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Abstract. We derive sufficient conditions for the existence of extremal
solutions for a second order nonlinear functional φ-Laplacian boundary
value problems with impulses, subject to boundary value conditions of gen-
eral type which cover Dirichlet and multipoint boundary data as particu-
lar cases. Our approach is that of upper and lower solutions together with
growth restrictions of Nagumo’s type. Discontinuous functional dependence
of the nonlinear data and the boundary conditions are allowed.
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1. Introduction

In [2] it is considered the nonlinear impulsive boundary value problem

(φ(u′(t)))′ = f(t, u(t), u′(t)) for a.e. t ∈ [0, t] \ P, (1.1)

g1(u(0), u) = 0,
g2(u(T ), u) = 0,

}

(1.2)

Ik(u(tk), u) = 0,
Mk(u(t+k ), u) = 0,

}

for k = 1, . . . , p. (1.3)

Here p ∈ N is fixed, P = {t1, . . . , tp}, and

0 = t0 < t1 < · · · < tp < tp+1 = T.

Moreover, the function f : [0, T ]× R
2 → R is a Carathéodory function:

(i) for each x ∈ R
2 the function f(·, x) is measurable on [0, T ];

(ii) for almost each t ∈ [0, T ] the function f(t, ·) is continuous on R
2;

(iii) for each compact set K ⊂ R
2, there is a function mK(t) ∈ L1[0, T ]

such that

|f(t, x)| ≤ mK(t) for a.e. t ∈ [0, T ] and all x ∈ K.

The boundary conditions (1.2) cover, among others, the Dirichlet

u(0) = A, u(T ) = B,

and the multipoint boundary conditions

u(0) =

m
∑

i=1

ai u(ηi), u(T ) =

n
∑

j=1

bj u(ρj),

with ai ≥ 0 and ηi ∈ (0, T ] for i = 1, . . . , m, bj ≥ 0 and ρj ∈ [0, T ) for
j = 1, . . . , n.

It is enough to define g1(x, v) = x − A and g2(x, v) = x − B for the

first case and g1(x, v) = x −
m
∑

i=1

aiu(ηi), g2(x, v) = x −
n
∑

j=1

bju(ρj) for the

multipoint problem.
Moreover, various nonlinear functional boundary conditions as

u(0) =

∫

J

ul(s) ds, u(T ) = min
t∈K

{u(t)},

with l ∈ N odd and J, K ⊂ I two measurable sets, can be considered under
this formulation.

To define the concept of solution of the problem (1.1)–(1.3), we introduce
in this section some suitable notation and definitions.

For a real valued measurable function u defined on the interval I ⊂ R,
we put for all q ≥ 1

‖u‖q =

(
∫

I

|u(s)|qds

)
1

q



4 Alberto Cabada and Jan Tomeček

and

‖u‖∞ = sup ess
t∈I

|u(t)|.

For given Banach spaces A and B, let C0(A; B) be the set of all functions
f : A → B which are continuous on A. If B = R, we write C0(A). Further-
more, let Cm(I) be the set of the functions having continuous derivatives
of order i = 0, . . . , m on I . For 1 ≤ q ≤ ∞, we define Lq(I) as the set of
Lebesgue measurable on I functions u such that ‖u‖q is finite. W m,q(I) will

be the set of the functions u ∈ Cm−1(I) with u(m−1) absolutely continuous
in I and u(m) ∈ Lq(I).

It is well–known that Cm(I) and W m,q(I) are Banach spaces with the
norms

‖u‖Cm(I) = max
k=0,...,m

‖u(k)‖∞

and

‖u‖W m,q(I) = max
k=0,...,m

‖u(k)‖q.

We denote J0 = [0, t1] and Jk = (tk, tk+1] for all k = 1, . . . , p. Moreover,

Cm
P =

{

u : [0, T ] → R : u ∈ Cm(Jk), k = 0, . . . , p, there exist u(l)(t+k ),

k = 1, . . . , p, u(l)(t−k ) ≡ u(l)(tk), k = 1, . . . , p + 1; l = 0, . . . , m},
W m,q

P =
{

u : [0, T ] → R : u|Jk
∈ W m,q(Jk), k = 0, . . . , p

}

for m ∈ N ∪ {0} and 1 ≤ q ≤ ∞.
It is not difficult to verify that the spaces Cm

P and W m,q
P are Banach

spaces with the norms

‖u‖Cm
P

= max
k=0,...,p

‖u|Jk
‖Cm(Jk)

and

‖u‖W
m,q

P
= max

k=0,...,p
‖u|Jk

‖W m,q(Jk).

Remark 1.1. Let us note that the convergence of a sequence {un} ⊂ Cm
P

(resp. W m,q
P ) in this space is equivalent to the convergence of all sequences

{un|Jk
} in Cm(Jk) (resp. W m,q(Jk)) for each k = 0, . . . , p.

Given v ≤ w in C0
P , we denote by [v, w] the following set:

[v, w] =
{

u ∈ C0
P , v(t) ≤ u(t) ≤ w(t) for all t ∈ I

}

.

Now we are in a position to define the concept of solution of the problem
(1.1)–(1.3) as follows.

Definition 1.1. A function u ∈ C1
P , such that φ ◦ u′ ∈ W 1,1

P , which
satisfies the equation (1.1) and fulfills the conditions (1.2) and (1.3) is called
a solution of the problem (1.1)–(1.3).
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We say that a solution x ∈ V of the problem (1.1)–(1.3) is the maximal
solution of this problem in the set V if given any other solution w ∈ V it
holds w ≤ x. If the reversed inequalities hold, the solution x will be the
minimal solution of the problem (1.1)–(1.3) in V . We refer to both functions
as extremal solutions in V .

Now we define the concept of lower and upper solutions of the problem
(1.1)–(1.3).

Definition 1.2. A function α ∈ W 1,∞
P is called a lower solution of the

problem (1.1)–(1.3) if for each t0 ∈ (0, T ) \ P either

D−α(t0) < D+α(t0)

or there exists an open interval I0 ⊂ (0, T ) \ P such that t0 ∈ I0, φ ◦ α′ ∈
W 1,1(I0) and

(φ(α′(t)))′ ≥ f(t, α(t), α′(t)) for a.e. t ∈ I0. (1.4)

Moreover, for all k = 1, . . . , p, the following boundary value conditions
are satisfied:

Ik(α(tk), α) ≥ 0 ≥ Mk(α(t+k ), α)

and

g1(α(0), α) ≥ 0 ≥ g2(α(T ), α).

Definition 1.3. A function β ∈ W 1,∞
P is called an upper solution of the

problem (1.1)–(1.3) if for each t0 ∈ (0, T ) \ P either

D−β(t0) > D+β(t0)

or there exists an open interval I0 ⊂ (0, T ) \ P such that t0 ∈ I0, φ ◦ β′ ∈
W 1,1(I0) and

(φ(β′(t)))′ ≤ f(t, β(t), β′(t)) for a.e. t ∈ I0.

Moreover, for all k = 1, . . . , p, the following boundary value conditions
are satisfied

Ik(β(tk), β) ≤ 0 ≤ Mk(β(t+k ), β)

and

g1(β(0), β) ≤ 0 ≤ g2(β(T ), β).

The existence of extremal solutions for (1.1)–(1.3) is proven in [2] under
the following assumptions on the functions f , g1, g2, Mk and Ik:

(H1) f ∈ Car([0, T ]× R
2).

(H2) φ : R → R is a continuous and strictly increasing function.
(H3) There exist a lower solution α and an upper solution β of the prob-

lem (1.1)–(1.3) such that

α(t) ≤ β(t) for each t ∈ [0, T ].
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(H4) g1 : R× C0
P ([0, T ]) → R is continuous and g1(x, ·) is nondecreasing

for all x ∈ [α(0), β(0)].
g2 : R × C0

P ([0, T ]) → R is continuous and g2(x, ·) is nonincreasing
for all x ∈ [α(T, β(T )].

(H5) For all k = 1, . . . , p, the functions Ik : R × C0
P ([0, T ]) → R are

continuous and Ik(x, ·) are nondecreasing for all x ∈ [α(tk), β(tk)].
For all k = 1, . . . , p, the functions Mk : R × C0

P ([0, T ]) → R are
continuous and Mk(x, ·) are nonincreasing for all x ∈ [α(t+k ), β(t+k )].

(H6) There exists ϕ ∈ C0((0,∞); (0,∞)) such that

|f(t, u, v)| ≤ ϕ(|v|) (1.5)

for a.e. t ∈ [0, T ], α(t) ≤ u ≤ β(t) and each v ∈ R. Moreover, there
exists a constant K ≥ max {‖α′‖∞, ‖β′‖∞, r} such that

min

{

φ(K)
∫

φ(r)

φ−1(s) ds

ϕ(φ−1(s))
,−

φ(−r)
∫

φ(−K)

φ−1(s) ds

ϕ(−φ−1(s))

}

> ‖α‖∞ + ‖β‖∞ (1.6)

with

r = max
k=0,...,p

{ 1

tk+1 − tk

}

(‖α‖∞ + ‖β‖∞).

Under the assumptions listed above, we prove in [2, Theorem 14, Re-
mark 15] the following existence result:

Theorem 1.1. Assume the hypotheses (H1)–(H6) hold. Then the prob-

lem (1.1)–(1.3) has the minimal and the maximal solution lying between α
and β.

It is the aim of the present paper to extend Theorem 1.1 to cover a wider
class of functional equations. To be concise, on the contrary to [2], in this
paper it is allowed that the function f be discontinuously dependent on the
solutions. Moreover, both the boundary value conditions and the impulsive
functions can be discontinuous in one of its variables.

In Section 2 we introduce the problem that we are going to study and
give the list of conditions that we will consider. Some preliminary results
are also proven in that section.

In Section 3 we prove our main existence result.
Finally we present an example in Section 4, where approximation meth-

ods are developed.

2. Preliminaries

In this paper we study the functional equation

(φ(u′(t)))′ = f
(

t, u, u(t), u′(t)
)

for a.e. t ∈ [0, T ] \ P, (2.1)

coupled with the functional boundary conditions (1.2)–(1.3). We refer this
problem as the problem (P ).
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In this case we say that u is a solution of the problem (P ) if u ∈ C1
P ,

φ ◦ u′ ∈ W 1,1
P , and u satisfies the equation (2.1) and fulfills the conditions

(1.2) and (1.3).
The concept of lower solution of the problem (P ) is parallel to that given

for the problem (1.1)–(1.3), in this case the inequality (1.4) being replaced
by an analogous one:

(φ(α′(t)))′ ≥ f(t, α, α(t), α′(t)) for a.e. t ∈ I0.

The definition of upper solution is given similarly.
To deduce the existence of extremal solutions, we will assume the condi-

tions (H2) and (H3) together with the following ones:

(H∗
1 ) f : I ×C(I)×R

2 → R is such that for every u ∈ C(I) the function
fu : I × R

2 → R defined as fu(t, y, z) = f(t, u, y, z) satisfies the
condition (H1).

(H∗
4 ) g1(·, u) is continuous for all u ∈ C0

P ([0, T ]) and g1(x, ·) is nonde-
creasing for all x ∈ [α(0), β(0)].
g2(·, u) is continuous for all u ∈ C0

P ([0, T ]) and g2(x, ·) is nonin-
creasing for all x ∈ [α(t+k ), β(t+k )].

(H∗
5 ) For all k = 1, . . . , p, the functions Ik(·, u) are continuous for all u ∈

C0
P ([0, T ]) and Ik(x, ·) are nondecreasing for all x ∈ [α(tk), β(tk)].

For all k = 1, . . . , p, the functions Mk(·, u) are continuous for all u ∈
C0

P ([0, T ]) and Mk(x, ·) are nonincreasing for all x ∈ [α(t+k ), β(t+k )].
(H∗

6 ) f : I ×C(I)×R
2 → R is such that for every u ∈ [α, β] the function

fu : I × R
2 → R defined as fu(t, y, z) = f(t, u, y, z) satisfies the

condition (H6).

Note that we allow to the functions f , g1, g2, Ik and Mk to have discon-
tinuities in the spacial variable u.

To deduce extremal solutions of the problem (P ), we will use the following
result which improves [1, Lemma 2.4]

Lemma 2.1. Given an order interval [a, b] ⊂ C0
P and a mapping G :

[a, b] → [a, b], assume that G is nondecreasing and that the sequence {Gvn}
has a pointwise limit in C0

P whenever {vn} is a monotone sequence in [a, b].
Then G has the least fixed point u∗ and the greatest fixed point u∗. Moreover,

u∗=min
{

u∈ [a, b] : Gu ≤ u
}

and u∗=max
{

u∈ [a, b] : u ≤ Gu
}

. (2.2)

Proof. For all k = 0, . . . , p, we have that a ≤ vn ≤ b and {vn} is monotone
in Jk. As a consequence, we deduce that the same property holds for the
sequence {G vn}. Moreover, the Dini theorem ensures that the sequence
{Gvn} converges uniformly on Jk for all k = 0, . . . , p, which is, from Re-
mark 1.1, equivalent to the fact that {Gvn} converges in C0

P . Thus the
conclusions follow from [3, Theorem 1.2.2] when X = Y = C0

P . �

3. Main Results

In this section we prove the following existence result for the problem (P ).
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Theorem 3.1. Assume that the conditions (H∗
1 ), (H2), (H3), (H∗

4 )–
(H∗

6 ) hold. Suppose that the function f(t, ·, x, y) is nonincreasing in C0
P for

a. e. t ∈ [0, T ] and all x, y ∈ R. Then the problem (P ) has the extremal

solutions in [α, β].

Proof. Let v ∈ [α, β] be an arbitrarily fixed function. Consider the nonli-
near second-order impulsive problem

(Pv)































(φ(u′(t)))′ = f(t, v, u(t), u′(t)) for a.e. t ∈ [0, T ] \ P,

g1(u(0), v) = 0,

g2(u(T ), v) = 0,

Ik(u(tk), v) = 0 for k = 1, . . . , p,

Mk(u(t+k ), v) = 0 for k = 1, . . . , p.

It is not difficult to verify that the conditions (H1)–(H6) hold for the
problem (Pv). Therefore the problem (Pv) has the extremal solutions lying
between α and β. As a consequence, we can define the mapping G : [α, β] →
[α, β] as follows

Gv := maximal solution in [α, β] of the problem (Pv). (3.1)

It is clear that the fixed points of the function G coincide with the so-
lutions of the problem (P ). So, to prove the result, we must ensure that
such fixed points exist. To this end, we verify that the function G fulfills
the conditions of Lemma 2.1.

To prove that G is nondecreasing, let v1, v2 ∈ [α, β] with v1 ≤ v2 on
[0, T ], and put u1 := Gv1 and u2 := Gv2. Let’s see that u1 ≤ u2 on [0,T].

From the definition of G and the monotonicity assumptions imposed on
the functions f , g1, g2, Ik and Mk, we know that the following properties
hold

(φ(u′1(t)))
′=f

(

t, v1, u1(t), u
′
1(t)

)

≥f
(

t, v2, u1(t), u
′
1(t)

)

for a.e. t∈ [0, T ]\P,

0 = g1(u1(0), v1) ≤ g1(u1(0), v2),

0 = g2(u1(T ), v1) ≥ g2(u1(T ), v2),

0 = Ik(u1(tk), v1) ≤ Ik(u1(tk), v2) for k = 1, . . . , p,

0 = Mk(u1(t
+
k ), v1) ≥ Mk(u1(t

+
k ), v2) for k = 1, . . . , p.

This implies that u1 is a lower solution for the problem (Pv2
).

As a consequence, we know that the problem (Pv2
) has the extremal

solutions in [u1, β]. This property implies that the maximal solution in
[α, β] is greater or equal to u1, i.e., u1 ≤ u2 on [0, T ].

Now let {vn} be a monotone sequence in [α, β]. From the monotonicity
of the function G we have that, given k ∈ {0, . . . , p} fixed, the sequence
{Gvn|Jk

} is monotone and bounded on Jk. As a consequence, it has a
pointwise limit in Jk. From Nagumo’s condition we have that there is a
positive constant K such that |(Gvn)′(t)| < K for all t ∈ Jk. This implies
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that the sequence {Gvn|Jk
} is equicontinuous and, in consequence, the limit

is uniform in Jk, i.e., the sequence {Gvn|Jk
} converges in C0

P .
Now from Lemma 2.1 we have that the function G has a maximal fixed

point u∗ that is a solution of the problem (P ). Let’s see that it is the
maximal solution of this problem in [α, β].

From (2.2) we have that

u∗ = max
{

u ∈ [α, β] : u ≤ Gu
}

.

If there is a solution u ∈ [u∗, β] of the problem (P ), then it is a solution
of the problem (Pu) and, from the monotonicity of the function f , the
function u∗ is a lower solution of such problem. The definition of G says us
that u ≤ Gu which contradicts the definition of u∗.

The existence of the minimal solution of the problem (P ) is proved simi-
larly. �

4. An Example

In this section we present an example that explains the power of the tech-
niques used here. We prove the existence of the extremal positive solutions,
in some particular cases it is deduced the uniqueness of positive solutions of
the considered problem. Moreover, we obtain the exact expression of such
solutions. To deduce this expression, we use the following result, which is a
direct consequence of [3, Corollary 1.2.2].

Lemma 4.1. Assume that the hypotheses of Theorem 3.1 hold. Let G be

defined as in the proof of Theorem 3.1 and define the sequence {βn} as

β0 = β and βn+1 = G βn.

If the functions f , g1, g2, Ik and Mk are right continuous for all k ∈
{1, . . . , p}, then the sequence {βn} converges in C0

P to the maximal solution

in [α, β] of the problem (P ).

The obtained result is the following.

Example 4.1. Let A, B > 0 and η ∈ (0, 1) be fixed. Assume that one
of the following conditions holds: ξ ∈ (0, 1] and ρ ∈ [0, 2) or ξ ∈ (1, 2) and
ρ ∈ [0, 1]. Denoting by [x] the integer part of a real number x, we consider
the following nonlinear impulsive boundary value problem

(E)































u′′(t) = F ([u(ξ)])|u′(t)| for all t ∈ (0, 2) \ {1},
u(0) = A,

u(1) = u(η),

u2(1+) = u(ρ),

u(2) = B,

with F : R → R defined as

F (x) = − x3

1 + x2
.
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It is not difficult to verify that the problem (E) is of the form (P ) for
the particular case of T = 2, p = 1, t1 = 1 and

φ(x) = x,

f(t, v, x, y) = F ([v(ξ)])|y|,
I1(x, v) = −x + v(η),

M1(x, v) = x2 − v(ρ),

g1(x, v) = −x + A,

and

g2(x, v) = x−B.

One can verify that α ≡ 0 is a lower solution and any constant β ≥
max{A, B, 1} is an upper solution of the problem (E). Moreover, the as-
sumptions (H∗

1 ), (H2), (H3), (H∗
4 )–(H∗

6 ) hold.
In this situation the problem (Pv) considered in the proof of Theorem 3.1

takes the form

(Ev)































u′′(t) = F ([v(ξ)])|u′(t)| for all t ∈ (0, 2) \ {1},
u(0) = A,

u(1) = v(η),

u2(1+) = v(ρ),

u(2) = B.

It is not difficult to verify that the first derivative of every solution of
the previous problem has constant sign in each subinterval [0, 1] and (1, 2].
As a consequence, we deduce that for any constant β ≥ max{A, B, 1} and
v ∈ C0

P such that 0 ≤ v(t) ≤ β for all t ∈ [0, 2], the problem (Ev) has a
unique solution uv ∈ [0, β] given by the following expression:

uv(t) =

{

A + (v(η) −A)Hv(t) for all t ∈ [0, 1],
√

v(ρ) + (B −
√

v(ρ)) Hv(t) for all t ∈ (1, 2],

with Hv : [0, 2] → R defined as

Hv(t) =



































eCvF ([v(ξ)])t − 1

eCvF ([v(ξ)]) − 1
for all t ∈ [0, 1] and Cv [v(ξ)] 6= 0,

t for all t ∈ [0, 1] and Cv [v(ξ)] = 0,

eCvF ([v(ξ)])(t−1) − 1

eCvF ([v(ξ)]) − 1
for all t ∈ (1, 2] and Cv[v(ξ)] 6= 0,

t− 1 for all t ∈ (1, 2] and Cv[v(ξ)] = 0.

Here

Cv = sign {v(η)−A} and Cv = sign {B −
√

v(ρ) } .

From the fact that Hv(t) > 0 for all v ≥ 0 and t > 0, it is clear that
uv(t)−A has the same sign as v(η)−A for all t ∈ (0, 1]. The same property

holds for B −
√

v(ρ) and uv(t)−
√

v(ρ) in (1, 2].
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So, starting at β0 ≡ β, we have that the sequence {βn} satisfies the
following recursive equation

βn+1(t) = A + (βn(η) −A)Hβn
(t) for all t ∈ [0, 1].

Moreover, the sequence {βn} is monotone nonincreasing and bounded,
so there exists

u∗(t) = lim
n→∞

βn(t), t ∈ [0, 2].

Since the integer part of the real numbers is a right-continuous function,
we deduce that

u∗(t) = A + (u∗(η) −A) Hu∗(t) for all t ∈ [0, 1].

Evaluating this expression at t = η ∈ (0, 1), we conclude that u∗(η) = A,
i.e.,

u∗(t) = A for all t ∈ [0, 1].

On the other hand, we know that

βn+1(t) =
√

βn(ρ) +
(

B −
√

βn(ρ)
)

Hβn
(t) for all t ∈ (1, 2].

We consider three different situations.

Case I: ξ ∈ (0, 1], ρ ∈ [0, 1].
We know that

u∗(t) =
√

A + (B −
√

A)H(t) for all t ∈ (1, 2].

Here the function H is defined as

H(t) =











eCF ([A])(t−1) − 1

eCF ([A]) − 1
if C [A] 6= 0,

t− 1 if C [A] = 0,

(4.1)

with C = sign {B −
√

A} .
Since β is arbitrarily large, we have that u∗ is the greatest positive solu-

tion of the problem (E).
Setting α0 = 0 and αn+1 = Gαn, we have that the sequence {αn} con-

verges to a function u∗ ∈ C0
P . Arguing as for the sequence {βn}, we prove

that u∗ = u∗ = A on [0, 1].
Note that from the recurrence formula for the sequence αn we know that

if there is n0 ≥ 0 such that αn0
(η) = A, then αn ≡ A in [0, 1] for all n ≥ n0.

On the other hand, since

A = αn0
(t) = A + (αn0−1(η) −A)Hαn0−1

(t) for all t ∈ [0, 1],

we conclude that αn ≡ A in [0, 1] for all n ≥ 0, which contradicts the
definition of α0.

As a consequence, we have αn(η) < A for all n ∈ N. Moreover, it is
clear that if αn(η) = αn+1(η) for some n ∈ N, we deduce that αn(η) = A,
in contradiction with the previous proof. So we have that the sequence
{αn(η)} is strictly increasing and

sign {αn(η)−A} = −1 for all n ≥ 0.
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Now suppose that αn1
(ξ) = αn1−1(ξ) for some n1 ≥ 1.

In this situation, we have

Hαn1
(t) = Hαn1−1

(t) for all t ∈ [0, 1],

and

αn1+1(ξ) − αn1
(ξ) = (αn1

(η)− αn1−1(η))Hαn1
(ξ) > 0.

So we conclude that αn(ξ) < A for all n ∈ N.
Since αn ≤ A in [0, 1] for all n ∈ N, we have that if A 6∈ N, then

[αn(ξ)] = [A] for n large enough. In this situation we conclude that u∗ = u∗

on (1, 2] and, as a consequence, the problem (E) has a unique positive
solution.

When A ∈ N, we have that

u∗(t) =
√

A + (B −
√

A)H(t) for all t ∈ (1, 2].

Here the function H is defined as

H(t) =











eCF ([A−1])(t−1) − 1

eCF ([A−1]) − 1
if C [A− 1] 6= 0,

t− 1 if C [A− 1] = 0,

with C = sign {B −
√

A} .
However, in this case the function u∗ verifies

u′′∗(t) = F [A− 1]|u′∗(t)|, t ∈ [0, 2] \ {1},
which implies that u∗ is not a solution of the problem (E).

In this situation, we have that u∗ = G u∗ and, as a consequence, see [3,
Corollary 1.2.2], the minimal positive solution u∗ of the problem (E) is
equal to the maximal one u∗, that is, the problem (E) has a unique positive
solution given by the expression

u(t) =

{

A for all t ∈ [0, 1],√
A + (B −

√
A)H(t) for all t ∈ (1, 2],

with H defined in (4.1).

Case II: ξ ∈ (0, 1], ρ ∈ (1, 2).
Now, reasoning as in the previous situation, we have that the problem

(E) has a unique solution u given by the following expression

u(t) =

{

A for all t ∈ [0, 1],

Cρ + (B − Cρ)H(t) for all t ∈ (1, 2],

with

Cρ =
1−H(ρ) +

√

(1−H(ρ))2 + 4BH(ρ)

2
.

Case III: ξ ∈ (1, 2), ρ ∈ [0, 1].
As in the previous cases, we can construct the sequences {αn}, {βn},

where α0 ≡ 0, β0 ≡ β, αn+1 = Gαn, βn+1 = Gβn for each n ∈ N. First



Existence of Extremal Solutions for Nonlinear Discontinuous BVPs 13

we will prove that βn converges to the maximal solution u∗ of the problem
(E). Using the same arguments as previously, we conclude that

u∗(t) = A for all t ∈ [0, 1].

Let us assume that B <
√

A (other cases are similar).
We know that {βn} is a nonincreasing sequence, so [βn(ξ)] → [u∗(ξ)] and

u∗(t) =
√

A + (B −
√

A)H(t),

where

H(t) =







e−F ([u∗(ξ)])(t−1) − 1

e−F ([u∗(ξ)]) − 1
if u∗(ξ) ≥ 1,

t− 1 if 0 ≤ u∗(ξ) < 1.

Obviously, u∗(ξ) satisfies the equality

x =
√

A + (B −
√

A)g([x]) ≡ G(x), (4.2)

where

g(y) =







e−F (y)(ξ−1) − 1

e−F (y) − 1
for all y > 0,

ξ − 1 if y = 0.

The function g is continuous and increasing. So G is right–continuous,
nondecreasing and G([B,

√
A]) ⊂ [B,

√
A]. Then the equation G(x) = x is

solvable in [B,
√

A] (see [3, Theorem 1.2.2]). Let x∗ be the greatest solution

of this equation in [B,
√

A]. We have that u∗ satisfying u∗(ξ) = x∗ is the
maximal solution of the problem (E).

The sequence {αn} is nondecreasing, so there exists α1 such that αn → α1

on [0, 2]. As in Case I, one can verify that αn(ρ) < A for all n ∈ N, {αn(ρ)}
is strictly increasing,

Cn = sign
{

B −
√

αn(ρ)
}

= −1, for n large enough,

and

α1(t) = A for all t ∈ [0, 1].

In the case where αn1
(ξ) = αn1−1(ξ) holds for some n1 ≥ 1, we arrive at

the expression

αn1+1(ξ)− αn1
(ξ) =

(
√

αn1
(ρ)−

√

αn1−1(ρ)
)

(1−Hαn1
(ξ)) > 0.

So we conclude that αn(ξ) < α1(ξ) for all n ∈ N.
As a consequence, Hαn

(t) → H(t) for t ∈ (1, 2], where

H(t) =























e−F ([α1(ξ)])(t−1) − 1

e−F ([α1(ξ)]) − 1
if α1(ξ) > 1, α1(ξ) 6∈ N,

e−F ([α1(ξ)]−1)(t−1) − 1

e−F ([α1(ξ)]−1) − 1
if α1(ξ) ∈ N,

t− 1 if 0 ≤ α1(ξ) < 1,

for t ∈ (1, 2].
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Obviously

α1(t) =
√

A + (B −
√

A)H(t) for all t ∈ (1, 2].

It is clear that if α1(ξ) 6∈ N, then α1 is a solution of (E). Moreover,

α1 = min
{

y ∈ [0, β] : Gy ≤ y
}

and it is the minimal solution of (E) in [0, β].
If α1(ξ) ∈ N, then α1 is not a solution of (E) and the function

α1
1(t) = G(α1)(t) =

√
A + (B −

√
A)

e−F ([α1(ξ)])(t−1) − 1

e−F ([α1(ξ)]) − 1

satisfies the inequality α1
1(t) > α1(t) for t ∈ (1, 2).

Let us denote α1
n → α2 on [0, 2]. If α2(ξ) ∈ N, then we construct another

sequence {α2
n} converging to α3, and so on. Since [0, β] ∩ N is a finite set,

it follows that this process is finite. So there exists n0 ∈ N such that αn0(ξ)
is not an integer and, as a consequence, u∗ ≡ αn0 is the minimal positive
solution of (E).

In this situation, u∗(ξ) is given as the minimal solution of the equation

(4.2) on the interval [B,
√

A]. We illustrate this situation in the figures 1, 2
and 3, in which the particular case of A = 13/2, B = 3/2, η = 3/5, ρ = 1/2
and ξ = 8/5 is considered. The first six iterations of the sequences {αn}
and {βn} (with β ≡ 10) are represented in figures 1 and 2, respectively. The
problem has two different positive solutions that take their values u∗(ξ) and
u∗(ξ) at x∗ and x∗, the two solutions of the equation (4.2), given by (see
figure 3):

Figure 1: The sequence {βn}
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Figure 2: The sequence {αn}

It is clear that if the equation (4.2) has a unique solution in [B,
√

A],
then the problem (E) has a unique positive solution.

Remark 4.1. Note that in the previous example we obtain extremal and
uniqueness results in an unbounded domain.

Figure 3: Fixed points of the function G
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Department of Mathematics
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