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Abstract. The large time asymptotic behavior of solutions to a nonlin-
ear integro-differential equation associated with the penetration of a mag-
netic field into a substance is studied. The rates of convergence are given
as well.
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1. Introduction

The process of diffusion of the magnetic field into a substance is modelled
by Maxwell’s system of partial differential equations [1]. As it is shown in
[2], if the coefficients of thermal heat capacity and electroconductivity of the
substance depend on temperature, then Maxwell’s system can be rewritten
in the integro-differential form. The equation

∂U

∂t
=

∂

∂x

[

a

(

t
∫

0

(∂U

∂x

)2

dτ

)

∂U

∂x

]

, (1.1)

where the function a = a(S) is defined for S ∈ [0,∞), is the scalar analogue
of that system.

The integro-differential equation of the type (1.1) is complex and still
yields to investigation only for special cases [2]–[7].

The existence and uniqueness of solution of initial-boundary value prob-
lems for the equations of type (1.1) are studied in the works [2], [3] and
subsequently in a number of other works as well (see, for example, [4]–[7]).
It should be noted that theorems on existence of solutions have been proved
only for power-like functions a(S) = (1 + S)p so far, and even that under
the restriction 0 < p ≤ 1 on the exponent, but these cases are important as
it was noted in the works [2], [4]. The existence theorems that are proved in
[2], [3] are based on a priori estimates, Galerkin’s method and compactness
arguments as in [8], [9] for nonlinear parabolic equations.

Naturally, the importance of investigation of asymptotic behavior of solu-
tions of boundary value problems for the equation (1.1) have arisen. In this
direction research was made in the work [10], where asymptotic behavior of
the solution under the homogeneous Dirichlet conditions in the space H1

was given. The purpose of this note is to continue investigation of the large
time asymptotic behavior as t → ∞ of the solutions of the first boundary
value problems for the equation (1.1). The attention is again paid to the
case a(S) = (1 + S)p, 0 < p ≤ 1. The rest of the paper is organized as fol-
lows. In the second section we discuss the initial-boundary value problem
with zero lateral boundary data. Here stabilization results of the solution
are proved in the space C1. Section 3 is devoted to the study of the prob-
lem with non-zero boundary data on one side of the lateral boundary. The
asymptotic property for this case is also proved in the space C1. Mathemat-
ical results that are given below show difference between stabilization rates
of solutions with homogeneous and nonhomogeneous boundary conditions.

2. The Problem with Zero Boundary Conditions

In the domain Q = (0, 1) × (0,∞), let us consider the following initial-
boundary value problem:

∂U

∂t
=

∂

∂x

[

a(S)
∂U

∂x

]

, (x, t) ∈ Q, (2.1)
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U(0, t) = U(1, t) = 0, t ≥ 0, (2.2)

U(x, 0) = U0(x), x ∈ [0, 1], (2.3)

where

S(x, t) =

t
∫

0

(∂U

∂x

)2

dτ,

a(S) = (1 + S)p, 0 < p ≤ 1, U0 = U0(x) is a given function.
The existence and uniqueness of solution of the problem (2.1)–(2.3) in

suitable classes have been proved in [2], [3].
Let us introduce the usual L2-inner product and the norm:

(u, v) =

1
∫

0

u(x)v(x) dx, ‖u‖ = (u, u)1/2.

It is not difficult to prove the validity of the following statement.

Lemma 2.1. For the solution of the problem (2.1)–(2.3) the following

estimate takes place

‖U‖ ≤ C exp(−t).

Here and below in this section C, Ci and c denote positive constants
dependent on U0 and independent of t.

Note that Lemma 2.1 gives exponential stabilization of the solution of
the problem (2.1)–(2.3) in the norm of the space L2(0, 1). The purpose of
this section is to show that the stabilization is also achieved in the norm of
the space C1(0, 1). First we formulate a result on the stabilization in the
Sobolev space H1(0, 1) [10].

Theorem 2.1. If U0 ∈ H2(0, 1), U0(0) = U0(1) = 0, then for the

solution of the problem (2.1)–(2.3) the following estimate is true

∥

∥

∥

∂U

∂x

∥

∥

∥
+

∥

∥

∥

∂U

∂t

∥

∥

∥
≤ C exp

(

−
t

2

)

.

Now let us prove the following main statement of this section.

Theorem 2.2. If U0 ∈ H2(0, 1), U0(0) = U0(1) = 0, then for the

solution of the problem (2.1)–(2.3) the following relation holds

∣

∣

∣

∂U(x, t)

∂x

∣

∣

∣
≤ C exp

(

−
t

2

)

.

In order to prove Theorem 2.2, we will obtain some auxiliary estimates.

Lemma 2.2. For the function S the following estimates are true:

cϕ
1

1+2p (t) ≤ 1 + S(x, t) ≤ Cϕ
1

1+2p (t),
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where

ϕ(t) = 1 +

t
∫

0

1
∫

0

σ2 dx dτ (2.4)

and σ = (1 + S)p ∂U
∂x .

Proof. From the definition of the function S it follows that

∂S

∂t
=

(∂U

∂x

)2

, S(x, 0) = 0. (2.5)

Let us multiply (2.5) by (1 + S)2p:

1

1 + 2p

∂(1 + S)1+2p

∂t
=

(∂U

∂x

)2

(1 + S)2p.

Note that the equation (2.1) can be rewritten as

∂U

∂t
=
∂σ

∂x
. (2.6)

We have

1

1 + 2p

∂(1 + S)1+2p

∂t
= σ2, (2.7)

σ2(x, t) =

1
∫

0

σ2(y, t) dy + 2

1
∫

0

x
∫

y

σ(ξ, t)
∂U(ξ, t)

∂t
dξ dy. (2.8)

From Theorem 2.1 and the relations (2.4), (2.7), (2.8) we get

1

1 + 2p
(1 + S)1+2p =

t
∫

0

σ2 dτ +
1

1 + 2p
=

t
∫

0

1
∫

0

σ2(y, τ) dy dτ+

+2

t
∫

0

1
∫

0

x
∫

y

σ(ξ, τ)
∂U(ξ, τ)

∂τ
dξ dy dτ +

1

1 + 2p
≤

≤ 2

t
∫

0

1
∫

0

σ2(y, τ) dy dτ +

t
∫

0

1
∫

0

(∂U(x, τ)

∂τ

)2

dx dτ +
1

1 + 2p
≤

≤ 2

t
∫

0

1
∫

0

σ2(y, τ) dy dτ + C1

t
∫

0

exp(−τ) dτ +
1

1 + 2p
≤ C2ϕ(t),

i.e.,

1 + S(x, t) ≤ Cϕ
1

1+2p (t). (2.9)

Analogously,

1

1 + 2p
(1 + S)1+2p =
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=

t
∫

0

1
∫

0

σ2(y, τ) dy dτ + 2

t
∫

0

1
∫

0

x
∫

y

σ(ξ, τ)
∂U(ξ, τ)

∂τ
dξ dy dτ +

1

1 + 2p
≥

≥
1

2

t
∫

0

1
∫

0

σ2(y, τ) dy dτ − C2 =
1

2
ϕ(t)− C3. (2.10)

We have

C3(1 + S)1+2p ≥ C3. (2.11)

From (2.10) and (2.11) we get

( 1

1 + 2p
+ C3

)

(1 + S)1+2p ≥
1

2
ϕ(t),

that is,

1 + S(x, t) ≥ cϕ
1

1+2p (t). (2.12)

Finally, from (2.9) and (2.12) it follows Lemma 2.2.
Taking into account the relation (2.4), Lemma 2.2 and Theorem 2.1, we

have

dϕ(t)

dt
=

1
∫

0

(1 + S)2p
(∂U

∂x

)2

dx ≤ Cϕ
2p

1+2p (t) exp(−t),

that is,

d

dt

(

ϕ
1

1+2p (t)
)

≤ C exp(−t).

Integrating from 0 to t and keeping in mind the definition (2.4), we get

1 ≤ ϕ(t) ≤ C.

From this, using Lemma 2.2, we receive

1 ≤ 1 + S(x, t) ≤ C. (2.13)

In view of (2.13) and Theorem 2.1, the equality (2.8) gives

σ2(x, t) ≤ 2

1
∫

0

(1 + S)2p
(∂U

∂x

)2

dx+

1
∫

0

(∂U

∂t

)2

dx ≤ C exp(−t),

that is,

|σ(x, t)| ≤ C exp
(

−
t

2

)

.

This estimate along with (2.13) and the relation σ = (1 + S)p ∂U
∂x com-

pletes the proof of Theorem 2.2. �
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3. The Problem with Non-Zero Data on One Side of

the Lateral Boundary

In the domain Q let us consider the following initial-boundary value
problem:

∂U

∂t
=

∂

∂x

[

a(S)
∂U

∂x

]

, (x, t) ∈ Q, (3.1)

U(0, t) = 0, U(1, t) = ψ, t ≥ 0, (3.2)

U(x, 0) = U0(x), x ∈ [0, 1], (3.3)

where

S(x, t) =

t
∫

0

(∂U

∂x

)2

dτ,

a(S) = (1 + S)p, 0 < p ≤ 1, ψ = const > 0, U0 = U0(x) is a given function.
The main purpose of this section is to prove the following statement.

Theorem 3.1. If U0 ∈ H2(0, 1), U0(0) = 0, U0(1) = ψ, then for the

solution of the problem (3.1)–(3.3) the following estimate is true

∣

∣

∣

∂U(x, t)

∂x
− ψ

∣

∣

∣
≤ Ct−1−p, t ≥ 1.

In this section C, Ci and c denote positive constants dependent on ψ, U0

and independent of t.
The proof of Theorem 3.1 is based on a priori estimates which are ob-

tained below.

Lemma 3.1. For the solution of the problem (3.1)–(3.3) the following

estimate takes place
t

∫

0

1
∫

0

(∂U

∂τ

)2

dx dτ ≤ C.

Proof. Let us differentiate the equation (3.1) with respect to t

∂2U

∂t2
−

∂

∂x

[∂(1 + S)p

∂t

∂U

∂x
+ (1 + S)p ∂

2U

∂t∂x

]

= 0

and multiply scalarly by ∂U/∂t. Using the formula of integrating by parts
and the boundary conditions (3.2), we get

1

2

d

dt

1
∫

0

(∂U

∂t

)2

dx+

1
∫

0

(1 + S)p
( ∂2U

∂t∂x

)2

dx+

+p

1
∫

0

(1 + S)p−1

(∂U

∂x

)3 ∂2U

∂t∂x
dx = 0. (3.4)
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From (3.4), taking into account Poincare’s inequality, we have

d

dt

1
∫

0

(∂U

∂t

)2

dx+ 2

1
∫

0

(∂U

∂t

)2

dx+

+
p

2

1
∫

0

(1 + S)p−1 ∂

∂t

(∂U

∂x

)4

dx ≤ 0. (3.5)

Let us integrate the relation (3.5) from 0 to t

1
∫

0

(∂U

∂t

)2

dx+ 2

t
∫

0

1
∫

0

(∂U

∂τ

)2

dx dτ+

+
p

2

t
∫

0

1
∫

0

(1 + S)p−1 ∂

∂τ

(∂U

∂x

)4

dx dτ ≤ C.

Integration by parts gives

1
∫

0

(∂U

∂t

)2

dx+ 2

t
∫

0

1
∫

0

(∂U

∂τ

)2

dx dτ ≤ C. (3.6)

Therefore, Lemma 3.1 is proved. �

Note that from Lemma 3.1, according to the scheme applied in the second
section, we get the validity of Lemma 2.2 for the problem (3.1)–(3.3) as well.

Lemma 3.2. The following estimates are true:

cϕ
2p

1+2p (t) ≤

1
∫

0

σ2(x, t)dx ≤ Cϕ
2p

1+2p (t).

Proof. Taking into account Lemma 2.2, we get

1
∫

0

σ2dx =

1
∫

0

(1 + S)2p
(∂U

∂x

)2

dx ≥ cϕ
2p

1+2p (t)

1
∫

0

(∂U

∂x

)2

dx ≥

≥ cϕ
2p

1+2p (t)

(

1
∫

0

∂U

∂x
dx

)2

= ψ2cϕ
2p

1+2p (t),

that is,
1

∫

0

σ2(x, t)dx ≥ cϕ
2p

1+2p (t). (3.7)
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From (3.6) it follows that

1
∫

0

(∂U

∂t

)2

dx ≤ C. (3.8)

Let us multiply the equation (3.1) scalarly by U . Using the boundary
conditions (3.2), we have

1
∫

0

U
∂U

∂t
dx+

1
∫

0

(1 + S)p
(∂U

∂x

)2

dx = ψσ(1, t).

Using this equality, Lemma 2.2, the relations (2.6), (2.8), (3.7) and (3.8),
and the maximum principle

|U(x, t)| ≤ max
0≤y≤1

|U0(y)|, 0 ≤ x ≤ 1, t ≥ 0,

we get

{

1
∫

0

σ2(x, t) dx

}2

≤ C1ϕ
2p

1+2p (t)

[

1
∫

0

(1 + S)p
(∂U

∂x

)2

dx

]2

≤

≤ 2C1ϕ
2p

1+2p (t)

[

(

ψσ(1, t)
)2

+

(

1
∫

0

U
∂U

∂t
dx

)2]

≤

≤ 2C1ϕ
2p

1+2p (t)

[

2ψ2

1
∫

0

σ2 dx+ψ2

1
∫

0

(∂σ

∂x

)2

dx+

1
∫

0

U2 dx

1
∫

0

(∂U

∂t

)2

dx

]

≤

≤2C1ϕ
2p

1+2p (t)

[

2ψ2

1
∫

0

σ2 dx+ψ2

1
∫

0

(∂U

∂t

)2

dx+
(

max
0≤y≤1

|U0(y)|
)2

1
∫

0

(∂U

∂t

)2

dx

]

≤

≤ 2C1ϕ
2p

1+2p (t)

(

C2

1
∫

0

σ2 dx+
C3

ϕ
2p

1+2p (t)

1
∫

0

σ2dx

)

.

Hence, taking into account the relation ϕ(t) ≥ 1, we get

1
∫

0

σ2(x, t)dx ≤ Cϕ
2p

1+2p (t).

So Lemma 3.2 is proved. �

From Lemma 3.2 and (2.4) we have the following estimates:

cϕ
2p

1+2p (t) ≤
dϕ(t)

dt
≤ Cϕ

2p

1+2p (t). (3.9)
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Lemma 3.3. The derivative ∂U/∂t satisfies the inequality

1
∫

0

(∂U

∂t

)2

dx ≤ Cϕ−
2

1+2p (t).

Proof. The equality (3.4) yields

d

dt

1
∫

0

(∂U

∂t

)2

dx+

1
∫

0

(1 + S)p
( ∂2U

∂t∂x

)2

dx ≤

≤ p2

1
∫

0

(1 + S)p−2

(∂U

∂x

)6

dx. (3.10)

Now using Lemmas 2.2 and 3.2, the relation σ = (1 + S)p ∂U

∂x
and the

identity

1
∫

0

(∂σ

∂x

)2

dx = −

1
∫

0

σ
∂2σ

∂x2
dx,

from (3.10) we get

d

dt

1
∫

0

(∂U

∂t

)2

dx+ cϕ
p

1+2p (t)

1
∫

0

( ∂2U

∂t∂x

)2

dx ≤ C1ϕ
−

5p+2

1+2p (t)

1
∫

0

σ6 dx ≤

≤ C1ϕ
−

5p+2

1+2p (t)

1
∫

0

σ2(x, t) dx
[

max
0≤x≤1

σ2(x, t)
]2
≤

≤ C2ϕ
−

3p+2

1+2p (t)

{

1
∫

0

σ2 dx+ 2

[

1
∫

0

σ2 dx

]1/2[
1

∫

0

(∂σ

∂x

)2

dx

]1/2}2

≤

≤ C2ϕ
−

3p+2

1+2p (t)

{

1
∫

0

σ2 dx+ 2

[

1
∫

0

σ2 dx

]3/4[
1

∫

0

(∂2σ

∂x2

)2

dx

]1/4}2

≤

≤ C3ϕ
p−2

1+2p (t) + C4ϕ
−

3p+2

1+2p (t)ϕ
3p

1+2p (t)

[

1
∫

0

( ∂2U

∂t∂x

)2

dx

]1/2

≤

≤ C3ϕ
p−2

1+2p (t) + C5ϕ
−

p+4

1+2p (t) +
c

2
ϕ

p

1+2p (t)

1
∫

0

( ∂2U

∂t∂x

)2

dx.
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Note that in our case p − 2 > −p − 4. So the last relation, in view of
Poincaré’s inequality, gives

d

dt

1
∫

0

(∂U

∂t

)2

dx+
c

2
ϕ

p

1+2p (t)

1
∫

0

(∂U

∂t

)2

dx ≤ Cϕ
p−2

1+2p (t).

From Gronwall’s inequality we get

d

dt

1
∫

0

(∂U

∂t

)2

dx ≤ exp

(

−
c

2

t
∫

0

ϕ
p

1+2p (τ) dτ

)

×

×

[

1
∫

0

(∂U

∂t

)2

dx

∣

∣

∣

∣

t=0

+ C

t
∫

0

exp
( c

2

τ
∫

0

ϕ
p

1+2p (ξ) dξ
)

ϕ
p−2

1+2p (τ) dτ

]

. (3.11)

Noting that ϕ(t) ≥ 1, and applying L’Hopital’s rule and the estimate
(3.9), we have

lim
t→∞

t
∫

0

exp
(

c
2

τ
∫

0

ϕ
p

1+2p (ξ) dξ
)

ϕ
p−2

1+2p (τ) dτ

exp
(

c
2

t
∫

0

ϕ
p

1+2p (τ) dτ
)

ϕ−
2

1+2p (t)

=

= lim
t→∞

exp
(

c
2

t
∫

0

ϕ
p

1+2p (τ) dτ
)

ϕ
p−2

1+2p (t)

exp
(

c
2

t
∫

0

ϕ
p

1+2p (τ) dτ
)(

c
2
ϕ

p−2

1+2p (t)− 2

1+2pϕ
−3−2p

1+2p (t)dϕ
dt

)

≤

≤ lim
t→∞

1

c
2
− 2C

1+2p ϕ
−

p+1

1+2p (t)
≤ C. (3.12)

Therefore, the validity of Lemma 3.3 follows from (3.11) and (3.12).
Let us now estimate ∂S/∂x in L1(0, 1).

Lemma 3.4. For ∂S/∂x the following estimate is true:

1
∫

0

∣

∣

∣

∂S

∂x

∣

∣

∣
dx ≤ Cϕ−

p

1+2p (t).

Proof. Let us differentiate (2.7) with respect to x

∂

∂t

[

(1 + S)2p ∂S

∂x

]

= 2σ
∂σ

∂x
. (3.13)

From Lemmas 3.2 and 3.3 we obtain
1

∫

0

∣

∣

∣
σ
∂U

∂t

∣

∣

∣
dx ≤ Cϕ

p

1+2p (t)ϕ−
1

1+2p (t) = Cϕ
p−1

1+2p (t). (3.14)
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Finally, from Lemma 2.2 and the relations (2.6), (3.9), (3.13) and (3.14),
we have

(1 + S)2p ∂S

∂x
=

t
∫

0

2σ
∂U

∂τ
d τ ,

1
∫

0

∣

∣

∣

∂S

∂x

∣

∣

∣
dx ≤ Cϕ−

2p

1+2p (t)

t
∫

0

ϕ
p−1

1+2p (τ) dτ ≤ C1ϕ
−

2p

1+2p (t)

t
∫

0

ϕ−
p+1

1+2p dϕ =

= C2ϕ
−

2p

1+2p (t)

t
∫

0

dϕ
p

1+2p = C2ϕ
−

2p

1+2p (t)
(

ϕ
p

1+2p (t)− 1
)

≤ Cϕ−
p

1+2p (t).

Thus, Lemma 3.4 is proved. �

We are ready to prove Theorem 3.1. Using Lemma 3.2 and the relations
(2.8) and (3.14), we arrive at

σ2(x, t) ≤

1
∫

0

σ2(y, t) dy + 2

1
∫

0

∣

∣

∣
σ(y, t),

∂U(y, t)

∂t

∣

∣

∣
dy ≤

≤ C1ϕ
2p

1+2p (t) + C2ϕ
p−1

1+2p (t).

Hence we get

|σ(x, t)| ≤ Cϕ
p

1+2p (t).

Now, taking into account Lemmas 2.2, 3.3 and 3.4, the equality (2.6),
the definition of σ and the last estimate, we derive

1
∫

0

∣

∣

∣

∂2U(x, t)

∂x2

∣

∣

∣
dx ≤

≤

1
∫

0

∣

∣

∣

∂U

∂t
(1 + S)−p

∣

∣

∣
dx+ p

1
∫

0

Big|σ(1 + S)−p−1 ∂S

∂x

∣

∣

∣
dx ≤

≤

[

1
∫

0

(1 + S)−2pdx

]1/2[
1

∫

0

∣

∣

∣

∂U

∂t

∣

∣

∣

2

dx

]1/2

+ p

1
∫

0

∣

∣

∣
σ(1 + S)−p−1 ∂S

∂x

∣

∣

∣
dx ≤

≤ C1ϕ
−

p

1+2p (t)ϕ−
1

1+2p (t) + C2ϕ
−

p+1

1+2p (t)ϕ
p

1+2p (t)

1
∫

0

∣

∣

∣

∂S

∂x

∣

∣

∣
dx ≤

≤ C3ϕ
−

p+1

1+2p (t).

Hence, we have

1
∫

0

∣

∣

∣

∂2U(x, t)

∂x2

∣

∣

∣
dx ≤ Cϕ−

p+1

1+2p (t).
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From this estimate, taking into account the relation

∂U(x, t)

∂x
=

1
∫

0

∂U(y, t)

∂y
dy +

1
∫

0

x
∫

y

∂2U(ξ, t)

∂ξ2
dξ dy,

we derive

∣

∣

∣

∂U(x, t)

∂x
− ψ

∣

∣

∣
=

∣

∣

∣

∣

1
∫

0

x
∫

y

∂2U(ξ, t)

∂ξ2
dξ dy

∣

∣

∣

∣

≤

≤

1
∫

0

∣

∣

∣

∂2U(y, t)

∂y2

∣

∣

∣
dy ≤ Cϕ−

p+1

1+2p (t). (3.15)

From (3.9) it is easy to show that

ct1+2p ≤ ϕ(t) ≤ Ct1+2p, t ≥ 1.

From here, taking into account the estimate (3.15), we get the validity
of Theorem 3.1.

Note that in this section we have used the scheme similar to that of
the work [11] in which the adiabatic shearing of incompressible fluids with
temperature-dependent viscosity is studied.

The existence of globally defined solutions of the problems (2.1)–(2.3)
and (3.1)–(3.3) now can be reobtained by a routine procedure, proving first
the existence of the local solutions on a maximal time interval and then
using the derived a priori estimates to show that these solutions cannot
escape in a finite time.
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