Memoirs on Differential Equations and Mathematical Physics $$\rm Volume$ 40, 2007, 135–157

Svatoslav Staněk

NONLOCAL SINGULAR BOUNDARY VALUE PROBLEMS FOR EVEN-ORDER DIFFERENTIAL EQUATIONS

Abstract. Differential equations of the type $x^{(2n)} = f(t, x, ..., x^{(2n-1)})$ are considered. Here a positive function f satisfies local Carathéodory conditions on a subset of $[0,T] \times \mathbb{R}^{2n}$ and f may be singular at the value 0 of all its phase variables. The paper presents conditions guaranteeing the existence of a solution of the above differential equation satisfying nonlocal boundary conditions whose special case are the (2p, 2n - 2p) right focal boundary conditions $x^{(j)}(0) = 0$ for $0 \le j \le 2p - 1$ and $x^{(j)}(T) = 0$ for $2p \le j \le 2n - 1$, where $p \in \mathbb{N}$, $1 \le p \le n - 1$.

2000 Mathematics Subject Classification. 34B16, 34B15.

Key words and phrases. Singular boundary value problem, evenorder differential equation, nonlocal boundary conditions, focal boundary conditions, existence.

անդեպիս, դանտեսալի պա $x^{(2n)} = f(t, x, \ldots, x^{(2n-1)})$ ծրև և բրազդան նշատ $x^{(2n)}$ արտ $x^{(2n)} = f(t, x, \ldots, x^{(2n-1)})$ ծրև և բրազդան նշատ $x^{(2n)}$ արտ f արտ f արտ $x^{(2n-1)}$ ծրազ թերջներ, հարտ f արտ f արտ

1. INTRODUCTION

Let T be a positive number and $\mathbb{X} = (0, \infty) \times (\mathbb{R} \setminus \{0\}) \subset \mathbb{R}^2$. Let \mathcal{A} denote the set of functionals $\phi : C^0[0,T] \to \mathbb{R}$ which are

(i) continuous, $\phi(0) = 0$ and

(ii) increasing, that is, $x, y \in C^0[0, T], x < y$ on $[0, T] \Rightarrow \phi(x) < \phi(y)$.

Consider the differential equation

$$x^{(2n)}(t) = f(t, x(t), \dots, x^{(2n-1)}(t)), \qquad (1.1)$$

where n > 1, a positive function f satisfies local Carathéodory conditions on $[0,T] \times \mathbb{X}^n$ $(f \in Car([0,T] \times \mathbb{X}^n))$ and f may be singular at the value 0 of all its phase variables.

Let $p \in \mathbb{N}$, $1 \le p \le n - 1$. In literature the equation (1.1) together with the boundary conditions

$$x^{(i)}(0) = 0, \quad 0 \le i \le 2p - 1 x^{(i)}(T) = 0, \quad 2p \le i \le 2n - 1$$
 (1.2)

is called the (2p, 2n - 2p) right focal boundary value problem.

In the papers [2]–[5], [8], [10]–[12] and references therein the authors discussed the (p, n-p) focal problem for regular differential equations ([8], [12]) or differential equations with singularities in the phase variables ([2]–[5], [10], [11]) or differential equations with singularities in the time variables ([1, [9]). The papers [3], [4] and [12] discuss the existence of one and multiple solutions.

The boundary conditions (1.2) can be written in the equivalent form

$$x^{(2i_0-1)}(0) = 0, \quad x^{(2k_0-1)}(T) = 0,$$

where $i_0 \in \{1, \dots, p\}, \quad k_0 \in \{p+1, \dots, n\},$
$$\min\left\{\sum_{j=0}^{2p-1} |x^{(j)}(t)| : \ 0 \le t \le T\right\} = 0,$$

$$\min\left\{\sum_{j=2p}^{2n-1} |x^{(j)}(t)| : \ 0 \le t \le T\right\} = 0.$$

Let $\alpha, \beta \in [0, T]$. Then the boundary conditions

$$x^{(i)}(\alpha) = 0, \quad 0 \le i \le 2p - 1 x^{(i)}(\beta) = 0, \quad 2p \le i \le 2n - 1$$
 (1.3)

are a natural generalization of the focal (2p, 2n - 2p) boundary conditions (1.2). If $\alpha = \beta$, we obtain the initial conditions. There are two main ways for determining α and β in (1.3). Namely, either α , β are given in advance or α , β depend on solutions of the considered problem and their derivatives. The second way is used in this paper. We discuss the nonlocal boundary

conditions

$$\begin{array}{l}
\left\{ \phi_{1}(x^{(2i_{0}-1)}) = 0, \quad \phi_{2}(x^{(2k_{0}-1)}) = 0 \\
\text{where } i_{0} \in \{1, \dots, p\}, \quad k_{0} \in \{p+1, \dots, n\} \text{ and } \phi_{1}, \phi_{2} \in \mathcal{A}, \end{array} \right\} \quad (1.4)$$

$$\min \left\{ \sum_{j=0}^{2p-1} |x^{(j)}(t)| : 0 \le t \le T \right\} = 0,$$

$$\min \left\{ \sum_{j=2p}^{2n-1} |x^{(j)}(t)| : 0 \le t \le T \right\} = 0.$$

A function $x \in AC^{2n-1}[0,T]$ (the set of functions having absolutely continuous (2n-1)st derivatives on [0,T]) is said to be a solution of the problem (1.1), (1.4), (1.5) if x satisfies the boundary conditions (1.4), (1.5) and (1.1)holds a.e. on [0,T].

The aim of this paper is to give conditions on the function f in (1.1) which guarantee the solvability of the problem (1.1), (1.4), (1.5) for each $p \in \{1, \ldots, n-1\}, i_0 \in \{1, \ldots, p\}, k_0 \in \{p+1, \ldots, n\}$ and $\phi_1, \phi_2 \in \mathcal{A}$.

We note that our boundary conditions are nonlocal and that all solutions to the problem (1.1), (1.4), (1.5) and their derivatives 'pass through' the singular points of f at some inner points α, β in (0, T) depending on $\phi_1, \phi_2 \in$ \mathcal{A} and i_0, k_0 (of course if $\alpha, \beta \in (0, T)$). Our existence result for the problem (1.1), (1.4), (1.5) is obtained by combination of regularization and sequential techniques. Existence results for auxiliary regular problems are proved by *a priori* bounds for their solutions and the topological transversality principle (see [6], [7]). In limit processes, a combination of the Fatou theorem with the Lebesgue dominated convergence theorem is used.

Notice that if x is a solution of the problem (1.1), (1.4), (1.5), then (1.4)yields $x^{(2i_0-1)}(\alpha) = 0$ and $x^{(2k_0-1)}(\beta) = 0$ for some unique $\alpha, \beta \in [0,T]$ (see Lemma 3.4) and (1.5) shows that x satisfies (1.3). Also from f being positive on $[0,T] \times \mathbb{X}^n$ we deduce that any solution x of the problem (1.1), (1.4), (1.5)satisfies

 $\min\left\{x^{(2j)}(t): \ 0 \le t \le T\right\} = 0 \text{ for } 0 \le j \le n-1.$

We observe that the boundary conditions (1.2) are a special case of (1.4), (1.5) with $\phi_1, \phi_2 \in \mathcal{A}$ defined by $\phi_1(x) = x(0)$ and $\phi_2(x) = x(T)$ for $x \in C^0[0,T]$.

Throughout the paper we will use the following assumptions:

 $(H_1) f \in Car([0,T] \times \mathbb{X}^n)$ and there exists a positive constant a such that

$$a \le f(t, x_0, \dots, x_{2n-1})$$

for a.e. $t \in [0,T]$ and all $(x_0,\ldots,x_{2n-1}) \in \mathbb{X}^n$; (H₂) For a.e. $t \in [0,T]$ and all $(x_0,\ldots,x_{2n-1}) \in \mathbb{X}^n$,

$$f(t, x_0, \dots, x_{2n-1}) \le \sum_{j=0}^{2n-1} h_j(|x_j|) + \omega\left(t, \sum_{j=0}^{2n-1} |x_j|\right),$$

where $h_j \in C^0(0, \infty)$ is positive and nonincreasing, $\omega \in Car([0, T] \times (0, \infty))$ is positive and nondecreasing in the second variable,

$$\int_{0}^{1} h_{j}(s^{2n-j}) \, ds < \infty \quad \text{for} \quad 0 \le j \le 2n-2,$$

$$\lim_{u \to \infty} h_{2n-1}(u) = c > 0$$
(1.6)

and

$$\limsup_{u \to \infty} \left(\int_{0}^{u} \frac{ds}{h_{2n-1}(s)} \right)^{-1} \int_{0}^{T} \omega(t, Qu) \, dt < c \tag{1.7}$$

with

$$Q = \begin{cases} \frac{T^{2n} - 1}{T - 1} & \text{if } T \neq 1\\ 2n & \text{if } T = 1 \end{cases}.$$
 (1.8)

Remark 1.1. From the properties of the function h_{2n-1} given in (H_2) it follows that $\int_{0}^{b} \frac{1}{h_{2n-1}(s)} ds < \infty$ for all b > 0 and

$$\lim_{n \to \infty} \frac{1}{u} \int_{0}^{u} \frac{ds}{h_{2n-1}(s)} = \frac{1}{c} \,.$$

Throughout the paper $||x|| = \max\{|x(t)|: 0 \le t \le T\}, ||x||_L = \int_0^T |x(t)| dt$ and $||x||_{\infty} = \operatorname{ess}\max\{|x(t)|: 0 \le t \le T\}$ stand for the norm in $C^0[0,T]$, $L_{\tau}[0,T]$ and the set $L_{\tau}[0,T]$ of measurable and essentially bounded func-

and $\|x\|_{\infty} = \operatorname{css} \max\{|x(t)|: 0 \leq t \leq T\}$ stand for the norm in C [5, T], $L_1[0,T]$ and the set $L_{\infty}[0,T]$ of measurable and essentially bounded functions on [0,T], respectively.

The paper is organized as follows. In Section 2 we introduce a family of auxiliary regular differential equations. Section 3 is devoted to the study of auxiliary regular problems. We first present results (Lemmas 3.1–3.6) which are used in the next part of this section. Then we establish a priori bounds for solutions of auxiliary problems (Lemma 3.7) and prove their existence (Lemma 3.8). We also show that the sequence of (2n - 1)st derivatives of solutions to auxiliary problems is equicontinuous on [0, T] (Lemma 3.9). Section 4 contains the main existence results for the problem (1.1), (1.4), (1.5) (Theorem 4.1). An example illustrates our theory (Example 4.2).

2. Auxiliary Regular Problems

Let the assumption (H_1) be satisfied. For $m \in \mathbb{N}$, define \mathbb{R}_m and $f_m \in Car([0,T] \times \mathbb{R}^{2n})$ by the formulas

$$\mathbb{R}_m = \left(-\infty, -\frac{1}{m}\right] \cup \left[\frac{1}{m}, \infty\right),$$
$$f_m(t, x_0, x_1, x_2, \dots, x_{2n-1}) =$$

$$\begin{cases} f(t, x_0, x_1, x_2, \dots, x_{2n-1}) \\ \text{for } (x_0, x_1, x_2, \dots, x_{2n-1}) \in \left(\left[\frac{1}{m}, \infty\right) \times \mathbb{R}_m\right)^n, \ t \in [0, T], \\ f\left(t, \frac{1}{m}, x_1, \frac{1}{m}, \dots, x_{2n-1}\right) \text{ for } t \in [0, T], \ x_1, x_3, \dots, x_{2n-1} \in \mathbb{R}_m, \\ x_0, x_2, \dots, x_{2n-2} \in \left(-\infty, \frac{1}{m}\right), \\ \frac{m}{2} \left[f_m\left(t, x_0, \frac{1}{m}, x_2, \dots, x_{2n-1}\right)\left(x_1 + \frac{1}{m}\right) - \\ -f_m\left(t, x_0, -\frac{1}{m}, x_2, \dots, x_{2n-1}\right)\left(x_1 - \frac{1}{m}\right)\right] \\ \text{for } (t, x_0, x_2, \dots, x_{2n-1}) \in [0, T] \times \mathbb{R} \times (\mathbb{R} \times \mathbb{R}_m)^{n-1}, \\ x_1 \in \left(-\frac{1}{m}, \frac{1}{m}\right), \\ \vdots \\ \frac{m}{2} \left[f_m\left(t, x_0, \dots, x_{2i-2}, \frac{1}{m}, x_{2i}, \dots, x_{2n-1}\right)\left(x_{2i-1} + \frac{1}{m}\right) - \\ -f_m\left(t, x_0, \dots, x_{2i-2}, -\frac{1}{m}, x_{2i}, \dots, x_{2n-1}\right)\left(x_{2i-1} - \frac{1}{m}\right)\right] \\ \text{for } (t, x_0, \dots, x_{2i-2}, x_{2i}, \dots, x_{2n-1}) \in [0, T] \times \mathbb{R}^{2i-1} \times (\mathbb{R} \times \mathbb{R}_m)^{n-i}, \\ x_{2i-1} \in \left(-\frac{1}{m}, \frac{1}{m}\right), \\ \vdots \\ \frac{m}{2} \left[f_m\left(t, x_0, x_1, \dots, x_{2n-2}, \frac{1}{m}\right)\left(x_{2n-1} + \frac{1}{m}\right) - \\ -f_m\left(t, x_0, x_1, \dots, x_{2n-2}, -\frac{1}{m}\right)\left(x_{2n-1} - \frac{1}{m}\right)\right] \\ \text{for } (t, x_0, x_1, \dots, x_{2n-2}, -\frac{1}{m})\left(x_{2n-1} - \frac{1}{m}\right)\right] \\ \text{for } (t, x_0, x_1, \dots, x_{2n-2}) \in [0, T] \times \mathbb{R}^{2n-1}, \ x_{2n-1} \in \left(-\frac{1}{m}, \frac{1}{m}\right). \end{cases}$$

Then

$$a \le f_m(t, x_0, \dots, x_{2n-1})$$
 (2.1)

for a.e. $t \in [0,T]$ and all $(x_0, \ldots, x_{2n-1}) \in \mathbb{R}^{2n}$, $m \in \mathbb{N}$. Consider the family of the regular differential equations

$$x^{(2n)}(t) = (1 - \lambda)a + \lambda f_m(t, x(t), \dots, x^{(2n-1)}(t))$$
(2.2)^{\lambda}_m

depending on the parameters $\lambda \in [0, 1]$ and $m \in \mathbb{N}$. Then (see (2.1))

$$a \le (1-\lambda)a + \lambda f_m(t, x_0, \dots, x_{2n-1}) \tag{2.3}$$

for a.e. $t \in [0,T]$ and all $(x_0, \ldots, x_{2n-1}) \in \mathbb{R}^{2n}, \lambda \in [0,1], m \in \mathbb{N}$. The assumption (H_2) implies that

$$(1-\lambda)a + \lambda f_m(t, x_0, \dots, x_{2n-1}) \le \sum_{j=0}^{2n-1} h_j(|x_j|) + \omega \left(t, 2n + \sum_{j=0}^{2n-1} |x_j|\right)$$
(2.4)

for a.e. $t \in [0,T]$ and all $(x_0, ..., x_{2n-1}) \in (\mathbb{R} \setminus \{0\})^{2n}, \lambda \in [0,1], m \in \mathbb{N}.$

3. Auxiliary Results

Let the assumption (H_1) be satisfied. For $m \in \mathbb{N}$ and $\lambda \in [0, 1]$, define the operator $\mathcal{K}_{m,\lambda}: C^{2n-1}[0,T] \to L_1[0,T]$ by the formula

$$(\mathcal{K}_{m,\lambda}x)(t) = (1-\lambda)a + \lambda f_m\big(t, x(t), \dots, x^{(2n-1)}(t)\big).$$
(3.1)

The following five lemmas are needed in the second part of this section.

Lemma 3.1. Let (H_1) hold. Let $\phi_2 \in \mathcal{A}$, $m \in \mathbb{N}$ and $k \in \{p+1, \ldots, n\}$. Then for each $x \in C^{2n-1}[0,T]$ and $\lambda \in [0,1]$, there exists a unique solution $\beta_0 = \beta_0(x,\lambda) \in [0,T]$ of the equation

$$S_k(\beta; x, \lambda) = 0, \tag{3.2}$$

where

$$S_k(\beta; x, \lambda) = \phi_2 \left(\frac{1}{(2n-2k)!} \int_{\beta}^{t} (t-s)^{2(n-k)} (\mathcal{K}_{m,\lambda} x)(s) \, ds \right).$$
(3.3)

In addition, β_0 is a continuous function of x and λ .

Proof. Choose $x \in C^{2n-1}[0,T]$ and $\lambda \in [0,1]$. By (2.3), $(\mathcal{K}_{m,\lambda}x)(t) \geq a$ for a.e. $t \in [0,T]$ and consequently

$$\int_{0}^{t} (t-s)^{2(n-k)} (\mathcal{K}_{m,\lambda}x)(s) \, ds \ge 0, \quad \int_{T}^{t} (t-s)^{2(n-k)} (\mathcal{K}_{m,\lambda}x)(s) \, ds \le 0$$

for $t \in [0, T]$. Hence $S_k(0; x, \lambda) \ge 0$ and $S_k(T; x, \lambda) \le 0$ and since $S_k(\cdot; x, \lambda)$ is a continuous function on [0, T], there exists a solution $\beta_0 \in [0, T]$ of (3.2). In order to prove the uniqueness of β_0 , assume that $S_k(\beta_1; x, \lambda) = 0$ for some $\beta_1 \in [0, T], \beta_1 \ne \beta_0$. If

$$\int_{\beta_1}^{t_0} (t_0 - s)^{2(n-k)} (\mathcal{K}_{m,\lambda} x)(s) \, ds = \int_{\beta_0}^{t_0} (t_0 - s)^{2(n-k)} (\mathcal{K}_{m,\lambda} x)(s) \, ds$$

for some $t_0 \in [0, T]$, then

$$\int_{\beta_1}^{\beta_0} (t_0 - s)^{2(n-k)} (\mathcal{K}_{m,\lambda} x)(s) \, ds = 0,$$

contrary to $(t_0 - s)^{2(n-k)}(\mathcal{K}_{m,\lambda}x)(s) \ge (t_0 - s)^{2(n-k)}a$ for a.e. $s \in [0,T]$. Hence

$$\int_{\beta_1}^t (t-s)^{2(n-k)} (\mathcal{K}_{m,\lambda}x)(s) \, ds - \int_{\beta_0}^t (t-s)^{2(n-k)} (\mathcal{K}_{m,\lambda}x)(s) \, ds \neq 0$$

for $t \in [0, T]$, and then $S_k(\beta_1; x, \lambda) \neq S_k(\beta_0; x, \lambda)$, contrary to our assumption $S_k(\beta_1; x, \lambda) = 0$.

Let now $\{(x_j, \lambda_j)\} \subset C^{2n-1}[0, T] \times [0, 1]$ be convergent, $\lim_{j \to \infty} (x_j, \lambda_j) = (x_0, \lambda_0)$. Let $\beta_j \in [0, T]$ and $\beta_0 \in [0, T]$ be the unique solution of $S_k(\beta; x_j, \lambda_j) = 0$ and $S_k(\beta; x_0, \lambda_0) = 0$, respectively. If $\{\beta_{j_n}\}$ is a convergent subsequence of $\{\beta_j\}$, $\lim_{n \to \infty} \beta_{j_n} = \Lambda$, then from the continuity of ϕ_2 , $f_m \in Car([0, T] \times \mathbb{R}^{2n})$ and the Lebesgue dominated convergence theorem we get $0 = \lim_{n \to \infty} S_k(\beta_{j_n}, x_{j_n}, \lambda_{j_n}) = S_k(\Lambda; x_0, \lambda_0)$. Consequently $\Lambda = \beta_0$. We have proved that any convergent subsequence of $\{\beta_j\}$ has the same limit β_0 . Therefore $\lim_{j \to \infty} \beta_j = \beta_0$, which shows that the solution of (3.2) depends continuously on x and λ .

Lemma 3.2. Let (H_1) hold. Let $\phi_1 \in \mathcal{A}$, $m \in \mathbb{N}$, $i \in \{1, \ldots, p\}$ and $k \in \{p + 1, \ldots, n\}$. Then for each $x \in C^{2n-1}[0,T]$ and $\lambda \in [0,1]$, there exists a unique solution $\alpha_0 = \alpha_0(x,\lambda) \in [0,T]$ of the equation

$$V_i(\alpha; x, \lambda) = 0, \tag{3.4}$$

where

$$V_{i}(\alpha; x, \lambda) = \phi_{1}(\mathcal{L}(\alpha; x, \lambda)), \qquad (3.5)$$
$$\mathcal{L}(\alpha; x, \lambda)(t) = \frac{1}{(2(n-p)-1)!(2p-2i)!} \times \int_{\alpha}^{t} (t-s)^{2(p-i)} \int_{\beta_{0}}^{s} (s-v)^{2(n-p)-1}(\mathcal{K}_{m,\lambda}x)(v) \, dv \, ds,$$

and $\beta_0 = \beta_0(x, \lambda) \in [0, T]$ is the unique solution of (3.2). In addition, α_0 is a continuous function of x and λ .

Proof. Choose $x \in C^{2n-1}[0,T]$ and $\lambda \in [0,1]$. (H_1) and (2.1) show that $V_i(\cdot; x, \lambda)$ is continuous on [0,T] and $\mathcal{L}(0; x, \lambda)(t) \geq 0$, $\mathcal{L}(T; x, \lambda)(t) \leq 0$ for $t \in [0,T]$. Hence $V_i(0; x, \lambda) \geq 0$, $V_i(T; x, \lambda) \leq 0$, and therefore $V_i(\alpha_0; x, \lambda) = 0$ for an $\alpha_0 \in [0,T]$. Essentially the same reasoning as in the proof of Lemma 3.1 implies that $V_i(\cdot; x, \lambda)$ is injective on [0,T], and consequently α_0 is the unique solution of (3.4).

It remains to show that $\alpha_0 = \alpha_0(x, \lambda)$ depends continuously on x and λ . Let $\{(x_j, \lambda_j)\} \subset C^{2n-1}[0, T] \times [0, 1]$ be convergent, $\lim_{j \to \infty} (x_j, \lambda_j) = (x_0, \lambda_0)$. Let α_j be the (unique) solution of $V_i(\alpha; x_j, \lambda_j) = 0$. By Lemma 3.1,

$$\lim_{j \to \infty} \beta_0(x_j, \lambda_j) = \beta_0(x_0, \lambda_0).$$

Using the Lebesgue dominated convergence theorem, we see that for any convergent subsequence $\{\alpha_{j_n}\}$ of $\{\alpha_j\}, \lim_{n \to \infty} \alpha_{j_n} = \Lambda$, we have

$$0 = \lim_{n \to \infty} V_i(\alpha_{j_n}, x_{j_n}, \lambda_{j_n}) = V_i(\Lambda; x_0, \lambda_0).$$

Hence $\Lambda = \alpha_0(x_0, \lambda_0)$ which shows that any convergent subsequence of $\{\alpha_j\}$ has the same limit equal to $\alpha_0(x_0, \lambda_0)$. Therefore $\{\alpha_0(x_j, \lambda_j)\}$ is convergent

and $\lim_{j\to\infty} \alpha_0(x_j, \lambda_j) = \alpha_0(x_0, \lambda_0)$. We have proved that α_0 is a continuous function of x and λ .

Lemma 3.3. Let $\phi \in \mathcal{A}$ and $\phi(x) = 0$ for some $x \in C^0[0,T]$. Then there exists $\xi \in [0,T]$ such that $x(\xi) = 0$.

Proof. If not, x > 0 or x < 0 on [0, T]. Then $\phi(x) > \phi(0) = 0$ or $\phi(x) < \phi(0) = 0$, contrary to $\phi(x) = 0$.

Lemma 3.4. Let (H_1) hold. Let x be a solution of the problem $(2.2)_m^{\lambda}$, (1.4), (1.5). Then $x^{(2j-1)}$ is increasing on [0,T] for $1 \leq j \leq n$ and (1.3) is true, where α is the unique zero of $x^{(2i_0-1)}$ and β is the unique zero of $x^{(2k_0-1)}$. In addition, $x^{(2n-2j)} > 0$ on $[0,T] \setminus \{\beta\}$ for $1 \leq j \leq n-p$ and $x^{(2n-2j)} > 0$ on $[0,T] \setminus \{\beta\}$ for $1 \leq j \leq n-p$ and $x^{(2n-2j)} > 0$ on $[0,T] \setminus \{\alpha\}$ for $n-p+1 \leq j \leq n$.

Proof. Let x be a solution of the problem $(2.2)_{m}^{\lambda}$, (1.4), (1.5). Lemma 3.3 and (1.4) show that $x^{(2i_0-1)}(\alpha) = 0$ and $x^{(2k_0-1)}(\beta) = 0$ for some $\alpha, \beta \in [0,T]$ and then from (1.5) we see that (1.3) is true. Since $x^{(2n)}(t) \ge a$ for a.e. $t \in [0,T]$ due to (2.3), $x^{(2n-1)}$ is increasing on [0,T] and consequently $x^{(2n-1)} < 0$ on $[0,\beta)$ (if $\beta > 0$) and $x^{(2n-1)} > 0$ on $(\beta,T]$ (if $\beta < T$). Hence β is determined uniquely and $x^{(2n-2)}(\beta) = 0$ implies $x^{(2n-2)} > 0$ on $[0,T] \setminus \{\beta\}$. By this procedure we can verify that $x^{(2j-1)}$ is increasing on [0,T] for $1 \le j \le n$. Consequently, α is the unique zero of $x^{(2i_0-1)}$. Further, $x^{(2n-2j)} > 0$ on $[0,T] \setminus \{\beta\}$ for $1 \le j \le n - p$ and $x^{(2n-2j)} > 0$ on $[0,T] \setminus \{\alpha\}$ for $n - p + 1 \le j \le n$. □

Lemma 3.5. Let (H_1) hold. Then x is a solution of the problem $(2.2)_m^{\lambda}$, (1.4), (1.5) if and only if x is a fixed point of the operator $\mathcal{S}: C^{2n-1}[0,T] \to C^{2n-1}[0,T]$ defined by the formula

$$(\mathcal{S}x)(t) = \frac{1}{(2(n-p)-1)!(2p-1)!} \times \int_{\alpha_0}^t (t-s)^{2p-1} \int_{\beta_0}^s (s-v)^{2(n-p)-1} (\mathcal{K}_{m,\lambda}x)(v) \, dv \, ds,$$
(3.6)

where $\beta_0 \in [0,T]$ is the unique solution of $S_{k_0}(\beta; x, \lambda) = 0$ with S_{k_0} given in (3.3), and $\alpha_0 \in [0,T]$ is the unique solution of $V_{i_0}(\alpha; x, \lambda) = 0$ with V_{i_0} given in (3.5).

Proof. Let x be a fixed point of the operator S. By direct calculations we can verify that x is a solution of $(2.2)_m^{\lambda}$, $x^{(j)}(\alpha_0) = 0$ for $0 \le j \le 2p - 1$ and $x^{(j)}(\beta_0) = 0$ for $2p \le j \le 2n - 1$. From the definition of β_0 and α_0 it follows that $\phi_1(x^{(2i_0-1)}) = 0$ and $\phi_2(x^{(2k_0-1)}) = 0$. Hence x is a solution of the problem $(2.2)_m^{\lambda}$, (1.4), (1.5).

Let x be a solution of the problem $(2.2)_m^{\lambda}$, (1.4), (1.5). Then Lemma 3.4 shows that x satisfies (1.3) with α_* and β_* instead of α and β , where α_* and β_* are the unique zeros of $x^{(2i_0-1)}$ and $x^{(2k_0-1)}$, respectively. Hence x is a solution of the problem $(2.2)_m^{\lambda}$, (1.3). Integrating the equality $x^{(2n)}(t) = (\mathcal{K}_{m,\lambda}x)(t)$ for a.e. $t \in [0,T]$ and using (1.3), we obtain

$$x(t) = \frac{1}{(2(n-p)-1)!(2p-1)!} \times \int_{\alpha_*}^t (t-s)^{2p-1} \int_{\beta_*}^s (s-v)^{2(n-p)-1} (\mathcal{K}_{m,\lambda}x)(v) \, dv \, ds$$

for $t \in [0, T]$. Now from (1.4) and Lemmas 3.1 and 3.2 we deduce that α_* and β_* are the unique solutions of the equation $V_{i_0}(\alpha; x, \lambda) = 0$ and $S_{k_0}(\beta; x, \lambda) = 0$, respectively. Hence $\alpha_* = \alpha_0$ and $\beta_* = \beta_0$, and consequently x is a fixed point of the operator S.

The following result is used in the proofs of Lemmas 3.7 and 3.9 and Theorem 4.1.

Lemma 3.6. Let (H_1) hold. Let x be a solution of the problem $(2.2)_m^{\lambda}$, (1.4), (1.5). Then

$$|x^{(j)}(t)| \ge \frac{a}{(2n-j)!} |t - \beta_0|^{2n-j}, \ t \in [0,T], \ 2p \le j \le 2n-1,$$
(3.7)

and

$$|x^{(j)}(t)| \ge \begin{cases} \frac{a}{(2n-j)!} |t - \widetilde{\alpha}_0|^{2n-j} & \text{for } t \in \left[0, \frac{\widetilde{\alpha}_0 + \widetilde{\beta}_0}{2}\right] \\ \frac{a}{(2n-j)!} |t - \widetilde{\beta}_0|^{2n-j} & \text{for } t \in \left[\frac{\widetilde{\alpha}_0 + \widetilde{\beta}_0}{2}, T\right] \end{cases}$$
(3.8)

for $0 \leq j \leq 2p - 1$, where α_0 and β_0 are the unique zeros of $x^{(2i_0-1)}$ and $x^{(2k_0-1)}$, respectively, and $\widetilde{\alpha}_0 = \min\{\alpha_0, \beta_0\}, \ \widetilde{\beta}_0 = \max\{\alpha_0, \beta_0\}.$

Proof. By Lemma 3.5, x is a fixed point of the operator S defined in (3.6), and therefore

-1

$$x(t) = \frac{1}{(2(n-p)-1)!(2p-1)!} \times \int_{\alpha_0}^t (t-s)^{2p-1} \int_{\beta_0}^s (s-v)^{2(n-p)-1} (\mathcal{K}_{m,\lambda}x)(v) \, dv \, ds$$

for $t \in [0, T]$. Since (see (2.3)) $(\mathcal{K}_{m,\lambda}x)(t) \ge a$ for a.e. $t \in [0, T]$, we have

$$|x^{(j)}(t)| = \left| \int_{\beta_0}^t \frac{(t-s)^{2n-j-1}}{(2n-j-1)!} \left(\mathcal{K}_{m,\lambda} x \right)(s) \, ds \right| \ge \frac{a}{(2n-j-1)!} \left| \int_{\beta_0}^t (t-s)^{2n-j-1} \, ds \right| = \frac{a}{(2n-j)!} \left| t - \beta_0 \right|^{2n-j}$$

for $t \in [0, T]$ and $2p \le j \le 2n - 1$, which proves (3.7).

It remains to verify (3.8). Assume for example that $\alpha_0 \leq \beta_0$ (the case where $\alpha_0 > \beta_0$ is treated similarly). Since (see (3.7) and Lemma 3.4)

$$x^{(2p)}(t) \ge \frac{a}{(2n-2p)!} (t-\beta_0)^{2(n-p)}, \ t \in [0,T],$$

and $x^{(j)}(\alpha_0) = 0$ for $0 \le j \le 2p - 1$, we have

$$|x^{(2p-1)}(t)| = \left| \int_{\alpha_0}^t x^{(2p)}(s) \, ds \right| \ge \frac{a}{(2n-2p)!} \left| \int_{\alpha_0}^t (s-\beta_0)^{2(n-p)} \, ds \right| \ge \\ \ge \begin{cases} \frac{a}{(2n-2p+1)!} |t-\alpha_0|^{2(n-p)+1} & \text{for } t \in \left[0, \frac{\alpha_0+\beta_0}{2}\right] \\ \frac{a}{(2n-2p+1)!} |t-\beta_0|^{2(n-p)+1} & \text{for } t \in \left[\frac{\alpha_0+\beta_0}{2}, T\right] \end{cases}$$

Then

$$\begin{aligned} |x^{(2p-2)}(t)| &= \left| \int_{\alpha_0}^{t} x^{(2p-1)}(s) \, ds \right| \ge \\ &\ge \begin{cases} \frac{a}{(2n-2p+2)!} \, |t-\alpha_0|^{2(n-p+1)} & \text{for } t \in \left[0, \frac{\alpha_0 + \beta_0}{2}\right] \\ \frac{a}{(2n-2p+2)!} \, |t-\beta_0|^{2(n-p+1)} & \text{for } t \in \left[\frac{\alpha_0 + \beta_0}{2}, T\right] \end{aligned}$$

Applying the above procedure repeatedly, we can verify the validity of (3.8) for all $0 \le j \le 2p - 1$.

We are now in a position to give a priori bounds for solutions of the problem $(2.2)^{\lambda}_{m}$, (1.4), (1.5).

Lemma 3.7. Let the assumptions (H_1) and (H_2) be satisfied. Let x be a solution of the problem $(2.2)_m^{\lambda}$, (1.4), (1.5). Then there exists a positive constant K independent of m, λ , p, i₀, k_0 , ϕ_1 and ϕ_2 such that

$$||x^{(j)}|| < K \text{ for } 0 \le j \le 2n - 1.$$
 (3.9)

Proof. By Lemma 3.4, there exist a unique zero α of $x^{(2i_0-1)}$ and a unique zero β of $x^{(2k_0-1)}$, and x satisfies (1.3). Hence

$$\|x^{(j)}\| \le T^{2n-j-1} \|x^{(2n-1)}\|, \quad 0 \le j \le 2n-1,$$
(3.10)

and therefore

$$\sum_{j=0}^{2n-1} \|x^{(j)}\| \le Q \|x^{(2n-1)}\|, \tag{3.11}$$

where Q is given in (1.8). From Lemma 3.6 it follows that

$$|x^{(j)}(t)| \ge \frac{a}{(2n-j)!} |t-\beta|^{2n-j}, \ t \in [0,T], \ 2p \le j \le 2n-1,$$

Svatoslav Staněk

 \sim

and

$$|x^{(j)}(t)| \ge \begin{cases} \frac{a}{(2n-j)!} |t-\widetilde{\alpha}|^{2n-j} & \text{for } t \in \left[0, \frac{\widetilde{\alpha}+\widetilde{\beta}}{2}\right] \\ \frac{a}{(2n-j)!} |t-\widetilde{\beta}|^{2n-j} & \text{for } t \in \left[\frac{\widetilde{\alpha}+\widetilde{\beta}}{2}, T\right] \end{cases}$$

for $0 \leq j \leq 2p-1$, where $\tilde{\alpha} = \min\{\alpha, \beta\}$ and $\tilde{\beta} = \max\{\alpha, \beta\}$. Set

$$I_j = \sqrt[2n-j]{\frac{a}{(2n-j)!}} \text{ for } 0 \le j \le 2n-2.$$
(3.12)

Since the function h_j is positive and nonincreasing on $(0, \infty)$ by (H_2) , we have

$$\int_{0}^{T} h_{j}(|x^{(j)}(t)|) dt \leq \int_{0}^{T} h_{j}\left(\frac{a}{(2n-j)!} |t-\beta|^{2n-j}\right) dt \leq \\
\leq \frac{1}{I_{j}} \left(\int_{0}^{I_{j}\beta} h_{j}(s^{2n-j}) ds + \int_{0}^{I_{j}(T-\beta)} h_{j}(s^{2n-j}) ds\right) < \\
< \frac{2}{I_{j}} \int_{0}^{I_{j}T} h_{j}(s^{2n-j}) ds$$
(3.13)

for $2p \le j \le 2n-2$ and

$$\int_{0}^{T} h_{j}(|x^{(j)}(t)|) dt \leq \\
\leq \int_{0}^{T} h_{j}\left(\frac{a}{(2n-j)!} |t-\alpha|^{2n-j}\right) dt + \int_{0}^{T} h_{j}\left(\frac{a}{(2n-j)!} |t-\beta|^{2n-j}\right) dt < \\
< \frac{4}{I_{j}} \int_{0}^{I_{j}T} h_{j}(s^{2n-j}) ds$$
(3.14)

for $0 \leq j \leq 2p - 1$. Next, by (1.6) and (2.4) we get

$$(0 <) \frac{x^{(2n)}(t)}{h_{2n-1}(|x^{(2n-1)}(t)|)} \le \le 1 + \frac{1}{c} \left(\sum_{j=0}^{2n-2} h_j(|x^{(j)}(t)|) + \omega\left(t, 2n + \sum_{j=0}^{2n-1} |x^{(j)}(t)|\right) \right)$$
(3.15)

for a.e. $t \in [0,T]$. Besides, $x^{(2n)} \ge a$ a.e. on [0,T] and $x^{(2n-1)}(\beta) = 0$ imply $\|x^{(2n-1)}\| = \max\left\{|x^{(2n-1)}(0)|, x^{(2n-1)}(T)\right\}.$ (3.16)

Since

$$\int_{0}^{\beta} \frac{x^{(2n)}(t)}{h_{2n-1}(|x^{(2n-1)}(t)|)} dt = \int_{0}^{\beta} \frac{x^{(2n)}(t)}{h_{2n-1}(-x^{(2n-1)}(t))} dt = \int_{0}^{-x^{(2n-1)}(0)} \frac{ds}{h_{2n-1}(s)},$$
$$\int_{\beta}^{T} \frac{x^{(2n)}(t)}{h_{2n-1}(|x^{(2n-1)}(t)|)} dt = \int_{\beta}^{T} \frac{x^{(2n)}(t)}{h_{2n-1}(x^{(2n-1)}(t))} dt = \int_{0}^{-x^{(2n-1)}(0)} \frac{ds}{h_{2n-1}(s)},$$

we have (see (3.16))

$$\int_{0}^{\|x^{(2n-1)}\|} \frac{ds}{h_{2n-1}(s)} \le \int_{0}^{T} \frac{x^{(2n)}(t)}{h_{2n-1}(|x^{(2n-1)}(t)|)} dt.$$
(3.17)

Integrating (3.15) over [0, T] and combining (3.11), (3.13), (3.14) and the fact that ω is nondecreasing in the second variable, we get

$$\int_{0}^{T} \frac{x^{(2n)}(t)}{h_{2n-1}(|x^{(2n-1)}(t)|)} dt < T + \frac{1}{c} \left(A + \int_{0}^{T} \omega(t, 2n + Q \|x^{(2n-1)}\|) dt \right), \quad (3.18)$$

where

$$A = 2\sum_{j=2p}^{2n-2} \frac{1}{I_j} \int_{0}^{I_j T} h_j(s^{2n-j}) \, ds + 4\sum_{j=0}^{2p-1} \frac{1}{I_j} \int_{0}^{I_j T} h_j(s^{2n-j}) \, ds.$$

Hence (see (3.17) and (3.18))

$$\int_{0}^{\|x^{(2n-1)}\|} \frac{ds}{h_{2n-1}(s)} < T + \frac{1}{c} \left(A + \int_{0}^{T} \omega \left(t, 2n + Q \| x^{(2n-1)} \| \right) dt \right).$$
(3.19)

From (1.7) and Remark 1.1 it follows that there exists a positive constant ${\cal S}$ such that

$$\int_{0}^{u} \frac{ds}{h_{2n-1}(s)} > T + \frac{1}{c} \left(A + \int_{0}^{T} \omega(t, 2n + Qu) \, dt \right)$$

for all $u \geq S$. Therefore (3.19) shows that $||x^{(2n-1)}|| < S$ and, by (3.10), we see that (3.9) is true with $K = S \max\{1, T^{2n-1}\}$.

We now present an existence result for the problem $(2.2)_m^1$, (1.4), (1.5).

Lemma 3.8. Let (H_1) and (H_2) hold. Then for each $m \in \mathbb{N}$, $p \in \{1, \ldots, n-1\}$, $i_0 \in \{1, \ldots, p\}$, $k_0 \in \{p+1, \ldots, n\}$ and $\phi_1, \phi_2 \in \mathcal{A}$, the problem $(2.2)_m^1$, (1.4), (1.5) has a solution x satisfying (3.9), where K is the positive constant in Lemma 3.7.

Proof. Let K be the positive constant in Lemma 3.7 and put

$$\Omega = \left\{ x \in C^{2n-1}[0,T] : \|x^{(j)}\| < K \text{ for } 0 \le j \le 2n-1 \right\}$$

Choose $m \in \mathbb{N}$, $p \in \{1, \ldots, n-1\}$, $i_0 \in \{1, \ldots, p\}$, $k_0 \in \{p+1, \ldots, n\}$ and $\phi_1, \phi_2 \in \mathcal{A}$. Define the operator $\mathcal{F} : C^{2n-1}[0,T] \times [0,1] \to C^{2n-1}[0,T]$ by the formula

$$\mathcal{F}(x,\lambda)(t) = \frac{1}{(2(n-p)-1)!(2p-1)!} \times \int_{\alpha_0(x,\lambda)}^t (t-s)^{2p-1} \int_{\beta_0(x,\lambda)}^s (s-v)^{2(n-p)-1} (\mathcal{K}_{m,\lambda}x)(v) \, dv \, ds,$$

where $\alpha_0 = \alpha_0(x, \lambda)$ and $\beta_0 = \beta_0(x, \lambda)$ are the unique solutions of the equation $V_{i_0}(\alpha; x, \lambda) = 0$ with V_{i_0} given in (3.5) (see Lemma 3.2) and the equation $S_{k_0}(\beta; x, \lambda) = 0$ with S_{k_0} given in (3.3) (see Lemma 3.1), respectively, and $\mathcal{K}_{m,\lambda}$ is given in (3.1). Lemma 3.5 shows that x is a solution of the problem $(2.2)_m^{\lambda}$, (1.4), (1.5) if and only if x is a fixed point of the operator $\mathcal{F}(\cdot, \lambda)$. Hence our lemma will be proved if the operator $\mathcal{F}(\cdot, 1)$ has a fixed point in Ω . In order to prove the existence of a fixed point of $\mathcal{F}(\cdot, 1)$, we use the topological transversality principle. Let $\mathcal{F}_* = \mathcal{F}|_{\overline{\Omega} \times [0,1]}$ denote the restriction of \mathcal{F} on the set $\overline{\Omega} \times [0,1]$. It suffices to verify that

- (i) $\mathcal{F}_*(\cdot, 0)$ is a constant operator on $\overline{\Omega}$ and $\mathcal{F}_*(x, 0) \in \Omega$ for $x \in \overline{\Omega}$,
- (ii) \mathcal{F}_* is a compact operator and
- (iii) $\mathcal{F}_*(x,\lambda) \neq x$ for all $(x,\lambda) \in \partial\Omega \times [0,1]$.

Since $(\mathcal{K}_{m,0}x)(t) = a$ for $t \in [0,T]$, we have

$$\mathcal{F}_*(x,0)(t) = \frac{a}{(2(n-p)-1)!(2p-1)!} \times \\ \times \int_{\alpha_0(x,0)}^t (t-s)^{2p-1} \int_{\beta_0(x,0)}^s (s-v)^{2(n-p)-1} dv \, ds = \\ = \frac{a}{(2n-2p)!(2p-1)!} \int_{\alpha_0(x,0)}^t (t-s)^{2p-1} (s-\beta_0(x,0))^{2(n-p)} \, ds$$

where $\beta_0 = \beta_0(x, 0)$ is the unique solution of the equation

$$\phi_2\left(\frac{a}{(2(n-k_0)+1)!}\left(\beta-t\right)^{2(n-k_0)+1}\right) = 0$$

and $\alpha_0 = \alpha_0(x, 0)$ is the unique solution of the equation

$$\phi_1\left(\frac{a}{(2n-2p)!(2p-2i_0)!}\int\limits_{\alpha}^{t}(t-s)^{2(p-i_0)}(s-\beta_0)^{2(n-p)}\,ds\right) = 0.$$

From the above two equation we see that β_0 and α_0 are independent of x and therefore $\mathcal{F}_*(\cdot, 0)$ is a constant operator. In addition, $(\mathcal{F}_*(x, 0))^{(j)}(\alpha_0) =$

0 for $0 \le j \le 2p-1$, $(\mathcal{F}_*(x,0))^{(j)}(\beta_0) = 0$ for $2p \le j \le 2n-1$ and $(\mathcal{F}_*(x,0))^{(2n)}(t) = a$ for $t \in [0,T]$. Hence $\mathcal{F}_*(x,0)(t)$ is a solution of the problem $(2.2)_m^0$, (1.4), (1.5) and consequently $\mathcal{F}_*(x,0) \in \Omega$ for $x \in \overline{\Omega}$ due to Lemma 3.7, which proves (i).

For (ii), we first note that $f_m \in Car([0,T] \times \mathbb{R}^{2n})$, and therefore there exists $\gamma \in L_1[0,T]$ such that

$$a \le (1-\lambda)a + \lambda f_m(t, x_0, \dots, x_{2n-1}) \le \gamma(t) \tag{3.20}$$

for a.e. $t \in [0,T]$ and all $\lambda \in [0,1], |x_j| \leq K \ (0 \leq j \leq 2n-1)$. Let $\{(x_k,\lambda_k)\} \subset \overline{\Omega} \times [0,1]$ be a convergent sequence, $\lim_{k \to \infty} (x_k,\lambda_k) = (x_0,\lambda_0).$ Then

$$\lim_{m \to \infty} (\mathcal{K}_{m,\lambda_k} x_k)(t) = (\mathcal{K}_{m,\lambda_0} x_0)(t)$$

 $\lim_{m \to \infty} (\mathcal{K}_{m,\lambda_k} x_k)(t) = (\mathcal{K}_{m,\lambda_0} x_0)(t)$ for a.e. $t \in [0,T]$, $a \leq (\mathcal{K}_{m,\lambda_k} x_k)(t) \leq \gamma(t)$ for a.e. $t \in [0,T]$ and all $k \in \mathbb{N}$, and (see Lemmas 3.1 and 3.2) $\lim_{k \to \infty} \beta_0(x_k,\lambda_k) = \beta_0(x_0,\lambda_0)$ and $\lim_{k \to \infty} \alpha_0(x_k,\lambda_k) = \alpha_0(x_0,\lambda_0)$. Hence \mathcal{F}_* is a continuous operator by the Lebesgue dominated convergence theorem. Let $\{(x_i, \lambda_i)\} \subset \overline{\Omega} \times [0, 1]$. Then (see (3.20))

$$\left| \left(\mathcal{F}_*(x_i, \lambda_i) \right)^{(2n)}(t) \right| \le \gamma(t)$$

for a.e. $t \in [0, T]$ and all $i \in \mathbb{N}$, and since

$$(\mathcal{F}_*(x_i,\lambda_i))^{(j)}(\alpha_0(x_i,\lambda_i)) = 0 \text{ for } 0 \le j \le 2p-1$$

and

$$(\mathcal{F}_*(x_i,\lambda_i))^{(j)}(\beta_0(x_i,\lambda_i)) = 0 \text{ for } 2p \le j \le 2n-1,$$

we see that $\{\mathcal{F}_*(x_i, \lambda_i)\}$ is bounded in $C^{2n-1}[0, T]$ and also that $\{(\mathcal{F}_*(x_i, \lambda_i))^{(2n-1)}\}$ is equicontinuous on [0, T]. Hence by the Arzelà–Ascoli theorem there exists a convergent subsequence of $\{\mathcal{F}_*(x_i,\lambda_i)\}$ in $C^{2n-1}[0,T]$. We have proved that \mathcal{F}_* is a compact operator.

Finally, assume that $\mathcal{F}_*(x_*, \lambda_*) = x_*$ for some $(x_*, \lambda_*) \in \overline{\Omega} \times [0, 1]$. Then x_* is a solution of the problem $(2.2)_m^{\lambda_*}$, (1.4), (1.5) and so $x_* \in \Omega$ by Lemma 3.7. Hence $\mathcal{F}_*(x,\lambda) \neq x$ for each $(x,\lambda) \in \partial\Omega \times [0,1]$, which proves the property (iii).

The next result is needed in the proof of Theorem 4.1.

Lemma 3.9. Let the assumptions (H_1) and (H_2) be satisfied. Let x_m be a solution of the problem $(2.2)_m^1$, (1.4), (1.5) for $m \in \mathbb{N}$. Then $\{x_m^{(2n-1)}\}$ is equicontinuous on [0, T].

Proof. By Lemma 3.8 we have

$$\|x_m^{(j)}\| < K \text{ for } m \in \mathbb{N}, \ 0 \le j \le 2n - 1,$$
 (3.21)

where K is a positive constant. Hence (see (3.15))

$$(0 <) \ \frac{x_m^{(2n)}(t)}{h_{2n-1}(|x_m^{(2n-1)}(t)|)} \le$$

Svatoslav Staněk

$$\leq 1 + \frac{1}{c} \left(\sum_{j=0}^{2n-2} h_j(|x_m^{(j)}(t)|) + \omega(t, 2n(K+1)) \right)$$
(3.22)

for a.e. $t \in [0,T]$ and all $m \in \mathbb{N}$. Let α_m and β_m be the unique zeros of $x_m^{(2i_0-1)}$ and $x_m^{(2k_0-1)}$, respectively. Then Lemma 3.6 shows that

$$|x_m^{(j)}(t)| \ge \frac{a}{(2n-j)!} |t - \beta_m|^{2n-j}, \ t \in [0,T], \ 2p \le j \le 2n-1, \ m \in \mathbb{N}, \ (3.23)$$

and

$$|x_m^{(j)}(t)| \ge \begin{cases} \frac{a}{(2n-j)!} |t - \widetilde{\alpha}_m|^{2n-j} & \text{for } t \in \left[0, \frac{\widetilde{\alpha}_m + \widetilde{\beta}_m}{2}\right] \\ \frac{a}{(2n-j)!} |t - \widetilde{\beta}_m|^{2n-j} & \text{for } t \in \left[\frac{\widetilde{\alpha}_m + \widetilde{\beta}_m}{2}, T\right] \end{cases}$$
(3.24)

for $0 \leq j \leq 2p-1$, where $\widetilde{\alpha}_m = \min\{\alpha_m, \beta_m\}$ and $\widetilde{\beta}_m = \max\{\alpha_m, \beta_m\}$. Set

$$H(u) = \begin{cases} \int_{0}^{u} \frac{ds}{h_{2n-1}(s)} & \text{for } u \in [0,\infty) \\ & \\ -\int_{0}^{-u} \frac{ds}{h_{2n-1}(s)} & \text{for } u \in (-\infty,0) \end{cases}$$

Then $H \in C^0[0,T]$ is an increasing and odd function. Since $x_m^{(2n-1)} < 0$ on $[0,\beta_m)$ (if $\beta_m \in (0,T]$) and $x_m^{(2n-1)} > 0$ on $(\beta_m,T]$ (if $\beta_m \in [0,T)$), we have

$$\begin{split} & \int_{t_1}^{t_2} \frac{x_m^{(2n)}(t)}{h_{2n-1}(|x_m^{(2n-1)}(t)|)} \, dt = \\ & = \begin{cases} -x_m^{(2n-1)}(t_1) & \text{if } 0 \le t_1 < t_2 \le \beta_m \\ \int_{t_1}^{-x_m^{(2n-1)}(t_2)} \frac{ds}{h_{2n-1}(s)} & \text{if } 0 \le t_1 < t_2 \le \beta_m \\ \int_{t_1}^{-x_m^{(2n-1)}(t_1)} \frac{ds}{h_{2n-1}(s)} + \int_{0}^{x_m^{(2n-1)}(t_2)} \frac{ds}{h_{2n-1}(s)} & \text{if } 0 \le t_1 < \beta_m < t_2 \le T \\ \int_{x_m^{(2n-1)}(t_2)} \frac{ds}{h_{2n-1}(s)} & \text{if } \beta_m \le t_1 < t_2 \le T \end{cases} \end{split}$$

Consequently,

$$\int_{t_1}^{t_2} \frac{x_m^{(2n)}(t)}{h_{2n-1}(|x_m^{(2n-1)}(t)|)} dt = H\left(x_m^{(2n-1)}(t_2)\right) - H\left(x_m^{(2n-1)}(t_1)\right)$$

for $0 \le t_1 < t_2 \le T$ and $m \in \mathbb{N}$. Integrating (3.22) over $[t_1, t_2] \subset [0, T]$ yields

$$H\left(x_m^{(2n-1)}(t_2)\right) - H\left(x_m^{(2n-1)}(t_1)\right) \le \le t_2 - t_1 + \frac{1}{c} \left(\sum_{j=0}^{2n-2} \int_{t_1}^{t_2} h_j(|x_m^{(j)}(t)|) dt + \int_{t_1}^{t_2} \omega(t, 2n(K+1)) dt\right). \quad (3.25)$$

Since $\omega(\cdot, 2n(K+1)) \in L_1[0, T]$, (3.25) shows that $\{H(x_m^{(2n-1)})\}$ is equicontinuous on [0, T] if

$$\left\{\int_{0}^{t} h_j(|x_m^{(j)}(s)|) \, ds\right\}$$

is equicontinuous on [0,T] for j = 0, 1, ..., 2n - 2. To prove this property of

$$\bigg\{\int\limits_0^t h_j(|x_m^{(j)}(s)|)\,ds\bigg\},$$

let $0 \le t_1 < t_2 \le T$ and let the constant I_j be given in (3.12). If $2p \le j \le 2n-2$, then (see (3.23))

$$\begin{split} \int_{t_1}^{t_2} h_j(|x_m^{(j)}(t)|) \, dt &\leq \int_{t_1}^{t_2} h_j\left(\frac{a}{(2n-j)!} \, |t-\beta_m|^{2n-j}\right) dt = \\ &= \begin{cases} \frac{1}{I_j} \int_{I_j(\beta_m - t_1)}^{I_j(\beta_m - t_1)} h_j(s^{2n-j}) \, ds \ \text{if} \ 0 \leq t_1 < t_2 \leq \beta_m \\ \frac{1}{I_j} \left(\int_{0}^{I_j(\beta_m - t_2)} h_j(s^{2n-j}) \, ds + \int_{0}^{I_j(t_2 - \beta_m)} h_j(s^{2n-j}) \, ds \right) \\ &= \begin{cases} \frac{1}{I_j} \left(\int_{0}^{I_j(t_2 - \beta_m)} h_j(s^{2n-j}) \, ds + \int_{0}^{I_j(t_2 - \beta_m)} h_j(s^{2n-j}) \, ds \right) \\ &= \begin{cases} \frac{1}{I_j} \int_{I_j(t_2 - \beta_m)}^{I_j(t_2 - \beta_m)} h_j(s^{2n-j}) \, ds & \text{if} \ \beta_m \leq t_1 < t_2 \leq T \end{cases} \end{split}$$

If $0 \le j \le 2p - 1$, then (see (3.24))

$$\int_{t_1}^{t_2} h_j \left(|x_m^{(j)}(t)| \right) dt =$$

•

$$= \begin{cases} \frac{1}{I_j} \int_{I_j(\tilde{\alpha}_m - t_1)}^{I_j(\tilde{\alpha}_m - t_1)} h_j(s^{2n-j}) \, ds \ \text{if} \ 0 \le t_1 < t_2 \le \tilde{\alpha}_m \\ \frac{1}{I_j} \left(\int_{0}^{I_j(\tilde{\alpha}_m - t_1)} h_j(s^{2n-j}) \, ds + \int_{0}^{I_j(t_2 - \tilde{\alpha}_m)} h_j(s^{2n-j}) \, ds \right) \\ \text{if} \ 0 \le t_1 < \tilde{\alpha}_m < t_2 \le \frac{\tilde{\alpha}_m + \tilde{\beta}_m}{2} \\ \frac{1}{I_j} \int_{I_j(t_1 - \tilde{\alpha}_m)}^{I_j(t_2 - \tilde{\alpha}_m)} h_j(s^{2n-j}) \, ds \ \text{if} \ \tilde{\alpha}_m \le t_1 < t_2 \le \frac{\tilde{\alpha}_m + \tilde{\beta}_m}{2} \\ \frac{1}{I_j} \left(\int_{0}^{I_j(t_1 - \tilde{\alpha}_m)} h_j(s^{2n-j}) \, ds + \int_{0}^{I_j(t_2 - \tilde{\beta}_m)} h_j(s^{2n-j}) \, ds \right) \\ \text{if} \ \tilde{\alpha}_m \le t_1 < \frac{\tilde{\alpha}_m + \tilde{\beta}_m}{2} < t_2 \le T \\ \frac{1}{I_j} \int_{I_j(\tilde{\beta}_m - t_1)}^{I_j(\tilde{\beta}_m - t_1)} h_j(s^{2n-j}) \, ds \ \text{if} \ \frac{\tilde{\alpha}_m + \tilde{\beta}_m}{2} \le t_1 < t_2 \le \tilde{\beta}_m \\ \frac{1}{I_j} \left(\int_{0}^{I_j(\tilde{\beta}_m - t_1)} h_j(s^{2n-j}) \, ds + \int_{0}^{I_j(t_2 - \tilde{\beta}_m)} h_j(s^{2n-j}) \, ds \right) \\ \text{if} \ \frac{\tilde{\alpha}_m + \tilde{\beta}_m}{2} \le t_1 < \tilde{\beta}_m < t_2 \le T \\ \frac{1}{I_j} \int_{0}^{I_j(t_2 - \tilde{\beta}_m)} h_j(s^{2n-j}) \, ds \ \text{if} \ \tilde{\beta}_m \le t_1 < t_2 \le T \\ \frac{1}{I_j} \int_{I_j(t_2 - \tilde{\beta}_m)}^{I_j(t_2 - \tilde{\beta}_m)} h_j(s^{2n-j}) \, ds \ \text{if} \ \tilde{\beta}_m \le t_1 < t_2 \le T \\ \frac{1}{I_j} \int_{I_j(t_2 - \tilde{\beta}_m)}^{I_j(t_2 - \tilde{\beta}_m)} h_j(s^{2n-j}) \, ds \ \text{if} \ \tilde{\beta}_m \le t_1 < t_2 \le T \end{cases}$$

Summarizing, we have

$$\begin{cases}
\int_{t_1}^{t_2} h_j(|x_m^{(j)}(t)|) dt \leq \frac{2}{I_j} \int_{\nu_1}^{\nu_2} h_j(s^{2n-j}) ds \\
& \text{for } 0 \leq j \leq 2n-2, \quad m \in \mathbb{N}, \\
& \text{where } 0 \leq \nu_1 < \nu_2 \leq I_j T, \quad \nu_2 - \nu_1 \leq I_j(t_2 - t_1).
\end{cases}$$
(3.26)

Since $h_j(s^{2n-j}) \in L_1(I_jT)$ for j = 0, 1, ..., 2n-2 by (H_2) (see Remark 1.1), (3.26) shows that $\{\int_0^t h_j(|x_m^{(j)}(s)|) ds\}$ is equicontinuous on [0,T] for $0 \le j \le 2n-2$. We have proved that $\{H(x_m^{(2n-1)})\}$ is equicontinuous on [0,T], and from H being continuous and increasing on \mathbb{R} we see that $\{x_m^{(2n-1)}\}$ is equicontinuous on [0,T] as well. \Box

4. An Existence Result and an Example

We now state our main result.

Theorem 4.1. Let (H_1) and (H_2) hold. Then, for each $p \in \{1, \ldots, n-1\}$, $i_0 \in \{1, \ldots, p\}$, $k_0 \in \{p+1, \ldots, n\}$ and $\phi_1, \phi_2 \in \mathcal{A}$, there exist a solution x of the problem and $\alpha, \beta \in [0,T]$ such that $x^{(2j)} > 0$ on $[0,T] \setminus \{\alpha\}$ for $0 \leq j \leq p-1$ and $x^{(2j)} > 0$ on $[0,T] \setminus \{\beta\}$ for $p \leq j \leq n-1$.

Proof. Choose $p \in \{1, \ldots, n-1\}$, $i_0 \in \{1, \ldots, p\}$, $k_0 \in \{p+1, \ldots, n\}$ and $\phi_1, \phi_2 \in \mathcal{A}$. By Lemma 3.8, for each $m \in \mathbb{N}$ there exists a solution x_m of the problem $(2.2)_m^1$, (1.4), (1.5) such that (3.21) is true, where K is a positive constant and $\{x_m^{(2n-1)}\}$ is equicontinuous due to Lemma 3.9. In addition (see Lemma 3.5),

$$x_m(t) = \frac{1}{(2(n-p)-1)!(2p-1)!} \times \int_{\alpha_m}^t (t-s)^{2p-1} \int_{\beta_m}^s (s-v)^{2(n-p)-1} (\mathcal{K}_{m,1}x_m)(v) \, dv \, ds$$

for $t \in [0, T]$ and $m \in \mathbb{N}$, where β_m and α_m are the unique solutions in [0, T]of the equation $S_{k_0}(\beta; x_m, 1) = 0$ and $V_{i_0}(\alpha; x_m, 1) = 0$, respectively. Here S_{k_0} and V_{i_0} are defined in (3.3) and (3.5). Besides, the inequalities (3.23) and (3.24) are true, where $\tilde{\alpha}_m = \min\{\alpha_m, \beta_m\}, \tilde{\beta}_m = \min\{\alpha_m, \beta_m\}$. Hence (see Lemma 3.4)

$$\begin{array}{c}
x_{m}^{(j)}(\alpha_{m}) = 0 \quad \text{for} \quad 0 \leq j \leq 2p - 1, \\
x_{m}^{(j)}(\beta_{m}) = 0 \quad \text{for} \quad 2p \leq j \leq 2n - 1, \\
x_{m}^{(2n-2j)} > 0 \quad texton \quad [0,T] \setminus \{\beta_{m}\} \quad \text{for} \quad 1 \leq j \leq n - p, \\
x_{m}^{(2n-2j)} > 0 \quad \text{on} \quad [0,T] \setminus \{\alpha_{m}\} \quad \text{for} \quad n - p + 1 \leq j < n. \end{array}\right\}$$
(4.1)

By the Arzelà–Ascoli theorem and the compactness principle, passing if necessary to subsequences, we may assume that $\{x_m\}$ converges in $C^{2n-1}[0,T]$ and $\{\alpha_m\}$. $\{\beta_m\}$ in \mathbb{R} . Let $\lim_{m\to\infty} x_m = x$, $\lim_{m\to\infty} \alpha_m = \alpha_*$ and $\lim_{m\to\infty} \beta_m = \beta_*$. Then $x \in C^{2n-1}[0,T]$, $\phi_1(x^{(2i_0-1)}) = 0$, $\phi_2(x^{(2k_0-1)}) = 0$,

$$|x^{(j)}(t)| \ge \frac{a}{(2n-j)!} |t - \beta_*|^{2n-j}$$
 for $t \in [0,T], \ 2p \le j \le 2n-1,$

and

$$|x^{(j)}(t)| \ge \begin{cases} \frac{a}{(2n-j)!} |t - \widetilde{\alpha}_*|^{2n-j} & \text{for } t \in \left[0, \frac{\widetilde{\alpha}_* + \widetilde{\beta}_*}{2}\right] \\ \frac{a}{(2n-j)!} |t - \widetilde{\beta}_*|^{2n-j} & \text{for } t \in \left[\frac{\widetilde{\alpha}_* + \widetilde{\beta}_*}{2}, T\right] \end{cases}$$
(4.2)

for $0 \leq j \leq 2p-1$, where $\tilde{\alpha}_* = \min\{\alpha_*, \beta_*\}$, $\tilde{\beta}_* = \max\{\alpha_*, \beta_*\}$. Therefore, β_* is the unique zero of $x^{(j)}$ for $2p \leq j \leq 2n-1$ and from (4.1) and (4.2) we deduce that α_* is the unique zero of $x^{(j)}$ for $0 \leq j \leq 2p-1$. Besides, $x^{(2n-2j)} > 0$ on $[0,T] \setminus \{\beta_*\}$ for $1 \leq j \leq n-p$ and $x^{(2n-2j)} > 0$ on $[0,T] \setminus \{\alpha_*\}$ for $n-p+1 \leq j < n$. Consequently

$$\lim_{m \to \infty} f_m(t, x_m(t), \dots, x_m^{(2n-1)}(t)) =$$

= $f(t, x(t), \dots, x^{(2n-1)}(t))$ for a.e. $t \in [0, T]$,

and then from the boundedness of $\{x_m^{(2n-1)}(0)\},$ $\{x_m^{(2n-1)}(T)\}$ and the equality

$$x_m^{(2n-1)}(T) = x_m^{(2n-1)}(0) + \int_0^T f_m(t, x_m(t), \dots, x_m^{(2n-1)}(t)) dt$$

we see that $f(t, x(t), \ldots, x^{(2n-1)}(t)) \in L_1[0, T]$ by the Fatou theorem. Without loss of generality we can assume that for example $\alpha_* \leq \beta_*$. Consider the intervals $[0, \alpha_*]$ (if $\alpha_* > 0$), $[\alpha_*, \beta_*]$ (if $\alpha_* < \beta_*$) and $[\beta_*, T]$ (if $\beta_* < T$). Let $[\eta, \tau]$ be an arbitrary but fixed from the above intervals. From (2.4) with $\lambda = 1$ and the Lebesgue dominated convergence theorem it follows that letting $m \to \infty$ in

$$x_m^{(2n-1)}(t) = x_m^{(2n-1)}\left(\frac{\eta+\tau}{2}\right) + \int_{(\eta+\tau)/2}^t f_m\left(s, x_m(s), \dots, x_m^{(2n-1)}(s)\right) ds,$$

we get

$$x^{(2n-1)}(t) = x^{(2n-1)}\left(\frac{\eta+\tau}{2}\right) + \int_{(\eta+\tau)/2}^{t} f\left(s, x(s), \dots, x^{(2n-1)}(s)\right) ds \quad (4.3)$$

for $t \in (\eta, \tau)$. We know that $x \in C^{2n-1}[0,T]$ and $f(t, x(t), \ldots, x^{(2n-1)}(t)) \in L_1[0,T]$. Consequently, (4.3) is true even for $t \in [\eta, \tau]$. This shows that

$$x^{(2n-1)}(t) = x^{(2n-1)}(0) + \int_{0}^{t} f(s, x(s), \dots, x^{(2n-1)}(s)) \, ds \text{ for } t \in [0, T].$$

Hence $x \in AC^{2n-1}[0,T]$ and x is a solution of the problem (1.1), (1.4), (1.5).

Example 4.2. Consider the differential equation

$$x^{(2n)} = q(t) + \sum_{j=0}^{2n-1} \frac{b_j(t)}{|x^{(j)}|^{\gamma_j}} + \sum_{j=0}^{2n-1} c_j(t) |x^{(j)}|^{\delta_j},$$
(4.4)

where $q, b_j \in L_{\infty}[0, T]$, $c_j \in L_1[0, T]$ are nonnegative for $0 \le j \le 2n - 1$, $q(t) \ge a > 0$ for a.e. $t \in [0, T]$ and $\gamma_j \in (0, \frac{1}{2n-j})$ for $0 \le j \le 2n - 2$, $\gamma_{2n-1} > 0, \, \delta_j \in (0, 1)$ for $0 \le j \le 2n - 1$. Nonlocal Singular BVP for Even-Order Differential Equations

The equation (4.4) is a special case of (1.1) with

$$f(t, x_0, \dots, x_{2n-1}) = q(t) + \sum_{j=0}^{2n-1} \frac{b_j(t)}{|x_j|^{\gamma_j}} + \sum_{j=0}^{2n-1} c_j(t) |x_j|^{\delta_j}$$

satisfying (H_1) . Put $L = \max\{||b_j||_{\infty} : 0 \le j \le 2n-2\}$ and $\delta = \max\{\delta_j : 0 \le j \le 2n-1\} < 1$. Since

$$\sum_{j=0}^{2n-1} c_j(t) |x_j|^{\delta_j} \le \sum_{j=0}^{2n-1} c_j(t) \sum_{j=0}^{2n-1} |x_j|^{\delta_j} \le \sum_{j=0}^{2n-1} c_j(t) \Big(2n + \sum_{j=0}^{2n-1} |x_j|^{\delta} \Big) \le \\ \le \sum_{j=0}^{2n-1} c_j(t) \Big(2n + (2n)^{1-\delta} \Big(\sum_{j=0}^{2n-1} |x_j| \Big)^{\delta} \Big),$$

where the inequality $\sum_{j=0}^{2n-1} b_j^{\varrho} \leq (2n)^{1-\varrho} \left(\sum_{j=0}^{2n-1} b_j\right)^{\varrho} \ (b_j \geq 0, \ \varrho \in (0,1])$ is used, we have

$$f(t, x_0, \dots, x_{2n-1}) \le \le \|q\|_{\infty} + L \sum_{j=0}^{2n-1} \frac{1}{|x_j|^{\gamma_j}} + \sum_{j=0}^{2n-1} c_j(t) \Big(2n + (2n)^{1-\delta} \Big(\sum_{j=0}^{2n-1} |x_j|\Big)^{\delta}\Big).$$

Hence

$$f(t, x_0, \dots, x_{2n-1}) \le \sum_{j=0}^{2n-1} h_j(|x_j|) + \omega\left(t, \sum_{j=0}^{2n-1} |x_j|\right),$$

where $h_j(u) = Lu^{-\gamma_j}$ for $0 \le j \le 2n - 2$, $h_{2n-1} = ||q||_{\infty} + Lu^{-\gamma_{2n-1}}$ and $w(t, u) = \sum_{j=0}^{2n-1} c_j(t)(2n + (2n)^{1-\delta}u^{\delta})$. Then

$$\int_{0}^{1} h_{j}(s^{2n-j}) \, ds = \int_{0}^{1} s^{-\frac{\gamma_{j}}{2n-j}} \, ds < \infty$$

for $0 \leq j \leq 2n-2$ and

m

$$\lim_{u \to \infty} h_{2n-1}(u) = \|q\|_{\infty}.$$

Since

$$\int_{0}^{u} \frac{ds}{h_{2n-1}(s)} = \int_{0}^{u} \frac{s^{\gamma_{2n-1}}}{\|q\|_{\infty} s^{\gamma_{2n-1}} + L} \, ds > \frac{1}{\|q\|_{\infty} + L} \int_{1}^{u} \, ds = \frac{u-1}{\|q\|_{\infty} + L}$$

for $u \ge 1$ and

$$\int_{0}^{T} \omega(t, Qu) \, dt = \left(2n + (2n)^{1-\delta} (Qu)^{\delta}\right) \sum_{j=0}^{2n-1} \|c_j\|_L,$$

where Q is given in (1.8), we have

$$\lim_{u \to \infty} \left(\int_{0}^{u} \frac{1}{h_{2n-1}(s)} \, ds \right)^{-1} \int_{0}^{T} \omega(t, Qu) \, dt = 0,$$

and therefore f satisfies (H_2) . Now Theorem 4.1 guarantees that for each $p \in \{1, \ldots, n-1\}, i_0 \in \{1, \ldots, p\}, k_0 \in \{p+1, \ldots, n\}$ and $\phi_1, \phi_2 \in \mathcal{A}$ there exists a solution of the problem (4.4), (1.4), (1.5). Hence, since the functionals $\phi_1, \phi_2 : C^0[0, T] \to \mathbb{R}$ defined by

$$\phi_1(x) = \int_0^T (x(s))^3 ds, \quad \phi_2(x) = x(t_1) + e^{x(t_2)} - 1, \ t_1, t_2 \in [0, T],$$

belong to \mathcal{A} , for each $p \in \{1, \ldots, n-1\}$, $i_0 \in \{1, \ldots, p\}$ and $k_0 \in \{p + 1, \ldots, n\}$ there exists a solution x of (4.4) such that

$$\int_{0}^{T} (x^{(2i_0-1)}(s))^3 \, ds = 0 \ x^{(2k_0-1)}(t_1) + e^{x^{(2k_0-1)}(t_2)} = 1$$

and $x^{(2j)} > 0$ on $[0,T] \setminus \{\alpha\}$ for $0 \le j \le p-1$, $x^{(2j)} > 0$ on $[0,T] \setminus \{\beta\}$ for $p \le j \le n-1$, where α and β are the unique zeros of $x^{(2i_0-1)}$ and $x^{(2k_0-1)}$, respectively.

Acknowledgement

Supported by grant No. 201/04/1077 of the Grant Agency of Czech Republic and by the Council of Czech Government MSM 6198959214.

References

- R. P. AGARWAL AND I. KIGURADZE, Two-point boundary value problems for higherorder linear differential equations with strong singularities. *Bound. Value Probl.* 2006, Art. ID 83910, 1–32.
- R. P. AGARWAL AND D. O'REGAN, Right focal singular boundary value problems. ZAMM Z. Angew. Math. Mech. 79(1999), No. 6, 363–373.
- R. P. AGARWAL AND D. O'REGAN, Twin solutions to singular boundary value problems. Proc. Amer. Math. Soc. 128(2000), No. 7, 2085–2094.
- R. P. AGARWAL AND D. O'REGAN, Multiplicity results for singular conjugate, focal, and (n, p) problems. J. Differential Equations 170(2001), No. 1, 142–156.
- 5. R. P. AGARWAL, D. O'REGAN, AND V. LAKSHMIKANTHAM, Singular (p, n p) focal and (n, p) higher order boundary value problems. *Nonlinear Anal.* **42**(2000), No. 2, *Ser. A: Theory Methods*, 215–228.
- A. GRANAS, R. GUENTHER, AND J. LEE, Nonlinear boundary value problems for ordinary differential equations. *Dissertationes Math. (Rozprawy Mat.)* 244(1985), 1–128.
- A. GRANAS, R. B. GUENTHER, AND J. W. LEE, Some general existence principles in the Carathéodory theory of nonlinear differential systems. J. Math. Pures Appl. (9) 70(1991), No. 2, 153–196.

- 8. X. HE AND W. GE, Positive solutions for semipositone (p, n-p) right focal boundary value problems. Appl. Anal. **81**(2002), No. 2, 227–240.
- I. KIGURADZE, On two-point boundary value problems for higher order singular ordinary differential equations. Mem. Differential Equations Math. Phys. 31(2004), 101–107.
- I. RACHŮNKOVÁ AND S. STANĚK, Sturm–Liouville and focal higher order BVPs with singularities in phase variables. *Georgian Math. J.* 10(2003), No. 1, 165–191.
- I. RACHŮNKOVÁ, S. STANĚK, AND M. TVRDÝ, Singularities and Laplacians in boundary value problems for nonlinear differential equations. Handbook of Differential Equations, Ordinary Differential Equations, Vol. 3 (Edited by A. Cañada, P. Drábek, A. Fonda), 607–723, Elsevier, 2006.
- P. J. Y WANG AND R. P. AGARWAL, Multiple positive solutions of two-point right focal boundary value problems. *Math. Comput. Modelling* 28(1998), No. 3, 41–49.

(Received 5.12.2006)

Author's address:

Department of Mathematical Analysis Faculty of Science Palacký University Tomkova 40, 779 00 Olomouc Czech Republic e-mail: stanek@inf.upol.cz