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ON THE SOLVABILITY OF THE PERIODIC TYPE
BOUNDARY VALUE PROBLEM FOR LINEAR IMPULSIVE

SYSTEMS

Abstract. Effective necessary and sufficient conditions are established for
the unique solvability of periodic type boundary value problems for linear
impulsive systems.� � � � � � � � � � 	 
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Let ω be a positive number and let τik ∈ [(i−1)ω, iω] (i = 0,±1,±2, . . . ;
k = 1, 2, . . . ) be points such that τik ≤ τik+1, τik = τi−1k +ω. For the linear
system of impulsive equations

dx

dt
= P (t)x + q(t) for almost all t ∈ R \ T, (1)

x(τik+)− x(τik−) = G(τik)x(τik) + g(τik)

(i = 0,±1,±2, . . . ; k = 1, 2, . . . ) (2)

we investigate the periodic boundary value problem

x(t + ω) = x(t) for t ∈ R, (3)

where T = {τik : i = 0,±1,±2, . . . ; k = 1, 2, . . .}, and P = (pil)
n
i,l=1 ∈

Lloc(R, Rn×n), G : T → R
n×n and q = (qi)

n
i=1 ∈ Lloc(R, Rn), g : T → R

n

are ω-periodic matrix- and vector-functions, respectively, i.e.,

P (t + ω) = P (t) for almost all t ∈ R \ T,

G(τik + ω) = G(τik) (i = 0,±1,±2, . . . ; k = 1, 2, . . . )
(4)

and
q(t + ω) = q(t) for almost all t ∈ R \ T,

g(τik + ω) = g(τik) (i = 0,±1,±2, . . . ; k = 1, 2, . . . ).
(5)
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Note that the following ω-type boundary value problem

x(t + ω) = x(t) + c for t ∈ R,

where c ∈ R
n, is reduced to the problem (3) by transformation

y(t) = x(t) −
t

ω
c for t ∈ R,

so that we consider only the problem (3).
Along with the system (1), (2) we consider the corresponding homoge-

neous system
dx

dt
= P (t)x for almost all t ∈ R \ T, (10)

x(τik+)− x(τik−) = G(τik)x(τik) (i = 0,±1,±2, . . . ; k = 1, 2, . . . ). (20)

In the paper, we establish effective necessary and sufficient conditions
for unique solvability of the problem (1), (2); (3). Analogous results are
contained in [12]–[15] for general linear boundary value problems and ω-
periodic boundary problems for systems of ordinary differential equations
and functional differential equations.

Quite a number of issues of the theory of systems of differential equations
with impulsive effect (both linear and nonlinear) have been studied suffi-
ciently well (for survey of the results on impulsive systems see, e.g., [5]–[7],
[10], [11], [16]–[20] and references therein).

Using the theory of so called generalized ordinary differential equations
(see, e.g., [1]–[9]), we extend these results to systems of impulsive equations.

Throughout the paper the following notation and definitions will be used.
R = ]−∞, +∞[ , R+ = [0, +∞[ ; [a, b] (a, b ∈ R) is a closed segment.
Rn×m is the space of all real n × m-matrices X = (xij)

n,m
i,j=1 with the

norm

‖X‖ = max
j=1,...,m

n∑

i=1

|xij |;

On×m (or O) is the zero n×m matrix.
If X = (xij)

n,m
i,j=1 ∈ R

n×m, then

|X | = (|xij |)
n,m

i,j=1 .

Rn×m
+ =

{
(xij )

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . , m)

}
.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ =

Rn×1
+ .
If X ∈ R

n×n, then X−1, det X and r(X) are, respectively, the matrix
inverse to X , the determinant of X and the spectral radius of X ; In is the
identity n× n-matrix.

The inequalities between the matrices are understood componentwise.
b
∨
a
(X) is the total variation of the matrix-function X : [a, b] → Rn×m,

i.e., the sum of total variations of the latter’s components.
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X(t−) and X(t+) are the left and the right limit of the matrix-function
X : R → Rn×m at the point t;

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).

BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation

X : [a, b] → Rn×m (i.e., such that
b
∨
a
(X) < +∞);

BVloc(R, Rn×m) is the set of all matrix-functions X : R → Rn×m such

that
b
∨
a
(X) < +∞ for every a < b; a, b ∈ R;

C̃([a, b], D), where D ⊂ Rn×m, is the set of all absolutely continuous
matrix-functions X : [a, b] → D;

C̃loc(R\T, D) is the set of all matrix-functions X : R → D whose restric-

tions to an arbitrary closed interval [a, b] from R \ T belong to C̃([a, b], D);
L([a, b], D) is the set of all measurable and integrable matrix-functions

X : [a, b] → D;
Lloc(R, D) is the set of all measurable and locally integrable matrix-

functions X : [a, b] → D.
A matrix-function is said to be continuous, integrable, nondecreasing,

etc., if each of its components is such.
By a solution of the impulsive system (1), (2) we understand a continuous

from the left vector-function x ∈ C̃loc(R \ T, Rn) ∩ BVloc(R, Rn) satisfying
both the system (1) for a.a. t ∈ R \ T and the relation (2) for every
i ∈ {0,±1,±2, . . .} and k ∈ {1, 2, . . .}.

For every ω-periodic matrix-functions X ∈ Lloc(R, Rn×n) and Y : T →
R

n×n we put
[
(X, Y )(t + ω)

]
l
=
[
(X, Y )(t)

]
l

for t ∈ R (l = 1, 2, . . . ),

where
[
(X, Y )(t)

]
0

= In for 0 ≤ t ≤ ω,
[
(X, Y )(0)

]
l
= On×n (l = 1, 2, . . .),

[
(X, Y )(t)

]
l+1

=

t∫

0

X(τ) ·
[
(X, Y )(τ)

]
l
dτ+

+
∑

0≤τ1k<t

Y (τ1k) ·
[
(X, Y )(τ1k)

]
l

for 0 < t ≤ ω (l = 1, 2, . . .).

We assume that
∞∑

k=1

(‖G(τ1k)‖+ ‖g(τ1k)‖) < ∞ (k = 1, 2, . . . ) (6)

and

det(In + G(τ1k)) 6= 0 (k = 1, 2, . . .). (7)
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The condition (7) guarantees the unique solvability of the Cauchy prob-
lem for the corresponding impulsive systems.

Theorem 1. Let the conditions (4)–(7) hold. Then the system (1), (2)
has a unique ω-periodic solution if and only if the corresponding homoge-

neous problem (10), (20) has only the trivial ω-periodic solution, i.e.,

det(Y (0)− Y (ω)) 6= 0, (8)

where Y is a fundamental matrix of the system (10), (20).

Corollary 1. Let the conditions (4)–(7) hold and

P (t)G(τ1k) = G(τ1k)P (t) for almost all t ∈ [0, ω] (k = 1, 2, . . . ).

Let, moreover, there exists t0 ∈ [0, ω] such that

P (t)

( t∫

t0

P (s) ds

)
=

( t∫

t0

P (s) ds

)
P (t) for almost all t ∈ [0, ω].

Then the system (1), (2) has a unique ω-periodic solution if and only if

det

[
exp

( ω∫

t0

P (s) ds

)
∏

t0≤τ1k<ω

(In + G(τ1k))−

− exp

(
−

t0∫

0

P (s) ds

)
∏

0≤τ1k<t0

(In + G(τ1k))−1

]
6= 0.

Remark 1. If the homogeneous system (10), (20) has a nontrivial ω-
periodic solution, then for every vector-function q ∈ Lloc(R, Rn) satisfying
the condition (5) there exists a vector c ∈ R

n such that the system

dx

dt
= P (t)x + q(t)− c for almost all t ∈ R \ T,

x(τik+)− x(τik−) = G(τik)x(τik) + g(τik) (i = 0,±1,±2, . . . ; k = 1, 2, . . . )

has no ω-periodic solution.

Definition 1. A matrix-function Gω : R × R → R
n×n is said to be the

Green matrix of the problem (10), (20); (3) if

Gω(t+ω, τ +ω) = Gω(t, τ), Gω(t, t+ω)−Gω(t, t) = In for t and τ ∈ R,

and the matrix-function Gω(·, τ) : R → R
n×n is a fundamental matrix of

the system (10), (20).
If the conditions (4),(6)(for g ≡ 0) and (7) hold and the system (10), (20)

has only the trivial ω-periodic solution, then there exists a unique Green
matrix and it admits the following representation

Gω(t, τ) = Y (t)
(
Y −1(ω)Y (0)− In

)−1
Y −1(τ) for t and τ ∈ R,

where Y is a fundamental matrix of the system (10), (20).
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Theorem 2. The system (1), (2) has a unique ω-periodic solution if and

only if the corresponding homogeneous problem (10), (20) has only the trivial

ω-periodic solution. If the latter condition holds, then the ω-periodic solution

x of the system (1), (2) admits the representation

x(t) =

t+ω∫

t

dsGω(t, s) · f(s) +
∑

t≤τik<t+ω

(Gω(t, τik+)− Gω(t, τik)) · g(τik)

for t ∈ R,

where Gω is the Green matrix of the problem (10), (20); (3).

In general, it is quite difficult to verify the condition (8) directly even
in the case where one is able to write out the fundamental matrix of the
system (10), (20) explicitly. Therefore it is important to seek for effective
conditions which would guarantee the absence of nontrivial solutions of the
homogeneous problem (10), (20); (3). Analogous results for general linear
boundary value problems for systems of ordinary differential equations be-
long to T. Kiguradze [15], and for ω-periodic boundary problem for systems
of ordinary differential equations and functional differential equations they
belong to I. Kiguradze [12]–[14].

Theorem 3. Let the conditions (4)–(7) hold. Then the system (1), (2)
has a unique ω-periodic solution if and only if there exist natural numbers

k and m such that the matrix

Mk = (−1)l

(
In −

k−1∑

i=0

[
(P, G)(cl)

]
i

)

is nonsingular for some l ∈ {1, 2} and

r(Mk,m) < 1,

where cl = ω(2− l) and

Mk,m =
[
(|P |, |G|)(cl)

]
m

+

+
(m−1∑

i=0

[
(|P |, |G|)(cl)

]
i

)
· |M−1

k |
[
(|P |, |G|)(cl)

]
k
.

Corollary 2. Let there exists a natural number k such that
[
(P, G)(cl)

]
i
= 0 (i = 0, . . . , k − 1)

and

det
([

(P, G)(cl)
]
k

)
6= 0

for some l ∈ {1, 2}, where cl = ω(2− l). Then there exists ε0 > 0 such that

the system

dx

dt
= εP (t)x + q(t) for almost all t ∈ R \ T,

x(τik+)−x(τik−) = εG(τik)x(τik)+g(τik) (i = 0,±1,±2, . . . ; k = 1, 2, . . . )
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has one and only one ω-periodic solution for every ε ∈]0, ε0[.

Corollary 3. Let

det

( ω∫

0

P (τ) dτ +
∑

0≤τ1k<ω

G(τ1k)

)
6= 0.

Then the conclusion of Corollary 2 is true.

Theorem 4. Let P0 ∈ Lloc(R, Rn×n) and G0 : T → R
n×n be ω-periodic

matrix-functions such that

∞∑

k=1

(‖G0(τ1k)‖) < ∞,

det(In + G0(τ1k)) 6= 0 (k = 1, 2, . . .)

and the homogeneous system

dx

dt
= P0(t)x for almost all t ∈ R \ T, (9)

x(τik+)− x(τik−) = G0(τik)x(τik) (i = 0,±1,±2, . . . ; k = 1, 2, . . . ) (10)

has only the trivial ω-periodic solution. Let, moreover, the ω-periodic mat-

rix-functions P ∈ Lloc(R, Rn×n) and G : T → R
n×n admit the estimate

ω∫

0

|G0ω(t, τ)|·
∣∣P (τ)−P0(τ)

∣∣ dτ+

∞∑

k=1

∣∣G0ω(t, τ1k+)·(G0(τ1k)−G0(τ1k))
∣∣ ≤ M,

where G0ω is the Green matrix of the problem (9), (10); (3), and M ∈ R
n×n
+

is a constant matrix such that

r(M) < 1.

Then the system (1), (2) has one and only one ω-periodic solution.

To establish the results dealing with the boundary value problems for the
impulsive system (1), (2), we use the following concept.

It is easy to show that the vector-function x is a solution of the impulsive
system (1), (2) if and only if it is a solution of the linear system of so called
generalized ordinary differential equations of the following form

dx(t) = dA(t) · x(t) + df(t) for t ∈ R,

where the matrix-function A and vector-function f are defined by the equal-
ities

A(0) = On×n, f(0) = 0;

A(t) =

t∫

(i−1)ω

P (τ) dτ +
∑

(i−1)ω≤τik<t

G(τik)

for t ∈ [(i− 1)ω, iω] (i = 0,±1,±2, . . . ),
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f(t) =

t∫

(i−1)ω

q(τ) dτ +
∑

(i−1)ω≤τik<t

g(τik)

for t ∈ [(i− 1)ω, iω] (i = 0,±1,±2, . . . ).

From this definitions it is evident that A and f are continuous from the
left matrix- and vector- functions, respectively,

d2A(τik) = G(τik), d2f(τik) = g(τik) (i = 0,±1,±2, . . . ; k = 1, 2, . . . ),

d2A(t) = On×n, d2f(t) = 0 for t ∈ R \ T,

and

A(t + ω) = A(t) + A(ω), f(t + ω) = f(t) + f(ω) for t ∈ R

because P , G and q, g are ω-periodic matrix- and vector- functions, respec-
tively. Moreover, by the conditions (6) and (7) the matrix- and vector-
functions A and f have bounded total variations on every closed interval
from R and the condition

det
(
In + (−1)jdjA(t)

)
6= 0 for t ∈ R (j = 1, 2)

holds.
So that, the above given results follow from analogous results obtained

in [8], [9] for generalized linear systems.
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