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Abstract. Efficient sufficient conditions are established for the unique
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u′(t) = `(u)(t) + q(t), u(a) = h(u) + c,

where ` : C([a, b]; R) → L([a, b]; R) and h : C([a, b]; R) → R are linear
bounded operatos, q ∈ L([a, b]; R), and c ∈ R.
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1. Introduction

The following notation is used throughout the paper.
R is the set of all real numbers. R+ = [0,+∞[ .
If x ∈ R, then

[x]+ =
1

2
(|x|+ x), [x]− =

1

2
(|x| − x).

C([a, b]; R) is the Banach space of continuous functions v : [a, b] −→ R

with the norm

‖v‖C = max
{
|v(t)| : t ∈ [a, b]

}
.

C([a, b]; R+) =
{
u ∈ C([a, b]; R) : u(t) ≥ 0 for t ∈ [a, b]

}
.

L([a, b]; R) is the Banach space of Lebesgue integrable functions
p : [a, b] → R with the norm

‖p|L =

b∫

a

|p(s)| ds.

L([a, b]; R+) =
{
p ∈ L([a, b]; R) : p(t) ≥ 0 for almost all t ∈ [a, b]

}
.

Lab is the set of linear bounded operators ` : C([a, b]; R) → L([a, b]; R).
Pab is the set of operators ` ∈ Lab transforming the set C([a, b]; R+) into

the set L([a, b]; R+).
Fab is the set of linear bounded functionals h : C([a, b]; R) → R.
PFab is the set of functionals h ∈ Fab transforming the set C([a, b]; R+)

into the set R+.
Throughout the paper, the equalities and inequalities with integrable

functions are understood almost everywhere.
On the interval [a, b], we consider the problem on the existence and

uniqueness of a solution of the equation

u′(t) = `(u)(t) + q(t) (1)

satisfying the boundary condition

u(a) = h(u) + c. (2)

Here we suppose that ` ∈ Lab, q ∈ L([a, b]; R), h ∈ Fab, and c ∈ R. More-

over, it is natural to assume that h̃ 6≡ 0, where h̃(v)
def
= v(a)− h(v).

By a solution of the equation (1) we understand an absolutely continuous
function u : [a, b] → R satisfying the equation (1) almost everywhere in [a, b].

In [4] (see also [5, 9]), the efficient sufficient conditions are given for the
unique solvability of the problem

u′(t) = `(u)(t) + q(t), u(a) = λu(b) + c. (3)

It is clear that the problem (3) is a particular case of (1), (2) with h(v)
def
=

λv(b).
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In this paper, the results from [4] are extended for the problem (1), (2)
with

h(v)
def
= λv(b) + h0(v) − h1(v), h0, h1 ∈ PFab,

i.e., for the case where the boundary condition in (3) is perturbed by a
linear continuous functional h0 − h1 (in general nonlocal).

The paper is organized as follows. In Section 2, we give conditions for
the unique solvability of the problem (1), (2). These results are further
concretized for the problem

u′(t) = p(t)u(τ(t)) + q(t),

b∫

a

u(s) dσ(s) = c, (4)

where p, q ∈ L([a, b]; R), τ : [a, b] → [a, b] is a measurable function, σ :
[a, b] → R is an absolutely continuous function, σ(a) > 0, σ(b) > 0 and
c ∈ R. The assertions formulated in Section 2 are proved in Section 3.

2. Main Results

In what follows, we will assume that the functional h admits the repre-
sentation

h(v) = λv(b) + h0(v)− h1(v),

where λ > 0 and h0, h1 ∈ PFab.
Before the formulation of the results, we introduce some notation. Put

α(h) = (1− h0(1)) min
{
1,

1

λ

}
, (5)

β(h) = (λ− h1(1)) min
{
1,

1

λ

}
, (6)

and define the functions ω0 and ω1 by the formulas

ω0(h, x) =





(x+ 1
λ
h0(1))(1− h0(1))

1− h0(1)− x
−

( 1

λ
h1(1) +

1− λ

λ

)

if λ≤1, (1−λ+h1(1))x<(1−h(1))(1−h0(1))
(x+ h0(1))(1− h0(1))

1− h0(1)− x
− (h1(1) + 1− λ)

if λ≤1, (1−λ+h1(1))x≥(1−h(1))(1−h0(1))
(x+ λ− 1 + h0(1))(1− h0(1))

1− h0(1)− λx
− h1(1)

if λ > 1, λh1(1)x < (1− h(1))(1− h0(1))

(x+ λ−1
λ

+ 1
λ
h0(1))(1− h0(1))

1− h0(1)− λx
−

1

λ
h1(1)

if λ > 1, λh1(1)x ≥ (1− h(1))(1− h0(1))

, (7)
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ω1(h, x) =





(y + h1(1))(1− 1
λ
h1(1))

1− 1
λ
h1(1)− y

− (h0(1) + λ− 1)

if λ≥1, (λ−1+h0(1))y<(h(1)−1)
(
1− 1

λ
h1(1)

)

(y + 1
λ
h1(1))(1− 1

λ
h1(1))

1− 1
λ
h1(1)− y

−
( 1

λ
h0(1) +

λ− 1

λ

)

if λ≥1, (λ−1+h0(1))y≥(h(1)−1)
(
1− 1

λ
h1(1)

)

(y + 1−λ
λ

+ 1
λ
h1(1))(λ − h1(1))

λ− h1(1)− y
−

1

λ
h0(1)

if λ < 1, h0(1)y < (h(1)− 1)(λ− h1(1))
(y + 1− λ+ h1(1))(λ− h1(1))

λ− h1(1)− y
− h0(1)

if λ < 1, h0(1)y ≥ (h(1)− 1)(λ− h1(1))

. (8)

Theorem 2.1. Let ` = `0 − `1 with `0, `1 ∈ Pab,

h(1) ≤ 1 (9)

and

h0(1) < 1, h1(1) ≤ λ. (10)

Let, moreover,

‖`0(1)‖L < α(h), (11)

‖`1(1)‖L < 1 + β(h) + 2
√
α(h)− ‖`0(1)‖L (12)

and

‖`1(1)‖L > ω0(h, ‖`0(1)‖L). (13)

Then the problem (1), (2) has a unique solution.

The following theorem can be regarded as a supplement of the preceding
one.

Theorem 2.2. Let ` = `0 − `1 with `0, `1 ∈ Pab. Let, moreover, the

condition (9) hold,

h1(1) < λ, (14)

‖`1(1)‖L < β(h), (15)

‖`0(1)‖L < 1 + α(h) + 2
√
β(h)− ‖`1(1)‖L (16)

and

‖`0(1)‖L >
α(h)

β(h)− ‖`1(1)‖L

− 1. (17)

Then the problem (1), (2) has a unique solution.

Remark 2.1. Let ` = `0 − `1 with `0, `1 ∈ Pab. Define the operator
ψ : L([a, b]; R) → L([a, b]; R) by setting

ψ(w)(t)
def
= w(a+ b− t) for t ∈ [a, b].
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Let ϕ be the restriction of ψ to the space C([a, b]; R) and

̂̀
i(w)(t)

def
= ψ(`(ϕ(w)))(t) for t ∈ [a, b],

ĥi(w)
def
=

1

λ
hi(ϕ(v)) (i = 0, 1).

It is clear that if u is a solution of the problem (1), (2), then the function

v
def
= ϕ(u) is a solution of the problem

v′(t) = ̂̀
1(v)(t) − ̂̀

0(v)(t), v(a) =
1

λ
v(b) + ĥ1(v)− ĥ0(v), (18)

and vice versa, if v is a solution of the problem (18), then the function u
def
=

ϕ(v) is a solution of the problem (1), (2). Furthermore, ω1(ĥ, x) = ω0(h, x)

and ωo(ĥ, x) = ω1(h, x), where

ĥ(v)
def
=

1

λ
v(b) + ĥ1(v)− ĥ0(v).

Mention also that h(1) ≥ 1 if and only if ĥ(1) ≤ 1.

In view of Remark 2.1, Theorems 2.3 and 2.4 below can be obtained from
Theorems 2.1 and 2.2. Note that in these theorems the condition

h(1) ≥ 1 (19)

is assumed instead of (9).

Theorem 2.3. Let ` = `0−`1 with `0, `1 ∈ Pab, the inequality (19) hold,

and

h0(1) ≤ 1, h1(1) < λ.

Let, moreover, the conditions (15) and (16) be fulfilled and

‖`0(1)‖L > ω1(h, ‖`1(1)‖L),

where ω1 is a function defined by (8). Then the problem (1), (2) has a unique

solution.

Theorem 2.4. Let ` = `0−`1 with `0, `1 ∈ Pab, the inequality (19) hold,

and

h0(1) < 1.

Let, moreover, the conditions (11) and (12) be fulfilled and

‖`1(1)‖L >
β(h)

α(h)− ‖`0(1)‖L

− 1.

Then the problem (1), (2) has a unique solution.

Now we give several corollaries for the problem (4). Recall that in (4)
p, q ∈ L([a, b]; R), τ : [a, b] → [a, b] is a measurable function and σ : [a, b] →
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R is an absolutely continuous function such that σ(a) > 0, σ(b) > 0. We
first introduce the following notation

p0 =

b∫

a

[p(s)σ(s)]− ds, (20)

p1 =

b∫

a

[p(s)σ(s)]+ ds, (21)

α0 = (σ(a)− p0) min
{ 1

σ(a)
,

1

σ(b)

}
, (22)

β1 = (σ(b)− p1) min
{ 1

σ(a)
,

1

σ(b)

}
, (23)

ω̃0(x) = ω0(h, x), ω̃1(x) = ω1(h, x), (24)

where ω0 and ω1 are defined by (7) and (8), respectively, with h(1) =
σ(b)
σ(a) + p0 − p1, h0(1) = p0 and h1(1) = p1.

Corollary 2.1. Let

0 ≤ β0 ≤ α0, α0 > 0,

b∫

a

[p(s)]+ ds < α0, (25)

and

ω̃0

( b∫

a

[p(s)]+

)
<

b∫

a

[p(s)]− ds < 1 + β0 + 2

√√√√√α0 −

b∫

a

[p(s)]+ ds .

Then the problem (4) has a unique solution.

Corollary 2.2. Let

0 < β0 ≤ α0,

b∫

a

[p(s)]− ds < β0, (26)

and

α0

β0 −
b∫
a

[p(s)]− ds

− 1 <

b∫

a

[p(s)]+ ds < 1 + α0 + 2

√√√√√β0 −

b∫

a

[p(s)]− ds .

Then the problem (4) has a unique solution.
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Corollary 2.3. Let

β0 ≥ α0 ≥ 0, β0 > 0,

the condition (26) hold, and

ω̃1

( b∫

a

[p(s)]− ds
)
<

b∫

a

[p(s)]+ ds < 1 + α0 + 2

√√√√√β0 −

b∫

a

[p(s)]− ds .

Then the problem (4) has a unique solution.

Corollary 2.4. Let

β0 ≥ α0 > 0,

the condition (25) hold, and

β0

α0 −
b∫
a

[p(s)]+ ds

<

b∫

a

[p(s)]− ds < 1 + β0 + 2

√√√√√α0 −

b∫

a

[p(s)]+ ds .

Then the problem (4) has a unique solution.

3. Proofs

It is well-known from the general theory of boundary value problems for
functional differential equations that the problem (1), (2) has the so-called
Fredholm property, i.e., the problem (1), (2) is uniquely solvable for arbi-
trary q ∈ L([a, b]; R) and c ∈ R if and only if the corresponding homogeneous
problem

u′(t) = `(u)(t), (27)

u(a) = h(u) (28)

has only the trivial solution (see, e.g., [1], [2], [7], [8], [6], [3]). Therefore, to
prove the theorems, it is suficient to show that the homogeneous problem
(27), (28) has only the trivial solution.

First, we prove the following lemma.

Lemma 3.1. Assume that ` = `0 − `1 with `0, `1 ∈ Pab and

h0(1) ≤ 1, h1(1) ≤ λ. (29)

Let, moreover, either the conditions (11) and (12) or the conditions (15) and

(16) be satisfied. If u is a solution of the homogeneous problem (27), (28),
then there exists δ ∈ {−1, 1} such that

δu(t) ≥ 0 for t ∈ [a, b].
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Proof. Assume that u is a solution of the problem (27), (28) and there exist
t1, t2 ∈ [a, b] such that u(t1)u(t2) < 0. Put

M = max
{
u(t) : t ∈ [a, b]

}
, m = −min

{
u(t) : t ∈ [a, b]

}
, (30)

and choose tM , tm ∈ [a, b] such that

u(tM ) = M, u(tm) = −m. (31)

It is clear that

M > 0, m > 0. (32)

Without loss of generality, we can suppose that tm < tM .
The integration of (27) from a to tm, from tm to tM , and from tM to b,

in view of (30), (31), and the assumption that `0, `1 ∈ Pab, yields

u(a) +m =

tm∫

a

`1(u)(s) ds−

tm∫

a

`0(u)(s) ds ≤

≤M

tm∫

a

`1(1)(s) ds+m

tm∫

a

`0(1)(s) ds, (33)

M +m =

tM∫

tm

`0(u)(s) ds−

tM∫

tm

`1(u)(s) ds ≤

≤M

tM∫

tm

`0(1)(s) ds+m

tM∫

tm

`1(1)(s) ds, (34)

M − u(b) =

b∫

tM

`1(u)(s) ds−

b∫

tM

`0(u)(s) ds ≤

≤M

b∫

tM

`1(1)(s) ds+m

b∫

tM

`0(1)(s) ds. (35)

On the other hand, the condition (28), in view of (30) and the assumption
that h0, h1 ∈ PFab, yields

u(a)− λu(b) = h0(u)− h1(u) ≥ −mh0(1)−Mh1(1).

It follows from (33) and (35) that

M(λ− h1(1)) +m(1− h0(1)) ≤M

( tm∫

a

`1(1)(s) ds+ λ

b∫

tM

`1(1)(s) ds

)
+

+m

( tm∫

a

`0(1)(s) ds+ λ

b∫

tM

`0(1)(s) ds

)
,
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i.e.,

Mβ(h) +mα(h) ≤MB1 +mA1, (36)

where α(h) and β(h) are defined by (5) and (6),

A1 =

∫

J

`0(1)(s) ds, B1 =

∫

J

`1(1)(s) ds (37)

and J = [a, tm] ∪ [tM , b]. Furthermore, (34) results in

M +m ≤MA2 +mB2, (38)

where

A2 =

tM∫

tm

`0(1)(s) ds, B2 =

tM∫

tm

`1(1)(s) ds. (39)

First suppose that the conditions (11) and (12) hold. In that case, we
have h0(1) < 1 (see (11) and (5)). According to (11), it is clear that

A1 < α(h), A2 < 1.

Thus, it follows from (32), (36) and (38) that

B1 > β(h), B2 > 1 (40)

and

(α(h)−A1)(1−A2) ≤ (B1 − β(h))(B2 − 1). (41)

Obviously,

(α(h) −A1)(1−A2) ≥ α(h) − (A1 +A2),

(B1 − β(h))(B2 − 1) ≤
1

4

(
B1 +B2 − 1− β(h)

)2
.

(42)

By virtue of (11), (37), (39) and (42), the inequality (41) yields

0 < 4(α(h)− ‖`0(1)‖L) ≤
(
‖`1(1)‖L − 1− β(h)

)2
,

which, in view of (40), contradicts (12).
Now suppose that the conditions (15) and (16) are satisfied. In that case,

we have h1(1) < λ (see (15) and (6)). According to (15), it is clear that

B1 < β(h), B2 < 1.

Thus, it follows from (32), (36) and (38) that

A1 > α(h), A2 > 1, (43)

and

(β(h)−B1)(1−B2) ≤ (A1 − α(h))(A2 − 1). (44)

Obviously,

(β(h)−B1)(1−B2) ≥ β(h)− (B1 +B2),

(A1 − α(h))(A2 − 1) ≤
1

4

(
A1 +A2 − 1− α(h)

)2
.

(45)



On a Nonlocal BVP for First Order Linear FDE 79

By virtue of (15), (37), (39) and (45), the inequality (44) implies that

0 < 4(β(h)− ‖`1(1)‖L) ≤ (‖`0(1)‖L − 1− α(h))2,

which, in view of (43), contradicts (16). The contradictions obtained prove
the validity of the lemma. �

Proof of Theorem 2.1. As it has been mentioned above, it is sufficient to
show that the homogeneous problem (27), (28) has only the trivial solution.

Assume the contrary, i.e., the problem (27), (28) has a nontrivial solution
u. According to Lemma 3.1, without loss of generality we can assume that

u(t) ≥ 0 for t ∈ [a, b]. (46)

Put

M = max
{
u(t) : t ∈ [a, b]

}
, m = min

{
u(t) : t ∈ [a, b]

}
, (47)

and choose tM , tm ∈ [a, b] such that

u(tM ) = M, u(tm) = m. (48)

Obviously,

M > 0, m ≥ 0, (49)

and either

tM ≤ tm (50)

or

tM > tm. (51)

First suppose that (50) holds. The integration of (27) from a to tM and
from tm to b, in view of (47)–(49) and the assumption that `0, `1 ∈ Pab,
yields

M − u(a) =

tM∫

a

`0(u)(s) ds−

tM∫

a

`1(u)(s) ds ≤M

tM∫

a

`0(1)(s) ds, (52)

u(b)−m =

b∫

tm

`0(u)(s) ds−

b∫

tm

`1(u)(s) ds ≤M

b∫

tm

`0(1)(s) ds. (53)

On account of (47) and the assumption that h0, h1 ∈ PFab, the condition
(28) gives

λu(b)− u(a) = h1(u)− h0(u) ≥ mh1(1)−Mh0(1). (54)

Now from (52)–(54) we get

M(1− h0(1))−m(λ− h1(1)) ≤M

( tM∫

a

`0(1)(s) ds+ λ

b∫

tm

`0(1)(s) ds

)
≤

≤M‖`0(1)‖L

1

min{1, 1
λ
}
,



80 A. Lomtatidze, Z. Opluštil, and J. Šremr

whence, in view of (5), (9) and (49), it follows that

M(α(h)− ‖`0(1)‖L) ≤ mα(h). (55)

Now suppose that (51) holds. The integration of (27) from tm to tM , on
account of (47)–(49) and the assumption that `0, `1 ∈ Pab, results in

M −m =

tM∫

tm

`0(u)(s) ds−

tM∫

tm

`1(u)(s) ds ≤M

b∫

a

`0(1)(s) ds. (56)

By virtue of (9), (10) and (56), it is not difficult to verify that the inequality
(55) is fulfilled.

Therefore, in both cases (50) and (51), the inequality (55) is satisfied.
On the other hand, the integration of (27) from a to b, in view of (47)–(49)
and the assumption that `0, `1 ∈ Pab, yields

u(b)− u(a) =

b∫

a

`0(u)(s) ds−

b∫

a

`1(u)(s) ds ≤

≤M‖`0(1)‖L −m‖`1(1)‖L,

i.e,
m‖`1(1)‖L ≤M‖`0(1)‖L + u(a)− u(b). (57)

Furthermore, the condition (28) implies

u(a)− u(b) = (λ− 1)u(b) + h0(u)− h1(u), (58)

u(a)− u(b) =
(
1−

1

λ

)
u(a) +

1

λ
h0(u)−

1

λ
h1(u). (59)

Suppose first that

λ ≤ 1, (1− λ+ h1(1))‖`0(1)‖L < (1− h(1))(1− h0(1)).

The inequalities (57) and (59), together with (47) and the assumption that
h0, h1 ∈ PFab, result in

m‖`1(1)‖L ≤M‖`0(1)‖L −m
1− λ

λ
+M

1

λ
h0(1)−m

1

λ
h1(1). (60)

Hence, from (55) and (60), by virtue of (11) and (49), we get

(
1− h0(1)− ‖`0(1)‖L

)(
‖`1(1)‖L +

1− λ

λ
+

1

λ
h1(1)

)
≤

≤
(
‖`0(1)‖L +

1

λ
h0(1)

)
(1− h0(1)),

which, in view of (11) and (7), contradicts (13).
Suppose that

λ ≤ 1,
(
1− λ+ h1(1)

)
‖`0(1)‖L ≥ (1− h(1))(1− h0(1)).

The inequalities (57) and (58) together with (47) and the assumption that
h0, h1 ∈ PFab result in

m‖`1(1)‖L ≤M‖`0(1)‖L −m(1− λ) +Mh0(1)−mh1(1). (61)
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Hence, from (55) and (61), by virtue of (11) and (49), we get

(
1− h0(1)− ‖`0(1)‖L

)(
‖`1(1)‖L + 1− λ+ h1(1)

)
≤

≤
(
‖`0(1)‖L + h0(1)

)
(1− h0(1)),

which, in view of (11) and (7), contradicts (13).
Now suppose that

λ > 1, λh1(1)‖`0(1)‖L < (1− h(1))(1− h0(1)).

The inequalities (57) and (58) together with (47) and the assumption that
h0, h1 ∈ PFab result in

m‖`1(1)‖L ≤M‖`0(1)‖L +M(λ− 1) +Mh0(1)−mh1(1). (62)

Hence, from (55) and (62), by virtue of (11) and (49), we get

(
1− h0(1)− λ‖`0(1)‖L

)(
‖`1(1)‖L + h1(1)

)
≤

≤
(
‖`0(1)‖L + λ− 1 + h0(1)

)
(1− h0(1)),

which, in view of (11) and (7), contradicts (13).
Finally, suppose that

λ > 1, λh1(1)‖`0(1)‖L ≥ (1− h(1))(1− h0(1)).

The inequalities (57) and (59) together with (47) and the assumption that
h0, h1 ∈ PFab result in

m‖`1(1)‖L ≤M‖`0(1)‖L +M
λ− 1

λ
+M

1

λ
h0(1)−m

1

λ
h1(1). (63)

Hence, from (55) and (63), by virtue of (11) and (49), we get

(
1− h0(1)− λ‖`0(1)‖L

)(
‖`1(1)‖L +

1

λ
h1(1)

)
≤

≤
(
‖`0(1)‖L +

λ− 1

λ
+

1

λ
h0(1)

)
(1− h0(1)),

which, in view of (11) and (7), contradicts (13).
The contradictions obtained above prove that under the assumptions of

theorem the problem (27), (28) has only the trivial solution. �

Proof of Theorem 2.2. Suppose that the problem (27), (28) has a nontrivial
solution u. According to Lemma 3.1, without loss of generality we can
assume that (46) holds. Define the numbers M and m by (47), and choose
tM , tm ∈ [a, b] such that (48) holds. Obviously, (49) is true and either (50)
or (51) is satisfied.

First suppose that (51) holds. The integration of (27) from a to tm and
from tM to b, in view of (47)–(49) and the assumption that `0, `1 ∈ Pab,
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yields

u(a)−m =

tm∫

a

`1(u)(s) ds−

tm∫

a

`0(u)(s) ds ≤M

tm∫

a

`1(1)(s) ds, (64)

M − u(b) =

b∫

tM

`1(u)(s) ds−

b∫

tM

`0(u)(s) ds ≤M

b∫

tM

`1(1)(s) ds. (65)

The condition (28), in view of (47) and the assumption that h0, h1 ∈ PFab,
implies

u(a)− λu(b) = h0(u)− h1(u) ≥ mh0(1)−Mh1(1). (66)

From (64)–(66), we get

M(λ− h1(1))−m(1− h0(1)) ≤M

( tm∫

a

`1(1)(s) ds+ λ

b∫

tM

`1(1)(s) ds

)
≤

≤M‖`1(1)‖L

1

min{1, 1
λ
}
,

i.e.,

M(β(h)− ‖`1(1)‖L) ≤ mα(h). (67)

Now suppose that (50) holds. The integration of (27) from tM to tm, in
view of (47)–(49) and the assumption that h0, h1 ∈ PFab, results in

M −m =

tm∫

tM

`1(u)(s) ds−

tm∫

tM

`0(u)(s) ds ≤M

b∫

a

`1(1)(s) ds. (68)

Using (9), (14) and (68), one can show that (67) is true.
Therefore, the inequality (67) is satisfied in both cases (50) and (51). On

the other hand, the integration of (27) from a to b, in view of (47)–(49) and
the assumption that `0, `1 ∈ Pab, yields

u(a)− u(b) =

b∫

a

`1(u)(s) ds−

b∫

a

`0(u)(s) ds ≤

≤M‖`1(1)‖L −m‖`0(1)‖L,

i.e.,

m‖`0(1)‖L ≤M‖`1(1)‖L + u(b)− u(a). (69)

The condition (28) implies

u(b)− u(a) = (1− λ)u(b)− h0(u) + h1(u), (70)

u(b)− u(a) =
( 1

λ
− 1

)
u(a)−

1

λ
h0(u) +

1

λ
h1(u). (71)
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Suppose first that λ ≤ 1. The inequalities (69) and (70) together with
(47) and the assumption that h0, h1 ∈ PFab result in

m‖`0(1)‖L ≤M‖`1(1)‖L +M(1− λ)−mh0(1) +Mh1(1). (72)

Hence, from (67) and (72), by virtue of (15) and (49), we get
(
λ− h1(1)− ‖`1(1)‖L

)(
‖`0(1)‖L + h0(1)

)
≤

≤
(
‖`1(1)‖L + 1− λ+ h1(1)

)
(1− h0(1)),

which, in view of (15), contradicts (17).
Let λ > 1. The inequalities (69) and (71) together with (47) and the

assumption that h0, h1 ∈ PFab imply

m‖`0(1)‖L ≤M‖`1(1)‖L −m
λ− 1

λ
−m

1

λ
h0(1) +M

1

λ
h1(1). (73)

Hence, from (67) and (73), by virtue of (15) and (49), we get
(
1−

1

λ
h1(1)− ‖`1(1)‖L

)(
‖`0(1)‖L +

λ− 1

λ
+

1

λ
h0(1)

)
≤

≤
(
‖`1(1)‖L +

1

λ
h1(1)

) 1− h0(1)

λ
,

which, in view of (15), contradicts (17).
The contradiction obtained above proves that under the assumptions of

the theorem, the problem (27), (28) has only the trivial solution. �

Theorems 2.3 and 2.4 follow immediately from Remark 2.1 and Theorems
2.1 and 2.2.

Proof of Corollary 2.1. Let u be a solution of the problem

u′(t) = p(t)u(τ(t)),

b∫

a

u(s) dµ(s) = 0. (74)

It is clear that

b∫

a

u(s) dσ(s) = u(b)σ(b)− u(a)σ(a)−

b∫

a

u′(s)σ(s) ds =

= u(b)σ(b)− u(a)σ(a) −

b∫

a

p(s)σ(s)u(τ(s)) ds.

Hence, in view of (74), we get

u(a) =
σ(b)

σ(a)
u(b)−

b∫

a

p(s)σ(s)u(τ(s)) ds.
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Thus u satisfies (28) with

h(v)
def
= λv(b) + h0(v)− h1(v),

h0(v)
def
=

b∫

a

[p(s)σ(s)]−v(τ(s)) ds,

h1(v)
def
=

b∫

a

[p(s)σ(s)]+v(τ(s)) ds,

λ =
σ(b)

σ(a)
.

Therefore, in view of (20)–(24), the validity of the corollary follows from
Theorem 2.1. �

Corollaries 2.2-2.4 can be proved analogously.
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Technická 2, 616 69 Brno
Czech Republic
E-mail: oplustil@fme.vutbr.cz

J. Šremr
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