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Abstract. The fourth boundary value problem for a circle and for an
infinite domain with a circular hole is formulated. The theorem on the
uniqueness of a solution is proved. Singular integral equations with Hilbert
kernel are obtained for solving the problems. The formula of permutation
of singular integrals with Hilbert kernel is used. The solutions of the above-
mentioned problems are represented in terms of the Poisson formula.
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1. Statement of the Fourth Boundary Value Problem and the

Uniqueness Theorems

The system of the basic (homogeneous) equations of statics for an elastic
mixture in two dimensions has the form ([1])

a1∆u
′ + b1 graddiv u′ + c∆u′′ + d graddiv u′′ = 0,

c∆u′ + d graddiv u′ + a2∆u
′′ + b2 graddiv u′′ = 0,

(1.1)

where

a1 = µ1 − λ5, b1 = µ1 + λ1 − λ5 − ρ−1α2ρ2,

a2 = µ2 − λ5, b2 = µ2 + λ1 + λ5 + ρ−1α2ρ2,

d = µ3 + λ3 − λ5 − ρ−1α2ρ1 ≡ µ3 + λ4 − λ5 + ρ−1α2ρ2,

ρ = ρ1 + ρ2, α2 = λ3 − λ4.

(1.2)

In (1.2), ρ1 and ρ2 are the partial densities, and µ1, µ2, µ3, λ1, λ2, λ3, λ4,
λ5 are real constants characterizing physical properties of an elastic mixture
and satisfying certain inequalities. u′ = (u1, u2) and u′′ = (u3, u4) are the
partial displacements.

If we introduce the variables

z = x1 + ix2, z = x1 − ix2,

i.e.,

x1 =
z + z

2
, x2 =

z − z

2i
,

then the system (1.1) can be rewritten in the form ([2])

∂2U

∂z∂z
+K

∂2U

∂z 2 = 0, (1.3)

where

U =

(

u1 + iu2

u3 + iu4

)

= mϕ(z)−Kmzϕ′(z) + ψ(z), (1.4)

M =

[

m1 m2

m2 m3

]

, m1 = l1 +
l4

2
, m3 = l3 +

l6

2
, m2 = l2 +

l5

2
,

l1 =
a2

d2
, l2 = −

c

d2
, l3 =

a1

d2
,

l1 + l4 =
a2 + b2

d1
, l2 + l5 = −

c+ d

d1
, l3 + l6 =

a1 + b1

d1
,

K =

[

k1 k3

k2 k4

]

, km = −
l

2
, (1.5)

l =

[

l4 l5
l5 l6

]

, m−1 =
1

∆0

[

m3 −m2

−m2 m1

]

, ∆0 = m1m3 −m2
2 > 0,

δ0k1 = 2(a2b1 − cd) + b1b2 − d2, δ0k2 = 2(da1 − cb1),

δ0k3 = 2(da2 − cb2), δ0k4 = 2(a1b2 − cd) + b1b2 − d2,
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δ0 = (2a1 + b1)(2a2 + b2)− (2c+ d)2 ≡ 4d1d2∆0,

δ1 = (a1 + b1)(a2 + b2)− (c+ d)2 > 0, d2 = a1a2 − c2 > 0,

ϕ(z) and ψ(z) are analytic vectors. The stress vector is of the form

T U =

(

(TU)2 − i(TU)1
(TU)4 − i(TU)3

)

=
∂

∂s

(

− 2ϕ(z) + 2µU
)

, (1.6)

where
∂

∂s(x)
= n1

∂

∂x2
− n2

∂

∂x1
, (1.7)

n1 and n2 are the projections onto the axes x1 and x2 of the basis normal
vector. It is evident that the basis tangent vector is s(x) = (−n2, n1), and
(TU)k is the projection of the stress vector onto the axes xk (k = 1, 4),

µ =

[

µ1 µ3

µ3 µ2

]

, detµ = µ1µ2 − µ2
3 > 0. (1.8)

Here we present the definition of a regular solution ([3]).
The vector U is a regular solution if it and its partial derivatives of the

first order are continuous up to the boundary, while the second derivatives
satisfy the system (1.3).

We now can formulate the fourth boundary value problem: Find a reg-
ular solution in a circular domain D+ which on the boundary (i.e. on the
circumference of radius R) satisfies the boundary conditions

(sU)+ = f(t), (nTU)+ = F (t), (1.9)

where f and F are given continuous functions on the circumference. Here
the sign “+” denotes limiting values from the inside. If instead of D+ we
have D− (i.e. an infinite plane with a hole), then the boundary conditions
are

(SU)− = f(t), (nTU)− = F (t), (1.10)

where the sign “−” denotes limiting values from the outside. For the domain
D−, to the regularity conditions we add the conditions at infinity:

U = O(1),
∂U

∂uk

= O(ρ−2), k = 1, 2, ρ =
√

x2
1 + x2

2 . (1.11)

Thus we have the following formulas ([4]):
∫

D+

E(u, u) dy1 dy2 =

∫

S

uTu ds ≡ Im

∫

S

UTU ds, (1.12)

∫

D−

E(u, u) dy1 dy2 = −

∫

S

uTu ds ≡ − Im

∫

S

UTU ds, (1.13)

where s is the circumference of radius R,

ImUTU =
4

∑

k=1

uk(TU)k ≡ un(TU)n + us(TU)s,
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un, us, (Tu)n, (Tu)s are the normal and tangential components of the
displacement and stress vectors, E(u, u) is the doubled potential energy of
the form

E(u, u) =

= (b1 − λ5)
(∂u1

∂x1
+
∂u2

∂x2

)2

+ 2(d+ λ5)
(∂u1

∂x1
+
∂u2

∂x2

)(∂u3

∂x1
+
∂u4

∂x2

)2

+

+(b2 − λ5)
(∂u3

∂x1
+
∂u4

∂x2

)2

+

+µ1

[

(∂u1

∂x1
−
∂u2

∂x2

)2

+
(∂u2

∂x1
+
∂u2

∂x2

)2
]

+

+2µ3

[

(∂u1

∂x1
−
∂u2

∂x2

)(∂u3

∂x1
−
∂u4

∂x2

)

+
(∂u2

∂x1
+
∂u1

∂x2

)(∂u4

∂x1
+
∂u3

∂x2

)

]

+

+µ2

[

(∂u3

∂x1
−
∂u4

∂x2

)2

+
(∂u4

∂x1
+
∂u3

∂x2

)2
]

−

−λ5

[

(∂u2

∂x1
−
∂u1

∂x2

)2

−

(∂u4

∂x1
−
∂u3

∂x2

)2
]

. (1.14)

To solve the fourth boundary value problem, we prove the following

Theorem. a regular solution in the domain D+ satisfying the homoge-

neous conditions of the fourth boundary value problem is the identical zero,

if s is not a straight line.

Proof. The use is made here of the formula (1.12). If in (1.12) we have
f = F = 0, then it follows from (1.14) that

u1 = c1 − εx2, u2 = c2 + εx1, u3 = c3 − εx2, u4 = c4 + εx1, (1.15)

where ck (k = 1, 4) and ε are arbitrary constants.
Using now Green’s formula

0 =

∫

S

(SU)+ ds =

∫

D+

(∂u2

∂x1
−
∂u1

∂x2

)

dx1 dx2 = 2ε

∫

D+

dx1 dx2 = 2εD,

where D is the space of the domain D+, we obtain ε = 0, and from (1.15)
we get

n1u2 − n2u1 = c1
dx2

ds
+ c2

dx1

ds
= 0 or finally, c2x1 + c1x2 = c, (1.16)

where c is a constant. (1.16) is the equation of a straight line.
Thus the theorem for the domain D+ is complete.
Let us now prove the uniqueness for the domain D−. Since (1.11) holds,

therefore ε = 0, and from the condition (SU)− = 0 we obtain

c2x1 + c1x2 = c.
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This is the equation of a straight line. Thus if the boundary S of the domain
D− is not a straight line, then the uniqueness of a solution of the fourth
boundary value problem holds. �

2. Solving of the Fourth Boundary Value Problem in the

Domain D+

The analytic vector ϕ(z) from (1.4) has in a circular domain D+ the form

ϕ(z) =
m−1

2πi

∫

S

∂ lnσ

∂s(y)
(ng + sh) dS, (2.1)

where g and h are unknown scalar values, σ = z−ζ, the point z corresponds
to the point x = (x1, x2), while ζ corresponds to the point y = (y1, y2) ∈ S,
n and s are respectively the basis normal and tangent vectors, oriented in
the same way as the axes x1 and x2, m

−1 is the inverse to m matrix. Since
detm > 0, m−1 does exist.

From (2.1) we have

ϕ′(z) = −
m−1

2πi

∫

S

∂

∂s(y)

1

σ
(ng + sh) dS. (2.2)

Taking into account (2.1) and (2.2), in (1.4) we have

U(x) =
1

2πi

∫

S

∂ lnσ

∂s(y)
(ng + sh) dS+

+
K

2πi

∫

S

∂

∂s(y)

z

σ
(ng + sh) dS + Ψ(z). (2.3)

Let ψ(z) be chosen in terms of

ψ(z) = −
1

2πi

∫

S

∂ lnσ

∂s(y)
(ng + sh) dS −

K

2πi

∫

S

ζ
∂

∂s(y)

1

σ
(ng + sh) dS.

Then U(x) takes the form

U(x) =
1

π

∫

S

∂θ

∂s
(ng + sh) dS +

K

2πi

∫

S

∂

∂s(y)

σ

σ
(ng + sh) dS, (2.4)

where

θ = arctg
y2 − x2

y1 − x1
.

Instead of U(x) we consider the expression

U(x) =
1

π

∫

S

( ∂θ

∂s(y)
−

1

2R

)

(ng + sh) dS+

+
K

2πi

∫

S

( ∂

∂s(y)
e2iθ +

iz

R2

)

(ng + sh) dS. (2.5)
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Obviously, if (2.1) is a solution of (1.3), then (2.5) is likewise a solution
of the equation (1.3) because the difference between them is a first degree
function with respect to the coordinates of the point x.

When the point x lies on the boundary s, then z = Reit, and ζ = Reiτ ,
2θ = π + t+ τ and e2iθ = −e−i(t+τ).

Let us now pass to the limit in (2.5) as x tends to a point of the boundary
S. We have

U+(t) = ng + sh, (2.6)

whence

(SU)+ = h = f(t), (2.7)

where f(t) is known. Thus the function g remains still unknown. It will be
defined below.

Our aim now is to establish the connection between the limiting values
of the displacement and stress vectors. From (2.1) we have

ϕ+(t) =
m−1

2
(ng + sh) +

m−1

4π

2π
∫

0

(ng + sh) dt+

+
m−1

2π

2π
∫

0

ctg
τ − t

2
(ng + sh) dτ. (2.8)

It should be noted that on the boundary S

∂

S(x)
=

1

R

d

dt
,

hence

∂

∂t
ctg

τ − t

2
(ng + sh) dτ = −

∂

∂τ
ctg

τ − t

2
(ng + sh)

1

2
,

and from (2.8) we obtain

2
dϕ+

dt
= m−1 d

dt
(ng + sh) +

im−1

2π

2π
∫

0

ctg
τ − t

2

d

dτ
(ng + sh) dτ. (2.9)

Taking into account (2.9) and (1.6), we have

(2µ−m−1)
dU+

dt
+
im−1

2π

2π
∫

0

ctg
τ − t

2

dU+

dτ
dt = RF (t), (2.10)

where F = (TU)+.
We use here the formula of permutation of singular integrals with the

Hilbert kernel ([4], p. 144):

1

(2π)2

2π
∫

0

ctg
t− ϕ

2
dt

2π
∫

0

ctg
τ − t

2

dU+

dτ
dτ = −

dU+

dϕ
. (2.11)
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Then (2.10) yields

2µ−m−1

2π

2π
∫

0

ctg
τ − ϕ

2

dU+

dτ
dτ − im−1 dU

+

dϕ
=

R

2π

2π
∫

0

ctg
t− ϕ

2
F (t) dt.

Replacing ϕ by t and t by τ , we obtain

2µ−m−1

2π

2π
∫

0

ctg
τ − t

2

dU+

dτ
dτ − im−1 dU

+

dt
=

=
iR

2π

2π
∫

0

ctg
τ − t

2
F (τ) dτ. (2.12)

We multiply (2.12) by i and add to (2.10). As a result, we obtain

A′(2A′
− 2E)m−1 dU

+

dt
= RF (t) +

R

2π

2π
∫

0

ctg
τ − t

2
F (τ) dτ, (2.13)

where

A′ =

[

A1 A3

A2 A4

]

,

A1 =
d1 + d2 + a1b2 − cd

d1
+ λ5

(a1 + c

d2
+
a2 + b2 + c+ d

d1

)

,

A2 =
cb1 − da1

d1
− λ5

(a1 + c

d2
+
a1 + b1 + c+ d

d1

)

,

A3 =
cb2 − da2

d1
− λ5

(a2 + c

d2
+
a2 + b2 + c+ d

d1

)

,

A4 =
d1 + d2 + a2b1 − cd

d1
+ λ5

(a1 + c

d2
+
a1 + b1 + c+ d

d1

)

.

The values appearing here are defined in (1.5).
On the basis of (2.13) we can write

dU+

dt
= m(A′

− 2E)−1(A′)−1
·R

[

F (t) +
1

2π

2π
∫

0

ctg
τ − t

2
F (τ) dτ

]

. (2.14)

Multiplying (2.14) by n(t), we find that

dU+

dt
= m(A′

− 2E)−1(A′)−1R×

×

[

F (t)n(t) +
1

2π

2π
∫

0

ctg
τ − t

2
F (τ)

[

n(t)− n(τ) + n(τ)
]

dτ

]

.

Note that
[

n(t)− n(τ)
]

ctg
τ − t

2
= −s(t)− s(τ).
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Taking now into account that the principal vector and the principal moment
of external stresses are equal to zero, the last formula results in

dU+

dt
=

= m(A′
−2E)−1(A′)−1R

[

F (t)n(t)+
1

2π

2π
∫

0

ctg
τ−t

2
F (τ)n(τ) dτ

]

. (2.15)

Here (A′)−1 and (A′ − 2E)−1 always exist since

detA′ = 4∆0∆1 > 0,

∆0 =
4∆1 + 2a+ b− λ5(2a0 + b0)

4d1d2
> 0, ∆1 = µ1µ2 − µ2

3 > 0,

a = µ1(b2 − λ5) + µ2(b1 − λ5)− 2µ3(d+ λ5) > 0,

b = (b1 − λ5)(b2 − λ5)− (d+ λ5)
2 > 0,

a0 = µ1 + µ2 + 2µ3 > 0, b0 = b1 + b2 + 2d > 0,

det(A′
− 2E) = ∆2,

∆2d1d2 =
[

∆1 − 2λ5(a1 + a2 + 2c)
]

(b1b2 − d2)− 2λ5d2(b1 + b2 + 2d) ≡

≡
[

∆1 − 2λ5(a1 + a2 + 2c)
] [

(b1 − λ5)(b2 − λ5)− (d+ λ5)
2
]

−

−λ5(b1 + b2 + 2d)∆1 > 0.

In view of (2.6), we have

dU+

dt
= n

(dg

dt
− h

)

+ s
(dh

dt
+ g

)

,

whence

dU+

dt
n =

dg

dt
− f,

where f is the given function. Then (2.15) can be rewritten in the form

dg

dt
= f+m(A′

−2E)−1(A′)−1R

[

F ·n+
1

2π

2π
∫

0

ctg
τ − t

2
F (τ)n(τ) dτ

]

(2.16)

from which g is written in quadratures.
Substituting g and h into (2.6), we obtain U+ in quadratures.
Thus we have obtained U+ by means of the Poisson formula. Conse-

quently, the solution of the fourth boundary value problem in the circular
domain D+ is complete.
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3. Solving of the Fourth Boundary Value Problem in an

Infinite Domain with a Circular Hole

A solution is sought as follows:

ϕ(z) =
m−1

2πi

2π
∫

0

∂ lnσ

∂s(y)
(ng + sh) dS, (3.1)

where the values appearing here are defined by us in Section 2. The func-
tions g and h will be defined below. From (3.1) we have

ϕ′(z) =
m−1

2πi

2π
∫

0

∂

∂s(y)

1

σ
(ng + sh) dS. (3.2)

Substituting (3.1) and (3.2) into (1.4), we get

U(x) =
1

2πi

∫

S

∂ lnσ

∂s(y)
(ng + sh) dS+

+
K

2πi

∫

S

∂

∂s(y)

z

σ
(ng + sh) dS + ψ(z). (3.3)

We write ψ(z) in the form

ψ(z) = −
1

2πi

∫

S

∂ lnσ

∂s(y)
(ng + sh) dS −

K

2πi

∫

S

∂

∂s(y)

ζ

σ
(ng + sh) dS.

Then the displacement vector U(x) in (3.3) takes the form

U(x) =
1

π

∫

S

∂θ

∂s(y)
(ng + sh) dS +

K

2πi

∫

S

∂

∂s(y)

σ

σ
(ng + sh) dS, (3.4)

where

θ = arctg
y2 − x2

y1 − x1
.

Instead of (3.4), we consider U(x) in terms of

U(x) =
1

π

∫

S

( ∂θ

∂s(y)
−

1

2R

)

(ng + sh) dS+

+
K

2πi

∫

S

( ∂

∂s(y)
e2iθ +

iζ

z

)

(ng + sh) dS. (3.5)

It is evident that if U(x) in (3.4) is a solution of the equation (1.3), then
(3.5) is a solution of (1.3) as well.

Let now z = Reit and ζ = Reiτ . Then taking into account the fact that
2θ = π+ t+ τ , we pass to the limit as the point x tends to the point z. We
obtain

(U)− = −(ng + sh), (3.6)
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whence

S(U)− = −h = f(t),

where f is a given complex function of period 2π. The function g will be
defined below.

Using the formula (1.6) for the normal component of the stress vector,
we get

TU(x)n(x) =
∂

∂s(x)

[

− 2ϕ− 2µ(ng + sh)
]

n(x) (3.7)

or
(

TU(x)n(x)
)

−

=
∂

∂s(x)

[

− 2ϕ+
− 2µU−

]

n(x) = RF (t). (3.8)

Since
∂

∂s(t)
=

1

R

d

dt
,

we can rewrite (3.8) as follows:
[

− 2
dϕ+

dt
− 2µ

d

dt
U
−

]

n(t) = RF (t). (3.9)

Calculations carried out in Section 2 allow us to find

ϕ− =
m−1

2
U−

−
m−1

4

2π
∫

0

u− dϕ−
im−1

2π

2π
∫

0

ctg
t− ϕ

2
u− dt,

which implies that

−2
dϕ−

dt
= −m−1 du

−

dt
+
im−1

2π

2π
∫

0

ctg
τ − t

2

du−

dτ
dτ.

Taking the last formulas into consideration, we can rewrite (3.9) as

[

(2µ−m−1)
du−

dt
+
im−1

2π

2π
∫

0

ctg
τ − t

2

du−

dτ
dτ

]

n(t) = RF (t), (3.10)

where R is the radius of the circumference, and F (t) is the normal compo-
nent of the stress vector. From (3.10) we have

2µ−m−1

2π

2π
∫

0

ctg
t− ϕ

2

du−

dt
n(t) dt+

+
im−1

4π2

2π
∫

0

ctg
t− ϕ

2
ctg

τ − t

2

du−

dτ
dτ · n(t) =

=
R

2π

2π
∫

0

ctg
t− ϕ

2
F (t) dt. (3.11)
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Note here that

[n(t)− n(τ)] ctg
τ − t

2
= −s(t)− s(τ).

(3.11) can now be rewritten as follows:

(A−E)m−1

2π

2π
∫

0

ctg
t− ϕ

2

du−

dt
n(t) dt+

+
im−1

4π2

2π
∫

0

ctg
t− ϕ

2
dt

2π
∫

0

ctg
τ − t

2

du−

dτ
n(τ) dτ =

=
R

2π

2π
∫

0

ctg
t− ϕ

2
F (t) dt, (3.12)

where A = 2µm.
By the formula of permutation of singular integrals with the Hilbert

kernel, (3.12) yields

(A−E)m−1

2π

2π
∫

0

ctg
t− ϕ

2

du−

dt
n(t) dt− im−1 du

−

dt
· n(t)+

+
im−1

2π

2π
∫

0

du−

dτ
n(τ) dτ =

R

2π

2π
∫

0

ctg
τ − t

2
F (τ) dτ. (3.13)

(3.10) and (3.13) result in

[(A−E)2 −E]m−1 du
−

dt
n(t) +

im−1

2π

2π
∫

0

u−s(τ) dτ =

=
R

2π

2π
∫

0

ctg
τ − t

2
F (τ) dτ,

that is

A(A − 2E)m−1 du
−

dt
n(t) +

im−1

2π

2π
∫

0

u−s(τ) dτ =

=
R

2π

2π
∫

0

ctg
τ − t

2
F (τ) dτ. (3.14)

In view of the fact that u− = −ng − sf , we have

du−

dt
= −n

(dg

dt
− f

)

− s
(df

dt
+ g

)

,
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and (3.14) takes the form

−A(A− 2E)m−1
(dg

dt
− f

)

−
im−1

2π

2π
∫

0

f dτ =
R

2π

2π
∫

0

ctg
τ − t

2
F (τ) dτ,

whence we obtain

dg

dt
= f −m(A− 2E)−1A−1

[

R

2π

2π
∫

0

ctg
τ − t

2
F (τ) dτ + im−1f0

]

, (3.15)

where

f0 =
1

2π

2π
∫

0

f dτ.

By virtue of (3.15), we define the function g0 to within a constant which
is, in its turn, defined in such a way that g to be periodic of period 2π.

Thus we have obtained g in quadratures. Substituting g and h into (3.6),
we obtain the boundary value of the displacement vector explicitly. Finally,
we have obtained the expression for the displacement vector in an integral
form, i.e., in the form of the Poisson formula.
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