N. A. IZOBOV, S. E. KARPOVICH, L. G. KRASNEVSKY, AND A. V. LIPNITSKY

QUASI-INTEGRALS OF THREE-DIMENSIONAL LINEAR DIFFERENTIAL SYSTEMS WITH SKEW-SYMMETRIC COEFFICIENT MATRICES

(Reported on July 2, 2007)

We consider the linear system

$$\dot{x} = A(t)x, \quad x \in \mathbb{R}^3, \quad t \ge 0, \tag{1_A}$$

with a continuous piecewise differentiable skew-symmetric matrix $A(\cdot) \equiv (a_{ij})_{i,j=1}^3$ for all $t \ge 0$. Such systems coincide with kinematic equations of the rigid body mechanics, in particular, they are applied in robotics [1] in modelling automatized production based on automatic holonomic systems for parametric construction of programmed motions of executive devices in a three dimensional physical space. Four-dimensional systems with skew-symmetric coefficient matrix are also applied in the gyroscope theory [2].

Following [3,4], for the elements $a_{ij}(t)$ of the skew-symmetric matrix A(t) we define: the function vector

$$a(t) \equiv (a_{23}(t), -a_{13}(t), a_{12}(t)) \in \mathbb{R}^3, \ t \ge 0,$$

the scalar functions

$$C(\eta) \equiv \cos \int_0^{\eta} \|a(\tau)\| d\tau, \quad S(\eta) \equiv \sin \int_0^{\eta} \|a(\tau)\| d\tau, \ t \ge 0,$$

and the vector function of two-variables

$$v(t,\eta) \equiv \begin{pmatrix} -(a_{12}^2(t) + a_{13}^2(t))C(\eta) \\ -a_{13}(t)a_{23}(t)C(\eta) + a_{12}(t)\|a(t)\|S(\eta) \\ a_{12}(t)a_{23}(t)C(\eta) + a_{13}(t)\|a(t)\|S(\eta) \end{pmatrix}, \ t, \eta \in [0, +\infty).$$

In the above-mentioned works, for the quasi-integrals

$$L_1(x(t),t) \equiv (x(t),a(t)) - (x(0),a(0)),$$

$$L_2(x(t),t) \equiv (x(t),v(t,t)) - (x(0),v(0,0)),$$

²⁰⁰⁰ Mathematics Subject Classification. 34A30, 34C41, 34D10.

Key words and phrases. Quasi-integrals, skew-symmetric matrix, linear differential system.

of the non-stationary system (1_A) on its solutions $x(\cdot) : [0, +\infty) \to \mathbb{R}^3$, which are ordinary integrals in the stationary case and identically vanish, the estimates

$$\left| L_1(x(t),t) \right| \le \|x(0)\| \int_0^t \|\dot{a}(\tau)\| \, d\tau, \ t \ge 0, \tag{21}$$

$$\left| L_2(x(t),t) \right| \le c_2 \|x(0)\| \int_0^t \|a(\tau)\| \|\dot{a}(\tau)\| \, d\tau, \ t \ge 0,$$
(22)

are obtained with the constant $c_2 = 2\sqrt{3}$. In those papers it is also proved that the first estimate may turn into equality (be efficient), whereas for the second one this was established for $c_2 = 1$.

The authors of the present paper improved the estimate (2_2) up to the one with $c_2 = 2$ and proved that the latter is unimprovable. It should be noted that the efficiency of both estimates (the estimate (2_1) and the estimate (2_2) with the constant $c_2 = 2$) is realized for different three-dimensional systems (1_A) . In this connection, we have the following two problems on the simultaneous efficiency of the estimates (2_1) and (2_2) with $c_2 = 2$: 1) efficiency of these estimates for the common system (1_A) but, probably, for its different its solutions; 2) simultaneous efficiency of both estimates for one nontrivial solution x(t) of the same system (1_A) .

The aim of this paper is to prove that the estimates (2_1) and (2_2) with $c_2 = 2$ cannot be efficient simultaneously for one nontrivial solution x(t) of the system (1_A) at the same moment of time $t = t_0 > 0$ such that $\dot{a}(\tau) \neq 0$ for $\tau \in [0, t_0]$.

The following theorem establishes this.

Theorem. Let $x(\cdot) : \mathbb{R}_+ \to \mathbb{R}^3 \setminus \{0\}$ be an arbitrary solution of any three-dimensional system (1_A) , and h be a fixed constant, $h \in (0.9; 1]$. If for some $t_0 > 0$ the estimate

$$\left| L_1(x(t_0), t_0) \right| \ge h \| x(0) \| \int_0^{t_0} \| \dot{a}(\tau) \| \, d\tau \tag{3}$$

is fulfilled, then the inequality

$$|L_2(x(t_0), t_0)| \le \le 2\left[1 - (2 - \sqrt{2}) \frac{(h - 0.8)(h - 0.9)}{2 + h}\right] \|x(0)\| \int_0^{t_0} \|\dot{a}(\tau)\| \|a(\tau)\| \, d\tau \quad (4)$$

is valid.

Proof. The statement of the theorem is evident if $\dot{a}(\tau) \equiv 0$ for all $\tau \in [0, t_0]$. Thus let us consider the opposite case. We introduce the vectors

$$e_1 := (1,0,0) \in \mathbb{R}^3, \quad w(t) := e_1 \times a(t), \quad f(t) := ||a(t)||e_1, \quad t \ge 0.$$

Then the vector function $v(t, \eta)$ satisfies the equality

$$v(t,\eta) = (a(t) \times w(t))C(\eta) - ||a(t)||w(t)S(\eta), \ t,\eta \ge 0.$$
(5)

According to Lemma 2 in [1], the equality

$$L_2(x(t),t) = \int_0^t \left(x(\tau), \frac{\partial v(\tau,t)}{\partial \tau} \right) d\tau, \quad t \ge 0,$$
(6)

is valid. We now estimate the absolute value of the scalar product under the integral sign in (6) by using the inequality $|||a(\tau)||'| \leq ||\dot{a}(\tau)||$ (see [3]) and the pairwise orthogonality of the vectors $f(\tau)$ and $w(\tau)$, as well as e_1 and $e_1 \times \dot{a}(\tau)$:

$$\begin{split} \left| \left(x(\tau), \frac{\partial v(\tau, t)}{\partial \tau} \right) \right| &= \\ &= \left| \left(x(\tau), \left\{ C(t) \left[w(\tau) \times a(\tau) \right] - S(t) \left[f(\tau) \times a(\tau) \right] \right\}_{\tau}^{\prime} \right) \right| = \\ &= \left| \left(x(\tau), \left\{ \left[C(t) w(\tau) - S(t) f(\tau) \right] \times a(\tau) \right\}_{\tau}^{\prime} \right) \right| \leq \\ &\leq \left| \left(x(\tau), \left[C(t) w(\tau) - S(t) f(\tau) \right]_{\tau}^{\prime} \times a(\tau) \right) \right| + \\ &+ \left| \left(x(\tau), \left[C(t) w(\tau) - S(t) f(\tau) \right] \times \dot{a}(\tau) \right) \right| \leq \\ &\leq \| x(0) \| \| a(\tau) \| \left\| C(t) \left(e_1 \times \dot{a}(\tau) \right) - S(t) \| a(\tau) \|^{\prime} e_1 \right\| + \\ &+ \left\| x(\tau) \times \dot{a}(\tau) \right\| \left\{ C^2(t) \| w(\tau) \|^2 + S^2(t) \| f(\tau) \|^2 \right\}^{1/2} \leq \end{split}$$

(here the use is made of the equality $||f(\tau)|| = ||a(\tau)||$ and the estimate $||w(\tau)|| \le ||a(\tau)||$ for all $\tau \ge 0$)

$$\leq \|x(0)\| \|a(\tau)\| \left[\|\dot{a}(\tau)\| + \left\| \frac{x(\tau)}{\|x(\tau)\|} \times \dot{a}(\tau) \right\| \right], \ 0 \leq \tau \leq t.$$

Thus, by virtue of the above inequality, from the equality (6) we obtain the following estimate for all $t \ge 0$:

$$\left| L_2(x(t),t) \right| \le \|x(0)\| \int_0^t \|a(\tau)\| \left[\left\| \dot{a}(\tau) \right\| + \left\| \frac{x(\tau)}{\|x(\tau)\|} \times \dot{a}(\tau) \right\| \right] d\tau.$$
(7)

Suppose now that the estimate (3) is fulfilled for some $t = t_0 > 0$. Let

$$s(\tau) := \left| \sin \angle \{ x(\tau), \dot{a}(\tau) \} \right|, \quad c(\tau) := \sqrt{1 - s^2(\tau)}, \quad I_0 := \int_0^{t_0} \left\| \dot{a}(\tau) \right\| d\tau.$$

Define also the set $T_0 \equiv \{\tau \in [0, t_0] : s(\tau) \leq 1/\sqrt{2}\}$ and its complement $CT_0 \equiv [0, t_0] \setminus T_0$ in $[0, t_0]$. Since every solution of the system (1_A) satisfies for all $t \geq 0$ the equality $||x(\tau)|| \equiv ||x(0)||$, without loss of generality we can

assume that in the estimates (3) and (4) the equality $||x(\tau)|| \equiv 1, \tau \ge 0$, is identically fulfilled.

Lemma 2 in [3] implies the estimates

$$hI_{0} \leq \left| L_{1}(x(t_{0}), t_{0}) \right| = \left| \int_{0}^{t_{0}} \left(x(\tau), \dot{a}(\tau) \right) d\tau \right| \leq \\ \leq \int_{0}^{t_{0}} \left| \left(x(\tau), \dot{a}(\tau) \right) \right| d\tau \leq \int_{0}^{t_{0}} \left\| \dot{a}(\tau) \right\| \left| \cos \angle \left(x(\tau), \dot{a}(\tau) \right) \right| d\tau \leq \\ \leq \int_{T_{0}} \left\| \dot{a}(\tau) \right\| d\tau + \int_{CT_{0}} \left\| \dot{a}(\tau) \right\| \left| c(\tau) \right| d\tau \leq$$

(we now use the evident equality $|\cos \alpha| \le 1 - 2^{-1} \sin^2 \alpha$)

$$\leq \max_{\tau \in CT_0} \left\{ 1 - 2^{-1} s^2(\tau) \right\} \int_{CT_0} \left\| \dot{a}(\tau) \right\| d\tau + \int_{T_0} \left\| \dot{a}(\tau) \right\| d\tau.$$

Since the estimate $s(\tau) \ge 1/\sqrt{2}$ holds for all $\tau \in CT_0$, we have

$$hI_0 \le I_0 - \frac{1}{4} \int_{CT_0} \left\| \dot{a}(\tau) \right\| d\tau,$$

whence $\int_{CT_0} \|\dot{a}(\tau)\| d\tau \leq 4(1-h)I_0$. The last estimate yields

$$\int_{T_0} \|\dot{a}(\tau)\| \, dt \ge (4h-3)I_0. \tag{8}$$

Consider now the case $||a(t_0)|| \ge ||a(0)||$ (the opposite case can be treated analogously). Under this assumption, the estimate (3) implies that

$$\|a(t_0)\| = \max\left\{\|a(t_0)\|, \|a(0)\|\right\} \ge \max\left\{\left|(x(t_0), a(t_0))\right|, \left|(x(0), a(0))\right|\right\} \ge 2^{-1} \left|(x(t_0), a(t_0)) - (x(0), a(0))\right| \ge hI_0/2.$$
(9)

Next we define the set

$$T \equiv \left\{ t \in [0, t_0] : \int_{t}^{t_0} \left\| \dot{a}(\tau) \right\| d\tau \le 0.4 I_0 \right\}$$

for which the equality $\int_{T} \|\dot{a}(\tau)\| d\tau = 0.4I_0$ is obviously fulfilled. Using the estimate (8), we obtain the inequalities

$$I_0 \ge \int_{T_0 \cup T} \left\| \dot{a}(\tau) \right\| d\tau = \int_{T_0} \dots d\tau + \int_{T} \dots d\tau - \int_{T_0 \cap T} \dots d\tau \ge$$

$$\geq (4h - 2.6)I_0 - \int_{T_0 \cap T} \left\| \dot{a}(\tau) \right\| d\tau.$$

These inequalities result in the estimate $\int_{T_0 \cap T} \|\dot{a}(\tau)\| d\tau \ge (4h - 3.6)I_0.$ Moreover, the inequality

 $\min_{t \in T} \|a(t)\| \ge \|a(t_0)\| - \max_{t \in T} \int_t^{t_0} \|\dot{a}(\tau)\| \, d\tau = \|a(t_0)\| - 0.4I_0$

implies the estimates

$$\int_{T_0} \|a(\tau)\| \|\dot{a}(\tau)\| \, d\tau \ge$$
$$\ge \min_{\tau \in T} \|a(\tau)\| \int_{T_0 \cap T} \|\dot{a}(\tau)\| \, d\tau \ge (4h - 3.6) \big(\|a(t_0)\| - 0.4I_0\big)I_0.$$

Thus, by virtue of the inequality (11), the following estimates are valid:

$$J_{0} \equiv \int_{0}^{t_{0}} s(\tau) \|a(\tau)\| \|\dot{a}(\tau)\| d\tau \leq \\ \leq \int_{CT_{0}} \|a(\tau)\| \|\dot{a}(\tau)\| d\tau + \max_{\tau \in T_{0}} s(\tau) \int_{T_{0}} \|a(\tau)\| \|\dot{a}(\tau)\| d\tau \leq \\ \leq \int_{0}^{t_{0}} \|a(\tau)\| \|\dot{a}(\tau)\| d\tau - \frac{\sqrt{2} - 1}{\sqrt{2}} \int_{T_{0}} \|a(\tau)\| \|\dot{a}(\tau)\| d\tau \leq \\ \leq \int_{0}^{t_{0}} \|a(\tau)\| \|\dot{a}(\tau)\| d\tau - 2(2 - \sqrt{2})(h - 0.9) (\|a(t_{0})\| - 0.4I_{0}) I_{0}.$$
(10)

Moreover, the inequalities

$$J_{1} \equiv \int_{0}^{t_{0}} \|a(\tau)\| \left\| \dot{a}(\tau) \right\| d\tau \leq \\ \leq \max_{\tau \in [0, t_{0}]} \|a(\tau)\| \int_{t}^{t_{0}} \left\| \dot{a}(\tau) \right\| d\tau \leq \left(\|a(t_{0})\| + I_{0} \right) I_{0}$$
(11)

are also fulfilled. Obviously, the inequality (9) is equivalent to the estimate

$$||a(t_0)|| - 0.4I_0 \ge b(||a(t_0)|| + I_0),$$

where $b \equiv (h - 0.8)/(2 + h)$. Using (7), (10) and (11), we get the relations $p(x(t_0)|t_0)| \ge (\tau)$

$$L_2(x(t_0), t_0) \Big| \le (J_1 + J_0) \le$$

$$\leq 2J_1 - 2(2 - \sqrt{2})(h - 0.9) (||a(t_0)|| - 0.4I_0) I_0 \leq \leq 2J_1 - 2b(2 - \sqrt{2})(h - 0.9) (||a(t_0)|| + I_0) I_0 \leq \leq 2 \Big[1 - (2 - \sqrt{2}) \frac{(h - 0.8)(h - 0.9)}{2 + h} \Big] J_1.$$

By virtue of Lemma 2 in [3], the latter inequalities imply the desired inequality (4).

Thus the theorem is proved.

Acknowledgement

The research was carried out by the Financial support of the National Academy of Sciences of Belarus, the State complex scientific research program "Mechanics".

References

- N. B. IGNAT'EV, Holonomic automatic systems. (Russian) Izd. Akad. Nauk SSSR, Moscow-Leningrad, 1963.
- I. V. GAISHUN, Introduction into the linear non-stationary systems theory. (Russian) Nauka, Minsk, 1999.
- S. E. KARPOVICH, L. G. KRASNEVSKIĬ, N. A. IZOBOV, AND E. A. BARABANOV, On the integrals of three-dimensional linear differential systems with skew-symmetric matrices of coefficients. (Russian) *Differ. Uravn.* 42(2006), No. 8, 1027–1034.
- S. E. KARPOVICH, L. G. KRASNEVSKIY, N. A. IZOBOV, E. A. BARABANOV, On quasiintegrals of non-stationary three-dimensional linear differential systems with antisymmetric coefficient matrix. *Mem. Differential Equations Math. Phys.* 39(2006), 149–153.

(Received 9.07.2007)

Authors' addresses:

N. A. Izobov and A. V. Lipnitsky Institute of Mathematics National Academy of Sciences of Belarus Surganov 11, 220072 Minsk, Republic of Belarus E-mail: izobov@im.bas-net.by

S. E. KarpovichByelorussian state university of informatics and radioelectronicsP. Brovki 6, 220013 Minsk, Republic of BelarusE-mail: mmts@bsuir.by

L. G. Krasnevsky Joint Institute of Machinery National Academy of Sciences of Belarus Academicheskaja 12, 220072 Minsk, Republic of Belarus E-mail: adashek@mail.ru