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ON PERIODIC TYPE BOUNDARY VALUE PROBLEMS FOR
HIGHER ORDER DIFFERENTIAL SYSTEMS

Abstract. For higher order systems of differential equations solvability
and correctness conditions of periodic type boundary value problems are
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On the interval I = [a, b], let us consider the nonlinear differential system

u(n) = f(t, u, . . . , u(n−1)) (1)

with the nonlinear boundary conditions

n∑

k=1

(
Aik(u)u(k−1)(a) + Bik(u)u(k−1)(b)

)
= ci(u) (i = 1, . . . , n). (2)

Here f : I × Rnl → Rl is a vector function from the Carathéodory class,
and

Aik : Cn−1(I ; Rl) → Rl×l, Bik : Cn−1(I ; Rl) → Rl×l,

ci : Cn−1(I ; Rl) → Rl

are nonlinear continuous operators satisfying some additional conditions.
These conditions are rather general, and, in particular, they are satisfied

for a periodic problem, the Dirichlet problem and the Neumann problem

u(i−1)(a) = u(i−1)(b) + ci (i = 1, . . . , n); (31)

u(i−1)(a) = ci (i = 1, . . . , m), u(i−1)(b) = cm+i (i = 1, . . . , n−m); (32)

u(n−i)(a) = ci (i = 1, . . . , n−m), u(i−1)(b) = cn−m+i (i = 1, . . . , m); (33)

u(n−i)(a)=ci (i=1, . . . , n−m), u(n−i)(b)=cn−m+i (i=1, . . . , n−m), (34)

where m is an integer part of the number n
2 , ci ∈ Rl (i = 1, . . . , n).
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In the case of even n = 2m, the above-mentioned conditions hold for the
problem

u(2i−2)(a) = ci u(2i−2)(b) = cm+i (i = 1, . . . , m), (35)

which is sometimes said to be the Lidston problem.
In the case where l = 1, these classical problems has been intensively

investigated, and they are the subject of numerous investigations (see, e.g.,
[1]–[12] and the references therein).

We single out a class of boundary value problems of the type (1), (2)
to which belong the above-mentioned two-point boundary value problems
(1), (3k) (k = 1, 2, 3, 4, 5), and we propose a unique method for their inves-
tigation.

By the way, we are trying to find general properties which unite the
problems from that class.

Before formulating the main results, we introduce the notation.
Rl is the l-dimensional real Euclidean space with the norm ‖ · ‖Rl .
Rl×l is the space of real l × l matrices with the norm ‖ · ‖Rl×l .
x · y is the scalar product of the vectors x, y ∈ Rl.
Cn−1(I ; Rl) is the Banach space of (n − 1)-times continuously differen-

tiable vector functions u : I → Rl with the norm

‖u‖Cn−1 = max

{ n∑

k=1

‖u(k−1)(t)‖Rl : t ∈ I

}
.

C̃n−1(I ; Rl) is the space of all vector functions u ∈ Cn−1(I ; Rl) for which
u(n−1) is absolutely continuous.

Of course, we will seek for a solution of the problem (1), (2) in the space

C̃n−1(I ; Rl).
For arbitrary xk and yk ∈ Rl (k = 1, . . . , n), we set

ν(x1, . . . , xn; y1, . . . , yn) =

=






m∑
k=1

(−1)k(xk · xn−k+1 − yk · yn−k+1) for n = 2m,

m∑
k=1

(−1)k(xk · xn−k+1 − yk · yn−k+1)−

− (−1)m

2

(
‖xm+1‖

2
Rl − ‖ym+1‖

2
Rl

)
for n = 2m + 1.

We study the problem (1), (2) in the case where there exists a positive
number µ such that for any xk, yk ∈ Rl and v ∈ Cn−1 the operators Aik

and Bik satisfy the inequality

(−1)mν(x1, . . . , xn; y1, . . . , yn) ≤

≤ µ

m∑

k=1

(‖xk‖Rl + ‖yk‖Rl)

n∑

i=1

∥∥∥∥
n∑

k=1

(Aik(v)xk + Bik(v)yk)

∥∥∥∥
Rl

. (4)
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As for the vector function f , it satisfies the condition

p∗(t, ‖x1‖Rl) ≤ (−1)m+1f(t, x1, . . . , xn) · x1 ≤ p∗(t, ‖x1‖Rl) (5)

on the set I × Rn, where p∗ and p∗ : I × [0, +∞[→ R are non-decreasing
with respect to a second argument Carathéodoty functions such that

lim
ρ→+∞

b∫

a

p∗(t, ρ) dt = +∞. (6)

We will also assume that

Aik, Bik and ci (i, k = 1, . . . , n) are bounded in Cn−1(I ; Rl). (7)

Theorem 1. If the conditions (4)–(7) hold, then the problem (1), (2) has

at least one solution.

As it is already said above, for the periodic problem, the Dirichlet prob-
lem, the Neumann and Lidston problems, and the mixed problem, the con-
dition (4) is automatically satisfied. Therefore it is clear that if the con-
ditions (5)–(7) hold, then each of the above-mentioned problems (1), (3k),
k ∈ {1, 2, 3, 4, 5}, has at least one solution.

We will give also examples of another well-known boundary value prob-
lems, for which the condition (4) is satisfied. More precisely, in the case of
even n = 2m, we consider the problems

αiu
(i−1)(a) + αm+iu

(n−i)(a) = ci,

βiu
(i−1)(b) + βm+iu

(n−i)(b) = cm+i, (i = 1, . . . , m)
(82m)

and
u(i−1)(a) = ηiu

(i−1)(b) + ci,

u(n−i)(b) = ηiu
(n−i)(a) + cm+i, (i = 1, . . . , m),

(92m)

while in the case of n = 2m + 1, we consider the problems

αiu
(i−1)(a) + αm+iu

(n−i)(a) = ci, βiu
(i−1)(b) + βm+iu

(n−i)(b) =

= cm+i, (i = 1, . . . , m), u(m)(a) = ηu(m)(b) + cn, (82m+1)

and

u(i−1)(a) = ηiu
(i−1)(b) + ci, u(n−i)(b) = ηiu

(n−i)(a)+

+ cm+i, (i = 1, . . . , m), u(m)(a) = ηu(m)(b) + cn, (92m+1)

where αi, βi, ηi, and η are real numbers, ci ∈ Rl. Moreover,

(−1)m+iαiαm+i ≥ 0, |αi|+ |αm+i| > 0,

(−1)m+iβiβm+i ≤ 0, |βi|+ |βm+i| > 0, ηi 6= 0, |η| ≤ 1.
(10)

From Theorem 1 it follows the following

Corollary 1. If the conditions (5)–(7) and (10) hold, then both problems

(1), (8n) and (1), (9n) have at least one solution.
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Under the conditions of Theorem 1, the components of the vector function
(t, x1, . . . , xn) → f(t, x1, . . . , xn) may have an arbitrary growth order with
respect to x1. As an example, we consider the nonlinear differential system

u
(n)
k = (−1)m+1gk(t, u1, . . . , ul)|uk|

µk sgnuk+

+ hk(t, u1, . . . , ul) (k = 1, . . . , l) (11)

with the periodic boundary conditions

u
(i−1)
k (a) = u

(i−1)
k (b) + cik (i = 1, . . . , n; k = 1, . . . , l), (12)

or with the Neumann conditions

u
(i−1)
k (a) = cik (i = 1, . . . , m; k = 1, . . . , l),

u
(i−1)
k (b) = c′ik (i = 1, . . . , n−m; k = 1, . . . , l),

(13)

where µk > 0, cik, c′ik are constants, and gk : I×R2 → R and hk : I×Rl →
Rl are Carathéodory functions.

From Theorem 1 for these problem we have

Corollary 2. Let there exist an integrable with respect to the first ar-

gument and non-decreasing with respect to the second argument function

g0 : I × [0, +∞[→]0, +∞[ , and a positive constant r such that on the set

I ×Rl the inequalities

gk(t, u1, . . . , ul) ≥ g0

(
t,

l∑

i=1

|ui|

)
,

|hk(t, u1, . . . , ul)| ≥ rg0

(
t,

l∑

i=1

|ui|

)
(k = 1, . . . , l)

(14)

hold. Then both problems (11), (12) and (11), (13) have at least one solution.

It is evident that under the conditions of Corollary 2, the numbers µk > 0
(k = 1, . . . , l) may be arbitrarily large, and (t, u1, . . . , ul) → gk(t, u1, . . . , ul)
(k = 1, . . . , l) may be arbitrary functions, increasing rapidly with respect to
u1, . . . , ul.

We can prove the unique solvability of the problem (1), (2) and its stabil-
ity with respect to small perturbations of the right-hand side of the system
(1) and boundary data only in the case where

f(t, x1, . . . , xn) ≡ f(t, x1),

Aik(v) ≡ Aik, Bik(v) ≡ Bik, ci(v) ≡ ci (i, k = 1, . . . , n),

where Aik and Bik are constant l × l matrices, and ci is a constant l-
dimensional vector.
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Thus let us consider the boundary value problem

u(n) = f(t, u), (15)
n∑

k=1

(
Aiku(k−1)(a) + Biku(k−1)(b)

)
= ci (i = 1, . . . , n) (16)

and the corresponding perturbed problem

v(n) = f(t, v) + h(t), (15′)
n∑

k=1

(
Aikv(k−1)(a) + Bikv(k−1)(b)

)
= c′i (i = 1, . . . , n). (16′)

We will use the following definition of the well-posedness.
The problem (15), (16) is said to be well-posed if for any ε > 0 there

exists δ > 0, such that the problem (15′), (16′) is uniquely solvable for
an arbitrary integrable vector function h : I → Rl and vectors c′i ∈ Rl

(i = 1, . . . , n) satisfying the condition

n∑

i=1

‖ci − c′i‖Rl +

∥∥∥∥

t∫

a

h(s) ds

∥∥∥∥
Rl

< δ for t ∈ I,

and the inequality

‖v − u‖Cn−1 < ε

holds, where u and v are solutions of the problems (15), (16) and (15′), (16′),
respectively.

Theorem 2. Let there exist µ > 0 such that for arbitrary xk and yk ∈ Rl

(k = 1, . . . , n) the inequality

(−1)m+1ν(x1, . . . , xn; y1, . . . , yn) ≤

≤ µ

n∑

k=1

(‖xk‖l + ‖yk‖l)

n∑

i=1

∥∥∥∥
n∑

k=1

(Aikxk + Bikyk)

∥∥∥∥
Rl

(17)

holds. Moreover, the vector function f satisfies the condition

(−1)m+1 (f(t, x)− f(t, y)) · (x− y) ≥ p(t) ‖x− y‖2
Rl , (18)

where p : I → [0, +∞[ is an integrable function positive on the set of positive

measure. Then the problem (15),(16) is well-posed.

From this theorem it follows, in particular, that if the condition (18)
is satisfied, then the above-mentioned classical two-point boundary value
problems for the system (16) are well-posed.
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