Memoirs on Differential Equations and Mathematical Physics

 Volume 40, 2007, 135-157Svatoslav Staněk

NONLOCAL SINGULAR BOUNDARY
VALUE PROBLEMS FOR EVEN-ORDER DIFFERENTIAL EQUATIONS

Abstract

Differential equations of the type $x^{(2 n)}=f\left(t, x, \ldots, x^{(2 n-1)}\right)$ are considered. Here a positive function f satisfies local Carathéodory conditions on a subset of $[0, T] \times \mathbb{R}^{2 n}$ and f may be singular at the value 0 of all its phase variables. The paper presents conditions guaranteeing the existence of a solution of the above differential equation satisfying nonlocal boundary conditions whose special case are the ($2 p, 2 n-2 p$) right focal boundary conditions $x^{(j)}(0)=0$ for $0 \leq j \leq 2 p-1$ and $x^{(j)}(T)=0$ for $2 p \leq j \leq 2 n-1$, where $p \in \mathbb{N}, 1 \leq p \leq n-1$.

2000 Mathematics Subject Classification. 34B16, 34B15. Key words and phrases. Singular boundary value problem, evenorder differential equation, nonlocal boundary conditions, focal boundary conditions, existence. ```Fry``` ```-``` ```d"``` ```\(p \in \mathbb{N}: 1 \leq p \leq n-1\).```

1. Introduction

Let T be a positive number and $\mathbb{X}=(0, \infty) \times(\mathbb{R} \backslash\{0\}) \subset \mathbb{R}^{2}$. Let \mathcal{A} denote the set of functionals $\phi: C^{0}[0, T] \rightarrow \mathbb{R}$ which are
(i) continuous, $\phi(0)=0$ and
(ii) increasing, that is, $x, y \in C^{0}[0, T], x<y$ on $[0, T] \Rightarrow \phi(x)<\phi(y)$.

Consider the differential equation

$$
\begin{equation*}
x^{(2 n)}(t)=f\left(t, x(t), \ldots, x^{(2 n-1)}(t)\right) \tag{1.1}
\end{equation*}
$$

where $n>1$, a positive function f satisfies local Carathéodory conditions on $[0, T] \times \mathbb{X}^{n}\left(f \in \operatorname{Car}\left([0, T] \times \mathbb{X}^{n}\right)\right)$ and f may be singular at the value 0 of all its phase variables.

Let $p \in \mathbb{N}, 1 \leq p \leq n-1$. In literature the equation (1.1) together with the boundary conditions

$$
\left.\begin{array}{ll}
x^{(i)}(0)=0, & 0 \leq i \leq 2 p-1 \tag{1.2}\\
x^{(i)}(T)=0, & 2 p \leq i \leq 2 n-1
\end{array}\right\}
$$

is called the $(2 p, 2 n-2 p)$ right focal boundary value problem.
In the papers [2]-[5], [8], [10]-[12] and references therein the authors discussed the $(p, n-p)$ focal problem for regular differential equations ([8], [12]) or differential equations with singularities in the phase variables ([2][5], [10], [11]) or differential equations with singularities in the time variables ([1], [9]). The papers [3], [4] and [12] discuss the existence of one and multiple solutions.

The boundary conditions (1.2) can be written in the equivalent form

$$
\begin{gathered}
x^{\left(2 i_{0}-1\right)}(0)=0, \quad x^{\left(2 k_{0}-1\right)}(T)=0, \\
\text { where } i_{0} \in\{1, \ldots, p\}, \quad k_{0} \in\{p+1, \ldots, n\}, \\
\min \left\{\sum_{j=0}^{2 p-1}\left|x^{(j)}(t)\right|: \quad 0 \leq t \leq T\right\}=0, \\
\min \left\{\sum_{j=2 p}^{2 n-1}\left|x^{(j)}(t)\right|: 0 \leq t \leq T\right\}=0 .
\end{gathered}
$$

Let $\alpha, \beta \in[0, T]$. Then the boundary conditions

$$
\left.\begin{array}{l}
x^{(i)}(\alpha)=0, \quad 0 \leq i \leq 2 p-1 \tag{1.3}\\
x^{(i)}(\beta)=0, \quad 2 p \leq i \leq 2 n-1
\end{array}\right\}
$$

are a natural generalization of the focal $(2 p, 2 n-2 p)$ boundary conditions (1.2). If $\alpha=\beta$, we obtain the initial conditions. There are two main ways for determining α and β in (1.3). Namely, either α, β are given in advance or α, β depend on solutions of the considered problem and their derivatives. The second way is used in this paper. We discuss the nonlocal boundary
conditions

$$
\left.\begin{array}{c}
\phi_{1}\left(x^{\left(2 i_{0}-1\right)}\right)=0, \quad \phi_{2}\left(x^{\left(2 k_{0}-1\right)}\right)=0 \tag{1.4}\\
\text { where } i_{0} \in\{1, \ldots, p\}, \quad k_{0} \in\{p+1, \ldots, n\} \text { and } \phi_{1}, \phi_{2} \in \mathcal{A},
\end{array}\right\}
$$

$$
\begin{align*}
& \min \left\{\sum_{j=0}^{2 p-1}\left|x^{(j)}(t)\right|: 0 \leq t \leq T\right\}=0 \\
& \min \left\{\sum_{j=2 p}^{2 n-1}\left|x^{(j)}(t)\right|: 0 \leq t \leq T\right\}=0 \tag{1.5}
\end{align*}
$$

A function $x \in A C^{2 n-1}[0, T]$ (the set of functions having absolutely continuous $(2 n-1)$ st derivatives on $[0, T])$ is said to be a solution of the problem (1.1), (1.4), (1.5) if x satisfies the boundary conditions (1.4), (1.5) and (1.1) holds a.e. on $[0, T]$.

The aim of this paper is to give conditions on the function f in (1.1) which guarantee the solvability of the problem $(1.1),(1.4),(1.5)$ for each $p \in\{1, \ldots, n-1\}, i_{0} \in\{1, \ldots, p\}, k_{0} \in\{p+1, \ldots, n\}$ and $\phi_{1}, \phi_{2} \in \mathcal{A}$.

We note that our boundary conditions are nonlocal and that all solutions to the problem $(1.1),(1.4),(1.5)$ and their derivatives 'pass through' the singular points of f at some inner points α, β in $(0, T)$ depending on $\phi_{1}, \phi_{2} \in$ \mathcal{A} and i_{0}, k_{0} (of course if $\alpha, \beta \in(0, T)$). Our existence result for the problem (1.1), (1.4), (1.5) is obtained by combination of regularization and sequential techniques. Existence results for auxiliary regular problems are proved by a priori bounds for their solutions and the topological transversality principle (see [6], [7]). In limit processes, a combination of the Fatou theorem with the Lebesgue dominated convergence theorem is used.

Notice that if x is a solution of the problem (1.1), (1.4), (1.5), then (1.4) yields $x^{\left(2 i_{0}-1\right)}(\alpha)=0$ and $x^{\left(2 k_{0}-1\right)}(\beta)=0$ for some unique $\alpha, \beta \in[0, T]$ (see Lemma 3.4) and (1.5) shows that x satisfies (1.3). Also from f being positive on $[0, T] \times \mathbb{X}^{n}$ we deduce that any solution x of the problem (1.1), (1.4), (1.5) satisfies

$$
\min \left\{x^{(2 j)}(t): 0 \leq t \leq T\right\}=0 \text { for } 0 \leq j \leq n-1
$$

We observe that the boundary conditions (1.2) are a special case of (1.4), (1.5) with $\phi_{1}, \phi_{2} \in \mathcal{A}$ defined by $\phi_{1}(x)=x(0)$ and $\phi_{2}(x)=x(T)$ for $x \in C^{0}[0, T]$.

Throughout the paper we will use the following assumptions:
$\left(H_{1}\right) f \in \operatorname{Car}\left([0, T] \times \mathbb{X}^{n}\right)$ and there exists a positive constant a such that

$$
a \leq f\left(t, x_{0}, \ldots, x_{2 n-1}\right)
$$

for a.e. $t \in[0, T]$ and all $\left(x_{0}, \ldots, x_{2 n-1}\right) \in \mathbb{X}^{n}$;
$\left(H_{2}\right)$ For a.e. $t \in[0, T]$ and all $\left(x_{0}, \ldots, x_{2 n-1}\right) \in \mathbb{X}^{n}$,

$$
f\left(t, x_{0}, \ldots, x_{2 n-1}\right) \leq \sum_{j=0}^{2 n-1} h_{j}\left(\left|x_{j}\right|\right)+\omega\left(t, \sum_{j=0}^{2 n-1}\left|x_{j}\right|\right)
$$

where $h_{j} \in C^{0}(0, \infty)$ is positive and nonincreasing, $\omega \in \operatorname{Car}([0, T] \times$ $(0, \infty))$ is positive and nondecreasing in the second variable,

$$
\begin{gather*}
\int_{0}^{1} h_{j}\left(s^{2 n-j}\right) d s<\infty \text { for } 0 \leq j \leq 2 n-2 \tag{1.6}\\
\lim _{u \rightarrow \infty} h_{2 n-1}(u)=c>0
\end{gather*}
$$

and

$$
\begin{equation*}
\limsup _{u \rightarrow \infty}\left(\int_{0}^{u} \frac{d s}{h_{2 n-1}(s)}\right)^{-1} \int_{0}^{T} \omega(t, Q u) d t<c \tag{1.7}
\end{equation*}
$$

with

$$
Q=\left\{\begin{array}{ll}
\frac{T^{2 n}-1}{T-1} & \text { if } T \neq 1 \tag{1.8}\\
2 n & \text { if } T=1
\end{array} .\right.
$$

Remark 1.1. From the properties of the function $h_{2 n-1}$ given in $\left(H_{2}\right)$ it follows that $\int_{0}^{b} \frac{1}{h_{2 n-1}(s)} d s<\infty$ for all $b>0$ and

$$
\lim _{\rightarrow \infty} \frac{1}{u} \int_{0}^{u} \frac{d s}{h_{2 n-1}(s)}=\frac{1}{c} .
$$

Throughout the paper $\|x\|=\max \{|x(t)|: 0 \leq t \leq T\},\|x\|_{L}=\int_{0}^{T}|x(t)| d t$ and $\|x\|_{\infty}=$ ess max $\{|x(t)|: 0 \leq t \leq T\}$ stand for the norm in $C^{0}[0, T]$, $L_{1}[0, T]$ and the set $L_{\infty}[0, T]$ of measurable and essentially bounded functions on $[0, T]$, respectively.

The paper is organized as follows. In Section 2 we introduce a family of auxiliary regular differential equations. Section 3 is devoted to the study of auxiliary regular problems. We first present results (Lemmas 3.1-3.6) which are used in the next part of this section. Then we establish a priori bounds for solutions of auxiliary problems (Lemma 3.7) and prove their existence (Lemma 3.8). We also show that the sequence of $(2 n-1)$ st derivatives of solutions to auxiliary problems is equicontinuous on $[0, T]$ (Lemma 3.9). Section 4 contains the main existence results for the problem (1.1), (1.4), (1.5) (Theorem 4.1). An example illustrates our theory (Example 4.2).

2. Auxiliary Regular Problems

Let the assumption $\left(H_{1}\right)$ be satisfied. For $m \in \mathbb{N}$, define \mathbb{R}_{m} and $f_{m} \in$ $\operatorname{Car}\left([0, T] \times \mathbb{R}^{2 n}\right)$ by the formulas

$$
\begin{gathered}
\mathbb{R}_{m}=\left(-\infty,-\frac{1}{m}\right] \cup\left[\frac{1}{m}, \infty\right) \\
f_{m}\left(t, x_{0}, x_{1}, x_{2}, \ldots, x_{2 n-1}\right)=
\end{gathered}
$$

$$
\left\{\begin{array}{l}
f\left(t, x_{0}, x_{1}, x_{2}, \ldots, x_{2 n-1}\right) \\
\quad \text { for }\left(x_{0}, x_{1}, x_{2}, \ldots, x_{2 n-1}\right) \in\left(\left[\frac{1}{m}, \infty\right) \times \mathbb{R}_{m}\right)^{n}, t \in[0, T], \\
f\left(t, \frac{1}{m}, x_{1}, \frac{1}{m}, \ldots, x_{2 n-1}\right) \text { for } t \in[0, T], x_{1}, x_{3}, \ldots, x_{2 n-1} \in \mathbb{R}_{m}, \\
\quad x_{0}, x_{2}, \ldots, x_{2 n-2} \in\left(-\infty, \frac{1}{m}\right), \\
\frac{m}{2}\left[f_{m}\left(t, x_{0}, \frac{1}{m}, x_{2}, \ldots, x_{2 n-1}\right)\left(x_{1}+\frac{1}{m}\right)-\right. \\
\left.\quad-f_{m}\left(t, x_{0},-\frac{1}{m}, x_{2}, \ldots, x_{2 n-1}\right)\left(x_{1}-\frac{1}{m}\right)\right] \\
\quad \text { for }\left(t, x_{0}, x_{2}, \ldots, x_{2 n-1}\right) \in[0, T] \times \mathbb{R} \times\left(\mathbb{R} \times \mathbb{R}_{m}\right)^{n-1}, \\
\quad x_{1} \in\left(-\frac{1}{m}, \frac{1}{m}\right), \\
\quad \vdots \\
\frac{m}{\frac{m}{2}} \begin{array}{l}
\quad f_{m}\left(t, x_{0}, \ldots, x_{2 i-2}, \frac{1}{m}, x_{2 i}, \ldots, x_{2 n-1}\right)\left(x_{2 i-1}+\frac{1}{m}\right)- \\
\left.\quad-f_{m}\left(t, x_{0}, \ldots, x_{2 i-2},-\frac{1}{m}, x_{2 i}, \ldots, x_{2 n-1}\right)\left(x_{2 i-1}-\frac{1}{m}\right)\right] \\
\quad \text { for }\left(t, x_{0}, \ldots, x_{2 i-2}, x_{2 i}, \ldots, x_{2 n-1}\right) \in[0, T] \times \mathbb{R}^{2 i-1} \times\left(\mathbb{R} \times \mathbb{R}_{m}\right)^{n-i}, \\
\quad x_{2 i-1} \in\left(-\frac{1}{m}, \frac{1}{m}\right), \\
\quad \vdots \\
\frac{m}{2}\left[f_{m}\left(t, x_{0}, x_{1}, \ldots, x_{2 n-2}, \frac{1}{m}\right)\left(x_{2 n-1}+\frac{1}{m}\right)-\right. \\
\left.\quad-f_{m}\left(t, x_{0}, x_{1}, \ldots, x_{2 n-2},-\frac{1}{m}\right)\left(x_{2 n-1}-\frac{1}{m}\right)\right] \\
\quad \text { for }\left(t, x_{0}, x_{1}, \ldots, x_{2 n-2}\right) \in[0, T] \times \mathbb{R} \mathbb{R}^{2 n-1}, x_{2 n-1} \in\left(-\frac{1}{m}, \frac{1}{m}\right)
\end{array} .
\end{array}\right.
$$

Then

$$
\begin{equation*}
a \leq f_{m}\left(t, x_{0}, \ldots, x_{2 n-1}\right) \tag{2.1}
\end{equation*}
$$

for a.e. $t \in[0, T]$ and all $\left(x_{0}, \ldots, x_{2 n-1}\right) \in \mathbb{R}^{2 n}, m \in \mathbb{N}$.
Consider the family of the regular differential equations

$$
\begin{equation*}
x^{(2 n)}(t)=(1-\lambda) a+\lambda f_{m}\left(t, x(t), \ldots, x^{(2 n-1)}(t)\right) \tag{2.2}
\end{equation*}
$$

depending on the parameters $\lambda \in[0,1]$ and $m \in \mathbb{N}$. Then (see (2.1))

$$
\begin{equation*}
a \leq(1-\lambda) a+\lambda f_{m}\left(t, x_{0}, \ldots, x_{2 n-1}\right) \tag{2.3}
\end{equation*}
$$

for a.e. $t \in[0, T]$ and all $\left(x_{0}, \ldots, x_{2 n-1}\right) \in \mathbb{R}^{2 n}, \lambda \in[0,1], m \in \mathbb{N}$. The assumption $\left(\mathrm{H}_{2}\right)$ implies that

$$
\begin{equation*}
(1-\lambda) a+\lambda f_{m}\left(t, x_{0}, \ldots, x_{2 n-1}\right) \leq \sum_{j=0}^{2 n-1} h_{j}\left(\left|x_{j}\right|\right)+\omega\left(t, 2 n+\sum_{j=0}^{2 n-1}\left|x_{j}\right|\right) \tag{2.4}
\end{equation*}
$$

for a.e. $t \in[0, T]$ and all $\left(x_{0}, \ldots, x_{2 n-1}\right) \in(\mathbb{R} \backslash\{0\})^{2 n}, \lambda \in[0,1], m \in \mathbb{N}$.

3. Auxiliary Results

Let the assumption $\left(H_{1}\right)$ be satisfied. For $m \in \mathbb{N}$ and $\lambda \in[0,1]$, define the operator $\mathcal{K}_{m, \lambda}: C^{2 n-1}[0, T] \rightarrow L_{1}[0, T]$ by the formula

$$
\begin{equation*}
\left(\mathcal{K}_{m, \lambda} x\right)(t)=(1-\lambda) a+\lambda f_{m}\left(t, x(t), \ldots, x^{(2 n-1)}(t)\right) \tag{3.1}
\end{equation*}
$$

The following five lemmas are needed in the second part of this section.
Lemma 3.1. Let $\left(H_{1}\right)$ hold. Let $\phi_{2} \in \mathcal{A}, m \in \mathbb{N}$ and $k \in\{p+1, \ldots, n\}$. Then for each $x \in C^{2 n-1}[0, T]$ and $\lambda \in[0,1]$, there exists a unique solution $\beta_{0}=\beta_{0}(x, \lambda) \in[0, T]$ of the equation

$$
\begin{equation*}
S_{k}(\beta ; x, \lambda)=0, \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{k}(\beta ; x, \lambda)=\phi_{2}\left(\frac{1}{(2 n-2 k)!} \int_{\beta}^{t}(t-s)^{2(n-k)}\left(\mathcal{K}_{m, \lambda} x\right)(s) d s\right) . \tag{3.3}
\end{equation*}
$$

In addition, β_{0} is a continuous function of x and λ.
Proof. Choose $x \in C^{2 n-1}[0, T]$ and $\lambda \in[0,1]$. By $(2.3),\left(\mathcal{K}_{m, \lambda} x\right)(t) \geq a$ for a.e. $t \in[0, T]$ and consequently

$$
\int_{0}^{t}(t-s)^{2(n-k)}\left(\mathcal{K}_{m, \lambda} x\right)(s) d s \geq 0, \quad \int_{T}^{t}(t-s)^{2(n-k)}\left(\mathcal{K}_{m, \lambda} x\right)(s) d s \leq 0
$$

for $t \in[0, T]$. Hence $S_{k}(0 ; x, \lambda) \geq 0$ and $S_{k}(T ; x, \lambda) \leq 0$ and since $S_{k}(\cdot ; x, \lambda)$ is a continuous function on $[0, T]$, there exists a solution $\beta_{0} \in[0, T]$ of (3.2). In order to prove the uniqueness of β_{0}, assume that $S_{k}\left(\beta_{1} ; x, \lambda\right)=0$ for some $\beta_{1} \in[0, T], \beta_{1} \neq \beta_{0}$. If

$$
\int_{\beta_{1}}^{t_{0}}\left(t_{0}-s\right)^{2(n-k)}\left(\mathcal{K}_{m, \lambda} x\right)(s) d s=\int_{\beta_{0}}^{t_{0}}\left(t_{0}-s\right)^{2(n-k)}\left(\mathcal{K}_{m, \lambda} x\right)(s) d s
$$

for some $t_{0} \in[0, T]$, then

$$
\int_{\beta_{1}}^{\beta_{0}}\left(t_{0}-s\right)^{2(n-k)}\left(\mathcal{K}_{m, \lambda} x\right)(s) d s=0
$$

contrary to $\left(t_{0}-s\right)^{2(n-k)}\left(\mathcal{K}_{m, \lambda} x\right)(s) \geq\left(t_{0}-s\right)^{2(n-k)} a$ for a.e. $s \in[0, T]$. Hence

$$
\int_{\beta_{1}}^{t}(t-s)^{2(n-k)}\left(\mathcal{K}_{m, \lambda} x\right)(s) d s-\int_{\beta_{0}}^{t}(t-s)^{2(n-k)}\left(\mathcal{K}_{m, \lambda} x\right)(s) d s \neq 0
$$

for $t \in[0, T]$, and then $S_{k}\left(\beta_{1} ; x, \lambda\right) \neq S_{k}\left(\beta_{0} ; x, \lambda\right)$, contrary to our assumption $S_{k}\left(\beta_{1} ; x, \lambda\right)=0$.

Let now $\left\{\left(x_{j}, \lambda_{j}\right)\right\} \subset C^{2 n-1}[0, T] \times[0,1]$ be convergent, $\lim _{j \rightarrow \infty}\left(x_{j}, \lambda_{j}\right)=$ $\left(x_{0}, \lambda_{0}\right)$. Let $\beta_{j} \in[0, T]$ and $\beta_{0} \in[0, T]$ be the unique solution of $S_{k}\left(\beta ; x_{j}, \lambda_{j}\right)=0$ and $S_{k}\left(\beta ; x_{0}, \lambda_{0}\right)=0$, respectively. If $\left\{\beta_{j_{n}}\right\}$ is a convergent subsequence of $\left\{\beta_{j}\right\}, \lim _{n \rightarrow \infty} \beta_{j_{n}}=\Lambda$, then from the continuity of ϕ_{2}, $f_{m} \in \operatorname{Car}\left([0, T] \times \mathbb{R}^{2 n}\right)$ and the Lebesgue dominated convergence theorem we get $0=\lim _{n \rightarrow \infty} S_{k}\left(\beta_{j_{n}}, x_{j_{n}}, \lambda_{j_{n}}\right)=S_{k}\left(\Lambda ; x_{0}, \lambda_{0}\right)$. Consequently $\Lambda=\beta_{0}$. We have proved that any convergent subsequence of $\left\{\beta_{j}\right\}$ has the same limit β_{0}. Therefore $\lim _{j \rightarrow \infty} \beta_{j}=\beta_{0}$, which shows that the solution of (3.2) depends continuously on x and λ.

Lemma 3.2. Let $\left(H_{1}\right)$ hold. Let $\phi_{1} \in \mathcal{A}, m \in \mathbb{N}, i \in\{1, \ldots, p\}$ and $k \in\{p+1, \ldots, n\}$. Then for each $x \in C^{2 n-1}[0, T]$ and $\lambda \in[0,1]$, there exists a unique solution $\alpha_{0}=\alpha_{0}(x, \lambda) \in[0, T]$ of the equation

$$
\begin{equation*}
V_{i}(\alpha ; x, \lambda)=0, \tag{3.4}
\end{equation*}
$$

where

$$
\begin{gather*}
V_{i}(\alpha ; x, \lambda)=\phi_{1}(\mathcal{L}(\alpha ; x, \lambda)), \tag{3.5}\\
\mathcal{L}(\alpha ; x, \lambda)(t)=\frac{1}{(2(n-p)-1)!(2 p-2 i)!} \times \\
\times \int_{\alpha}^{t}(t-s)^{2(p-i)} \int_{\beta_{0}}^{s}(s-v)^{2(n-p)-1}\left(\mathcal{K}_{m, \lambda} x\right)(v) d v d s,
\end{gather*}
$$

and $\beta_{0}=\beta_{0}(x, \lambda) \in[0, T]$ is the unique solution of (3.2). In addition, α_{0} is a continuous function of x and λ.

Proof. Choose $x \in C^{2 n-1}[0, T]$ and $\lambda \in[0,1]$. (H_{1}) and (2.1) show that $V_{i}(\cdot ; x, \lambda)$ is continuous on $[0, T]$ and $\mathcal{L}(0 ; x, \lambda)(t) \geq 0, \mathcal{L}(T ; x, \lambda)(t) \leq 0$ for $t \in[0, T]$. Hence $V_{i}(0 ; x, \lambda) \geq 0, V_{i}(T ; x, \lambda) \leq 0$, and therefore $V_{i}\left(\alpha_{0} ; x, \lambda\right)=$ 0 for an $\alpha_{0} \in[0, T]$. Essentially the same reasoning as in the proof of Lemma 3.1 implies that $V_{i}(\cdot ; x, \lambda)$ is injective on $[0, T]$, and consequently α_{0} is the unique solution of (3.4).

It remains to show that $\alpha_{0}=\alpha_{0}(x, \lambda)$ depends continuously on x and λ. Let $\left\{\left(x_{j}, \lambda_{j}\right)\right\} \subset C^{2 n-1}[0, T] \times[0,1]$ be convergent, $\lim _{j \rightarrow \infty}\left(x_{j}, \lambda_{j}\right)=\left(x_{0}, \lambda_{0}\right)$. Let α_{j} be the (unique) solution of $V_{i}\left(\alpha ; x_{j}, \lambda_{j}\right)=0$. By Lemma 3.1,

$$
\lim _{j \rightarrow \infty} \beta_{0}\left(x_{j}, \lambda_{j}\right)=\beta_{0}\left(x_{0}, \lambda_{0}\right)
$$

Using the Lebesgue dominated convergence theorem, we see that for any convergent subsequence $\left\{\alpha_{j_{n}}\right\}$ of $\left\{\alpha_{j}\right\}, \lim _{n \rightarrow \infty} \alpha_{j_{n}}=\Lambda$, we have

$$
0=\lim _{n \rightarrow \infty} V_{i}\left(\alpha_{j_{n}}, x_{j_{n}}, \lambda_{j_{n}}\right)=V_{i}\left(\Lambda ; x_{0}, \lambda_{0}\right)
$$

Hence $\Lambda=\alpha_{0}\left(x_{0}, \lambda_{0}\right)$ which shows that any convergent subsequence of $\left\{\alpha_{j}\right\}$ has the same limit equal to $\alpha_{0}\left(x_{0}, \lambda_{0}\right)$. Therefore $\left\{\alpha_{0}\left(x_{j}, \lambda_{j}\right)\right\}$ is convergent
and $\lim _{j \rightarrow \infty} \alpha_{0}\left(x_{j}, \lambda_{j}\right)=\alpha_{0}\left(x_{0}, \lambda_{0}\right)$. We have proved that α_{0} is a continuous function of x and λ.

Lemma 3.3. Let $\phi \in \mathcal{A}$ and $\phi(x)=0$ for some $x \in C^{0}[0, T]$. Then there exists $\xi \in[0, T]$ such that $x(\xi)=0$.

Proof. If not, $x>0$ or $x<0$ on $[0, T]$. Then $\phi(x)>\phi(0)=0$ or $\phi(x)<$ $\phi(0)=0$, contrary to $\phi(x)=0$.

Lemma 3.4. Let $\left(H_{1}\right)$ hold. Let x be a solution of the problem (2.2) ${ }_{m}^{\lambda}$, (1.4), (1.5). Then $x^{(2 j-1)}$ is increasing on $[0, T]$ for $1 \leq j \leq n$ and (1.3) is true, where α is the unique zero of $x^{\left(2 i_{0}-1\right)}$ and β is the unique zero of $x^{\left(2 k_{0}-1\right)}$. In addition, $x^{(2 n-2 j)}>0$ on $[0, T] \backslash\{\beta\}$ for $1 \leq j \leq n-p$ and $x^{(2 n-2 j)}>0$ on $[0, T] \backslash\{\alpha\}$ for $n-p+1 \leq j \leq n$.
Proof. Let x be a solution of the problem $(2.2)_{m}^{\lambda},(1.4),(1.5)$. Lemma 3.3 and (1.4) show that $x^{\left(2 i_{0}-1\right)}(\alpha)=0$ and $x^{\left(2 k_{0}-1\right)}(\beta)=0$ for some $\alpha, \beta \in$ $[0, T]$ and then from (1.5) we see that (1.3) is true. Since $x^{(2 n)}(t) \geq a$ for a.e. $t \in[0, T]$ due to (2.3), $x^{(2 n-1)}$ is increasing on $[0, T]$ and consequently $x^{(2 n-1)}<0$ on $[0, \beta)$ (if $\beta>0$) and $x^{(2 n-1)}>0$ on $(\beta, T]$ (if $\beta<T$). Hence β is determined uniquely and $x^{(2 n-2)}(\beta)=0$ implies $x^{(2 n-2)}>0$ on $[0, T] \backslash\{\beta\}$. By this procedure we can verify that $x^{(2 j-1)}$ is increasing on $[0, T]$ for $1 \leq j \leq n$. Consequently, α is the unique zero of $x^{\left(2 i_{0}-1\right)}$. Further, $x^{(2 n-2 j)}>0$ on $[0, T] \backslash\{\beta\}$ for $1 \leq j \leq n-p$ and $x^{(2 n-2 j)}>0$ on $[0, T] \backslash\{\alpha\}$ for $n-p+1 \leq j \leq n$.

Lemma 3.5. Let $\left(H_{1}\right)$ hold. Then x is a solution of the problem $(2.2)_{m}^{\lambda}$, (1.4), (1.5) if and only if x is a fixed point of the operator $\mathcal{S}: C^{2 n-1}[0, T] \rightarrow$ $C^{2 n-1}[0, T]$ defined by the formula

$$
\begin{gather*}
(\mathcal{S} x)(t)=\frac{1}{(2(n-p)-1)!(2 p-1)!} \times \\
\times \int_{\alpha_{0}}^{t}(t-s)^{2 p-1} \int_{\beta_{0}}^{s}(s-v)^{2(n-p)-1}\left(\mathcal{K}_{m, \lambda} x\right)(v) d v d s \tag{3.6}
\end{gather*}
$$

where $\beta_{0} \in[0, T]$ is the unique solution of $S_{k_{0}}(\beta ; x, \lambda)=0$ with $S_{k_{0}}$ given in (3.3), and $\alpha_{0} \in[0, T]$ is the unique solution of $V_{i_{0}}(\alpha ; x, \lambda)=0$ with $V_{i_{0}}$ given in (3.5).

Proof. Let x be a fixed point of the operator \mathcal{S}. By direct calculations we can verify that x is a solution of $(2.2)_{m}^{\lambda}, x^{(j)}\left(\alpha_{0}\right)=0$ for $0 \leq j \leq 2 p-1$ and $x^{(j)}\left(\beta_{0}\right)=0$ for $2 p \leq j \leq 2 n-1$. From the definition of β_{0} and α_{0} it follows that $\phi_{1}\left(x^{\left(2 i_{0}-1\right)}\right)=0$ and $\phi_{2}\left(x^{\left(2 k_{0}-1\right)}\right)=0$. Hence x is a solution of the problem $(2.2)_{m}^{\lambda},(1.4),(1.5)$.

Let x be a solution of the problem (2.2) ${ }_{m}^{\lambda}$, (1.4), (1.5). Then Lemma 3.4 shows that x satisfies (1.3) with α_{*} and β_{*} instead of α and β, where α_{*} and β_{*} are the unique zeros of $x^{\left(2 i_{0}-1\right)}$ and $x^{\left(2 k_{0}-1\right)}$, respectively. Hence x is
a solution of the problem $(2.2)_{m}^{\lambda}$, (1.3). Integrating the equality $x^{(2 n)}(t)=$ $\left(\mathcal{K}_{m, \lambda} x\right)(t)$ for a.e. $t \in[0, T]$ and using (1.3), we obtain

$$
\begin{gathered}
x(t)=\frac{1}{(2(n-p)-1)!(2 p-1)!} \times \\
\times \int_{\alpha_{*}}^{t}(t-s)^{2 p-1} \int_{\beta_{*}}^{s}(s-v)^{2(n-p)-1}\left(\mathcal{K}_{m, \lambda} x\right)(v) d v d s
\end{gathered}
$$

for $t \in[0, T]$. Now from (1.4) and Lemmas 3.1 and 3.2 we deduce that α_{*} and β_{*} are the unique solutions of the equation $V_{i_{0}}(\alpha ; x, \lambda)=0$ and $S_{k_{0}}(\beta ; x, \lambda)=0$, respectively. Hence $\alpha_{*}=\alpha_{0}$ and $\beta_{*}=\beta_{0}$, and consequently x is a fixed point of the operator \mathcal{S}.

The following result is used in the proofs of Lemmas 3.7 and 3.9 and Theorem 4.1.

Lemma 3.6. Let $\left(H_{1}\right)$ hold. Let x be a solution of the problem $(2.2)_{m}^{\lambda}$, (1.4), (1.5). Then

$$
\begin{equation*}
\left|x^{(j)}(t)\right| \geq \frac{a}{(2 n-j)!}\left|t-\beta_{0}\right|^{2 n-j}, \quad t \in[0, T], \quad 2 p \leq j \leq 2 n-1 \tag{3.7}
\end{equation*}
$$

and

$$
\left|x^{(j)}(t)\right| \geq \begin{cases}\frac{a}{(2 n-j)!}\left|t-\widetilde{\alpha}_{0}\right|^{2 n-j} & \text { for } t \in\left[0, \frac{\widetilde{\alpha}_{0}+\widetilde{\beta}_{0}}{2}\right] \tag{3.8}\\ \frac{a}{(2 n-j)!}\left|t-\widetilde{\beta}_{0}\right|^{2 n-j} & \text { for } t \in\left[\frac{\widetilde{\alpha}_{0}+\widetilde{\beta}_{0}}{2}, T\right]\end{cases}
$$

for $0 \leq j \leq 2 p-1$, where α_{0} and β_{0} are the unique zeros of $x^{\left(2 i_{0}-1\right)}$ and $x^{\left(2 k_{0}-1\right)}$, respectively, and $\widetilde{\alpha}_{0}=\min \left\{\alpha_{0}, \beta_{0}\right\}, \widetilde{\beta}_{0}=\max \left\{\alpha_{0}, \beta_{0}\right\}$.
Proof. By Lemma 3.5, x is a fixed point of the operator \mathcal{S} defined in (3.6), and therefore

$$
\begin{gathered}
x(t)=\frac{1}{(2(n-p)-1)!(2 p-1)!} \times \\
\times \int_{\alpha_{0}}^{t}(t-s)^{2 p-1} \int_{\beta_{0}}^{s}(s-v)^{2(n-p)-1}\left(\mathcal{K}_{m, \lambda} x\right)(v) d v d s
\end{gathered}
$$

for $t \in[0, T]$. Since (see (2.3)) $\left(\mathcal{K}_{m, \lambda} x\right)(t) \geq a$ for a.e. $t \in[0, T]$, we have

$$
\begin{gathered}
\left|x^{(j)}(t)\right|=\left|\int_{\beta_{0}}^{t} \frac{(t-s)^{2 n-j-1}}{(2 n-j-1)!}\left(\mathcal{K}_{m, \lambda} x\right)(s) d s\right| \geq \\
\geq \frac{a}{(2 n-j-1)!}\left|\int_{\beta_{0}}^{t}(t-s)^{2 n-j-1} d s\right|=\frac{a}{(2 n-j)!}\left|t-\beta_{0}\right|^{2 n-j}
\end{gathered}
$$

for $t \in[0, T]$ and $2 p \leq j \leq 2 n-1$, which proves (3.7).
It remains to verify (3.8). Assume for example that $\alpha_{0} \leq \beta_{0}$ (the case where $\alpha_{0}>\beta_{0}$ is treated similarly). Since (see (3.7) and Lemma 3.4)

$$
x^{(2 p)}(t) \geq \frac{a}{(2 n-2 p)!}\left(t-\beta_{0}\right)^{2(n-p)}, \quad t \in[0, T]
$$

and $x^{(j)}\left(\alpha_{0}\right)=0$ for $0 \leq j \leq 2 p-1$, we have

$$
\begin{aligned}
\left|x^{(2 p-1)}(t)\right| & =\left|\int_{\alpha_{0}}^{t} x^{(2 p)}(s) d s\right| \geq \frac{a}{(2 n-2 p)!}\left|\int_{\alpha_{0}}^{t}\left(s-\beta_{0}\right)^{2(n-p)} d s\right| \geq \\
& \geq \begin{cases}\frac{a}{(2 n-2 p+1)!}\left|t-\alpha_{0}\right|^{2(n-p)+1} & \text { for } t \in\left[0, \frac{\alpha_{0}+\beta_{0}}{2}\right] \\
\frac{a}{(2 n-2 p+1)!}\left|t-\beta_{0}\right|^{2(n-p)+1} & \text { for } t \in\left[\frac{\alpha_{0}+\beta_{0}}{2}, T\right]\end{cases}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|x^{(2 p-2)}(t)\right| & =\left|\int_{\alpha_{0}}^{t} x^{(2 p-1)}(s) d s\right| \geq \\
& \geq \begin{cases}\frac{a}{(2 n-2 p+2)!}\left|t-\alpha_{0}\right|^{2(n-p+1)} & \text { for } t \in\left[0, \frac{\alpha_{0}+\beta_{0}}{2}\right] \\
\frac{a}{(2 n-2 p+2)!}\left|t-\beta_{0}\right|^{2(n-p+1)} & \text { for } t \in\left[\frac{\alpha_{0}+\beta_{0}}{2}, T\right]\end{cases}
\end{aligned}
$$

Applying the above procedure repeatedly, we can verify the validity of (3.8) for all $0 \leq j \leq 2 p-1$.

We are now in a position to give a priori bounds for solutions of the problem (2.2) ${ }_{m}^{\lambda}$, (1.4), (1.5).

Lemma 3.7. Let the assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$ be satisfied. Let x be a solution of the problem $(2.2)_{m}^{\lambda},(1.4),(1.5)$. Then there exists a positive constant K independent of $m, \lambda, p, i_{0}, k_{0}, \phi_{1}$ and ϕ_{2} such that

$$
\begin{equation*}
\left\|x^{(j)}\right\|<K \text { for } 0 \leq j \leq 2 n-1 \tag{3.9}
\end{equation*}
$$

Proof. By Lemma 3.4, there exist a unique zero α of $x^{\left(2 i_{0}-1\right)}$ and a unique zero β of $x^{\left(2 k_{0}-1\right)}$, and x satisfies (1.3). Hence

$$
\begin{equation*}
\left\|x^{(j)}\right\| \leq T^{2 n-j-1}\left\|x^{(2 n-1)}\right\|, \quad 0 \leq j \leq 2 n-1 \tag{3.10}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\sum_{j=0}^{2 n-1}\left\|x^{(j)}\right\| \leq Q\left\|x^{(2 n-1)}\right\|, \tag{3.11}
\end{equation*}
$$

where Q is given in (1.8). From Lemma 3.6 it follows that

$$
\left|x^{(j)}(t)\right| \geq \frac{a}{(2 n-j)!}|t-\beta|^{2 n-j}, \quad t \in[0, T], \quad 2 p \leq j \leq 2 n-1,
$$

and

$$
\left|x^{(j)}(t)\right| \geq \begin{cases}\frac{a}{(2 n-j)!}|t-\widetilde{\alpha}|^{2 n-j} & \text { for } t \in\left[0, \frac{\widetilde{\alpha}+\widetilde{\beta}}{2}\right] \\ \frac{a}{(2 n-j)!}|t-\widetilde{\beta}|^{2 n-j} & \text { for } t \in\left[\frac{\widetilde{\alpha}+\widetilde{\beta}}{2}, T\right]\end{cases}
$$

for $0 \leq j \leq 2 p-1$, where $\widetilde{\alpha}=\min \{\alpha, \beta\}$ and $\widetilde{\beta}=\max \{\alpha, \beta\}$. Set

$$
\begin{equation*}
I_{j}=\sqrt[2 n-j]{\frac{a}{(2 n-j)!}} \text { for } 0 \leq j \leq 2 n-2 \tag{3.12}
\end{equation*}
$$

Since the function h_{j} is positive and nonincreasing on $(0, \infty)$ by $\left(H_{2}\right)$, we have

$$
\begin{align*}
\int_{0}^{T} h_{j}\left(\left|x^{(j)}(t)\right|\right) d t & \leq \int_{0}^{T} h_{j}\left(\frac{a}{(2 n-j)!}|t-\beta|^{2 n-j}\right) d t \leq \\
& \leq \frac{1}{I_{j}}\left(\int_{0}^{I_{j} \beta} h_{j}\left(s^{2 n-j}\right) d s+\int_{0}^{I_{j}(T-\beta)} h_{j}\left(s^{2 n-j}\right) d s\right)< \\
& <\frac{2}{I_{j}} \int_{0}^{I_{j} T} h_{j}\left(s^{2 n-j}\right) d s \tag{3.13}
\end{align*}
$$

for $2 p \leq j \leq 2 n-2$ and

$$
\begin{gather*}
\int_{0}^{T} h_{j}\left(\left|x^{(j)}(t)\right|\right) d t \leq \\
\leq \int_{0}^{T} h_{j}\left(\frac{a}{(2 n-j)!}|t-\alpha|^{2 n-j}\right) d t+\int_{0}^{T} h_{j}\left(\frac{a}{(2 n-j)!}|t-\beta|^{2 n-j}\right) d t< \\
<\frac{4}{I_{j}} \int_{0}^{I_{j} T} h_{j}\left(s^{2 n-j}\right) d s \tag{3.14}
\end{gather*}
$$

for $0 \leq j \leq 2 p-1$. Next, by (1.6) and (2.4) we get

$$
\begin{gather*}
(0<) \frac{x^{(2 n)}(t)}{h_{2 n-1}\left(\left|x^{(2 n-1)}(t)\right|\right)} \leq \\
\leq 1+\frac{1}{c}\left(\sum_{j=0}^{2 n-2} h_{j}\left(\left|x^{(j)}(t)\right|\right)+\omega\left(t, 2 n+\sum_{j=0}^{2 n-1}\left|x^{(j)}(t)\right|\right)\right. \tag{3.15}
\end{gather*}
$$

for a.e. $t \in[0, T]$. Besides, $x^{(2 n)} \geq a$ a.e. on $[0, T]$ and $x^{(2 n-1)}(\beta)=0$ imply

$$
\begin{equation*}
\left\|x^{(2 n-1)}\right\|=\max \left\{\left|x^{(2 n-1}(0)\right|, x^{(2 n-1)}(T)\right\} . \tag{3.16}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \int_{0}^{\beta} \frac{x^{(2 n)}(t)}{h_{2 n-1}\left(\left|x^{(2 n-1)}(t)\right|\right)} d t=\int_{0}^{\beta} \frac{x^{(2 n)}(t)}{h_{2 n-1}\left(-x^{(2 n-1)}(t)\right)} d t=\int_{0}^{-x^{(2 n-1)}(0)} \frac{d s}{h_{2 n-1}(s)}, \\
& \int_{\beta}^{T} \frac{x^{(2 n)}(t)}{h_{2 n-1}\left(\left|x^{(2 n-1)}(t)\right|\right)} d t=\int_{\beta}^{T} \frac{x^{(2 n)}(t)}{h_{2 n-1}\left(x^{(2 n-1)}(t)\right)} d t=\int_{0}^{x^{2 n-1)}(T)} \frac{d s}{h_{2 n-1}(s)},
\end{aligned}
$$

we have (see (3.16))

$$
\begin{equation*}
\int_{0}^{\left\|x^{(2 n-1)}\right\|} \frac{d s}{h_{2 n-1}(s)} \leq \int_{0}^{T} \frac{x^{(2 n)}(t)}{h_{2 n-1}\left(\left|x^{(2 n-1)}(t)\right|\right)} d t \tag{3.17}
\end{equation*}
$$

Integrating (3.15) over $[0, T]$ and combining (3.11), (3.13), (3.14) and the fact that ω is nondecreasing in the second variable, we get

$$
\begin{equation*}
\int_{0}^{T} \frac{x^{(2 n)}(t)}{h_{2 n-1}\left(\left|x^{(2 n-1)}(t)\right|\right)} d t<T+\frac{1}{c}\left(A+\int_{0}^{T} \omega\left(t, 2 n+Q\left\|x^{(2 n-1)}\right\|\right) d t\right) \tag{3.18}
\end{equation*}
$$

where

$$
A=2 \sum_{j=2 p}^{2 n-2} \frac{1}{I_{j}} \int_{0}^{I_{j} T} h_{j}\left(s^{2 n-j}\right) d s+4 \sum_{j=0}^{2 p-1} \frac{1}{I_{j}} \int_{0}^{I_{j} T} h_{j}\left(s^{2 n-j}\right) d s
$$

Hence (see (3.17) and (3.18))

$$
\begin{equation*}
\int_{0}^{\left\|x^{(2 n-1)}\right\|} \frac{d s}{h_{2 n-1}(s)}<T+\frac{1}{c}\left(A+\int_{0}^{T} \omega\left(t, 2 n+Q\left\|x^{(2 n-1)}\right\|\right) d t\right) \tag{3.19}
\end{equation*}
$$

From (1.7) and Remark 1.1 it follows that there exists a positive constant S such that

$$
\int_{0}^{u} \frac{d s}{h_{2 n-1}(s)}>T+\frac{1}{c}\left(A+\int_{0}^{T} \omega(t, 2 n+Q u) d t\right)
$$

for all $u \geq S$. Therefore (3.19) shows that $\left\|x^{(2 n-1)}\right\|<S$ and, by (3.10), we see that (3.9) is true with $K=S \max \left\{1, T^{2 n-1}\right\}$.

We now present an existence result for the problem $(2.2)_{m}^{1},(1.4),(1.5)$.
Lemma 3.8. Let $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. Then for each $m \in \mathbb{N}, p \in$ $\{1, \ldots, n-1\}, i_{0} \in\{1, \ldots, p\}, k_{0} \in\{p+1, \ldots, n\}$ and $\phi_{1}, \phi_{2} \in \mathcal{A}$, the problem $(2.2)_{m}^{1},(1.4),(1.5)$ has a solution x satisfying (3.9), where K is the positive constant in Lemma 3.7.

Proof. Let K be the positive constant in Lemma 3.7 and put

$$
\Omega=\left\{x \in C^{2 n-1}[0, T]:\left\|x^{(j)}\right\|<K \text { for } 0 \leq j \leq 2 n-1\right\}
$$

Choose $m \in \mathbb{N}, p \in\{1, \ldots, n-1\}, i_{0} \in\{1, \ldots, p\}, k_{0} \in\{p+1, \ldots, n\}$ and $\phi_{1}, \phi_{2} \in \mathcal{A}$. Define the operator $\mathcal{F}: C^{2 n-1}[0, T] \times[0,1] \rightarrow C^{2 n-1}[0, T]$ by the formula

$$
\begin{gathered}
\mathcal{F}(x, \lambda)(t)=\frac{1}{(2(n-p)-1)!(2 p-1)!} \times \\
\times \int_{\alpha_{0}(x, \lambda)}^{t}(t-s)^{2 p-1} \int_{\beta_{0}(x, \lambda)}^{s}(s-v)^{2(n-p)-1}\left(\mathcal{K}_{m, \lambda} x\right)(v) d v d s
\end{gathered}
$$

where $\alpha_{0}=\alpha_{0}(x, \lambda)$ and $\beta_{0}=\beta_{0}(x, \lambda)$ are the unique solutions of the equation $V_{i_{0}}(\alpha ; x, \lambda)=0$ with $V_{i_{0}}$ given in (3.5) (see Lemma 3.2) and the equation $S_{k_{0}}(\beta ; x, \lambda)=0$ with $S_{k_{0}}$ given in (3.3) (see Lemma 3.1), respectively, and $\mathcal{K}_{m, \lambda}$ is given in (3.1). Lemma 3.5 shows that x is a solution of the problem $(2.2)_{m}^{\lambda},(1.4),(1.5)$ if and only if x is a fixed point of the operator $\mathcal{F}(\cdot, \lambda)$. Hence our lemma will be proved if the operator $\mathcal{F}(\cdot, 1)$ has a fixed point in Ω. In order to prove the existence of a fixed point of $\mathcal{F}(\cdot, 1)$, we use the topological transversality principle. Let $\mathcal{F}_{*}=\left.\mathcal{F}\right|_{\bar{\Omega} \times[0,1]}$ denote the restriction of \mathcal{F} on the set $\bar{\Omega} \times[0,1]$. It suffices to verify that
(i) $\mathcal{F}_{*}(\cdot, 0)$ is a constant operator on $\bar{\Omega}$ and $\mathcal{F}_{*}(x, 0) \in \Omega$ for $x \in \bar{\Omega}$,
(ii) \mathcal{F}_{*} is a compact operator and
(iii) $\mathcal{F}_{*}(x, \lambda) \neq x$ for all $(x, \lambda) \in \partial \Omega \times[0,1]$.

Since $\left(\mathcal{K}_{m, 0} x\right)(t)=a$ for $t \in[0, T]$, we have

$$
\begin{gathered}
\mathcal{F}_{*}(x, 0)(t)=\frac{a}{(2(n-p)-1)!(2 p-1)!} \times \\
\times \int_{\alpha_{0}(x, 0)}^{t}(t-s)^{2 p-1} \int_{\beta_{0}(x, 0)}^{s}(s-v)^{2(n-p)-1} d v d s= \\
=\frac{a}{(2 n-2 p)!(2 p-1)!} \int_{\alpha_{0}(x, 0)}^{t}(t-s)^{2 p-1}\left(s-\beta_{0}(x, 0)\right)^{2(n-p)} d s
\end{gathered}
$$

where $\beta_{0}=\beta_{0}(x, 0)$ is the unique solution of the equation

$$
\phi_{2}\left(\frac{a}{\left(2\left(n-k_{0}\right)+1\right)!}(\beta-t)^{2\left(n-k_{0}\right)+1}\right)=0
$$

and $\alpha_{0}=\alpha_{0}(x, 0)$ is the unique solution of the equation

$$
\phi_{1}\left(\frac{a}{(2 n-2 p)!\left(2 p-2 i_{0}\right)!} \int_{\alpha}^{t}(t-s)^{2\left(p-i_{0}\right)}\left(s-\beta_{0}\right)^{2(n-p)} d s\right)=0
$$

From the above two equation we see that β_{0} and α_{0} are independent of x and therefore $\mathcal{F}_{*}(\cdot, 0)$ is a constant operator. In addition, $\left(\mathcal{F}_{*}(x, 0)\right)^{(j)}\left(\alpha_{0}\right)=$

0 for $0 \leq j \leq 2 p-1,\left(\mathcal{F}_{*}(x, 0)\right)^{(j)}\left(\beta_{0}\right)=0$ for $2 p \leq j \leq 2 n-1$ and $\left(\mathcal{F}_{*}(x, 0)\right)^{(2 n)}(t)=a$ for $t \in[0, T]$. Hence $\mathcal{F}_{*}(x, 0)(t)$ is a solution of the problem $(2.2)_{m}^{0},(1.4),(1.5)$ and consequently $\mathcal{F}_{*}(x, 0) \in \Omega$ for $x \in \bar{\Omega}$ due to Lemma 3.7, which proves (i).

For (ii), we first note that $f_{m} \in \operatorname{Car}\left([0, T] \times \mathbb{R}^{2 n}\right)$, and therefore there exists $\gamma \in L_{1}[0, T]$ such that

$$
\begin{equation*}
a \leq(1-\lambda) a+\lambda f_{m}\left(t, x_{0}, \ldots, x_{2 n-1}\right) \leq \gamma(t) \tag{3.20}
\end{equation*}
$$

for a.e. $t \in[0, T]$ and all $\lambda \in[0,1],\left|x_{j}\right| \leq K(0 \leq j \leq 2 n-1)$. Let $\left\{\left(x_{k}, \lambda_{k}\right)\right\} \subset \bar{\Omega} \times[0,1]$ be a convergent sequence, $\lim _{k \rightarrow \infty}\left(x_{k}, \lambda_{k}\right)=\left(x_{0}, \lambda_{0}\right)$. Then

$$
\lim _{m \rightarrow \infty}\left(\mathcal{K}_{m, \lambda_{k}} x_{k}\right)(t)=\left(\mathcal{K}_{m, \lambda_{0}} x_{0}\right)(t)
$$

for a.e. $t \in[0, T], a \leq\left(\mathcal{K}_{m, \lambda_{k}} x_{k}\right)(t) \leq \gamma(t)$ for a.e. $t \in[0, T]$ and all $k \in \mathbb{N}$, and (see Lemmas 3.1 and 3.2) $\lim _{k \rightarrow \infty} \beta_{0}\left(x_{k}, \lambda_{k}\right)=\beta_{0}\left(x_{0}, \lambda_{0}\right)$ and $\lim _{k \rightarrow \infty} \alpha_{0}\left(x_{k}, \lambda_{k}\right)=\alpha_{0}\left(x_{0}, \lambda_{0}\right)$. Hence \mathcal{F}_{*} is a continuous operator by the Lebesgue dominated convergence theorem. Let $\left\{\left(x_{i}, \lambda_{i}\right)\right\} \subset \bar{\Omega} \times[0,1]$. Then (see (3.20))

$$
\left|\left(\mathcal{F}_{*}\left(x_{i}, \lambda_{i}\right)\right)^{(2 n)}(t)\right| \leq \gamma(t)
$$

for a.e. $t \in[0, T]$ and all $i \in \mathbb{N}$, and since

$$
\left(\mathcal{F}_{*}\left(x_{i}, \lambda_{i}\right)\right)^{(j)}\left(\alpha_{0}\left(x_{i}, \lambda_{i}\right)\right)=0 \text { for } 0 \leq j \leq 2 p-1
$$

and

$$
\left(\mathcal{F}_{*}\left(x_{i}, \lambda_{i}\right)\right)^{(j)}\left(\beta_{0}\left(x_{i}, \lambda_{i}\right)\right)=0 \text { for } 2 p \leq j \leq 2 n-1,
$$

we see that $\left\{\mathcal{F}_{*}\left(x_{i}, \lambda_{i}\right)\right\}$ is bounded in $C^{2 n-1}[0, T]$ and also that $\left\{\left(\mathcal{F}_{*}\left(x_{i}, \lambda_{i}\right)\right)^{(2 n-1)}\right\}$ is equicontinuous on $[0, T]$. Hence by the Arzelà-Ascoli theorem there exists a convergent subsequence of $\left\{\mathcal{F}_{*}\left(x_{i}, \lambda_{i}\right)\right\}$ in $C^{2 n-1}[0, T]$. We have proved that \mathcal{F}_{*} is a compact operator.

Finally, assume that $\mathcal{F}_{*}\left(x_{*}, \lambda_{*}\right)=x_{*}$ for some $\left(x_{*}, \lambda_{*}\right) \in \bar{\Omega} \times[0,1]$. Then x_{*} is a solution of the problem (2.2) ${\underset{m}{*}}_{\lambda_{*}}^{\text {, (1.4), (1.5) and so } x_{*} \in \Omega \text { by }}$ Lemma 3.7. Hence $\mathcal{F}_{*}(x, \lambda) \neq x$ for each $(x, \lambda) \in \partial \Omega \times[0,1]$, which proves the property (iii).

The next result is needed in the proof of Theorem 4.1.
Lemma 3.9. Let the assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$ be satisfied. Let x_{m} be a solution of the problem $(2.2)_{m}^{1},(1.4),(1.5)$ for $m \in \mathbb{N}$. Then $\left\{x_{m}^{(2 n-1)}\right\}$ is equicontinuous on $[0, T]$.

Proof. By Lemma 3.8 we have

$$
\begin{equation*}
\left\|x_{m}^{(j)}\right\|<K \text { for } m \in \mathbb{N}, \quad 0 \leq j \leq 2 n-1 \tag{3.21}
\end{equation*}
$$

where K is a positive constant. Hence (see (3.15))

$$
(0<) \frac{x_{m}^{(2 n)}(t)}{h_{2 n-1}\left(\left|x_{m}^{(2 n-1)}(t)\right|\right)} \leq
$$

$$
\begin{equation*}
\leq 1+\frac{1}{c}\left(\sum_{j=0}^{2 n-2} h_{j}\left(\left|x_{m}^{(j)}(t)\right|\right)+\omega(t, 2 n(K+1))\right) \tag{3.22}
\end{equation*}
$$

for a.e. $t \in[0, T]$ and all $m \in \mathbb{N}$. Let α_{m} and β_{m} be the unique zeros of $x_{m}^{\left(2 i_{0}-1\right)}$ and $x_{m}^{\left(2 k_{0}-1\right)}$, respectively. Then Lemma 3.6 shows that

$$
\begin{gather*}
\left|x_{m}^{(j)}(t)\right| \geq \\
\geq \frac{a}{(2 n-j)!}\left|t-\beta_{m}\right|^{2 n-j}, \quad t \in[0, T], \quad 2 p \leq j \leq 2 n-1, \quad m \in \mathbb{N}, \tag{3.23}
\end{gather*}
$$

and

$$
\left|x_{m}^{(j)}(t)\right| \geq \begin{cases}\frac{a}{(2 n-j)!}\left|t-\widetilde{\alpha}_{m}\right|^{2 n-j} & \text { for } t \in\left[0, \frac{\widetilde{\alpha}_{m}+\widetilde{\beta}_{m}}{2}\right] \tag{3.24}\\ \frac{a}{(2 n-j)!}\left|t-\widetilde{\beta}_{m}\right|^{2 n-j} & \text { for } t \in\left[\frac{\widetilde{\alpha}_{m}+\widetilde{\beta}_{m}}{2}, T\right]\end{cases}
$$

for $0 \leq j \leq 2 p-1$, where $\widetilde{\alpha}_{m}=\min \left\{\alpha_{m}, \beta_{m}\right\}$ and $\widetilde{\beta}_{m}=\max \left\{\alpha_{m}, \beta_{m}\right\}$. Set

$$
H(u)=\left\{\begin{array}{ll}
\int_{0}^{u} \frac{d s}{h_{2 n-1}(s)} & \text { for } u \in[0, \infty) \\
-\int_{0}^{-u} \frac{d s}{h_{2 n-1}(s)} & \text { for } u \in(-\infty, 0)
\end{array} .\right.
$$

Then $H \in C^{0}[0, T]$ is an increasing and odd function. Since $x_{m}^{(2 n-1)}<0$ on $\left[0, \beta_{m}\right)$ (if $\left.\beta_{m} \in(0, T]\right)$ and $x_{m}^{(2 n-1)}>0$ on $\left(\beta_{m}, T\right]$ (if $\beta_{m} \in[0, T)$), we have

$$
\begin{gathered}
\int_{t_{1}}^{t_{2}} \frac{x_{m}^{(2 n)}(t)}{h_{2 n-1}\left(\left|x_{m}^{(2 n-1)}(t)\right|\right)} d t= \\
= \begin{cases}\int_{-x_{m}^{(2 n-1)}\left(t_{2}\right)}^{-x_{m}^{(2 n-1)}\left(t_{1}\right)} \frac{d s}{h_{2 n-1}(s)} & \text { if } 0 \leq t_{1}<t_{2} \leq \beta_{m} \\
\int_{0}^{-x_{m}^{(2 n-1)}\left(t_{1}\right)} \frac{d s}{\int_{2 n-1}(s)}+\int_{0}^{x_{m}^{(2 n-1)}\left(t_{2}\right)} \frac{d s}{x_{m}^{(2 n-1)}\left(t_{2}\right)} \frac{d s}{h_{2 n-1}(s)} & \text { if } 0 \leq t_{1}<\beta_{m}<t_{2} \leq T \\
\int_{x_{m}^{(2 n-1)}\left(t_{1}\right)} \frac{d s}{h_{2 n-1}(s)} & \text { if } \beta_{m} \leq t_{1}<t_{2} \leq T\end{cases}
\end{gathered}
$$

Consequently,

$$
\int_{t_{1}}^{t_{2}} \frac{x_{m}^{(2 n)}(t)}{h_{2 n-1}\left(\left|x_{m}^{(2 n-1)}(t)\right|\right)} d t=H\left(x_{m}^{(2 n-1)}\left(t_{2}\right)\right)-H\left(x_{m}^{(2 n-1)}\left(t_{1}\right)\right)
$$

for $0 \leq t_{1}<t_{2} \leq T$ and $m \in \mathbb{N}$. Integrating (3.22) over $\left[t_{1}, t_{2}\right] \subset[0, T]$ yields

$$
\begin{gather*}
H\left(x_{m}^{(2 n-1)}\left(t_{2}\right)\right)-H\left(x_{m}^{(2 n-1)}\left(t_{1}\right)\right) \leq \\
\leq t_{2}-t_{1}+\frac{1}{c}\left(\sum_{j=0}^{2 n-2} \int_{t_{1}}^{t_{2}} h_{j}\left(\left|x_{m}^{(j)}(t)\right|\right) d t+\int_{t_{1}}^{t_{2}} \omega(t, 2 n(K+1)) d t\right) . \tag{3.25}
\end{gather*}
$$

Since $\omega(\cdot, 2 n(K+1)) \in L_{1}[0, T]$, (3.25) shows that $\left\{H\left(x_{m}^{(2 n-1)}\right)\right\}$ is equicontinuous on $[0, T]$ if

$$
\left\{\int_{0}^{t} h_{j}\left(\left|x_{m}^{(j)}(s)\right|\right) d s\right\}
$$

is equicontinuous on $[0, T]$ for $j=0,1, \ldots, 2 n-2$. To prove this property of

$$
\left\{\int_{0}^{t} h_{j}\left(\left|x_{m}^{(j)}(s)\right|\right) d s\right\}
$$

let $0 \leq t_{1}<t_{2} \leq T$ and let the constant I_{j} be given in (3.12). If $2 p \leq j \leq$ $2 n-2$, then (see (3.23))

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} h_{j}\left(\left|x_{m}^{(j)}(t)\right|\right) d t \leq \int_{t_{1}}^{t_{2}} h_{j}\left(\frac{a}{(2 n-j)!}\left|t-\beta_{m}\right|^{2 n-j}\right) d t= \\
& \quad=\left\{\begin{array}{l}
\frac{1}{I_{j}} \int_{I_{j}\left(\beta_{m}-t_{2}\right)}^{I_{j}\left(\beta_{m}-t_{1}\right)} h_{j}\left(s^{2 n-j}\right) d s \text { if } 0 \leq t_{1}<t_{2} \leq \beta_{m} \\
\frac{1}{I_{j}}\left(\int_{0}^{I_{j}\left(\beta_{m}-t_{1}\right)} h_{j}\left(s^{2 n-j}\right) d s+\int_{0}^{I_{j}\left(t_{2}-\beta_{m}\right)} h_{j}\left(s^{2 n-j}\right) d s\right) \\
\frac{1}{I_{j}} \int_{I_{j}\left(t_{1}-\beta_{m}\right)}^{I_{j}\left(t_{2}-\beta_{m}\right)} h_{j} \leq t_{1}<\beta_{m}<t_{2} \leq T
\end{array}\right.
\end{aligned}
$$

If $0 \leq j \leq 2 p-1$, then (see (3.24))

$$
\int_{t_{1}}^{t_{2}} h_{j}\left(\left|x_{m}^{(j)}(t)\right|\right) d t=
$$

Summarizing, we have

$$
\left.\begin{array}{c}
\int_{t_{1}}^{t_{2}} h_{j}\left(\left|x_{m}^{(j)}(t)\right|\right) d t \leq \frac{2}{I_{j}} \int_{\nu_{1}}^{\nu_{2}} h_{j}\left(s^{2 n-j}\right) d s \tag{3.26}\\
\text { for } 0 \leq j \leq 2 n-2, \quad m \in \mathbb{N}, \\
\text { where } 0 \leq \nu_{1}<\nu_{2} \leq I_{j} T, \quad \nu_{2}-\nu_{1} \leq I_{j}\left(t_{2}-t_{1}\right) .
\end{array}\right\}
$$

Since $h_{j}\left(s^{2 n-j}\right) \in L_{1}\left(I_{j} T\right)$ for $j=0,1, \ldots, 2 n-2$ by $\left(H_{2}\right)$ (see Remark 1.1), (3.26) shows that $\left\{\int_{0}^{t} h_{j}\left(\left|x_{m}^{(j)}(s)\right|\right) d s\right\}$ is equicontinuous on $[0, T]$ for $0 \leq j \leq$ $2 n-2$. We have proved that $\left\{H\left(x_{m}^{(2 n-1)}\right)\right\}$ is equicontinuous on $[0, T]$, and from H being continuous and increasing on \mathbb{R} we see that $\left\{x_{m}^{(2 n-1)}\right\}$ is equicontinuous on $[0, T]$ as well.

4. An Existence Result and an Example

We now state our main result.
Theorem 4.1. Let $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. Then, for each $p \in\{1, \ldots, n-$ $1\}, i_{0} \in\{1, \ldots, p\}, k_{0} \in\{p+1, \ldots, n\}$ and $\phi_{1}, \phi_{2} \in \mathcal{A}$, there exist a solution x of the problem and $\alpha, \beta \in[0, T]$ such that $x^{(2 j)}>0$ on $[0, T] \backslash\{\alpha\}$ for $0 \leq j \leq p-1$ and $x^{(2 j)}>0$ on $[0, T] \backslash\{\beta\}$ for $p \leq j \leq n-1$.

Proof. Choose $p \in\{1, \ldots, n-1\}, i_{0} \in\{1, \ldots, p\}, k_{0} \in\{p+1, \ldots, n\}$ and $\phi_{1}, \phi_{2} \in \mathcal{A}$. By Lemma 3.8, for each $m \in \mathbb{N}$ there exists a solution x_{m} of the problem $(2.2)_{m}^{1},(1.4),(1.5)$ such that (3.21) is true, where K is a positive constant and $\left\{x_{m}^{(2 n-1)}\right\}$ is equicontinuous due to Lemma 3.9. In addition (see Lemma 3.5),

$$
\begin{gathered}
x_{m}(t)=\frac{1}{(2(n-p)-1)!(2 p-1)!} \times \\
\times \int_{\alpha_{m}}^{t}(t-s)^{2 p-1)} \int_{\beta_{m}}^{s}(s-v)^{2(n-p)-1}\left(\mathcal{K}_{m, 1} x_{m}\right)(v) d v d s
\end{gathered}
$$

for $t \in[0, T]$ and $m \in \mathbb{N}$, where β_{m} and α_{m} are the unique solutions in $[0, T]$ of the equation $S_{k_{0}}\left(\beta ; x_{m}, 1\right)=0$ and $V_{i_{0}}\left(\alpha ; x_{m}, 1\right)=0$, respectively. Here $S_{k_{0}}$ and $V_{i_{0}}$ are defined in (3.3) and (3.5). Besides, the inequalities (3.23) and (3.24) are true, where $\widetilde{\alpha}_{m}=\min \left\{\alpha_{m}, \beta_{m}\right\}, \widetilde{\beta}_{m}=\min \left\{\alpha_{m}, \beta_{m}\right\}$. Hence (see Lemma 3.4)

$$
\left.\begin{array}{c}
x_{m}^{(j)}\left(\alpha_{m}\right)=0 \text { for } 0 \leq j \leq 2 p-1, \\
x_{m}^{(j)}\left(\beta_{m}\right)=0 \text { for } 2 p \leq j \leq 2 n-1, \\
x_{m}^{(2 n-2 j)}> \tag{4.1}\\
x_{m}^{(2 n-2 j)}>
\end{array} 0 \text { texton }[0, T] \backslash\left\{\beta_{m}\right\} \text { for } 1 \leq j \leq n-p, ~[0, T] \backslash\left\{\alpha_{m}\right\} \text { for } n-p+1 \leq j<n . ~\right\}
$$

By the Arzelà-Ascoli theorem and the compactness principle, passing if necessary to subsequences, we may assume that $\left\{x_{m}\right\}$ converges in $C^{2 n-1}[0, T]$ and $\left\{\alpha_{m}\right\} .\left\{\beta_{m}\right\}$ in \mathbb{R}. Let $\lim _{m \rightarrow \infty} x_{m}=x, \lim _{m \rightarrow \infty} \alpha_{m}=\alpha_{*}$ and $\lim _{m \rightarrow \infty} \beta_{m}=\beta_{*}$. Then $x \in C^{2 n-1}[0, T], \phi_{1}\left(x^{\left(2 i_{0}-1\right)}\right)=0, \phi_{2}\left(x^{\left(2 k_{0}-1\right)}\right)=0$,

$$
\left|x^{(j)}(t)\right| \geq \frac{a}{(2 n-j)!}\left|t-\beta_{*}\right|^{2 n-j} \text { for } t \in[0, T], \quad 2 p \leq j \leq 2 n-1
$$

and

$$
\left|x^{(j)}(t)\right| \geq \begin{cases}\frac{a}{(2 n-j)!}\left|t-\widetilde{\alpha}_{*}\right|^{2 n-j} & \text { for } t \in\left[0, \frac{\widetilde{\alpha}_{*}+\widetilde{\beta}_{*}}{2}\right] \tag{4.2}\\ \frac{a}{(2 n-j)!}\left|t-\widetilde{\beta}_{*}\right|^{2 n-j} & \text { for } t \in\left[\frac{\widetilde{\alpha}_{*}+\widetilde{\beta}_{*}}{2}, T\right]\end{cases}
$$

for $0 \leq j \leq 2 p-1$, where $\widetilde{\alpha}_{*}=\min \left\{\alpha_{*}, \beta_{*}\right\}, \widetilde{\beta}_{*}=\max \left\{\alpha_{*}, \beta_{*}\right\}$. Therefore, β_{*} is the unique zero of $x^{(j)}$ for $2 p \leq j \leq 2 n-1$ and from (4.1) and (4.2) we deduce that α_{*} is the unique zero of $x^{(j)}$ for $0 \leq j \leq 2 p-1$. Besides, $x^{(2 n-2 j)}>0$ on $[0, T] \backslash\left\{\beta_{*}\right\}$ for $1 \leq j \leq n-p$ and $x^{(2 n-2 j)}>0$ on $[0, T] \backslash\left\{\alpha_{*}\right\}$ for $n-p+1 \leq j<n$. Consequently

$$
\begin{gathered}
\lim _{m \rightarrow \infty} f_{m}\left(t, x_{m}(t), \ldots, x_{m}^{(2 n-1)}(t)\right)= \\
=f\left(t, x(t), \ldots, x^{(2 n-1)}(t)\right) \text { for a.e. } t \in[0, T]
\end{gathered}
$$

and then from the boundedness of $\left\{x_{m}^{(2 n-1)}(0)\right\},\left\{x_{m}^{(2 n-1)}(T)\right\}$ and the equality

$$
x_{m}^{(2 n-1)}(T)=x_{m}^{(2 n-1)}(0)+\int_{0}^{T} f_{m}\left(t, x_{m}(t), \ldots, x_{m}^{(2 n-1)}(t)\right) d t
$$

we see that $f\left(t, x(t), \ldots, x^{(2 n-1)}(t)\right) \in L_{1}[0, T]$ by the Fatou theorem. Without loss of generality we can assume that for example $\alpha_{*} \leq \beta_{*}$. Consider the intervals $\left[0, \alpha_{*}\right]$ (if $\alpha_{*}>0$), $\left[\alpha_{*}, \beta_{*}\right]$ (if $\alpha_{*}<\beta_{*}$) and $\left[\beta_{*}, T\right]$ (if $\beta_{*}<T$). Let $[\eta, \tau]$ be an arbitrary but fixed from the above intervals. From (2.4) with $\lambda=1$ and the Lebesgue dominated convergence theorem it follows that letting $m \rightarrow \infty$ in

$$
x_{m}^{(2 n-1)}(t)=x_{m}^{(2 n-1)}\left(\frac{\eta+\tau}{2}\right)+\int_{(\eta+\tau) / 2}^{t} f_{m}\left(s, x_{m}(s), \ldots, x_{m}^{(2 n-1)}(s)\right) d s
$$

we get

$$
\begin{equation*}
x^{(2 n-1)}(t)=x^{(2 n-1)}\left(\frac{\eta+\tau}{2}\right)+\int_{(\eta+\tau) / 2}^{t} f\left(s, x(s), \ldots, x^{(2 n-1)}(s)\right) d s \tag{4.3}
\end{equation*}
$$

for $t \in(\eta, \tau)$. We know that $x \in C^{2 n-1}[0, T]$ and $f\left(t, x(t), \ldots, x^{(2 n-1)}(t)\right) \in$ $L_{1}[0, T]$. Consequently, (4.3) is true even for $t \in[\eta, \tau]$. This shows that

$$
x^{(2 n-1)}(t)=x^{(2 n-1)}(0)+\int_{0}^{t} f\left(s, x(s), \ldots, x^{(2 n-1)}(s)\right) d s \text { for } t \in[0, T]
$$

Hence $x \in A C^{2 n-1}[0, T]$ and x is a solution of the problem (1.1), (1.4), (1.5).

Example 4.2. Consider the differential equation

$$
\begin{equation*}
x^{(2 n)}=q(t)+\sum_{j=0}^{2 n-1} \frac{b_{j}(t)}{\left|x^{(j)}\right|^{\gamma_{j}}}+\sum_{j=0}^{2 n-1} c_{j}(t)\left|x^{(j)}\right|^{\delta_{j}} \tag{4.4}
\end{equation*}
$$

where $q, b_{j} \in L_{\infty}[0, T], c_{j} \in L_{1}[0, T]$ are nonnegative for $0 \leq j \leq 2 n-1$, $q(t) \geq a>0$ for a.e. $t \in[0, T]$ and $\gamma_{j} \in\left(0, \frac{1}{2 n-j}\right)$ for $0 \leq j \leq 2 n-2$, $\gamma_{2 n-1}>0, \delta_{j} \in(0,1)$ for $0 \leq j \leq 2 n-1$.

The equation (4.4) is a special case of (1.1) with

$$
f\left(t, x_{0}, \ldots, x_{2 n-1}\right)=q(t)+\sum_{j=0}^{2 n-1} \frac{b_{j}(t)}{\left|x_{j}\right|^{\gamma_{j}}}+\sum_{j=0}^{2 n-1} c_{j}(t)\left|x_{j}\right|^{\delta_{j}}
$$

satisfying $\left(H_{1}\right)$. Put $L=\max \left\{\left\|b_{j}\right\|_{\infty}: 0 \leq j \leq 2 n-2\right\}$ and $\delta=\max \left\{\delta_{j}\right.$: $0 \leq j \leq 2 n-1\}<1$. Since

$$
\begin{aligned}
\sum_{j=0}^{2 n-1} c_{j}(t)\left|x_{j}\right|^{\delta_{j}} & \leq \sum_{j=0}^{2 n-1} c_{j}(t) \sum_{j=0}^{2 n-1}\left|x_{j}\right|^{\delta_{j}} \leq \sum_{j=0}^{2 n-1} c_{j}(t)\left(2 n+\sum_{j=0}^{2 n-1}\left|x_{j}\right|^{\delta}\right) \leq \\
& \leq \sum_{j=0}^{2 n-1} c_{j}(t)\left(2 n+(2 n)^{1-\delta}\left(\sum_{j=0}^{2 n-1}\left|x_{j}\right|\right)^{\delta}\right)
\end{aligned}
$$

where the inequality $\sum_{j=0}^{2 n-1} b_{j}^{\varrho} \leq(2 n)^{1-\varrho}\left(\sum_{j=0}^{2 n-1} b_{j}\right)^{\varrho}\left(b_{j} \geq 0, \varrho \in(0,1]\right)$ is used, we have

$$
\begin{gathered}
f\left(t, x_{0}, \ldots, x_{2 n-1}\right) \leq \\
\leq\|q\|_{\infty}+L \sum_{j=0}^{2 n-1} \frac{1}{\left|x_{j}\right|^{\gamma_{j}}}+\sum_{j=0}^{2 n-1} c_{j}(t)\left(2 n+(2 n)^{1-\delta}\left(\sum_{j=0}^{2 n-1}\left|x_{j}\right|\right)^{\delta}\right) .
\end{gathered}
$$

Hence

$$
f\left(t, x_{0}, \ldots, x_{2 n-1}\right) \leq \sum_{j=0}^{2 n-1} h_{j}\left(\left|x_{j}\right|\right)+\omega\left(t, \sum_{j=0}^{2 n-1}\left|x_{j}\right|\right)
$$

where $h_{j}(u)=L u^{-\gamma_{j}}$ for $0 \leq j \leq 2 n-2, h_{2 n-1}=\|q\|_{\infty}+L u^{-\gamma_{2 n-1}}$ and $w(t, u)=\sum_{j=0}^{2 n-1} c_{j}(t)\left(2 n+(2 n)^{1-\delta} u^{\delta}\right)$. Then

$$
\int_{0}^{1} h_{j}\left(s^{2 n-j}\right) d s=\int_{0}^{1} s^{-\frac{\gamma_{j}}{2 n-j}} d s<\infty
$$

for $0 \leq j \leq 2 n-2$ and

$$
\lim _{u \rightarrow \infty} h_{2 n-1}(u)=\|q\|_{\infty}
$$

Since

$$
\int_{0}^{u} \frac{d s}{h_{2 n-1}(s)}=\int_{0}^{u} \frac{s^{\gamma_{2 n-1}}}{\|q\|_{\infty} s^{\gamma_{2 n-1}}+L} d s>\frac{1}{\|q\|_{\infty}+L} \int_{1}^{u} d s=\frac{u-1}{\|q\|_{\infty}+L}
$$

for $u \geq 1$ and

$$
\int_{0}^{T} \omega(t, Q u) d t=\left(2 n+(2 n)^{1-\delta}(Q u)^{\delta}\right) \sum_{j=0}^{2 n-1}\left\|c_{j}\right\|_{L}
$$

where Q is given in (1.8), we have

$$
\lim _{u \rightarrow \infty}\left(\int_{0}^{u} \frac{1}{h_{2 n-1}(s)} d s\right)^{-1} \int_{0}^{T} \omega(t, Q u) d t=0
$$

and therefore f satisfies $\left(H_{2}\right)$. Now Theorem 4.1 guarantees that for each $p \in\{1, \ldots, n-1\}, i_{0} \in\{1, \ldots, p\}, k_{0} \in\{p+1, \ldots, n\}$ and $\phi_{1}, \phi_{2} \in \mathcal{A}$ there exists a solution of the problem (4.4), (1.4), (1.5). Hence, since the functionals $\phi_{1}, \phi_{2}: C^{0}[0, T] \rightarrow \mathbb{R}$ defined by

$$
\phi_{1}(x)=\int_{0}^{T}(x(s))^{3} d s, \quad \phi_{2}(x)=x\left(t_{1}\right)+e^{x\left(t_{2}\right)}-1, \quad t_{1}, t_{2} \in[0, T]
$$

belong to \mathcal{A}, for each $p \in\{1, \ldots, n-1\}, i_{0} \in\{1, \ldots, p\}$ and $k_{0} \in\{p+$ $1, \ldots, n\}$ there exists a solution x of (4.4) such that

$$
\int_{0}^{T}\left(x^{\left(2 i_{0}-1\right)}(s)\right)^{3} d s=0 x^{\left(2 k_{0}-1\right)}\left(t_{1}\right)+e^{x^{\left(2 k_{0}-1\right)}\left(t_{2}\right)}=1
$$

and $x^{(2 j)}>0$ on $[0, T] \backslash\{\alpha\}$ for $0 \leq j \leq p-1, x^{(2 j)}>0$ on $[0, T] \backslash\{\beta\}$ for $p \leq j \leq n-1$, where α and β are the unique zeros of $x^{\left(2 i_{0}-1\right)}$ and $x^{\left(2 k_{0}-1\right)}$, respectively.

Acknowledgement

Supported by grant No. 201/04/1077 of the Grant Agency of Czech Republic and by the Council of Czech Government MSM 6198959214.

References

1. R. P. Agarwal and I. Kiguradze, Two-point boundary value problems for higherorder linear differential equations with strong singularities. Bound. Value Probl. 2006, Art. ID 83910, 1-32.
2. R. P. Agarwal and D. O'Regan, Right focal singular boundary value problems. ZAMM Z. Angew. Math. Mech. 79(1999), No. 6, 363-373.
3. R. P. Agarwal and D. O'Regan, Twin solutions to singular boundary value problems. Proc. Amer. Math. Soc. 128(2000), No. 7, 2085-2094.
4. R. P. Agarwal and D. O'Regan, Multiplicity results for singular conjugate, focal, and (n, p) problems. J. Differential Equations 170(2001), No. 1, 142-156.
5. R. P. Agarwal, D. O'Regan, and V. Lakshmikantham, $\operatorname{Singular}(p, n-p)$ focal and (n, p) higher order boundary value problems. Nonlinear Anal. 42 (2000), No. 2, Ser. A: Theory Methods, 215-228.
6. A. Granas, R. Guenther, and J. Lee, Nonlinear boundary value problems for ordinary differential equations. Dissertationes Math. (Rozprawy Mat.) 244(1985), 1-128.
7. A. Granas, R. B. Guenther, and J. W. Lee, Some general existence principles in the Carathéodory theory of nonlinear differential systems. J. Math. Pures Appl. (9) 70(1991), No. 2, 153-196.
8. X. He and W. Ge, Positive solutions for semipositone $(p, n-p)$ right focal boundary value problems. Appl. Anal. 81(2002), No. 2, 227-240.
9. I. Kiguradze, On two-point boundary value problems for higher order singular ordinary differential equations. Mem. Differential Equations Math. Phys. 31(2004), 101-107.
10. I. Rachưnková and S. Staněk, Sturm-Liouville and focal higher order BVPs with singularities in phase variables. Georgian Math. J. 10(2003), No. 1, 165-191.
11. I. Rachůnková, S. Staněk, and M. Tvrdý, Singularities and Laplacians in boundary value problems for nonlinear differential equations. Handbook of Differential Equations, Ordinary Differential Equations, Vol. 3 (Edited by A. Cañada, P. Drábek, A. Fonda), 607-723, Elsevier, 2006.
12. P. J. Y Wang and R. P. Agarwal, Multiple positive solutions of two-point right focal boundary value problems. Math. Comput. Modelling 28(1998), No. 3, 41-49.
(Received 5.12.2006)
Author's address:
Department of Mathematical Analysis Faculty of Science Palacký University
Tomkova 40, 77900 Olomouc
Czech Republic
e-mail: stanek@inf.upol.cz
