in the following sections.
Section 3 will be concerned with existence and uniqueness results for the
IVP (1)–(4). We give three results: the first one is based on the Banach fixed
point theorem (Theorem 3.5), the second one is based on Schaefer’s fixed
point theorem (Theorem 3.6), the third one on the nonlinear alternative of
the Leray–Schauder type (Theorem 3.7) and the fourth one (Theorem 3.9)
on the Burton–Kirk fixed point theorem for the sum of contraction and
completely continuous operators. In Section 4, we indicate some general-
izations to nonlocal initial value problems. The last section is devoted to
an example illustrating the applicability of the imposed conditions. These
results can be considered as a contribution to this emerging field.

2. Preliminaries

In this section, we introduce notation, definitions and preliminary facts
that are used throughout this paper. By C(J,R) we denote the Banach
space of all continuous functions from J into R with the norm

‖y‖∞ := sup
{
|y(t)| : t ∈ J

}
.

Definition 2.1 ([29], [40]). The fractional (arbitrary) order integral of
the function h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iα
a h(t) =

t∫

a

(t− s)α−1

Γ(α)
h(s) ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = h(t)∗ϕα(t),

where ϕα(t) = tα−1

Γ(α) for t > 0 and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as

α→ 0, where δ is the delta function.

Definition 2.2 ([29], [40]). For a function h given on the interval [a, b],
the αth Riemann–Liouville fractional-order derivative of h is defined by

(Dα
a+h)(t) =

1

Γ(n− α)

( d
dt

)n
t∫

a

(t− s)n−α−1h(s) ds.

Here n = [α] + 1 and [α] denotes the integer part of α.
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Definition 2.3 ([28]). For a function h given on the interval [a, b], the
Caputo fractional-order derivative of h is defined by

(cDα
a+h)(t) =

1

Γ(n− α)

t∫

a

(t− s)n−α−1h(n)(s) ds.

3. Existence of Solutions

Consider the following space

PC(J,R) =
{
y : J → R : y ∈ C((tk , tk+1],R), k = 0, . . . ,m+ 1

and there exist y(t−k ) and y(t+k ), k = 1, . . . ,m, with y(t−k ) = y(tk)
}
.

PC(J,R) is a Banach space with the norm

‖y‖PC = sup
t∈J

|y(t)|.

Set J ′ := [0, T ] \ {t1, . . . , tm}.

Definition 3.1. A function y ∈ PC(J,R) with its α-derivative existing
on J ′ is said to be a solution of (1)–(4) if y satisfies the equation cDαy(t) =
f(t, y(t)) on J ′, and the conditions

∆y
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . ,m,

∆y′
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . ,m,

and

y(0) = y0, y′0) = y1

are satisfied.

For proving the existence of solutions for the problem (1)–(4), we need
the following auxiliary lemmas:

Lemma 3.2 ([46]). Let α > 0. Then the differential equation

cDαh(t) = 0

has solutions h(t) = c0 + c1t+ c2t
2 + · · ·+ cnt

n−1, ci ∈ R, i = 0, 1, 2, . . . , n,
n = [α] + 1.

Lemma 3.3 ([46]). Let α > 0. Then

Iαc
Dαh(t) = h(t) + c0 + c1t+ c2t

2 + · · ·+ cnt
n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n, n = [α] + 1.

As a consequence of Lemma 3.2 and Lemma 3.3, we have the following
result which is useful in what follows.
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Lemma 3.4. Let 1 < α ≤ 2 and let h : J → R be continuous. A function

y is a solution of the fractional integral equation

y(t) =





y0 + y1t+ 1
Γ(α)

t∫

0

(t− s)α−1h(s) ds if t ∈ [0, t1],

y0 + y1t+ 1
Γ(α)

k∑

i=1

ti∫

ti−1

(ti − s)α−1h(s) ds+

+ 1
Γ(α−1)

k∑

i=1

(t− ti)

ti∫

ti−1

(ti − s)α−2h(s) ds+

+ 1
Γ(α)

t∫

tk

(t− s)α−1h(s) ds+

+

k∑

i=1

Ii(y(t
−

i )) +

k∑

i=1

(t− ti)I i(y(t
−

i )),

if t ∈ (tk, tk+1], k = 1, . . . ,m,

(5)

if and only if y is a solution of the fractional IVP

cDαy(t) = h(t), for eacht ∈ J ′, (6)

∆y
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . ,m, (7)

∆y′
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . ,m, (8)

y(0) = y0, y′(0) = y1. (9)

Proof. Assume y satisfies (6)–(9). If t ∈ [0, t1], then

cDαy(t) = h(t).

Lemma 3.3 implies

y(t) = c0 + c1t+
1

Γ(α)

t∫

0

(t− s)α−1h(s) ds.

Hence c0 = y0 and c1 = y1. Thus

y(t) = y0 + y1t+
1

Γ(α)

t∫

0

(t− s)α−1h(s) ds.

If t ∈ (t1, t2], then Lemma 3.3 implies

y(t) = c0 + c1(t− t1) +
1

Γ(α)

t∫

t1

(t− s)α−1h(s) ds, (10)

∆y
∣∣
t=t1

= y(t+1 )− y(t−1 ) =
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= c0 −

(
y0 + y1t1 +

1

Γ(α)

t1∫

0

(t1 − s)α−1h(s) ds

)
=

= I1(y(t
−

1 )).

Hence

c0 = y0 + y1t1 +
1

Γ(α)

t1∫

0

(t1 − s)α−1h(s) ds+ I1(y(t
−

1 )), (11)

∆y′
∣∣
t=t1

= y′(t+1 )− y′(t−1 ) =

= c1 −

(
y1 +

1

Γ(α− 1)

t1∫

0

(t1 − s)α−2h(s) ds

)
=

= I1(y(t
−

1 )),

and

c1 = y1 +
1

Γ(α− 1)

t1∫

0

(t1 − s)α−2h(s) ds+ I1(y(t
−

1 )). (12)

Then by (10)–(12) we have

y(t) = y0 + y1t+
1

Γ(α)

t1∫

0

(t1 − s)α−1h(s) ds+

+
(t− t1)

Γ(α− 1)

t1∫

0

(t1 − s)α−2h(s) ds+ I1(y(t
−

1 ))+

+ (t− t1)I1(y(t
−

1 )) +
1

Γ(α)

t∫

t1

(t− s)α−1h(s) ds.

If t ∈ (tk, tk+1], then again from Lemma 3.3 we get (5).
Conversely, assume that y satisfies the impulsive fractional integral equa-

tion (5). If t ∈ [0, t1], then y(0) = y0, y
′(0) = y1, and using the fact that

cDα is the left inverse of Iα, we get

cDαy(t) = h(t), for each t ∈ [0, t1].

If t ∈ [tk, tk+1), k = 1, . . . ,m, then using the fact that cDαC = 0, where C
is a constant, we get

cDαy(t) = h(t), for each t ∈ [tk, tk+1).

Also, we can easily show that

∆y
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . ,m,



8 R. P. Agarwal, M. Benchohra and B. A. Slimani

and

∆y′
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . ,m.

Our first result is based on the Banach fixed point theorem. �

Theorem 3.5. Assume that:

(H1) There exists a constant l > 0 such that

∣∣f(t, u)− f(t, u)
∣∣ ≤ l|u− u| for each t ∈ J and all u, u ∈ R.

(H2) There exist constants l∗, l
∗

> 0 such that

∣∣Ik(u)− Ik(u)
∣∣ ≤ l∗|u− u| for each u, u ∈ R and k = 1, . . . ,m,

and

∣∣Ik(u)− Ik(u)
∣∣ ≤ l

∗

|u− u| for each u, u ∈ R and k = 1, . . . ,m.

If
[
mlTα

Γ(α+ 1)
+
mlTα

Γ(α)
+

lTα

Γ(α + 1)
+m(l∗ + T l

∗

)

]
< 1, (13)

then the IVP (1)–(4) has a unique solution on J .

Proof. Transform the problem (1)–(4) into a fixed point problem. Consider
the operator

F : PC(J,R) → PC(J,R)

defined by

F (y)(t) = y0 + y1t+
1

Γ(α)

∑

0<tk<t

tk∫

tk−1

(tk − s)α−1f(s, y(s)) ds+

+
1

Γ(α− 1)

∑

0<tk<t

(t− tk)

ti∫

tk−1

(tk − s)α−2f(s, y(s)) ds+

+
1

Γ(α)

t∫

tk

(t− s)α−1f(s, y(s)) ds+

+
∑

0<tk<t

Ik(y(t−k )) +
∑

0<tk<t

(t− tk)Ik(y(t−k )).

Clearly, the fixed points of the operator F are solutions of the problem (1)–
(4). We will use the Banach contraction principle to prove that F has a
fixed point. We will show that F is a contraction.
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Let x, y ∈ PC(J,R). Then for each t ∈ J we have
∣∣F (x)(t) − F (y)(t)

∣∣ ≤

≤
1

Γ(α)

∑

0<tk<t

ti∫

tk−1

(tk − s)α−1
∣∣f(s, x(s))− f(s, y(s))

∣∣ ds+

+
1

Γ(α− 1)

∑

0<tk<t

(t− tk)

tk∫

tk−1

(tk − s)α−2
∣∣f(s, x(s)) − f(s, y(s))

∣∣ ds+

+
1

Γ(α)

t∫

tk

(t− s)α−1
∣∣f(s, x(s))− f(s, y(s))

∣∣ ds+

+
∑

0<tk<t

∣∣Ik(x(t−k )) − Ik(y(t−k ))
∣∣ +

+
∑

0<tk<t

(t− tk)
∣∣Ik(x(t−k ))− Ik(y(t−k ))

∣∣ ≤

≤
l

Γ(α)

∑

0<tk<t

tk∫

tk−1

(tk − s)α−1|x(s)− y(s)| ds+

+
l

Γ(α− 1)

∑

0<tk<t

(t− tk)

ti∫

tk−1

(tk − s)α−2|x(s) − y(s)| ds+

+
l

Γ(α)

t∫

tk

(t− s)α−1|x(s)− y(s)| ds+

+l∗
∑

0<tk<t

∣∣x(t−k )− y(t−k )
∣∣ + l

∗
∑

0<tk<t

(t− ti)
∣∣x(t−k )− y(t−k )

∣∣ ≤

≤
mlTα

Γ(α+ 1)
‖x− y‖∞ +

mlTα

Γ(α)
‖x− y‖∞ +

lTα

Γ(α+ 1)
‖x− y‖∞ +

+ml∗‖x− y‖∞ +ml
∗

T‖x− y‖∞ =

=

[
mlTα

Γ(α+ 1)
+
mlTα

Γ(α)
+

lTα

Γ(α+ 1)
+m(l∗ + T l

∗

)

]
‖x− y‖∞.

Thus

‖F (x)−F (y)‖∞≤

[
mlTα

Γ(α+ 1)
+
mlTα

Γ(α)
+

lTα

Γ(α+ 1)
+m(l∗+T l

∗

)

]
‖x−y‖∞.

Consequently, by (13) F is a contraction. As a consequence of the Banach
fixed point theorem, we deduce that F has a fixed point which is a solution
of the problem (1)–(4). �

The second result is based on Schaefer’s fixed point theorem.
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Theorem 3.6. Assume that:

(H3) The function f : J × R → R is continuous.

(H4) There exists a constant M > 0 such that

|f(t, u)| ≤M for each t ∈ J and all u ∈ R.

(H5) The functions Ik , Ik : R → R are continuous and there exist con-

stants M∗, M
∗

> 0 such that

|Ik(u)| ≤M∗, |Ik(u)| ≤M
∗

for each u ∈ R, and k = 1, . . . ,m.

Then the IVP (1)–(4) has at least one solution on J .

Proof. We will use Schaefer’s fixed point theorem to prove that F has a
fixed point. The proof will be given in several steps.

Step 1: F is continuous.

Let {yn} be a sequence such that yn → y in PC(J,R). Then for each
t ∈ J

∣∣F (yn)(t)− F (y)(t)
∣∣ ≤

≤
1

Γ(α)

∑

0<tk<t

tk∫

tk−1

(tk − s)α−1
∣∣f(s, yn(s)) − f(s, y(s))

∣∣ ds+

+
1

Γ(α− 1)

∑

0<tk<t

(t− tk)

ti∫

tk−1

(tk − s)α−2
∣∣f(s, yn(s))− f(s, y(s))

∣∣ ds+

+
1

Γ(α)

t∫

tk

(t− s)α−1
∣∣f(s, yn(s))− f(s, y(s))

∣∣ ds+

+
∑

0<tk<t

∣∣Ik(yn(t−k ))−Ik(y(t−k ))
∣∣+

∑

0<tk<t

(t− tk)
∣∣Ik(yn(t−k ))−Ik(y(t−k ))

∣∣.

Since f , Ik and Ik, k = 1, . . . ,m, are continuous functions, we have
∥∥F (yn)− F (y)

∥∥
∞
→ 0 as n→∞.

Step 2: F maps bounded sets into bounded sets in PC(J,R).

Indeed, it is enough to show that for any η∗ > 0 there exists a positive
constant ` such that for each y ∈ Bη∗ =

{
y ∈ PC(J,R) : ‖y‖∞ ≤ η∗

}
we

have ‖F (y)‖∞ ≤ `. By (H4) and (H5), we have for each t ∈ J

|F (y)(t)| ≤ |y0|+ T |y1|+
1

Γ(α)

∑

0<tk<t

tk∫

tk−1

(tk − s)α−1|f(s, y(s))| ds+
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+
1

Γ(α− 1)

∑

0<tk<t

(t− tk)

ti∫

tk−1

(tk − s)α−2|f(s, y(s))| ds+

+
1

Γ(α)

t∫

tk

(t− s)α−1|f(s, y(s))| ds+

+
∑

0<tk<t

∣∣Ik(y(t−k ))
∣∣ +

∑

0<tk<t

(t− tk)
∣∣Ik(y(t−k ))

∣∣ ≤

≤ |y0|+ T |y1|+
mMTα

Γ(α+ 1)
+
mMTα

Γ(α)
+

+
MTα

Γ(α+ 1)
+mM∗ +mTM

∗

.

Thus

‖F (y)‖∞ ≤ |y0|+ T |y1|+

+
mMTα

Γ(α+ 1)
+
mMTα

Γ(α)
+

MTα

Γ(α+ 1)
+mM∗ +mTM

∗

:= `.

Step 3: F maps bounded sets into equicontinuous sets of PC(J,R).

Let τ1, τ2 ∈ J , τ1 < τ2, Bη∗ be a bounded set of PC(J,R) as in Step 2,
and let y ∈ Bη∗ . Then

∣∣F (y)(τ2)− F (y)(τ1)
∣∣ =

=
1

Γ(α)

τ1∫

0

∣∣(τ2 − s)α−1 − (τ1 − s)α−1
∣∣ |f(s, y(s))| ds+

+
1

Γ(α)

τ2∫

τ1

∣∣(τ2 − s)α−1
∣∣ |f(s, y(s))| ds+

+
1

Γ(α− 1)

∑

0<tk<τ2−τ1

(τ2 − tk)

ti∫

tk−1

(tk − s)α−2|f(s, y(s))| ds+

+
1

Γ(α− 1)

∑

0<tk<τ1

(τ2 − τ1)

ti∫

tk−1

(tk − s)α−2|f(s, y(s))| ds+

+

τ2∫

τ1

(τ2 − s)α−1|f(s, y(s))| ds+

+

τ1∫

tk

∣∣(τ2 − s)α−1 − (τ1 − s)α−1
∣∣ |f(s, y(s))| ds+
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+
∑

0<tk<τ2−τ1

∣∣Ik(y(t−k ))
∣∣ +

∑

0<tk<τ2−τ1

(τ2 − tk)
∣∣Ik(y(t−k ))

∣∣+

+(τ2 − τ1)
∑

0<tk<τ1

∣∣Ik(y(t−k ))
∣∣.

As t1 −→ t2, the right-hand side of the above inequality tends to zero. As
a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we
can conclude that F : PC(J,R) −→ PC(J,R) is continuous and completely
continuous.

Step 4: A priori bounds.

Now it remains to show that the set

E =
{
y ∈ PC(J,R) : y = λF (y) for some 0 < λ < 1

}

is bounded.
Let y ∈ E . Then y = λF (y) for some 0 < λ < 1. Thus for each t ∈ J we

have

y(t) = λy0 + T |y1|+
λ

Γ(α)

∑

0<tk<t

tk∫

tk−1

(tk − s)α−1f(s, y(s)) ds+

+
λ

Γ(α− 1)

∑

0<tk<t

(t− tk)

ti∫

tk−1

(tk − s)α−2f(s, y(s)) ds+

+
λ

Γ(α)

t∫

tk

(t− s)α−1f(s, y(s)) ds+

+λ
∑

0<tk<t

Ik(y(t−k )) + λ
∑

0<tk<t

(t− tk)Ik(y(t−k )).

This implies by (H4) and (H5) (as in Step 2) that for each t ∈ J we have

y(t) ≤ |y0|+ T |y1|+
mMTα

Γ(α+ 1)
+
mMTα

Γ(α)
+

MTα

Γ(α+ 1)
+mM∗ +mTM

∗

.

Thus for every t ∈ J we have

‖y‖∞ ≤ |y0|+ T |y1|+

+
mMTα

Γ(α+ 1)
+
mMTα

Γ(α)
+

MTα

Γ(α+ 1)
+mM∗ +mTM

∗

:= R.

This shows that the set E is bounded. As a consequence of Schaefer’s fixed
point theorem, we deduce that F has a fixed point which is a solution of
the problem (1)–(4). �

In the following theorem we will give an existence result for the problem
(1)–(4) by means of an application of the nonlinear alternative of Leray–
Schauder type with the conditions (H4) and (H5) weakened.
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Theorem 3.7. Assume that (H2) and the following conditions hold.

(H6) There exist φf ∈ C(J,R+) and ψ : [0,∞) → (0,∞) continuous and

nondecreasing such that

|f(t, u)| ≤ φf (t)ψ(|u|) for each t ∈ J and all u ∈ R.

(H7) There exist ψ∗, ψ
∗

: [0,∞) → (0,∞) continuous and nondecreasing

such that

|Ik(u)| ≤ ψ∗(|u|) for each u ∈ R,

and

|Ik(u)| ≤ ψ
∗

(|u|) for each u ∈ R.

(H8) There exists a number M > 0 such that

M

|y0|+ T |y1|+ aψ(M) +mψ∗(M) +mTψ
∗

(M)
> 1, (14)

where φ0
f = sup{φf (t) : t ∈ J} and

a =
mTαφ0

f

Γ(α+ 1)
+
mTαφ0

f

Γ(α)
+

Tαφ0
f

Γ(α+ 1)
.

Then the IVP (1)–(4) has at least one solution on J .

Proof. Consider the operator F defined in Theorems 3.5 and 3.6. It can be
easily shown that F is continuous and completely continuous. For λ ∈ [0, 1],
let y be such that for each t ∈ J we have y(t) = λ(Fy)(t). Then from (H6)–
(H7) we have for each t ∈ J

|y(t)| ≤ |y0|+ T |y1|+
1

Γ(α)

∑

0<tk<t

tk∫

tk−1

(tk − s)α−1φf (s)ψ(|y(s)|) ds+

+
1

Γ(α− 1)

∑

0<tk<t

(t− tk)

tk∫

tk−1

(tk − s)α−2φf (s)ψ(|y(s)|) ds +

+
1

Γ(α)

t∫

tk

(t− s)α−1φf (s)ψ(|y(s)|) ds +

+
∑

0<tk<t

ψ∗(|y(tk)|) +
∑

0<tk<t

(t− tk)ψ
∗

(|y(tk)|) ≤

≤ |y0|+ T |y1|+ ψ(‖y‖∞)
mTαφ0

f

Γ(α+ 1)
+ ψ(‖y‖∞)

mTαφ0
f

Γ(α)
+

+ψ(‖y‖∞)
Tαφ0

f

Γ(α+ 1)
+mψ∗(‖y‖∞) +mTψ

∗

(‖y‖∞).
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Thus

‖y‖∞

|y0|+ T |y1|+ aψ(‖y‖∞) +mψ∗(‖y‖∞) +mTψ
∗

(‖y‖∞)
≤ 1.

Then by the condition (14) there exists M such that ‖y‖∞ 6= M.

Let
U =

{
y ∈ PC(J,R) : ‖y‖∞ < M

}
.

The operator F : U → PC(J,R) is continuous and completely continuous.
From the choice of U , there is no y ∈ ∂U such that y = λF (y) for some
λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray–Schauder
type [24], we deduce that F has a fixed point y in U which is a solution of
the problem (1)–(4). This completes the proof. �

We now present another existence result for the IVP (1)–(4) relying on
the following Burton and Kirk’s fixed point theorem [11].

Theorem 3.8. Let X be a Banach space, and A, B : X → X two

operators satisfying

(i) A is a contraction, and

(ii) B is completely continuous.

Then either

(a) the operator equation y = A(y) +B(y) has a solution, or

(b) the set E =
{
u ∈ X : u = λA

(
u
λ

)
+ λB(u)

}
is unbounded for

λ ∈ (0, 1).

Theorem 3.9. Assume that (H1) and (H7) hold. Furthermore, if

mTαl

Γ(α+ 1)
+
mlTα

Γ(α)
+

Tαl

Γ(α + 1)
< 1 (15)

and

lim sup
u→+∞

(
1− mT αl

Γ(α+1) −
mlT α

Γ(α) −
T αl

Γ(α+1)

)
u

|y0|+|y1|T+ mT αf∗

Γ(α+1) + mT αf∗

Γ(α) + T αf∗

Γ(α+1) +mψ∗(u)+mTψ
∗

(u)
>1, (16)

then the IVP (1)–(4) has at least one solution on J .

Proof. Consider the operators A, B : PC(J,R) → PC(J,R) defined by

(Ay)(t) = y0 + y1t+
1

Γ(α)

∑

0<tk<t

tk∫

tk−1

(tk − s)α−1f(s, y(s)) ds+

+
1

Γ(α− 1)

∑

0<tk<t

(t− tk)

ti∫

tk−1

(tk − s)α−2f(s, y(s)) ds

+
1

Γ(α)

t∫

tk

(t− s)α−1f(s, y(s)) ds,
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and

(By)(t) =
∑

0<tk<t

Ik(y(t−k )) +
∑

0<tk<t

(t− tk)Ik(y(t−k )).

From (H1) and (15) we can easily show that A is a contraction. By (H7)
it is clear that the operator B is continuous and completely continuous. To
conclude for the existence of the fixed point of the operator A+B, it suffices
to prove that the set E in Theorem 3.8 is bounded.

Let y ∈ E. Then for each t ∈ J

y(t) = λA
(u
λ

)
(t) + λB(u)(t).

From (H1) and (H7) we have

|y(t)| ≤ λ|y0|+ λ|y1|T +
λ

Γ(α)

∑

0<tk<t

tk∫

tk−1

(tk − s)α−1
∣∣∣f

(
s,
y(s)

λ

)∣∣∣ ds+

+
λ

Γ(α− 1)

∑

0<tk<t

(t− tk)

ti∫

tk−1

(tk − s)α−2
∣∣∣f

(
s,
y(s)

λ

)∣∣∣ ds+

+
λ

Γ(α)

t∫

tk

(t− s)α−1
∣∣∣f

(
s,
y(s)

λ

)∣∣∣ ds+

+λ
∑

0<tk<t

∣∣Ik(y(t−k ))
∣∣ + λ

∑

0<tk<t

(t− tk)
∣∣Ik(y(t−k ))

∣∣ ≤

≤ |y0|+ |y1|T +
l

Γ(α)

∑

0<tk<t

tk∫

tk−1

(tk − s)α−1|y(s)| ds+

+
1

Γ(α)

∑

0<tk<t

tk∫

tk−1

(tk − s)α−1|f(s, 0)| ds+

+
l

Γ(α− 1)

∑

0<tk<t

(t− tk)

ti∫

tk−1

(tk − s)α−2|y(s)| ds+

+
1

Γ(α− 1)

∑

0<tk<t

(t− tk)

ti∫

tk−1

(tk − s)α−2|f(s, 0)| ds+

+
l

Γ(α)

t∫

tk

(t− s)α−1|y(s)| ds+
1

Γ(α)

t∫

tk

(t− s)α−1|f(s, 0)| ds+

+
∑

0<tk<t

ψ∗
(
|y(t−k )|

)
+

∑

0<tk<t

(t− tk)ψ
∗(
|y(t−k )|

)
≤
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≤ |y0|+ |y1|T +
mTαl

Γ(α+ 1)
‖y‖∞ +

mTαf∗

Γ(α+ 1)
+

+
mlTα

Γ(α)
‖y‖∞ +

mTαf∗

Γ(α)
+

Tαl

Γ(α+ 1)
‖y‖∞ +

Tαf∗

Γ(α+ 1)
+

+mψ∗(‖y‖∞) +mTψ
∗

(‖y|∞).

Thus
(
1− mT αl

Γ(α+1) −
mlT α

Γ(α) −
T αl

Γ(α+1)

)
‖y‖∞

|y0|+|y1|T+ mT αf∗

Γ(α+1) + mT αf∗

Γ(α) + T αf∗

Γ(α+1) +mψ∗(‖y‖∞)+mTψ
∗

(‖y|∞)
≤1. (17)

From (16) it follows that there exists a constant R > 0 such that for each
y ∈ E with ‖y‖∞ > R the condition (17) is violated. Hence ‖y‖∞ ≤ R for
each y ∈ E, which means that the set E is bounded. �

4. Nonlocal Impulsive Differential Equations

This section is concerned with a generalization of the results presented in
the previous section to nonlocal impulsive fractional differential equations.
More precisely, we will present some existence and uniqueness results for
the following nonlocal problem

cDαy(t) = f(t, y), for each t ∈ J = [0, T ],

t 6= tk, k = 1, . . . ,m, 1 < α ≤ 2,
(18)

∆y
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . ,m, (19)

∆y′
∣∣
t=tk

= Ik(y(t−k )), k = 1, . . . ,m, (20)

y(0) + g(y) = y0, y′(0) = y1, (21)

where f , Ik, Ik, k = 1, . . . ,m, are as in Section 3 and g : PC(J,R) → R is a
continuous function. Nonlocal conditions were initiated by Byszewski [14]
when he proved the existence and uniqueness of mild and classical solutions
of nonlocal Cauchy problems. As remarked by Byszewski [12], [13], the
nonlocal condition can be more useful than the standard initial condition
to describe some physical phenomena. For example, g(y) may be given by

g(y) =

p∑

i=1

ciy(τi),

where ci, i = 1, . . . , p, are given constants and 0 < τ1 < · · · < τp ≤ T . Let
us introduce the following set of conditions.

(H9) There exists a constant M∗∗ > 0 such that

|g(u)| ≤M∗∗ for each u ∈ PC(J,R).

(H10) There exists a constant l∗∗ > 0 such that
∣∣g(u)− g(u)

∣∣ ≤ l∗∗|u− u| for each u, u ∈ PC(J,R).
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(H11) There exists ψ∗∗ : [0,∞) → (0,∞) continuous and nondecreasing
such that

|g(u)| ≤ ψ∗∗(|u|) for each u ∈ PC(J,R).

(H12) There exists a number M
∗

> 0 such that

M
∗

|y0|+ T |y1|+ ψ∗∗(M
∗

) + aψ(M
∗

) +mψ∗(M
∗

) +mTψ
∗

(M
∗

)
> 1. (22)

Theorem 4.1. Assume that (H1), (H2), (H10) hold. If

[
mlTα

Γ(α+ 1)
+
mlTα

Γ(α)
+

lTα

Γ(α + 1)
+m(l∗ + T l

∗

) + l∗∗
]
< 1, (23)

then the nonlocal problem (18)–(21) has a unique solution on J .

Proof. Transform the problem (18)–(21) into a fixed point problem. Con-
sider the operator

F̃ : PC(J,R) → PC(J,R)

defined by

F̃ (y)(t) = y0 − g(y) + y1t+
1

Γ(α)

∑

0<tk<t

tk∫

tk−1

(tk − s)α−1f(s, y(s)) ds+

+
1

Γ(α− 1)

∑

0<tk<t

(t− tk)

ti∫

tk−1

(tk − s)α−2f(s, y(s)) ds+

+
1

Γ(α)

t∫

tk

(t− s)α−1f(s, y(s)) ds+

+
∑

0<tk<t

Ik(y(t−k )) +
∑

0<tk<t

(t− tk)Ik(y(t−k )).

Clearly, the fixed points of the operator F̃ are solutions of the problem

(18)–(21). Using (H1), (H2), (H10) and (23) we can easily show the F̃ is a
contraction. �

Theorem 4.2. Assume that (H3)–(H5), (H9) hold. Then the nonlocal

problem (18)–(21) has at least one solution on J .

Theorem 4.3. Assume that (H6)–(H7), (H11)–(H12) hold. Then the

nonlocal problem (18)–(21) has at least one solution on J .
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5. An Example

In this section, we give an example to illustrate the usefulness of our
main results. Let us consider the following impulsive fractional initial value
problem

cDαy(t) =
e−t|y(t)|

(9 + et)(1 + |y(t)|)
, t ∈ J := [0, 1], t 6=

1

2
, 1 < α ≤ 2, (24)

∆y
∣∣
t= 1

2

=

∣∣y( 1
2

−

)
∣∣

3 +
∣∣y( 1

2

−

)
∣∣ , (25)

∆y′
∣∣
t= 1

2

=

∣∣y( 1
2

−

)
∣∣

5 +
∣∣y( 1

2

−

)
∣∣ , (26)

y(0) = 0, y′(0) = 0. (27)

Set

f(t, x) =
e−tx

(9 + et)(1 + x)
, (t, x) ∈ J × [0,∞),

Ik(x) =
x

3 + x
, x ∈ [0,∞),

and
Ik(x) =

x

5 + x
, x ∈ [0,∞).

Let x, y ∈ [0,∞) and t ∈ J. Then we have

|f(t, x)− f(t, y)| =
e−t

(9 + et)

∣∣∣
x

1 + x
−

y

1 + y

∣∣∣ =

=
e−t|x− y|

(9 + et)(1 + x)(1 + y)
≤

e−t

(9 + et)
|x− y| ≤

1

10
|x− y|.

Hence the condition (H1) holds with l = 1
10 .

Let x, y ∈ [0,∞). Then we have

|Ik(x) − Ik(y)| =
∣∣∣

x

3 + x
−

y

3 + y

∣∣∣ =
3|x− y|

(3 + x)(3 + y)
≤

1

3
|x− y|,

and ∣∣Ik(x) − Ik(y)
∣∣ ≤ 1

5
|x− y|.

Hence the condition (H2) holds with l∗ = 1
3 and l

∗

= 1
5 . We will check that

the condition (13) is satisfied with T = 1 and m = 1. Indeed,

[ mlTα

Γ(α+ 1)
+
mlTα

Γ(α)
+

lTα

Γ(α+ 1)
+m(l∗ + T l

∗

)
]
< 1 ⇐⇒

⇐⇒
1

5Γ(α+ 1)
+

1

10Γ(α)
<

7

15
, (28)

which is satisfied for appropriate values of α ∈ (1, 2]. Then by Theorem 3.5
the problem (24)–(27) has a unique solution on [0, 1] for such values of α.
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realizations of fractional-order controllers. Fractional order calculus and its applica-
tions. Nonlinear Dynam. 29 (2002), No. 1-4, 281–296.

43. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and deriva-
tives. Theory and applications. (Translated from the 1987 Russian original) Gordon

and Breach Science Publishers, Yverdon, 1993.
44. A. M. Samoilenko and N. A. Perestyuk, Impulsive differential equations. (Trans-

lated from the Russian) World Scientific Series on Nonlinear Science. Series A:

Monographs and Treatises, 14. World Scientific Publishing Co., Inc., River Edge,

NJ, 1995.
45. C. Yu and G. Gao, Existence of fractional differential equations. J. Math. Anal.

Appl. 310 (2005), no. 1, 26–29.
46. S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional

differential equations. Electron. J. Differential Equations 2006, No. 36, 12 pp. (elec-

tronic).

(Received 14.04.2008)

Authors’ addresses:

R. P. Agarwal
Department of Mathematical Sciences
Florida Institute of Technology
Melboune, Florida, 32901-6975
USA
E-mail: agarwal@fit.edu

M. Benchohra
Laboratoire de Mathématiques
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