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Abstract. In the present work we consider a general mathematical
method of constructing the solutions of spatial axisymmetric stationary
problems of the jet and filtration theories with partially unknown bound-
aries. The x-axis coincides with the symmetry axis, and the distance to the
x-axis is denoted by y. The use is made of the right coordinate system.
Of infinitely many half-planes we arbitrarily select one passing through the
symmetric axis. But for the sake of effectiveness sometimes it is more conve-
nient to take two symmetric half-planes lying in one plane. The boundary of
the domain under consideration consists of the known and unknown parts.
The known ones consist of straight lines and their portions, while the un-
known parts consists of curves. Every portion of the boundary is assigned
two boundary conditions. The unknown functions (the velocity potential,
the flow function) and their arguments on every portion of the boundary
must satisfy two inhomogeneous boundary conditions.

The system of differential equations with respect to the velocity potential
and flow function is reduced to a normal equation. Unknown functions are
represented as sums of holomorphic and generalized analytic functions.

One problem of the jet theory and one problem of the filtration theory
are solved.
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1. Axisymmetric Flows

If the velocity components ux and uy are functions of only x and y,
whereas the velocity component uz is equal to zero, then the motion takes
place in the planes parallel to the plane x, y; the motion is the same in all
such planes. This implies that there is a direction to which all velocities
of the field are perpendicular. The investigation of the plane stationary
liquid motion under the above assumptions is, as is known, characterized by
certain analytic peculiarities, and many interesting problems can be solved
effectively ([1]–[37]).

But, as is known, if the boundaries of the problems under consideration
are partially unknown and the boundary conditions are mixed, then the
solution of such problems becomes more complicated. The flow function in
terms of which many problems are formulated is, as usual, introduced in the
plane case, but it is very difficult to introduce it in the spatial case. In the
plane problems, the velocity potential and the flow function form analytic
functions, and the theory of such functions is well developed both from
the qualitative and quantitative points of view ([1]–[6]). As it can be seen
below, there exist spatial axisymmetric problems whose solution reduces to
solution of plane problems ([23]–[25]).

The solution of spatial axisymmetric problems with partially unknown
boundaries present great mathematical difficulties. Such problems are en-
countered in the theory of filtration, in the theory of jet flows, and in many
parts of mathematical physics such, for example, as the mathematical theory
of hydromechanics and some other sections of mechanics. The conditions
are different in each case. For example, the liquid in the theory of jet flows
is weightless, ideal and incompressible, capillary forces and vortices are ab-
sent, and the flow is stationary. In the problem of filtration the liquid has
weight. Below we will describe a general method of solution of spatial axi-
symmetric problems of the jet and filtration theories with partially unknown
boundaries.

The liquid motion is said to be spatial and axisymmetric, if all velocity
vectors lie in half-planes passing through a straight line which is called the
axis of symmetry, and the picture of the field of velocities is the same for
all meridional half-planes. However, from the mechanical point of view
the difference between the half-planes exists, and this is connected with the
direction of velocity which can be determined according to the physical sense
of the variables involved. The spatial field of velocities of an axisymmetric
motion is completely described by the plane field of any of such half-planes.
The symmetry axis is assumed to be the x-axis; the distance to the x-axis is
denoted by y, and by ux and uy we denote, respectively, the components of
the velocity vector ~u(ux, uy) which is connected with the velocity potential

ϕ(x, t) as follows: ~u
[

∂ϕ
∂x ,

∂ϕ
∂y

]

. On the plane, the use is made, as usual, of

the right system of coordinates x, y; z = x+ iy ([1]–[3]).
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The velocity potential ϕ and the flow function ψ are functions of only
cylindrical coordinates x, y. Due to the axial symmetry, it suffices to study
the flow in any arbitrarily taken meridional half-plane with the system of
coordinates x, y.

We choose arbitrarily one half-plane passing through the symmetry axis x
on which the moving liquid occupies certain simply connected domain S(z),
where z = x + iy, with the boundary S(`); if some part of the boundary
`(z) of the domain S(z) is unknown, we have to find it.

Here we present another definition of axisymmetry: the flow is axisym-
metric, if the flow lines lie in the half-planes passing thorough the given axis;
a picture of distribution of the flow lines is the same for every half-plane.

The lines of intersection of a surface and the planes passing through the
symmetry axis x are called meridians, whereas the lines of intersection with
the planes perpendicular to the x-axis are called parallels.

In the cylindrical system of coordinates x, θ, y, where from the definition
of axisymmetry follows uθ = 0, the equation of continuity has the form

∂(yux)

∂x
+
∂(yuy)

∂y
= 0, (1.1)

where ux = ∂ϕ
∂x and uy = ∂ϕ

∂y are the projections of velocities on the axes x

and y.
As is known, the differential equation of any flow line for an axisymmetric

flow, uydx − uxdy = 0, multiplied by y, is the full differential of the flow
function dψ = yuydx− yuxdy, since

ux =
1

y

∂ψ

∂y
, uy = −

1

y

∂ψ

∂x
. (1.2)

On the other hand,

ux =
∂ϕ

∂x
=

1

y

∂ψ

∂y
, uy =

∂ϕ

∂y
= −

1

y

∂ψ

∂x
. (1.3)

In [25] the reader can find a general method of solution of spatial ax-
isymmetric stationary problems of filtration with partially unknown bound-
aries and mixed boundary conditions, where the porous medium is non-
deformable, isotropic and homogeneous. Stationary motion of the liquid in
the porous medium obeys the Darcy law.

Below we will present some statements of the well-known authors re-
garding solutions of spatial stationary axisymmetric problems with partially
unknown boundaries ([3], [4], [6]).

Everywhere below, when solving the problems of the jet theory, the use
will be made of the following assumptions. The liquid is weightless, ideal
and incompressible. Capillary forces and vortices are absent, and the flow
is stationary [3].

“Solution of spatial jet problems presents great mathematical difficulty.
At present we are aware only of the works which are devoted to axisymmetric
jet flows. However, even for that simple particular case of spatial problems
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no one succeeded in creation of a mathematical device which would be as
convenient as that of the theory of functions of complex variable. The
authors engaged in the axisymmetric jet flows either restrict themselves
to approximate numerical solutions of the problems, or prove theorems of
general nature” [3].

“Unfortunately, the methods of the theory of functions of complex vari-
able applied to solution of plane problems have no effective analogue in the
axisymmetric case, or, more precisely, analytic methods provide us with
little information of physical interest” [6].

“The qualitative theory of solutions of the system of differential equa-
tions (1.3) can be constructed rather completely, whereas the quantitative
theory is not as well developed as for the solutions of the (Cauchy–Riemann)
system, i.e., for analytic functions” [4].

Below, we will give a general method of solution of spatial axisymmetric
problems with unknown boundaries both in the theory of filtration and in
the theory of jet flows.

Here we cite some rather frequently encountered boundary conditions for
spatial axisymmetric problems of filtration.

1. On a free surface, the boundary conditions have the form

ϕ(x, y)− kx = const, (1.4)

ψ(x, y) = const, (1.5)

where k = const is the coefficient of filtration;
2. Along the boundary of water basins:

ϕ(x, y) = const, (1.6)

a1x+ b1y + c1 = 0, a1, b1, c1 = const; (1.7)

3. Along the leaking intervals:

ϕ(x, y) − kx = const, (1.8)

a2x+ b2y + c2 = 0, a2, b2, c2 = const; (1.9)

4. Along the symmetry axis, when a segment of the symmetry axis
x coincides with a portion of the boundary of S(z), the boundary
conditions are of the form

y = 0, (1.10)

ψ(x, y) = 0, (1.11)

but if the symmetry axis does not coincide with any part of the
boundary of the flow domain S(z), then

y = const, const 6= 0, (1.12)

ψ(x, y) = const, const 6= 0; (1.13)
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5. Along nonpermeable boundaries there take place the following bo-
undary conditions:

ψ(x, y) = const, (1.14)

a3x+ b3y + c3 = 0, a3, b3, c3 = const; (1.15)

6. Along the nonpermeable boundary, the velocity vector is directed
along the boundary;

7. The velocity vector is perpendicular to the boundaries of water
basins;

8. Along a free surface (depression curve) we have

u2
x + u2

y − kux = 0. (1.16)

In our works [23], [24], [25] it is assumed that on the plane of complex
velocity we have circular polygons of particular types. Despite this fact,
this class of problem is still wide enough. There exist axisymmetric spatial
problems with partially unknown boundaries, when the boundary of the
domain does not contain the symmetry axis. But there are problems when
the boundary of the domain involves, as is said above, the symmetry axis
or its portions.

For circular polygons, in particular for linear ones, we are able to solve
plane problems of filtration with partially unknown boundaries. The state-
ment and solution of the corresponding plane problems of filtration with
partially unknown boundaries can be found in [2], [12] and [18]–[25].

2. The Theory of Axisymmetric Flows

A flow of substance moving almost in a constant direction at a distance
exceeding many times its cross-section size is called a jet. In order to get a
jet, it suffices to make a hole in the reservoir whose local pressure exceeds
that of the environment ([3], [5], [6]).

When flowing around an immovable obstacle or a wall protuberance, the
flow, as usual, separates and forms the so-called isolated flow lines. The
liquid between these flow lines forms a trace; right behind the obstacle the
flow is quiet. The traces in the liquid are of dissimilar nature. A trace
forms a chain of vortices stretching at a long distance behind the obstacle.
The importance of traces is that they are the main source of resistance in
the real liquid. As is known, the resistance in nonviscous liquids does not
usually arise for subsonic velocities if the flow separation and the associated
trace are absent ([3]–[6]).

If a body moves in a liquid with great velocity, the trace becomes gaseous;
such a trace is called a cavity. If a ball moves in water at velocity about
8m/sec or more, we obtain a cavity filled with air. Cavities arising at the
velocity 30m/sec or more are filled with steam ([3]–[6]).

Besides, there are still many questions of practical importance which are
connected with formation of jets, traces and cavities ([3]–[6]).
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3. Statement of the Problem in the Theory of Jets

The theory of jets considers flows which are bounded partially by rigid
walls and unknown free surfaces of constant pressure ([3]–[6]).

The hydrodynamic problem is assumed to be solved if any of the two
functions ϕ(x, y) and ψ(x, y) is known. Besides the equations (1.2) and
(1.3), for finding ϕ(x, y) and ψ(x, y) we have the following boundary con-
ditions. The normal velocity on the free and body surfaces is equal to zero
([1]–[7]),

∂ϕ

∂n
= 0, (3.1)

where n is the normal directed into the liquid. The flow function ψ on the
free and body surfaces is a constant value [3],

ψ = const. (3.2)

This condition for ψ is equivalent to the condition (3.1). On the boundaries,
the constant in (3.2) may take different values.

For example, in Fig. 1 we can see one-half of the meridional plane x0y
for the problem concerning the flow round a circular cone in a tube. Since
the flow function is defined within a constant summand, we can put ψ = 0
on the symmetry axis x, on the cone and on the free surface. But the
difference between the values of ψ on the flow surface is equal to the liquid
discharge between these surfaces divided by 2π; hence on the tube walls
ψ = πv∞h

2/(2π), where h is the tube radius, and v∞ is the velocity at
infinity of the flow coming from the left ([3]–[6]).

Figure 1

The form of the free surfaces is unknown, but here we have the supple-
mentary condition of constancy of the velocity modulus v, which is equiv-
alent to the condition of pressure constancy. This condition can be written
as ([3])

1

ρ

[

(

∂ψ

∂x

)2

+

(

∂ψ

∂y

)2
]

=

(

∂ϕ

∂x

)2

+

(

∂ϕ

∂y

)2

= v2
0, (3.3)

where v0 is equal to v on the free surface ([3]–[6]).
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4. The Flow Function for the Axisymmetric Flow

If the flow is irrotational, then the flow function ψ should satisfy the
equation

∂ux

∂y
=
∂uy

∂x
, then

∂

∂x

(

1

y

∂ψ

∂x

)

+
∂

∂y

(

1

y

∂ψ

∂y

)

= 0. (4.1)

Recall that the function ϕ(x, t) is harmonic in the cylindrical coordinate
system. Unlike the plane case, the flow function ψ(x, y) is not harmonic. It
follows from (1.3) that

∂ϕ

∂x

∂ψ

∂x
+
∂ϕ

∂y

∂ψ

∂y
= 0. (4.2)

The system (1.1), (1.3) can be rewritten as follows:

∆ϕ(x, t) +
1

y

∂ϕ

∂y
= 0, (4.3)

∆ψ(x, t) −
1

y

∂ψ

∂y
= 0, (4.4)

where ∆ is the Laplace operator.
We write the system (4.3), (4.4) in the form

∂2ϕ

∂x2
+ 4α

∂2ϕ

∂α2
+ 4

∂ϕ

∂α
= 0, (4.5)

∂2ψ

∂x2
+ 4α

∂2ψ

∂α2
= 0, (4.6)

where α = y2.
It can be seen from (4.5) and (4.6) that the given system for α = y2 6= 0

is elliptic. Along the 0x-axis, as α→ 0, we have

∂2ϕ

∂x2
+

1

4

∂ϕ

∂α
= 0, (4.7)

∂2ψ

∂x2
= 0. (4.8)

Along the symmetry axis 0x, we have

lim
y→0

∂ϕ

∂y
= 0, lim

y→0

∂ψ

∂y
= 0, lim

y→0

1

y

∂ϕ

∂y
=
∂2ϕ

∂y2
, (4.9)

lim
y→0

1

y

∂ψ

∂y
=
∂2ϕ

∂y2
. (4.10)

5. Application of Analytic and Generalized Analytic
Functions to Solution of Axisymmetric Problems

We map conformally the half-plane Im(ζ) ≥ 0 (or Im(ζ) < 0) of an
auxiliary complex plane ζ = ξ + iη onto the domain S(z), where z(ζ) =
x(ξ, η)+iy(ξ, η). A part of the boundary S(`) of the domain S(z) is unknown
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and should be defined. On the plane ζ = ξ + iη, the system (1.3) takes the
form

∂ϕ

∂ξ
=

1

y(ξ, η)

∂ψ

∂η
, (5.1)

∂ψ

∂η
= −

1

y(ξ, η)

∂ψ

∂ξ
. (5.2)

It can be seen from (5.1), (5.2) that ϕ(ξ, η) and ψ(ξ, η) are mutually
connected, and this fact should always be taken into consideration.

We rewrite the system (5.1), (5.2) as follows:

∆ϕ(ξ, η) +
1

y

∂y

∂ξ

∂ϕ

∂ξ
+

1

y

∂y

∂η

∂ϕ

∂η
= 0, (5.3)

∆ψ(ξ, η) −
1

y

∂y

∂ξ

∂ψ

∂ξ
−

1

y

∂y

∂η

∂ψ

∂η
= 0. (5.4)

Suppose that we have solved the plane problem, i.e., we have constructed
analytic functions mapping conformally the half-plane Im(ζ) ≥ 0 (or
Im(ζ) < 0) of the plane ζ = ξ + iη onto the circular polygon. For gen-
eral discussion we assume that there is a circular polygon with m vertices.
To find an analytic function in the general case, we have to solve a non-
linear third order Schwartz differential equation. Its solution is reduced to
solution of a Fuchs class differential equation. The Schwartz equation, and
hence the corresponding Fuchs class equation, contains 2(m − 3) essential
unknown parameters. The general solution of the Schwartz equation in-
volves additionally six parameters of integration. We write the system of
higher 2(m−3) transcendent equations and also the system of six equations
for finding the integration parameters of the Schwartz equation. Next, we
construct solutions ϕ(ξ, η) and ψ(ξ, η) for the system (5.3) and (5.4) with
regard for (5.1), (5.2) ([18]–[25]).

Introduce a notation for three analytic functions:

z(ζ) = x(ξ, η) + iy(ξ, η), ω0(ζ) = ϕ0(ξ, η) + iψ0(ξ, η),

w0(ζ) = ω′0(ζ)/z
′(ζ),

(5.5)

∆x(ξ, η) = 0, ∆y(ξ, η) = 0, ∆ϕ0(ξ, η) = 0, ∆ψ0(ξ, η) = 0, (5.6)

which map conformally the half-plane Im(ζ) ≥ 0 respectively onto the do-
main S(z(ζ)) of liquid motion, onto the domain of the complex potential
ϕ0(ξ, η) + iψ0(ξ, η) = ω0(ζ), and onto the domain of the complex velocity
S(ω′0(ζ)/z

′(ζ)). The above functions are unknown and due to be defined.
Below, we will consider the problem of solvability of the system of equa-

tions (5.1), (5.2).
A solution of (5.3), (5.4) will be sought with regard for (5.1) and (5.2)

in the form

ϕ(ξ, η) = ϕ0(ξ, η) + ϕ1(ξ, η), (5.7)

ψ(ξ, η) = ψ0(ξ, η) + ψ1(ξ, η), (5.8)
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where ϕ0(ξ, η), ψ0(ξ, η) are self-conjugate harmonic functions satisfying all
boundary conditions. Substituting (5.7) and (5.8) into (5.3) and (5.4), we
obtain

∆ϕ1(ξ, η) +
1

y

∂y

∂ξ

∂ϕ1

∂ξ
+

1

y

∂y

∂η

∂ϕ1

∂η
=

=−

[

∆ϕ0 +
1

y

∂y

∂ξ

∂ϕ0

∂ξ
+

1

y

∂y

∂η

∂ϕ0

∂η

]

, (5.9)

∆ψ1(ξ, η) −
1

y

∂y

∂ξ

∂ψ1

∂ξ
−

1

y

∂y

∂η

∂ψ1

∂η
=

=−

[

∆ψ0 −
1

y

∂y

∂ξ

∂ψ0

∂ξ
−

1

y

∂y

∂η

∂ψ0

∂η

]

. (5.10)

In the right-hand sides of (5.9) and (5.10) we retain ∆ϕ0 = 0 and ∆ψ0 =
0 deliberately.

We transform the unknown functions ϕ1(ξ, η), ψ1(ξ, η), ϕ0(ξ, η) and
ψ0(ξ, η) as follows:

ϕ1(ξ, η) = y−1/2(ξ, η)ϕ2(ξ, η), ψ1 = y1/2(ξ, η)ψ2(ξ, η), (5.11)

ϕ0(ξ, η) = y−1/2(ξ, η)ϕ∗2(ξ, η), ψ0(ξ, η) = y1/2(ξ, η)ψ∗2(ξ, η). (5.12)

After transformation the system (5.9), (5.10) takes the form

∆(ϕ1 + ϕ∗2) = −
1

4
ρ1(ϕ2 + ϕ∗2), (5.13)

∆(ψ2 + ψ∗2) =
3

4
ρ1(ψ2 + ψ∗2), (5.14)

where

ρ1 =

(

1

y

∂y

∂ξ

)2

+

(

1

y

∂y

∂η

)2

. (5.15)

As is said above, the hydrodynamic problem is assumed to be solved if
either of the functions ϕ(x, y) and ψ(x, y) is found with regard for (5.13).
Next, on the plane ζ we have to take into consideration (5.1) and (5.2).

Using Green’s formula, we can obtain from (5.13) and (5.14) the following
Fredholm integral equations of second kind:

ϕ2(ξ, η) +
1

4

∫∫

Im(ζ)≥0

G(ξ, η;x, y)ρ1(x, y)ϕ2(x, y) dx dy = f1(ξ, η), (5.16)

ψ2(ξ, η)−
3

4

∫∫

Im(ζ)≥0

G(ξ, η;x, y)ρ1(x, y)ψ2(x, y) dx dy = f2(ξ, η), (5.17)

where

f1(ξ, η) =− ϕ2(ξ, η)−

−
1

4

∫∫

Im(ζ)≥0

G(ξ, η;x, y)ρ1(x, y)ϕ
∗
2(x, y) dx dy, (5.18)
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f2(ξ, η) =− ψ∗2(ξ, η)+

+
3

4

∫∫

Im(ζ)≥0

G(ξ, η;x, y)ρ1(x, y)ψ
∗
2(x, y) dx dy (5.19)

and

G(ξ, η;x, y) =
1

4π
ln

(ξ − x)2 + (η + y)2

(ξ − x)2 + (η − y)2
.

Solutions of the integral equations (5.16) and (5.17) will be sought by
using the method of successive approximations in the form of the following
series:

ϕ2(ξ, η) =

∞
∑

n=0

λnϕ2(n)(ξ, η), (5.20)

ψ2(ξ, η) =

∞
∑

n=0

µnψ2(n)(ξ, η), (5.21)

where λ = 1
4 , µ = 3

4 .
Substituting the series (5.20) and (5.21) respectively into the integral

equations (5.16) and (5.17), and then equating the coefficients at the same
degrees of the parameters λ and µ, we will obtain

ϕ2(0)(ξ, η) = f1(ξ, η), (5.22)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ2(n)(ξ, η) =

∫∫

Im(ζ)≥0

G(ξ, η;x, y)ρ1(x, y)ϕ2(n−1)(x, y) dx dy, (5.23)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ2(0)(ξ, η) = f2(ξ, η), (5.24)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ2(n)(ξ, η) =

∫∫

Im(ζ)≥0

G(ξ, η;x, y)ρ1(x, y)ψ2(n−1)(x, y) dx dy, (5.25)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n = 1, 2, 3, . . . .

6. On Solution of Some Fredholm Integral Equations ([31], [32])

Consider the simplest Fredholm integral equation of the second kind [32]

u(x)− λ

b
∫

a

K(x, t)u(t) dt = f(x), (6.1)

where the unknown function u(x) depends on the real variable x which
varies in the same interval [a, b] as the integration variable t. This require-
ment concerns without exception to all classes of integral equations under
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consideration. The interval [a, b] may be finite or infinite. The functions
K(x, t) and f(x) are assumed to be given and defined almost everywhere,
respectively, in the square a ≤ x ≤ b, a ≤ t ≤ b and in the interval a ≤ x ≤ b.

The function K(x, t) is said to be the kernel of the integral equation. The
kernel K(x, t) of the Fredholm equation satisfies the inequality

b
∫

a

b
∫

a

|K(x, t)|2 dx dt <∞ (6.2)

and the free term f(x) satisfies the inequality

b
∫

a

|f(x)|2 dx <∞. (6.3)

We have to consider Fredholm equations of more general type. Let Ω be
a measurable set in the space of an arbitrary number of variables, x and t
be points of that set, and µ be a nonnegative measure defined on Ω [32].

The equality

u(x)− λ

∫

Ω

K(x, t)u(t) dµ(t) = f(x), (6.4)

whose kernel K(x, t) and free terms f(x) satisfy, respectively, the inequali-
ties

∫

Ω

∫

Ω

|K(x, t)|2 dµ(x) dµ(t) <∞,

∫

Ω

|f(x)|2 dµ(x) <∞, (6.5)

is also called a Fredholm equation.
The kernel K(x, t) satisfying (6.5) is called the Fredholm kernel. We

denote the volume element by dx and the integral (6.5) by B2
K :

∫

Ω

∫

Ω

|K(x, t)|2 dx dt = B2
K . (6.6)

The unknown function u(x) is quadratically summable in (a, b), and,
consequently, belongs to the space L2(a, b). A solution of the equation (6.4)
belongs to the space L2(µ,Ω) of functions which are quadratically summable
in Ω in measure µ. The inequalities (6.3) and (6.5) mean that the free term
of the equation belongs to the same space. The parameter λ may take both
real and complex values.

The parameters λ and µ of the integral equations (5.16) and (5.17) are
less than unity, hence the convergence of the series (5.20) and (5.21) is
guaranteed.

As is known, the Fredholm equation of the second kind has either finite,
or countable set of characteristic numbers. But there are kernels having
no characteristic numbers at all, as, for example, Volterra kernels. A com-
plete characteristic of such kernels is given in the following Lalesko theorem.
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Let K(x, t) be a Fredholm kernel, and Kn(x, t) be its iterated kernel. For
the kernel K(x, t) to have no characteristic numbers, it is necessary and
sufficient that

An =

∫

Ω

Kn(x, t) dx = 0, n = 3, 4, . . . , (6.7)

where the numbers An are called traces of the kernel K(x, t). Lalesko has
proved his theorem for the case of bounded kernels, while a general proof
has been given by S. Krachkovskĭı ([31], [32]).

The Fredholm determinant and minors are represented as quotients of
two entire functions of λ, the poles of the resolvent, i.e., the characteristic
numbers of the kernel K(x, t), not depending on x and t. Thus the resolvent
should have the form

R(x, t;λ) = D(x, t;λ)/D(λ), (6.8)

where D(x, t;λ) and D(λ) are entire functions of λ ([31], [32]).
For the numerator and denominator of the fraction in (6.8) we give the

representations in the form of the following series ([31], [32]):

D(x, t;λ) =

∞
∑

n=1

(−1)n

n!
Bn(x, t)λn, D(λ) =

∞
∑

n=0

(−1)n

n!
cnλ

n, (6.9)

where

c0 = 1, B0(x, t) = K(x, t), cn =

∫

Ω

Bn−1(x, x) dx, n > 0, (6.10)

Bn(x, t) = cn − n

∫

Ω

K(x, t)Bn−1(τ, t) dτ, (6.11)

which makes it possible to calculate the coefficients Bn(x, t) and cn recur-
sively.

Below we will need the well-known formula ([31], [32])

D′(λ)/D(λ) = −

∞
∑

n=1

Anλ
n−1, (6.12)

where

An =

∫

Ω

Kn(x, x) dx, n = 1, 2, 3, . . . , (6.13)

are the above-mentioned traces of the kernel K(x, t).
If the kernel K(x, t) is noncontinuous and, more so, has discontinuities

of the second kind, then the integrals in (6.10) defining the coefficients
c1, c2, . . . become meaningless.

The Fredholm kernel may sometimes have Green’s function G(P,Q) as
a multiplier. As is known, this function is defined as a harmonic function
symmetric with respect to P and Q, equal on the boundary to zero, and
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analytic at all points P of the domain D, except for the points P = Q at
which it has logarithmic singularity.

The kernel K(x, t) may have logarithmic singularity. Then the integral
∫

Ω

K(x, x) dx (6.14)

defining the coefficient c1 becomes meaningless. This difficulty can be over-
come successfully by putting, for example, c1 = 0 ([31], [32]).

The iterated kernel K2(s, t) has the form

K2(s, t) =

∫

Ω

K(s, t1)K(t1, t) dt1. (6.15)

The integral K2(s, t) is meaningful for any positions of s and t in [a, b]
because in the most unfavorable case, when s and t coincide, the integrand
admits the following estimate ([27]–[30]):

|K(s.t1)K(t1, t)| ≤
M1

|s− t1|ε1

, ε1 > 0. (6.16)

It is proved that K2(s, t) is a function continuous in the square a ≤ x ≤ b,
a ≤ t1 ≤ b, and the functions

Kn(s, t) =

∫

Ω

K(s, t1)Kn−1(t1, t) dt1, n = 1, 2, 3, . . . , (6.17)

are estimated analogously:

|K(s, t1)Kn−1(t1, t)| ≤
Mn−1

|s− t1|εn−1

, εn−1 > 0. (6.18)

The integral Kn(s, t), n = 1, 2, . . . , is meaningful for any positions of s
and t in [a, b], and the estimates of the integrands have the form (6.18).
Consequently, we have to put

Kn(s, s) = 0, n = 1, 2, . . . , (6.19)

An =

∫

Ω

Kn(s, s) ds = 0, n = 1, 2, . . . . (6.20)

Then

cn = 0, n = 1, 2, . . . , n, . . . . (6.21)

Taking into account (6.19), from (6.12) we get

D′(λ) = 0, (6.22)

and in its turn, from (6.22) it follows that

D(λ) = 1. (6.23)

Consequently, the kernel of the integral equation (6.4) has no charac-
teristic numbers. In a complete analogy we can prove that the kernel of
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the integral equation (3.36), considered by us in [24], has no characteristic
numbers.

7. Spatial Axisymmetric Jet Flows with Partially Unknown
Boundaries

Below, the use will frequently be made of the works [3], [6]. Let us
consider the stationary axisymmetric flow of an ideal, weightless, incom-
pressible liquid. Let the x-axis coincide with the symmetry axis. The
velocity potential ϕ(x, y) and the flow function ψ(x, y) are functions of
only cylindrical coordinates x and y, where y is the distance to the axis
x. Owing to the axial symmetry, it suffices to study the flow in an arbitra-
rily chosen meridional half-plane with the coordinate system x, y ([1]–[6]).
By w(x, y) = ϕ(x, y) + iψ(x, y) we denote the complex potential, and by
z = x + iy the complex coordinate. As is known, these functions should
satisfy the conditions (1.2) and (1.3).

In Fig. 1 we can see one half of the meridional plane x0y for the problem
of flow round a circular cone in a circular tube. Since the flow function
ψ(x, y) is defined to within a constant summand, we can put ψ(x, y) = 0
along the symmetry axis x both on the cone and on the free surface. But
the difference between the values of ψ on the flow surfaces is equal to the
liquid discharge between these surfaces divided by 2π, and hence on the
tube walls ψ = πv∞h

2/(2π), where h is the tube radius, and v∞ is velocity
at infinity coming from the left [3].

The form of the free surfaces is unknown, but the supplementary condi-
tion for steady pressure is given. This condition can be written in the form
(3.3), where v0 is equal to v on the free surface [3].

To solve the problem, we map conformally the domains of variation of
dw

(v0dz) and w onto the semi-circle of unit radius (Fig. 2) of the parametric

variable t (|t| ≤ 1, Im(t) ≥ 0), where t = ξ + iη. Having chosen arbitrarily
three points on the mapped contour according to the Riemann theorem, we
assume that to the singular points a1, a2, a3, a4, a5 there correspond the
points ξ = a1 = 0, a2 = 1, a3 = −1, a4 = −h0 and a5 = − 1

h0
, where a4 and

a5 are the source, and a3 is the sink. The complex potential can be written
either as

w(t) =
q

π
ln

{

[

(t− a4)(t− 1/a4)
]/

(t− a3)
2
}

, (7.1)

or as

w(t) =
q

π
ln

{

[

(ξ − a4) + iη
] [

(ξ − 1/a4) + iη
]/[

(ξ − a3) + iη
]2

}

. (7.2)

In the hodograph domain, the filtration velocity dw/(v0dx) does get equal
to infinity and it vanishes only at the point ξ = a1.

Analyzing the behavior of the function dw/(v0dz) [3], we obtain

dw

(v0dx)
= tµ, t > 0. (7.3)
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Figure 2

We can easily see that the formula (7.3) is valid. Inside the upper half of
the semi-circle |t| ≤ 1, the function tµ is holomorphic. On the circumference
we have the equality |t|µ = 1. On the real axis 0 < t ≤ 1, the function tµ

takes real positive values. Moving in the upper half-plane t around the
point ξ = a1 counterclockwise, we can see that the argument tµ on OA
(−1 ≤ t ≤ 0) is equal to πµ, that is, the boundary conditions are fulfilled
everywhere.

To see that the formula (7.2) is valid, it suffices to verify that the bound-
ary conditions are fulfilled. Suppose that η = 0. Then

w(t) =
q

π
ln

{

[

(ξ − a4)(ξ − 1/a4)
]/

(ξ − a3)
2
}

=

=
q

π
ln

{

[

(ξ + h0)(ξ + 1/h0)
]/

(ξ + 1)2
}

. (7.4)

It follows from (7.4) that ψ = q. Since the expression (t − a4)(t− 1/a4)
in the interval ( 1

a4
, a4) is negative, we have Imw(t) = q, a3 < ξ < a3, and it

is positive in the intervals t < 1
a4

, t > a4. This implies that in the interval
a4 < ξ < a2

Imw(t) = 0, a4 < ξ < a2. (7.5)

Assuming on the arc t = eiα, we obtain

Imw(t) =

=
q

π
Im ln

[

(eiα − a4)(e
−iα − a4)

( 1

−a4

)]/

(e−α/2 + e−iα/2)2 = 0. (7.6)

Now find the velocity va4
of the flow in the vessel at infinity:

va4

v0
=

( dw

v0dx

)

a4

= hµ
0 . (7.7)

Thus the value h0 defines the velocity in the vessel at infinity. Obviously,
q = hva4

, whence according to (7.7) we obtain

q = h · v0h
µ
0 . (7.71)

From (7.4) and (7.3) we can find z(t). Thus we have

z(t) =
eiπµ

v0

t
∫

0

t−µw′(t) dt. (7.8)
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When t→ a2, the equality (7.8) allows us to obtain the formulas

z(a2) =
eiπµ

v0

a2
∫

0

t−µw′(t) dt, a2 = 1. (7.9)

When t < 0, we define z(t) by the formula

z(t) = −
1

v0

0
∫

t

(−t)−µw′(t) dt, t < 0. (7.10)

It follows from (7.9) that

x(a2) = cos(πµ)
1

v0

a2
∫

0

t−µw′(t) dt, (7.11)

y(a2) = sin(πµ)
1

v0

a2
∫

0

t−µw′(t) dt, (7.12)

√

[x(a2)]2 + [y(a2)]2 =
1

v0

a2
∫

0

t−µw′(t) dt. (7.13)

Using the formula (7.10) and moving around the singular point ζ = a4

on an infinitesimal semi-circumference K with center t = a4, we obtain

h =
q

v0
h−µ

0 , q = hv0h
µ
0 , (7.14)

where h0 = −a4, h is the radius of the cylinder.
The formula (7.14) coincides with (7.71).
In calculating the integral (7.10), when integration involves the singular

point ξ = −a4 = h0, we have to apply the principal value of the Cauchy
type integral, while when moving around the point t = a3 = −1, we act as
follows:

(

dw

(v0dx)

)

a3

= (+1)µ = 1. (7.15)

At infinity and at the point a3 = −1, the direction of the jets coincide
with that of the x-axis.

Next, our main task is to obtain a complete exact solution of the plane
problem by means of analytic functions which should be used to obtain a
complete solution of the corresponding axisymmetric problem.

Using the functions

ln t = 2i arccos
1

ζ
, ζ2 > 1; ln t = −2i ln

∣

∣

∣

∣

1 +
√

1− ζ2

ζ

∣

∣

∣

∣

, ζ < 1, (7.16)

we map conformally the half-plane Im(ζ) ≥ 0 of the auxiliary plane ζ =
ξ + iη (Fig. 4) onto a triangle (Fig. 3), and then, using the function ln t,
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we map conformally the triangle of the type as in Fig. 3 onto the upper
semi-circle of unit radius (|t| ≤ 1, Im(t) > 0).

Figure 3

Figure 4

Thus the functions (7.1), (7.2) and (7.6) are defined in that domain, so
we have obtained the solution of the plane problem on a liquid flowing out of
a skew-walled vessel (Fig. 1). Using the above-obtained functions, we pass to
solution of the spatial problem of flow around the circular cone in the tube.
Using the functions (7.1), (7.2) and (7.3), we assume that the functions
ϕ0(ξ, η), ψ0(ξ, η) are the first approximations of the unknown functions
ϕ(ξ, η), ψ(ξ, η). The functions ϕ0(ξ, η), ψ0(ξ, η), x(ξ, η) and y(ξ, η) should
satisfy all boundary conditions. Thus the above-defined functions ϕ0(ξ, η),
ψ0(ξ, η), x(ξ, η) and y(ξ, η) are pairwise self-conjugate harmonic. Note that
the conditions of compatibility (5.1), (5.2) should be taken into account.
The hydrodynamic problem is assumed to be solved if either of the functions
ϕ(x, y) and ψ(x, y) is known.

Finally, we proceed to finding the functions ϕ2(ξ, η), ψ2(ξ, η). When sol-
ving the integral equation (5.16) or (5.17), we use the method of successive
approximations and the fact that the right-hand sides of (5.16) and (5.17)
involve the known functions. On the symmetry axis x of the cone and on
the free surface we put ψ = 0. But the difference between the values of ψ on
the flow surfaces is equal to 2π, hence on the tube walls ψ = πv∞h

2/(2π),
where h is the tube radius, v∞ is velocity at infinity of the flow coming from
the left.

As is said above, the form of free surfaces is unknown, but there is a
complementary condition of constancy of the velocity modulus v which is
equivalent to the condition of pressure constancy. This condition can be
written in the form (3.3), where v0 is equal to v on the free surface [3].
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8. The Problem on the Ground Water Influx to A Spatial
Axisymmetric Basin with Trapezoidal Axial Cross-Section

Under a water permeable ground layer is laid a ground layer of greater
(theoretically infinite) water permeability, the pressure on the upper hori-
zontal surface of the lower layer being constant. The depth of the water in
the basin is neglected; if water is deep, the solution of the problem becomes
more complicated. The basin is given in Fig. 5.

Figure 5

In solving this spatial axisymmetric problem the use will be made of
the solution of the corresponding plane problem. The plane axisymmetric
problem on the ground water influx to a drainage ditch with trapezoidal
cross-section has been solved by V. V. Vedernikov [33], and his investigation
was complemented by Yu. D. Sokolov [34]. Here we generalize the problem
solved by V. V. Vedernikov [33]. Our generalization consists in the following:
under the water permeable ground layer we lay ground layer of greater
(theoretically, infinite) water permeability, and the pressure on the upper
horizontal surface of the layer is constant. In its turn, we generalize this
generalized plane problem to the spatial axisymmetric problem.

We direct the x-axis vertically downwards along the symmetry axis, and
the y-axis we direct horizontally; here y is the distance to the x-axis.

Along the whole contour of the domain of liquid motion we have the
conditions ϕ − kx = 0 and ϕ − ky = T . Hence on the Zhukovski plane we
have a strip of length T . To solve the problem under consideration, it is
convenient to use Zhukovski’s function

θ = θ1 + iθ2, θ1 = ϕ− kx, θ2 = ψ − ky. (8.1)

The boundaries of the velocity hodograph consists of a circumference arc
and straight lines which intersect each other at one point F , where u = −u0,
v0 = 0.
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The plane case under consideration is represented schematically in Fig. 5.
Note that

θ = ω(z)− kz; ω(z) = ϕ(x, y) + iψ(x, y), z = x+ iy,

dθ

dz
= w − k.

(8.2)

Figure 6

The use will be made of the formula

u =
dz

dθ
=

1

w − k
, (8.3)

which corresponds to that function whose domain is obtained after inversion
(see Fig. 5). We transfer the vertices of this polygonal domain to the points
of the plane ζ as in Fig. 6, and obtain

u(ζ) = M

ζ
∫

a4

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2
−α(ζ2 − a2

4)
− 1

2 dζ + u(a4), (8.4)

where

u(a4) = 1/k, M is a real number. (8.5)

From (8.4) it follows that

u(a5) = M

a5(+∞)
∫

a4

ζ(ζ2−a2
2)

α−1(ζ2−a2
3)
− 1

2
−α(ζ2−a2

4)
− 1

2 dζ+u(a4), (8.6)

where

u(a5) = u5 is a real number. (8.7)

u5 = M

a5(+∞)
∫

a4

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2
−α(ζ2 − a2

4)
− 1

2 dζ +
1

k
, (8.8)
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u(ζ) = −Mi

ζ
∫

a3

(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2
−α(ζ2 − a2

4)
− 1

2 dζ + u(a3), (8.9)

where

u(a3) = −
1

k
tg(πα) +

i

k
. (8.10)

u(a4) = −Mi

a4
∫

a3

ζ(ζ2−a2
2)

α−1(ζ2−a2
3)
− 1

2
−α(ζ2−a2

4)
− 1

2 dζ+u(a3), (8.11)

where u(a4) = 1
k .

From (8.11) we have

M

a4
∫

a4

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2
−α(ζ2 − a2

4)
− 1

2 dζ +
1

k
tgπα = 0, (8.12)

u(ζ) = (−1)Me−iπα×

×

ζ
∫

a2

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2
−α(ζ2 − a2

4)
− 1

2 dζ + u(a2), (8.13)

where u(a2) = 0,

u(a3) = (−1)Me−iπα

a3
∫

a2

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2
−α(ζ2−a2

4)
− 1

2 dζ, (8.14)

u(a3) =
−i

k
tg πα+

1

k
,

1

k
−M cosπα×

×

a3
∫

a2

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2
−α(ζ2 − a2

4)
− 1

2 dζ = 0, (8.15)

u(ζ) = M

ζ
∫

a1

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2
−α(ζ2 − a2

4)
− 1

2 dζ + u(a1), (8.16)

M

a2
∫

a1

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2
−α(ζ2 − a2

4)
− 1

2 dζ −
1

u0 + k
= 0, (8.17)

u(a2) =
−1

u0 + k
, u(a2) = 0. (8.18)

Of the parameters a2, a3 and a4, we fix one as a2 = 1, and the parameters
u0, a3, a4, M are to be defined by means of the system of equations (8.6),
(8.8), (8.12), (8.15) and (8.17).
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Now we define Zhukovski’s function. We have

θ(ζ) =
T

π
ln

(

ζ − a4

ζ + a4

)

+ T. (8.19)

For finding the function z(θ), we use the following formulas:

z(ζ) =

ζ
∫

a4

u(ζ)θ′(ζ) dζ + z(a4), z(a5) =

a5
∫

a4

u(ζ)θ′(ζ) dζ + z(a4), (8.20)

z(ζ) =

ζ
∫

a3

u(ζ)θ′(ζ) dζ + z(a3), z(a4) =

a4
∫

a3

u(ζ)θ′(ζ) dζ + z(a3), (8.21)

z(ζ) =

ζ
∫

a2

u(ζ)θ′(ζ) dζ + z(a2), z(a3) =

a3
∫

a2

u(ζ)θ′(ζ) dζ + z(a2), (8.22)

z(ζ) =

ζ
∫

a1

u(ζ)θ′(ζ) dζ + z(a1), z(a2) =

a2
∫

a1

u(ζ)θ′(ζ) dζ + z(a1). (8.23)

The system (8.20)–(8.23) allows us to define the coordinates of the leaking
interval, and then using the function θ(ζ), we find parametric equations of
depression curves. In solving the problem (Fig. 5) we have considered two
symmetric half-planes. Owing to the symmetry, we could have considered
arbitrarily one half of the two half-planes. But because of the fact that on
the boundary of the hodograph velocity, along the symmetry axis, we have
two cuts to the ends of which there correspond two unknown parameters,
for their determination we have to write two equations. Determination of
another unknown parameters needs another equations, and this exactly has
been done in the present work.
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