
Memoirs on Di�erential Equations and Mathematical Physics

Volume 4. 1995

GOURSAT AND DARBOUX TYPE PROBLEMS

FOR LINEAR HYPERBOLIC PARTIAL

DIFFERENTIAL EQUATIONS AND SYSTEMS

gmj01
Typewritten text
S. Kharibegashvili



In the present paper, for hyperbolic equations and systems

in angular domains, we consider the formulations of problems representing

natural continuation and further development of the well-known classical

formulations of Goursat and Darboux type problems. For a wide class

of linear normally hyperbolic equations and systems of second order, the

dependence of unique solvability of the problems under consideration on

the structure of an angular domain as well as on the weighted space in

which the solution is sought, is established. Some correct multidimensional

analogues of Goursat and Darboux type problems for hyperbolic equations

are also considered.
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reziume. naSromSi Hiperboluri gantolebebisa da sistemebisaTvis

kuTxian areebSi ganxilulia amocanebi, romlebic Carmoadgenen cnobi-

li gursas da darbus amocanebis bunebriv gagrZelebas da ganviTarebas.

organzomilebian SemTxvevaSi meore rigis CrPivi normalurad Hiper-

boluri gantolebebisa da sistemebis ParTo klasisaTvis dadgenilia

ganxiluli amocanebis calsaxad amoxsnadobis damokidebuleba kuTxiani

aris struqturisagan da, agreTve, im Coniani sivrcisagan, romelSic iZeb-

neba amonaxsni. gaxilulia, agreTve, gursas da darbus tipis amocanebis

zogierTi mravalganzomilebiani analogi Hiperboluri tipis gantole-

bebisaTvis.
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The questions of searching for and investigation of correctly posed boun-

dary value problems are of great interest in the theory of equations and sys-

tems of hyperbolic type. Among these problems boundary value problems

for hyperbolic equations and systems representing natural continuation and

further development of the well-known classical formulations of the Goursat

and Darboux problems are especially interesting.

Unlike the multidimensional case, more simple structure of characteristic

manifolds in the two-dimensional case allows one to obtain most complete

results on the solvability of these problems for hyperbolic equations.

In the two-dimensional case for the equation of string oscillation written

in terms of the characteristic variables

u

xy

= 0; (1)

the Goursat problem is formulated as follows [19, 24, 64, 75]: in a rectan-

gular domain D

0

: 0 < x < a, 0 < y < b �nd a regular solution u(x; y) of

equation (1) of the class C(D

0

), satisfying on the segments of characteristics




1

: y = 0, 0 � x � a and 


2

: x = 0, 0 � y � b the following boundary

conditions

u

�

�




i

= f

i

; i = 1; 2; (2)

where f

i

, i = 1; 2, are given real functions satisfying the agreement condition

f

1

(O) = f

2

(O) at the origin O(0; 0).

The solution u(x; y), continuous together with its partial derivatives u

x

,

u

y

and u

xy

, is called regular in the domain D

0

solution of equation (1).

To solve the problem (1), (2) the use can be made of the well-known

Asgeirsson's mean value theorem [17] which in the case of equation (1) is

formulated as follows: if 
 : a

1

� x � a

2

, b

1

� y � b

2

is a characteristic

rectangle wholly contained in D

0

, then for any regular solution u(x; y) of

equation (1) of the class C(D

0

), the equality

u(A) + u(C) = u(B) + u(K); (3)

is valid, where A(a

1

; b

1

), B(a

1

; b

2

), C(a

2

; b

2

), K(a

2

; b

1

) are vertices of the

rectangle 
.

LetM(x; y) be an arbitrary point of the domainD

0

, and let P

1

(x; 0) 2 


1

and Q

1

(0; y) 2 


2

be the points of intersection with 


1

and 


2

of the charac-

teristics of equation (1) coming out ofM(x; y). Then by virtue of (3) applied

to the characteristic rectangle OP

1

MQ

1

, the regular solution u(x; y) of the

Goursat problem (1), (2) of the class C(D

0

), for f

1

2 C

1

(0; a] \ C[0; a],

f

2

2 C

1

(0; b] \ C[0; b] is given by the formula

u(M) = f

1

(P

1

) + f

2

(Q

1

)� f

1

(O): (4)

Let us now consider the Darboux problems [6, 19] for equation (1). De-

note by D

1

the domain lying at the angle x > 0, y > 0 and bounded by the
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characteristics �

1

: y = 0, 0 � x � a, l

1

: y = b, kb � x � a, l

2

: x = a,

0 � y � b of equation (1) and by a non-characteristic curve �

2

: x = ky,

0 � y � b, where a, b and k are positive constants with kb < a.

The �rst Darboux problem: �nd in D

1

a regular solution u(x; y) of equa-

tion (1) of the class C(D

1

) satisfying the boundary conditions

u

�

�

�

i

= f

i

; i = 1; 2; (5)

where f

1

and f

2

are given real functions belonging respectively to the classes

C

1

(0; a) \ C[0; a] and C

1

(0; b) \ C[0; b], and satisfying f

1

(O) = f

2

(O).

IfM(x; y) is an arbitrary point ofD

1

, then by P

1

(x; 0) 2 �

1

andQ

1

(ky; y)

2 �

2

we denote the points of intersection with the curves �

1

and �

2

of

characteristics of equation (1) coming out of M(x; y). Let P

2

(ky; 0) 2 �

1

be the point of intersection with �

1

of the characteristic coming out of Q

1

.

Applying equality (3) to the characteristic rectangle P

2

Q

1

MP

1

, we obtain

for the regular solution u(x; y) of the �rst Darboux problem (1), (5) the

following formula

u(M) = f

1

(P

1

) + f

2

(Q

1

)� f

1

(P

2

): (6)

Denote now by D

2

the domain lying at the angle x > 0, y > 0 and

bounded by the characteristics l

3

: y = b, k

2

b � x � a, l

4

: x = a, k

1

a �

y � b of equation (1) and by non-characteristic curves �

1

: y = k

1

x,

0 � x � a, �

2

: x = k

2

y, 0 � y � b, where a, b and k

i

, i = 1; 2, are positive

constants satisfying k

1

a < b and k

2

b < a.

The second Darboux problem: �nd in D

2

a regular solution u(x; y) of

equation (1) of the class C(D

2

) satisfying on the curves �

1

and �

2

the

boundary conditions

u

�

�

�

i

= f

i

; i = 1; 2; (7)

where f

i

, i = 1; 2, are given real functions belonging to the same classes as

in the case of the problem (1), (5), and f

1

(O) = f

2

(O).

Remark. It is seen from the formulas (4) and (6) that the value of the

solution u(x; y) of both the Goursat problem (1), (2) and the �rst Darboux

problem (1), (5) at a point M(x; y) depends on the values of functions f

1

,

f

2

at a �nite number of points. At the same time, as it will be seen below,

the value of the solution u(x; y) of the second Darboux problem (1), (7), if

it exists, will depend on the values of functions f

1

, f

2

at an in�nite number

of points convergent to zero.

Let M

0

(x

0

; y

0

) be an arbitrary point of D

2

. By L

1

(M

0

) and L

2

(M

0

) we

denote, respectively, the characteristics x = x

0

and y = y

0

of equation (1)

passing through M

0

. Let P

1

2 �

1

and Q

1

2 �

2

be the points of intersection

of the characteristics L

1

(M

0

) and L

2

(M

0

) of equation (1) with the curves

�

1

and �

2

. If the points P

n�1

2 �

1

and Q

n�1

2 �

2

are well determined,

then by P

n

2 �

1

and Q

n

2 �

2

we denote the points of intersection of
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the characteristics L

1

(Q

n�1

) and L

2

(P

n�1

) with �

1

and �

2

, respectively.

Continuing this process, we shall get the sequences P

1

; P

2

; : : : ; P

n

; : : : and

Q

1

; Q

2

; : : : ; Q

n

; : : : of points lying respectively on �

1

and �

2

and tending

for n!1 to the origin O.

Denote byM

n

2 D

2

the point of intersection of the characteristicsL

2

(P

n

)

and L

1

(Q

n

). Obviously, the sequence of points M

n

also tends to the origin

O for n ! 1. Without restriction of generality we can assume u(O) =

f

1

(O) = f

2

(O) = 0, since otherwise the function v = u�f

1

(O) is considered

as a new unknown function.

Applying (3) to the rectangle M

n�1

P

n

M

n

Q

n

, we obtain

u(M

n�1

) = f

1

(P

n

) + f

2

(Q

n

)� u(M

n

); n = 1; 2; : : : : (8)

From (8) we have

u(M

0

) =

n

X

i=1

(�1)

i+1

�

f

1

(P

i

) + f

2

(Q

i

)

�

+ (�1)

n

u(M

n

): (9)

If the problem (1), (7) is solvable, then passing in (9) to the limit for

n ! 1 and taking into account that lim

n!1

u(M

n

) = u(O) = f

1

(O), we get

that the series

I =

1

X

i=1

(�1)

i+1

�

f

1

(P

i

) + f

2

(Q

i

)

�

(10)

converges. Thus the convergence of (10) is necessary and su�cient for the

problem (1), (7) to be solvable in the class of regular solutions introduced

above.

Passage in (9) to the limit for n!1 when f

1

= f

2

= 0 also shows that

in the class of regular solutions the second Darboux problem cannot have

more than one solution.

Now let us show that the series (10) converges not for all functions f

1

and f

2

from the above mentioned classes. For the sake of simplicity let

a = b = 1, 0 < k

1

= k

2

= k < 1, f

2

� 0, and let x

0

= y

0

= 1 be the

coordinates of M

0

. As a function f

1

= f

1

(x) of the class C

1

(0; 1) \ C[0; 1],

we take

f

1

(x) =

cos(�

lnx

ln k

)

ln

1

2

x

:

In this case (10) takes the form

I =

1

X

i=1

1

ln

1

2

k

i�1

=

1

X

i=1

1

(i� 1) ln k + ln

1

2

;

and, obviously, diverges.

Since in (10)

lim

n!1

P

n

= lim

n!1

Q

n

= O;
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to ensure convergence of this series we additionally require of the functions

f

1

and f

2

to be regular in a neighborhood of O. For example, it su�ces to

require that

f

1

2 C

1

(0; a] \ C[0; a]; f

2

2 C

1

(0; b] \ C[0; b]

and for some �, 0 < � = const < 1, the �rst order derivatives of these

functions have integrable at O singularities of the type

�

�

f

(1)

1

(x)

�

�

�

C

x

�

;

�

�

f

(1)

2

(y)

�

�

�

C

y

�

; C = const > 0: (11)

In this case, the series (10) and that obtained from (10) by termwise di�er-

entiation with respect to x or y converge uniformly in D

2

and the regular

solution of the problem (1), (7) is given by the formula

u(M

0

) =

1

X

i=1

(�1)

i+1

�

f

1

(P

i

) + f

2

(Q

i

)

�

:

The solution and its partial derivatives with respect to x and y satisfy in

a neighborhood of O the estimates

ju(x; y)j � C

1

�

jxj+ jyj

�

1��

; ju

x

(x; y)j �

C

1

(jxj+ jyj)

�

;

ju

y

(x; y)j �

C

1

(jxj+ jyj)

�

; C

1

= const > 0:

(12)

Thus, to ensure the solvability of the second Darboux problem (1), (7),

we have naturally come to the consideration of weighted spaces de�ned by

inequalities (11) for the functions f

1

, f

2

and by inequalities (12) for the

regular solutions of equation (1).

Chapter I of the present paper deals with the boundary value problems for

equation (1) which are formulated more generally than the above-mentioned

Goursat and Darboux type problems.

The results obtained for equation (1) are in a de�nite sense complete and

simple by form and serve as a visual model for investigation of boundary

value problems for second order hyperbolic systems with two independent

variables.

Let 


1

: y = 


1

(x), 0 � x � x

0

, and 


2

: x = 


2

(y), 0 � y � y

0

, be

the two simple smooth curves coming out of the origin O and lying wholly

at the angle x � 0, y � 0. Below it is assumed that the functions 


1

(x)

and 


2

(y) are monotonically non-decreasing, i.e., 


(1)

1

(x) � 0, 


(1)

2

(y) � 0,

and 


1

(


2

(y)) < y for 0 < y � y

0

. Denote by D the domain lying at the

angle x > 0, y > 0 bounded by the curves 


1

, 


2

and the characteristics

L

1

(P

0

) : x = x

0

and L

2

(P

0

) : y = y

0

coming out of the point P

0

(x

0

; y

0

).
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Consider the boundary value problem formulated as follows [29]: �nd in

the domain D a regular solution u(x; y) of equation (1) satisfying on the

curves 


1

and 


2

the following conditions

�

M

i

u

x

+N

i

u

y

�

�

�




i

= f

i

; i = 1; 2; (13)

where M

i

, N

i

, f

i

, i = 1; 2, are given real functions.

Remark. Note that the Goursat and Darboux type problems considered

above are reduced to a problem of the type (1), (13) by di�erentiating the

corresponding boundary conditions along the tangents of data carriers of

these problems.

The solution of the problem (1),(13) is sought in the following weight

space

C

1;1

�

(D) =

n

u 2 C(D) : u

x

; u

y

; u

xy

2 C(DnO); u(0; 0) = 0;

sup

z2DnO

jzj

��

ju

x

(z)j <1; sup

z2DnO

jzj

��

ju

y

(z)j <1;

sup

z2DnO

jzj

�(��1)

ju

xy

(z)j <1

o

;

where z = x+ iy, i =

p

�1, and � > �1 is a real parameter.

Obviously, if u 2 C

1;1

�

(D), then sup

z2DnO

jzj

�(1+�)

ju(z)j <1.

If the solution u(x; y) of the problem (1), (13) is sought in the space

C

1;1

�

(D), then we require of the boundary functions f

1

, f

2

that

f

1

(x) 2 C

�

(


1

) =

n

f

1

2 C(0; x

0

] : sup

0<x�x

0

�

�

x

��

f

1

(x)

�

�

<1

o

;

f

2

(y) 2 C

�

(


2

) =

n

f

2

2 C(0; y

0

] : sup

0<y�y

0

�

�

y

��

f

2

(y)

�

�

<1

o

:

It is shown that the correctness of the problem (1), (13) in the class

C

1;1

�

(D) depends essentially on the parameter �, as well as on the angle

between the supports of boundary data 


1

and 


2

at the common point

O and their con�guration [29]. For example, if the curves 


1

, 


2

are not

characteristics of equation (1), do not have a common tangent line at O,

and M

i

j




i

6= 0, N

i

j




i

6= 0, i = 1; 2, then for � > �

ln j�j

ln �

0

the problem (1),

(13) is uniquely solvable in the class C

1;1

�

(D), while for � < �

ln j�j

ln �

0

the

homogeneous problem corresponding to (1), (13) has an in�nite number of

linearly independent solutions, where � = (M

�1

1

N

1

M

2

N

�1

2

)(O), 0 < �

0

=




(1)

1

(0)


(1)

2

(0) < 1.

In the case where the curves 


1

, 


2

have the same tangent line at O,

i.e. �

0

= 


(1)

1

(0)


(1)

2

(0) = 1 and M

i

j




i

6= 0, N

i

j




i

6= 0, i = 1; 2, then for

j�j < 1 the problem (1), (13) is uniquely solvable in the class C

1;1

�

(D),

while for j�j > 1 the homogeneous problem corresponding to (1), (13) has
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an in�nite number of linear independent solutions [29]. We should also

note the work [53] in which su�cient conditions for unique solvability of the

problem (1), (13) in the class C

2

(D) are obtained in the case where 


1

and 


2

are segments of non-characteristic straight lines coming out of the common

point O. The case j�j = 1 which corresponds to the case where the directions

of di�erentiation operators

@

@l

i

= M

i

@

@x

+ N

i

@

@y

, i = 1; 2, appearing in

the boundary conditions (13) coincide at the point O, turned out to be

more complicated. More interesting results in this direction are obtained

by T. M. Makharadze [51, 52]. He has established that the correctness of

formulation of the problem under consideration depends on the parameter �,

the order of tangency of the curves 


1

, 


2

and the directions of di�erentiation

operators

@

@l

1

,

@

@l

2

at O. The results of Firmani concerning the second

Darboux problem in the case where the curves �

1

and �

2

have a common

tangent line at O are also worth mentioning [20{22].

In the same chapter it is shown that when condition M

1

(x; y) 6= 0 or

N

2

(x; y) 6= 0 is violated on the whole curve 


1

or 


2

, the existence of the

lowest terms in this problem may a�ect the correctness of formulation of the

problem (1), (13). The case where condition M

1

(x; y) 6= 0 or N

2

(x; y) 6= 0

violates at one point O only, is also considered. In this case, in the class

C

1;1

�

(D) the homogeneous problem corresponding to (1), (13) has an in�nite

number of linearly independent solutions. At the same time, the functional

space C

�;�

(D) is determined such that the problem (1), (13) is uniquely

solvable.

Additional di�culties arise when we pass to second order hyperbolic sys-

tems. This has been �rst shown by A. V. Bitsadze [7] who constructed

examples of second order hyperbolic systems for which the corresponding

homogeneous characteristic problem (the Goursat problem with data on the

characteristics) has a �nite or even an in�nite number of linearly indepen-

dent solutions. Characteristic problem for second order hyperbolic systems

with two independent variables and constant leading coe�cients has been

investigated in the works of the author [30{32]. In particular, these works

reveal new e�ects connected with the problems of smoothness of solutions

and the possibility for the characteristic problem to have a non-zero �nite

index. Simple examples of second order hyperbolic systems in A. V. Bit-

sadze's work [8] illustrate how the lowest terms a�ect the correctness of

formulation of the characteristic problems.

S. L. Sobolev [68], V. P. Mikha��lov [58, 59] and L. A. Mel'tser [55] in-

vestigated some analogues of the Goursat type problem in the case of �rst

order hyperbolic systems with two independent variables.

Chapter II deals with the boundary value problems for second order linear

normal hyperbolic systems with variable coe�cients of the type

Au

xx

+ 2Bu

xy

+ Cu

yy

+A

1

u

x

+B

1

u

y

+ C

1

u = F

in the weighted spaces

�

C

k

�

(D) [33{37, 54]. Boundary conditions in these
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problems are determined by a �rst order di�erential operator, while the

carrier of these conditions are the two arcs 


1

and 


2

with a common point

at the origin. The su�cient conditions imposed both on the coe�cients of

the system and on the curves 


1

, 


2

ensuring correctness of the problems in

the spaces

�

C

k

�

(D) are also given in the same chapter. The structure of the

domain of de�nition of the solution is determined depending on the location

of data carriers with respect to the characteristics of the system.

Characteristic problems for second order linear hyperbolic systems of the

types

y

m

Au

xx

+ 2y

m

2

Bu

xy

+ Cu

yy

+ au

x

+ bu

y

+ cu = F (14)

and

Au

xx

+ 2y

m

2

Bu

xy

+ y

m

Cu

yy

+ au

x

+ bu

y

+ cu = F (15)

with parabolic degeneration along the straight line y = 0 are studied in

Chapter III. Boundary conditions in these problems are determined by

means of Goursat type data, while the carrier of these conditions are the

two arcs of adjoint characteristics of the system coming out of the point

of parabolic degeneration. Under certain conditions imposed on the coef-

�cients of the system and boundary operator, we prove theorems on the

unique solvability of these problems in special weighted spaces determined

with regard to the character of parabolic degeneration [38{40]. The condi-

tion obtained in this case and imposed on the lowest terms of the system is

an exact analogue of the well-known Gellerstedt's condition for one equa-

tion.

It should be noted that the characteristic problem with boundary con-

ditions uj




i

= f

i

, i = 1; 2, on segments of characteristics 


1

and 


2

coming

out of the origin O(0; 0), has been investigated by L. Sh. Agababyan and A.

B. Nersesyan [1{3] for one second order hyperbolic equation with parabolic

degeneration of the type

y

m

u

xx

� u

yy

+ au

x

+ bu

y

+ cu = F

in a rectangle bounded by characteristics of that equation coming out of the

points O(0; 0) and P (0; 1). The characteristic problem for the equation

y

2

u

xx

� u

yy

+ au

x

= 0

has been studied by T. Sh. Kalmenov [27] in a triangular domain bounded

by the segment [0; 1] of the axis x and by pieces of characteristics coming

out of the points O(0; 0) and Q

1

(1; 0). Note also the works of V. N. Vragov

[76] and B. A. Bubnov [15] where, in particular, the characteristic problem

in domains containing a segment of a line of degeneration is studied. The

case when OP

1

is a segment of a axis x and OP

2

is that of a characteristic

of one hyperbolic equation with parabolic degeneration for y = 0, has been
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studied in the works of V. N. Vragov [76] and A. M. Nakhushev [60{62],

while for the systems of the type

K(y)u

xx

�Eu

yy

+ au

x

+ bu

y

+ cu = F;

this case has been studied by M. Meredov [56, 57].

In this chapter, the class of hyperbolic systems of the type (14) and (15)

for which characteristic problems are investigated, contains the systems with

non-split principal parts and the higher term 2y

m

2

Bu

xy

di�erent from zero.

The last Chapter IV concerns with certain multidimensional variants

of Goursat and Darboux type problems for linear hyperbolic di�erential

equations.

If in the two-dimensional case the problems of the Goursat and Darboux

type for hyperbolic equations and systems are investigated with su�cient

completeness, in the multidimensional case we have in this direction only

individual results. One of the main reasons is probably the existence of

a continual bundle of bicharacteristics of a hyperbolic equation, owing to

which, in particular, to ensure the correctness of this or that problem, one

should require de�nite orientation of data supports.

A multidimensional analogue of the Goursat problem (the Cauchy char-

acteristic problem) when the solution of a second order hyperbolic equation

is sought inside a characteristic conoid, has been studied by D'Adhemar

[18], Hadamard [25], S. L. Sobolev [69], Riesz [67], Lundberg [50], A. A.

Borgardt and D. A. Karnenko [14]. In the case when a second order hy-

perbolic system is split in its principal part, the same problem has been

investigated by Cagnac [16] in the four-dimensional space.

It should be noted that the Cauchy characteristic problem for a non-split

in the principal part second order hyperbolic system has not been studied

so far. Here, alongside with technical di�culties, there arise principal alge-

braic di�culties connected with determination of geometric structure of a

characteristic conoid in a vicinity of the vertex.

Certain multidimensional analogues of the �rst or the second Darboux

problems are treated by C. L. Sobolev [70], G�arding [23], A. V. Bitsadze

[9], V. N. Vragov [76], T. Sh. Kalmenov [28] and Rassias [65, 66] for the

case where the solution of a second order hyperbolic equation is sought

in a conic domain, one part of whose boundary is of time-type and the

other is either characteristic or wholly of time-type. One variant of the

second Darboux problem in a conic domain of time-type is studied by S. S.

Kharibegashvili in the case where a second order hyperbolic system is non-

split in its principal part and for one hyperbolic equation of higher order

with constant coe�cients at higher derivatives [41{43]. Note that for general

hyperbolic equations and systems both variants of the Darboux problems

in conic domains are not treated.

Other multidimensional analogues of the Goursat and Darboux problems

for one second order hyperbolic equation in a bihedral angle when either

both sides are characteristic or one side is characteristic and the other is a
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hypersurface of time-type, have been considered in the works of Beudon [5],

Hadamard [25], Tolen [71] and S. S. Kharibegashvili [44{46]. The second

Darboux problem when both sides are hypersurfaces of time-type is more

complicated. This case is considered by S. S. Kharibegashvili in [47].

In Chapter IV we shall restrict ourselves to the statement of the results

obtained in the course of investigation of multidimensional analogues of the

Goursat and Darboux problems for the second order hyperbolic equation

with the wave operator in its principal part in a bihedral angle of a quite

de�nite orientation [44{47]. The �nal paragraph of this chapter concerns

with a multidimensional variant of the second Darboux problem for a higher

order hyperbolic equation with constant coe�cients at higher derivatives in

a conic domain located fully in the interior cone of rays [43].
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CHAPTER I

x

In the plane of variables x, y let us consider a second order hyperbolic

equation of the type

u

xy

+ a

1

u

x

+ b

1

u

y

+ c

1

u = F; (1.1)

where a

1

, b

1

, c

1

, F are given real functions and u is an unknown one.

Let 


1

: y = 


1

(x), 0 � x � x

0

, and 


2

: x = 


2

(y), 0 � y � y

0

, be two

simple curves of the class C

1

coming out of the origin O(0; 0) of the plane

of variables x, y and located completely in the angle x � 0, y � 0.

Below we shall assume that 


1

(


2

(y)) < y, 0 < y � y

0

, and each of

the curves 


i

, i = 1; 2, either is a characteristic of equation (1.1) or it has

characteristic direction at none of its points, except maybe O(0; 0). This

implies that if 


1

(


2

) is not a characteristic, then the function y = 


1

(x)

(x = 


2

(y)) is strictly monotonically increasing. Denote by D the domain

lying at the angle x > 0, y > 0, bounded by the curves 


1

, 


2

and the

characteristics L

1

(P

0

) : x = x

0

and L

2

(P

0

) : y = y

0

of equation (1.1),

coming out of the point P

0

(x

0

; y

0

).

Consider the boundary value problem formulated as follows: in the do-

main D �nd a regular solution u(x; y) of (1.1) satisfying on 


1

and 


2

�

M

i

u

x

+N

i

u

y

+ S

i

u

�

�

�




i

= f

i

; i = 1; 2; (1.2)

where M

i

, N

i

, S

i

, f

i

, i = 1; 2, are given real functions.

The solution of the problem (1.1), (1.2) is sought in the weighted space

C

1;1

�

(D) =

n

u 2 C(D) : u

x

; u

y

; u

xy

2 C(DnO); u(0; 0) = 0;

sup

z2DnO

jzj

��

ju

x

(z)j <1; sup

z2DnO

jzj

��

ju

y

(z)j <1;

sup

z2DnO

jzj

�(��1)

ju

xy

(z)j <1

o

;

where z = x+ iy, i =

p

�1, � > �1 is a real parameter.

Obviously, if u 2 C

1;1

�

(D), then sup

z2DnO

jzj

�(1+�)

ju(z)j <1.

When considering the problems (1.1), (1.2) in the space u 2 C

1;1

�

(D), we

require that a

1

; b

1

; c

1

2 C(D), M

i

; N

i

; S

i

2 C(


i

), i = 1; 2,

f

1

(x) 2 C

�

(


1

) =

n

f

1

2 C(0; x

0

] : sup

0<x�x

0

�

�

x

��

f

1

(x)

�

�

<1

o

;
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f

2

(x) 2 C

�

(


2

) =

n

f

2

2 C(0; y

0

] : sup

0<y�y

0

�

�

y

��

f

2

(y)

�

�

<1

o

;

F (z) 2 C

��1

(D) =

n

F 2 C(DnO) : sup

z2DnO

jx

�(��1)

jF (z)j <1

o

:

For the sake of simplicity, we shall restrict ourselves to the consideration

of the equation of the string oscillation

u

xy

= 0; (1.3)

and in the boundary conditions (1.2) we shall assume S

i

= 0, i = 1; 2, i.e.,

�

M

i

u

x

+N

i

u

y

�

�

�




i

= f

i

; i = 1; 2: (1.4)

Denoting v = u

x

and w = u

y

, we can rewrite the problem (1.3), (1.4)

equivalently in the form

v

y

= 0; (1.5)

w

x

= 0; (1.6)

u

y

= w (1.7)

with boundary conditions

�

M

i

v +N

i

w

�

�

�




i

= f

i

; i = 1; 2; (1.8)

�

u

x

+ 


(1)

1

u

y

�

�

�




1

=

�

v + 


(1)

1

w

�

�

�




1

: (1.9)

Indeed, if u(x; y) is a solution of the problem (1.3), (1.4), then it is clear

that the system of functions u, v and w satis�es (1.5){(1.9). Conversely, let

u, v, w be a solution of the problem (1.5){(1.9). Then, obviously, equalities

u

x

= v, w = u

y

imply that u(x; y) is a solution of the problem (1.3), (1.4).

Therefore, by virtue of (1.7) it su�ces to prove that u

x

= v.

Let g = v � u

x

. Then owing to (1.5){(1.7), we have

g

y

= v

y

� u

xy

= 0� (u

y

)

x

= 0� w

x

= 0:

Hence g(x; y) = g(x), i.e.,

g(P ) = g(P

�

) = (v � u

x

)

�

�




1

; (1.10)

where P

�

is the projection of an arbitrarily taken point P (x; y) 2 D on the

curve 


1

, parallel to the axis Oy.

By (1.7) and (1.9) we have

�

u

x

+ 


(1)

1

u

y

�

�

�




1

=

�

u

x

+ 


(1)

1

w

�

�

�




1

=

�

v + 


(1)

1

w

�

�

�




1

;

whence u

x

j




1

= vj




1

and, according to (1.10), we get g � 0 which means

that u

x

= v in D.
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Denoting vj




1

= '(x) and wj




2

=  (y), we rewrite the boundary condi-

tions (1.8) as a system of two functional equations

M

1

'(x) +N

1

 

�




1

(x)

�

= f

1

(x); 0 < x � x

0

; (1.11)

M

2

'

�




2

(y)

�

+N

2

 (y) = f

2

(y); 0 < y � y

0

; (1.12)

with respect to the unknown functions (';  ) 2 C

�

(


1

)� C

�

(


2

).

Evidently, if '(x) and  (y) are a solution of the system (1.11), (1.12),

then the functions u, v and w of the problem (1.5){(1.9) can be uniquely

de�ned by the formulas

v(x; y) = '(x); w(x; y) =  (y); u(x; y) =

Z

OP

vdx+ wdy;

where OP � D is a curve connecting the point P (x; y) 2 D with the origin

O(0; 0).

Below we shall assume that

M

1

�

�




1

6= 0; N

2

�

�




2

6= 0: (1.13)

Excluding in the system (1.11), (1.12) the unknown function  (y), for

'(x) we obtain the functional equation

T' � '(x) � a(x)'

�

�(x)

�

= f(x); 0 < x � x

0

: (1.14)

Here

a(x) =M

�1

1

(x)N

1

(x)N

�1

2

�




1

(x)

�

M

2

(


1

(x)

�

; (1.15)

�(x) = 


2

�




1

(x)

�

; (1.16)

f(x) =M

�1

1

(x)f

1

(x)�M

�1

1

(x)N

1

(x)N

�1

2

�




1

(x)

�

f

2

�




1

(x)

�

:

Remark. It is obvious that when the conditions (1.13) are ful�lled, the

problem (1.3), (1.4) in the class C

1;1

�

(D) is equivalently reduced to one

functional equation (1.14) with respect to the unknown function '(x) of

the class C

�

(0; x

0

].

x




1




2

O(0; 0)

Let �

0

= �

(1)

(0). If the curves 


1

and 


2

do not have a common tangent

line at O(0; 0), then due to the requirements imposed on 


1

and 


2

we have

0 � �

0

< 1, where �

0

= 0 if and only if one of the curves 


1

or 


2

has a

characteristic direction at this point.

If at least one of the curves 


1

or 


2

is a characteristic of

equation (1:3), then equation (1:14) is uniquely solvable in the class C

�

(0; x

0

]

for � > 0.
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Proof. Obviously, in this case �(x) � 0. Moreover, since � > 0, from '(x)

(f(x)) 2 C

�

(0; x

0

] we have '(x) (f(x)) 2 C[0; x

0

] and '(0) = 0 (f(0) = 0).

Therefore in this case equation (1.14) takes the trivial form

'(x) = f(x): �

Let now 


1

and 


2

not be characteristics of (1.3). Then according to the

requirements imposed on 


1

and 


2

, the continuously di�erentiable function

�(x) de�ned by (1.16) is strictly monotonically increasing on [0; x

0

] and

�(0) = 0; 0 < �(x) < x for 0 < x � x

0

: (1.17)

Therefore if �

k

(x) = �(�

k�1

(x)), �

1

(x) = �(x), 0 � x � x

0

, then according

to (1.17) the sequence f�

k

(x)g

1

k=1

on the interval [0; x

0

] tends uniformly to

zero, as k !1. Hence there exists a natural number n such that

�

k

(x) � "; 0 � x � x

0

; k � n: (1.18)

Let equation (1:14) be uniquely solvable on the interval (0; "],

0 < " = const < x

0

, in the class C

�

(0; "]. Then equation (1:14) is likewise

uniquely solvable on the whole interval (0; x

0

] in the class C

�

(0; x

0

], and its

solution '(x) can be represented in the form

'(x) =

8

<

:

'

0

(x); 0 < x � ";

(�

n

'

0

)(x) + f(x) +

n�1

P

i=1

(�

i

f)(x); x > ";

(1.19)

where '

0

(x) is the solution of equation (1:14) on (0; "] of the class C

�

(0; "],

(�

n

')(x) = a(x)a(�(x)) � � � a(�

n�1

(x))'(�

n

(x)), and the number n is chosen

by inequality (1:18).

Proof of Lemma 1.2 is trivial.

The following lemma is obvious.

In the class C

�

(0; x

0

], (1:14) is equivalent to the equation

 (x) � a(x)

�

�(x)

x

�

�

 

�

�(x)

�

= g(x); 0 < x � x

0

; (1.20)

in the class C

0

(0; x

0

], where  (x) = x

��

'(x) 2 C

0

(0; x

0

], g(x) = x

��

f(x) 2

C

0

(0; x

0

].

Lemmas 1.2 and 1.3 immediately yield

Equation (1:14) is uniquely solvable in the class C

�

(0; x

0

] if

and only if equation (1:20) is uniquely solvable for some ", 0 < " < x

0

, in

the class C

0

(0; "].
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Let the curves 


1

nO and 


2

nO not be characteristics of equa-

tion (1:3) and at least one of them have characteristic direction at the point

O. Then equation (1:14) is uniquely solvable in the class C

�

(0; x

0

] for � > 0.

If, however, �1 < � � 0, then (1:14) is uniquely solvable in the class

C

�

(0; x

0

] when the condition

lim

x!+0

�

�

�

a(x)

�

�(x)

x

�

�

�

�

�

< 1 (1.21)

is ful�lled.

Proof. By virtue of Lemma 1.4, it su�ces to prove that for su�ciently small

" > 0 the operator

(T

0

 )(x) = a(x)

�

�(x)

x

�

�

 

�

�(x)

�

; (1.22)

appearing in (1.20) has in the space C

0

(0; "] the norm which is less than

unity, i.e.,

kT

0

k

C

0

(0;"]!C

0

(0;"]

< 1: (1.23)

Really, in this case the Neumann series

(I � T

0

)

�1

= I + T

0

+ � � �+ T

n

0

+ � � �

for the operator T

0

converges in the space C

0

(0; "] and the unique solution

 (x) of (1.20) can be represented in the form

 = f + T

0

f + � � �+ T

n

0

f + � � � ;

where I is an identical operator.

In the �rst case, when � > 0 and at least one of the curves 


1

or 


2

has

the characteristic direction at O, we have �

0

= �

(1)

(0) = 0, and

lim

x!+0

�

�

�

a(x)

�

�(x)

x

�

�

�

�

�

= lim

x!+0

ja(x)j lim

x!+0

�

�(x)

x

�

�

=

= ja(0)j

�

�

(1)

(0)

�

�

= 0:

Therefore, since the function a(x)(

�(x)

x

)

�

is continuous in a vicinity of zero,

there exists a su�ciently small number " > 0 such that for 0 < x � " we

have

max

0<x�"

�

�

�

a(x)

�

�(x)

x

�

�

�

�

�

� q = const < 1;

whence we get

kT

0

 k

C

0

(0;"]

= sup

0<x�"

�

�

�

a(x)

�

�(x)

x

�

�

 

�

�(x)

�

�

�

�

�

� q sup

0<x�"

�

�

 

�

�(x)

�

�

�

� q sup

0<x�"

j (x)j = qk k

C

0

(0;"]

;
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i.e.,

kT

0

k

C

0

(0;"]!C

0

(0;"]

� q < 1:

In the second case, when �1 < � � 0 and (1.21) is ful�lled, the estimate

(1.23) for the norm of the operator T

0

de�ned by (1.22) can be proved

analogously. �

Let now the curves 


1

and 


2

not be characteristics of equation (1.3) and

have no characteristic direction at O. In this case 0 < �

0

< 1. Put � = a(0).

Let the curves 


1

nO and 


2

nO not be the characteristics of

equation (1:3) and have no characteristic direction at O. Then for � >

�

log j�j

log �

0

, equation (1:14) is uniquely solvable in the class C

�

(0; x

0

].

Remark. In Lemma 1.6 for � = 0, that is for N

1

(0)M

2

(0) = 0, one should

assume �

log j�j

log �

0

= �1, and in this case equation (1.14) is uniquely solvable

for any � > �1.

Proof. It follows from the condition � > �

log j�j

log �

0

that

j�j�

�

0

< 1;

whence we directly obtain (1.21)

lim

x!+0

�

�

�

a(x)

�

�(x)

x

�

�

�

�

�

= j�j�

�

0

< 1

which, as is shown in Lemma 1.5, ensures the unique solvability of equation

(1.14) in the class C

�

(0; "]. �

Let the curves 


1

nO and 


2

nO not be characteristics of equa-

tion (1:3) and have no characteristic direction at O. If N

1

(0)M

2

(0) 6= 0,

then for � < �

log j�j

log �

0

equation (1:14) is solvable in the class C

�

(0; x

0

], and

the homogeneous equation corresponding to (1:14) has an in�nite number of

linearly independent solutions in this class.

Proof. Since N

1

(0)M

2

(0) 6= 0, i.e. � 6= 0 and � < �

log j�j

log �

0

, there exists a

positive number ", " < x

0

, such that for 0 < x � " we have N

1

(x) 6= 0,

M

2

(x) 6= 0, and

�

�

�

a(x)

�

�(x)

x

�

�

�

�

�

�

1

q

= const > 1; 0 < x � ": (1.24)

Since the function �(x) is strictly monotone, for any x from the interval

0 < x < �(") there exists a unique natural number n

1

= n

1

(x) satisfying

�(") < �

�n

1

(x) � ":

Analogously, for any x satisfying "

1

< x � x

0

there exists a unique

natural number n

2

= n

2

(x) such that

�(") � �

n

2

(x) < ":
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By virtue of Lemma 1.3, it su�ces to prove that equation (1.20) is solv-

able in the class C

0

(0; "], and for the homogeneous equation corresponding

to (1.20) there exists an in�nite number of linearly independent solutions

of this class.

Since the function �(x) is strictly monotonically increasing, there exists

a function inverse to �(x) which we denote by �

�1

(x). It is easily seen that

the operator T

0

de�ned by (1.22) is invertible, and

�

T

�1

0

 

�

(x) = a

�1

�

�

�1

(x)

�

�

x

�

�1

(x)

�

��

 

�

�

�1

(x)

�

: (1.25)

It can be easily veri�ed that every solution of (1.20) which is continuous

in a half-interval 0 < x � x

0

is given by

 (x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

 

0

(x); �(") � x � ";

�

T

�n

1

(x)

0

 

0

�

(x) �

n

1

(x)

P

i=1

�

T

�i

0

g

�

(x); 0 < x < �(");

�

T

n

2

(x)

0

 

0

�

(x) +

n

2

(x)�1

P

i=0

�

T

i

0

g

�

(x); " < x � x

0

;

(1.26)

where  

0

(x) is an arbitrary function of the class C[�("); "] satisfying the

condition  

0

(")� a(")(

�(")

"

)

�

 

0

(�(")) = g(").

Let us show that if g 2 C

0

(0; "], the function  (x) given by (1.26) belongs

to the class C

0

(0; x

0

] for any  

0

2 C[�("); "],  

0

(")� a(")(

�(")

"

)

�

 

0

(�(")) =

g("). From this and owing to the the arbitrariness of the function  

0

, we

obtain the assertion of Lemma 1.7.

Obviously, in order to prove that  2 C

0

(0; x

0

], it su�ces to show that

the functions

�

T

�n

1

(x)

0

 

0

�

(x) and

n

1

(x)

X

i=1

(T

�i

0

g)(x)

are bounded in the interval 0 < x < �(").

(1.24) and (1.25) yield

�

�

�

T

�n

1

(x)

0

 

0

�

(x)

�

�

� q

n

1

(x)

max

�(")�x�"

j 

0

(x)j < max

�(")�x�"

j 

0

(x)j;

�

�

�

n

1

(x)

X

i=1

�

T

�i

0

g

�

(x)

�

�

�

�

n

1

(x)

X

i=1

q

i

sup

0<x�x

0

jg(x)j <

1

1� q

sup

0<x�x

0

jg(x)j: �

Remark. One can prove that in the critical case where � = �

log j�j

log �

0

, equ-

ation (1.14) in the class C

�

(0; "] is not Hausdor� normally solvable, that is,

the set of all right-hand sides f 2 C

�

(0; "] for which (1.14) is solvable, is

everywhere dense in C

�

(0; "] but not coinciding with it.

From the above proven lemmas it follows that the following theorems are

valid.
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Let the conditions (1:13) be ful�lled and at least one of the

curves 


1

or 


2

be characteristics of equation (1:3). Then the problem (1:3),

(1:4) is uniquely solvable in the class C

1;1

�

(D) for � > 0.

Let the conditions (1:13) be ful�lled, the curves 


1

nO and




2

nO not be characteristics of equation (1:3) and at least one of them have

characteristic direction at O. Then the problem (1:3), (1:4) is uniquely

solvable in the class C

1;1

�

(D) for � > 0. If, however, �1 < � � 0, then

the problem (1:3), (1:4) is uniquely solvable in the class C

1;1

�

(D), when the

condition

lim

x!+0

�

�

�

a(x)

�

�(x)

x

�

�

�

�

�

< 1

is ful�lled.

Let the conditions (1:13) be ful�lled, the curves 


1

nO and




2

nO not be characteristics of equation (1:3) and have no characteristic

direction at O. If N

1

(0)M

2

(0) = 0, then the problem (1:3), (1:4) is uniquely

solvable in the class C

1;1

�

(D) for � > �1.

Let the conditions (1:13) be ful�lled, the curves 


1

nO and




2

nO not be characteristics of equation (1:3) and have no characteristic

direction at O. If N

1

(0)M

2

(0) 6= 0, then for � > �

log j�j

log �

0

the problem (1:3),

(1:4) is uniquely solvable in the class C

1;1

�

(D), while for � < �

log j�j

log �

0

it is

solvable in the class C

1;1

�

(D), and the homogeneous problem corresponding

to (1:3), (1:4) has an in�nite number of linearly independent solutions in

this class.

Remark. Using Picard's method of successive approximations, one can

prove that the assertions of Theorems 1.1{1.3 and those of the �rst part of

Theorem 1.4 are also valid for the problem (1.1), (1.2) in the class C

1;1

�

(D);

moreover, the estimate

kuk

C

1;1

�

(D)

� C

�

2

X

i=1

kf

i

k

C

�

(


i

)

+ kFk

C

��1

(D)

�

with a positive constant C not depending on f

i

and F , is valid for the

solution u(x; y).

Here

kuk

C

1;1

�

(D)

= sup

z2DnO

jzj

��

ju

x

(z)j+ sup

z2DnO

jzj

��

ju

y

(z)j+

+ sup

z2DnO

jzj

�(��1)

ju

xy

(z)j;

kf

i

k

C

�

(


i

)

= sup

z2


i

nO

jzj

��

jf

i

(z)j; kFk

C

��1

(D)

= sup

z2DnO

jzj

�(��1)

jF (z)j:
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The assertion of the second part of Theorem 1.4 is likewise valid, but in

this case instead of the solvability of the problem (1.1), (1.2) in the class

C

1;1

�

(D) there takes place the Hausdor� normal solvability [6]. Note also

that in the critical case where � = �

log j�j

log �

0

, the Hausdor� normal solvability

of the problem (1.1), (1.2) in the class C

1;1

�

(D) will, generally speaking, be

violated.

x




1




2

O(0; 0)

By virtue of the requirements imposed on the curves 


1

and 


2

in the

case where they have a common tangent line at O(0; 0), we have �

0

=

�

(1)

(0) = 1. The fact that j�j = ja(0)j = jN

1

M

2

M

�1

1

N

�1

2

(0)j 6= 1 means

that the directions of di�erentiation in the boundary conditions (1.4) do not

coincide at O(0; 0).

Repeating the same arguments as in x2, we can prove the validity of the

following

Let the conditions (1:13) be ful�lled, the curves 


1

and 


2

have a common tangent line at the point O(0; 0), but the directions of dif-

ferentiation in the boundary conditions (1:4) not coincide at this point, i.e.,

j�j 6= 1. If N

1

(0)M

2

(0) = 0, then the problem (1:3), (1:4) is uniquely solv-

able in the class C

1;1

�

(D) for � > �1. If, however, N

1

(0)M

2

(0) 6= 0, then

in the case j�j < 1 the problem (1:3), (1:4) is uniquely solvable in the class

C

1;1

�

(D) for � > �1, while in the case j�j > 1 the problem (1:3), (1:4) is solv-

able in the class C

1;1

�

(D) for � > �1; moreover, the homogeneous problem

corresponding to (1:3), (1:4) has an in�nite number of linearly independent

solutions.

Note that in this case, the remark following after Theorem 1.4 of the

previous paragraph is also valid.

x




1




2

O(0; 0)

For the sake of simplicity we shall assume below that the curves 


1

, 


2

and the coe�cientsM

i

, N

i

, i = 1; 2, in the boundary conditions (1.4) belong

to the class C

1

. In this case it is obvious that �(x) 2 C

1

[0; x

0

], and the

coe�cient a(x) 2 C

1

[0; x

0

] in the functional equation (1.14).

Let 


1

and 


2

have a common tangent line at O(0; 0) and the order of

tangency be equal to k. This, obviously, is equivalent to the conditions

�

0

= �

(1)

(0) = 1; �

(i)

(0) = 0; 1 < i � k; �

(k+1)

(0) 6= 0: (1.27)
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Therefore the function �(x) 2 C

1

[0; x

0

] can be represented in the form

�(x) = x+

�

(k+1)

(0)

(k + 1)!

x

k+1

+ �(x)x

k+1

; (1.28)

where �(x) = o(x) for x! 0, i.e., lim

x!0

�(x) = 0.

Since �(x) < x for 0 < x � x

0

, (1.27) and (1.28) imply

c = �

�

(k+1)

(0)

(k + 1)!

> 0: (1.29)

Taking into account (1.29), we rewrite (1.28) as

�(x) = x� cx

k+1

+ �(x)x

k+1

: (1.30)

Assume �

n

(x) = �(�

n�1

(x)), �

1

(x) = �(x), 0 < x � x

0

. As it is noted

above, the monotonicity of the function �(x) and the validity of the condi-

tions (1.17) imply that the sequence of the functions f�

n

(x)g

1

n=1

vanishes

uniformly on [0; x

0

] for n!1, i.e., �

n

(x)� 0, n!1.

Below we shall concern ourselves with the asymptotics when the sequence

x

n

= �(x

n�1

), x

1

= x 2 (0; x

0

] tends to zero with respect to n.

The following lemma holds.

The behavior of the sequence x

n

= �

n

(x) for n ! 1

can be written by the formula

x

n

=

�

n

k

p

ckn

; (1.31)

where the function �

n

= �

n

(x) tends uniformly on the segment 0 � x � x

0

to unity as n!1, i.e., �

n

(x)� 1, n!1.

Proof. Because of (1.30) and the well-known equality (1 + �)

p

= 1 + p� +

�

1

(�)� for p � 0, where lim

�!0

�

1

(�) = 0, we have

1

x

p

n

=

1

[�(x

n�1

)]

p

=

1

(x

n�1

� cx

k+1

n�1

+ �(x

n�1

)x

k+1

n�1

)

p

=

=

1

x

p

n�1

1

(1� cx

k

n�1

+ �(x

n�1

)x

k

n�1

)

p

=

=

1

x

p

n�1

1

(1� pcx

k

n�1

+ �

2

(x

n�1

)x

k

n�1

)

=

=

1

x

p

n�1

�

1 + pcx

k

n�1

+ �

3

(x

n�1

)x

k

n�1

�

=

=

1

x

p

n�1

+ pcx

k�p

n�1

+ �

3

(x

n�1

)x

k�p

n�1

; (1.32)

where lim

�!0

�

i

(�) = 0, i = 2; 3.
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Assuming p = k and n = i in (1.32), we �nd that

1

x

k

i

=

1

x

k

i�1

+ ck + �

3

(x

i�1

): (1.33)

Adding equalities (1.33) for i = 2; 3; : : : ; n, we get

1

x

k

n

=

1

x

k

1

+ ck(n� 1) +

n

X

i=2

y

i

;

i.e.,

1

cknx

k

n

=

1

cknx

k

1

+

n� 1

n

+

1

ck

P

n

i=2

y

i

n

; (1.34)

where the sequence y

i

= y

i

(x) = �

3

(x

i�1

) = �

3

(�

i�1

(x)) tends uniformly

on the segment 0 � x � x

0

to zero, i.e., y

i

(x)� 0, n!1.

Since

lim

n!1

1

cknx

k

1

= 0; lim

n!1

n� 1

n

= 1; lim

n!1

y

n

= 0

and hence

lim

n!1

1

n

n

X

i=2

y

i

= 0;

we obtain �nally from (1.34) that the sequence

1

�

k

n

=

1

cknx

k

n

tends uniformly

on [0; x

0

] to unity. �

As already noted, coincidence of the directions of di�erentiation in the

boundary conditions (1.4) means that j�j = ja(0)j = 1. Let �rst a(0) =

� = 1. Then since a(x) 2 C

1

[0; x

0

], the representation

a(x) = 1 + dx

m

+ �(x)x

m

; (1.35)

where lim

x!0

�(x) = 0 and

a

(i)

(0) = 0; 1 � i � m� 1; a

(m)

(0) 6= 0; d =

a

(m)

(0)

m!

:

is valid.

Because of the fact that a(x) =

K

1

(x)

K

2

(x)

, where K

1

(x) =

N

1

(x)

M

1

(x)

, K

2

(x) =

N

2

(x)(


1

(x))

M

2

(


1

(x))

we have K

1

(x)�K

2

(x) = O(x

m

) for x! 0. Therefore, geomet-

rically the value m � 1 can be interpreted as the order of tangency of the

directions of di�erentiation at O(0; 0) in the boundary conditions (1.4).

We rewrite equation (1.4) in the form

(T')(x) � '(x) � (�')(x) = f(x); 0 < x � x

0

; (1.36)

where (�')(x) = a(x)'(�(x)).
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From (1.36) we have

'(x) = (�

n

')(x) +

n�1

X

i=0

(�

i

f)(x); (1.37)

where �

0

= I is the unit operator.

For m > k, equation (1:36) cannot have more than

one solution in the class C

�

(0; x

0

], � > 0.

Proof. Let '(x) be a solution of the homogeneous equation corresponding

to (1.36) in the class C

�

(0; x

0

], � > 0. Then because of (1.37) the equality

'(x) = (�

n

')(x) holds.

Equality (1.35) yields

ja(x)j � 1 + d

1

x

m

; 0 � x � x

0

; (1.38)

for some d

1

= const > 0. Therefore

j(�

n

')(x)j =

�

�

a(x)a(�(x)) � � � a(�

n�1

(x))'(�

n

(x))

�

�

�

� (1 + d

1

x

m

)

�

1 + d

1

�

m

(x)

�

� � �

�

1 + d

1

�

m

n�1

(x)

�

�

�

'(�

n

(x))

�

�

: (1.39)

As is known, the convergence of an in�nite product

1

Q

i=1

(1 + �

i

) is

equivalent to that of the series

1

P

i=1

�

i

if the values �

i

have the same sign.

Therefore the convergence of the product

1

Y

i=1

�

1 + d

1

�

m

i

(x)

�

is equivalent to that of the series

1

X

i=1

�

m

i

(x);

which, in its turn, is equivalent to the convergence of the series

1

P

i=1

1

i

m=k

in

virtue of (1.31). The series

1

P

i=1

1

i

m=k

converges for m > k. Therefore there

exists a number M = const > 0 such that for n � 1 the equality

n

Y

i=1

�

1 + d

1

�

m

i

(x)

�

�M (1.40)

is valid.

Inequalities (1.39) and (1.40) imply

j(�

n

')(x)j �M

�

�

'(�

n

(x))

�

�

: (1.41)
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Since ' 2 C

�

(0; x

0

] and � > 0, it is obvious that ' 2 C[0; x

0

] and

'(0) = 0. Therefore, since the sequence f�

n

(x)g

1

n=1

converges uniformly on

the segment 0 � x � x

0

to zero, we have

lim

n!1

'

�

�

n

(x)

�

= 0; 0 � x � x

0

: (1.42)

By virtue of (1.41) and (1.42), passing in the equality '(x) = (�

n

')(x)

to the limit for n!1, we �nally obtain that '(x) � 0. �

If f(x) 2 C

�

(0; x

0

], � > k, then for m > k equation

(1:36) has the solution in the class C

�

(0; x

0

], 0 < � < � � k.

Proof. It can be easily veri�ed that the functional series

T

�1

f =

1

X

i=0

�

i

f (1.43)

is formally a solution of equation (1.36). Therefore, to prove that equation

(1.36) is solvable, it is su�cient to show that the series (1.43) converges in

the class C

�

(0; x

0

], � < � � k.

Since f 2 C

�

(0; x

0

], � > k, the equality

jf(x)j �M

1

x

�

x

�

1

; 0 � x � x

0

; (1.44)

where M

1

= const > 0, is valid for �

1

= k + ", " = � � k � � > 0.

From (1.31), (1.40), (1.44) and because �

i

(x) � x, we have

j(�

i

f)(x)j = ja(x)j

�

�

a(�(x))

�

�

� � �

�

�

a(�

i�1

(x))

�

�

�

�

f(�

i

(x))

�

�

�

�MM

1

[�

i

(x)]

�

h

�

i

k

p

cki

i

�

1

�MM

1

�

�

1

i

(ck)

�

�

1

k

x

�

1

i

�

1

=k

: (1.45)

Since �

1

> k, (1.45) implies the convergence of (1.43) in the class

C

�

(0; x

0

]. �

Remark. The fact that the solution '(x) of equation (1.36) for f 2

C

�

(0; x

0

], � > k, does not, in general, belong to the class C

�

(0; x

0

] for

� > � � k, is seen from the following example. It is not di�cult to see that

the function '

0

(x) = x

��k

2 C

��k

(0; x

0

]. By (1.30) and (1.35), we have

(T'

0

)(x) = x

��k

� a(x)(�(x))

��k

=

= x

��k

� (1 + dx

m

+ �(x)x

m

)(x� cx

k+1

+ �(x)x

k+1

)

��k

=

= x

��k

� (1 + dx

m

+ �(x)x

m

)x

��k

(1� c(� � k)x

k

+

e

�(x)x

k

) =

= c(� � k)x

�

+ e�(x)x

�

;

where lim

x!0

e

�(x) = lim

x!0

e�(x) = 0. Hence the function f

0

(x) = (T'

0

)(x) 2

C

�

(0; x

0

], and the function '

0

(x) = x

��k

itself which does not belong to
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the class C

�

(0; x

0

] for any � > � � k, is the unique solution of equation

(1.36) for f(x) = f

0

(x).

Note that the above proven lemmas are also valid in the case a(0) =

� = �1.

Owing to Lemmas 1.9 and 1.10, the following theorem is valid.

Let �

0

= 1, j�j = 1 and m > k. Then the problem

(1:3), (1:4) cannot have more than one solution in the class C

�

(0; x

0

], � > 0.

If f

i

2 C

�

(


i

), i = 1; 2, where � > k, then the problem (1:3), (1:4) has a

unique solution in the class C

1;1

�

(D), 0 < � < � � k.

We shall give the following results from [52] without proofs.

Let �

0

= 1, j�j = 1 and m = k, �d > 0. Then for any

f

i

2 C

�

(0; x

0

], i = 1; 2, � > k + 2

jdj

c

, the problem (1:3), (1:4) is uniquely

solvable in the class C

1;1

�

(D), where

jdj

c

< � < � � k �

jdj

c

.

Theorem below does not involve the dependence between m and k.

Let �

0

= 1, j�j = 1 and �d < 0. Then for any f

i

2

C

�

(0; x

0

], i = 1; 2, � > k, the problem (1:3), (1:4) is uniquely solvable in

the class C

1;1

�

(D), where 0 < � < � � k.

x




1




2

As the example of the equation u

xy

= 0 shows, the problem (1.1), (1.2)

may appear to be ill-posed when the conditions (1.13) are violated. Below

we shall show that the existence of lower terms in equation (1.1) and in the

boundary conditions (1.2) may a�ect the correctness of the statement of the

problem (1.1), (1.2).

For simplicity let M

i

= const, N

i

= const, S

i

= const and jM

i

j+ jN

i

j+

jS

i

j 6= 0, i = 1; 2. Without loss of generality we may assume jM

i

j+jN

i

j 6= 0,

i = 1; 2, since, otherwise, this can be achieved by di�erentiating the corre-

sponding boundary condition with respect to a tangent curve 


i

.

As 


1

and 


2

let us take the characteristic segments 


1

: y = 0, 0 �

x � x

0

, 


2

: x = 0, 0 � y � y

0

.

Let the second condition in (1.13) be ful�lled, while the �rst one be

violated on the whole segment 


1

, i.e.,

M

1

�

�




1

= 0: (1.46)

Below we shall restrict ourselves to consideration of the problem (1.1),

(1.2) in the class

�

C

2

(D) =

n

u 2 C

2

(D) :

@

i+j

u(0; 0)

@x

i

@y

j

= 0; 0 � i+ j � 2

o
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and assume that a; b; c 2 C

2

(D), F 2 C

1

(D), F (0; 0) = 0, f

i

=

�

C

1

(


i

) =

ff

i

2 C

1

(


i

) : f

i

(0) = f

(1)

i

(0) = 0g, i = 1; 2.

Denote by R(x; y;x

1

; y

1

) the Riemann function which, by de�nition, is

the solution of the so-called conjugate equation [10]

R

xy

� (aR)

x

� (bR)

y

+ cR = 0 (1.47)

which on the characteristics x = x

1

, y = y

1

takes the values

R(x

1

; y;x

1

; y

1

) = exp

�

y

Z

y

1

a(x

1

; �)d�

�

;

R(x; y

1

;x

1

; y

1

) = exp

�

x

Z

x

1

b(�; y

1

)d�

�

;

(1.48)

where (x

1

; y

1

) is an arbitrarily �xed point in the domain D

1

.

Due to (1.47) and (1.48), the function R(x; y;x

1

; y

1

) satis�es the integral

equation

R(x; y;x

1

; y

1

)�

x

Z

x

1

b(�; y)R(�; y;x

1

; y

1

)d� �

�

y

Z

y

1

a(x; �)R(x; �;x

1

; y

1

)d� +

+

x

Z

x

1

d�

y

Z

y

1

c(�; �)R(�; �;x

1

; y

1

)d� = 1: (1.49)

It is known that equation (1.49) has the unique solution R(x; y;x

1

; y

1

)

which, as it can be easily veri�ed, possesses the following continuous deriva-

tives

@

i;j

x;y

@

i

1

;j

1

x

1

;y

1

R(x; y;x

1

; y

1

) 2 C(D �D); (1.50)

0 � i+ j � 1; 0 � i

1

+ j

1

� 2;

where @

i;j

x;y

=

@

i+j

@x

i

@y

j

, @

i

1

;j

1

x

1

;y

1

=

@

i

1

+j

1

@x

i

1

1

@y

j

1

1

.

From (1.48) we have

R

y

(x

1

; y;x

1

; y

1

)� a(x

1

; y)R(x

1

; y;x

1

; y

1

) = 0;

R

x

(x; y

1

;x

1

; y

1

)� b(x; y

1

)R(x; y

1

;x

1

; y

1

) = 0;

R(x

1

; y

1

;x

1

; y

1

) = 1;

R

y

1

(x; y;x; y

1

) + a(x; y

1

)R(x; y;x; y

1

) = 0;

R

x

1

(x; y;x

1

; y) + b(x

1

; y)R(x; y;x

1

; y) = 0;

R(x; y;x; y) = 1:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(1.51)
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On account of (1.50), every solution u(x; y) of equation (1.1) of the class

C

2

(D) can be represented in the form [10]

u(x; y) = R(x; 0;x; y)'(x) +R(0; y;x; y) (y)�R(0; 0;x; y)'(0) +

+

y

Z

0

�

a(0; �)R(0; �;x; y)�R

y

(0; �;x; y)

�

 (�)d� +

+

x

Z

0

�

b(�; 0)R(�; 0;x; y)�R

x

(�; 0;x; y)

�

'(�)d� +

+

x

Z

0

d�

y

Z

0

R(�; �;x; y)F (�; �)d�; (1.52)

as the solution of the Goursat problem

u(x; 0) = '(x); u(0; y) =  (y); '(0) =  (0);

where ' and  are given functions of the class C

2

.

When considering the problem (1.1), (1.2) in the class

�

C

2

(D), one should

assume that

'

(i)

(0) =  

(i)

(0) = 0; i = 0; 1; 2: (1.53)

From (1.52) and because of (1.53) we have

u

x

(x; y) =

�

R

x

(x; 0;x; y) +R

x

1

(x; 0;x; y)

�

'(x) +

+R(x; 0;x; y)'

(1)

(x) +R

x

1

(0; y;x; y) (y) +

+

y

Z

0

�

a(0; �)R

x

1

(0; �;x; y)�R

yx

1

(0; �;x; y)

�

 (�)d� +

+

�

b(x; 0)R(x; 0;x; y)�R

x

(x; 0;x; y)

�

'(x) +

+

x

Z

0

�

b(�; 0)R

x

1

(�; 0;x; y)�R

xx

1

(�; 0;x; y)

�

'(�)d� +

+

y

Z

0

R(x; �;x; y)F (x; �)d� +

x

Z

0

d�

y

Z

0

R

x

1

(�; �;x; y)F (�; �)d�; (1.54)

u

y

(x; y) = R

y

1

(x; 0;x; y)'(x) +

�

R

y

(0; y;x; y) +R

y

1

(0; y;x; y)

�

 (y) +

+R(0; y;x; y) 

(1)

(y) +

�

a(0; y)R(0; y;x; y)�R

y

(0; y;x; y)

�

 (y) +

+

y

Z

0

�

a(0; �)R

y

1

(0; �;x; y)�R

yy

1

(0; �;x; y)

�

 (�)d� +
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+

x

Z

0

�

b(�; 0)R

y

1

(�; 0;x; y)�R

xy

1

(�; 0;x; y)

�

'(�)d� +

+

x

Z

0

R(�; y;x; y)F (�; y)d� +

x

Z

0

d�

y

Z

0

R

y

1

(�; �;x; y)F (�; �)d�: (1.55)

Assuming in equalities (1.54), (1.55) x = 0, y = 0 and taking into account

(1.53), we obtain

u

x

(0; y) = R

x

1

(0; y; 0; y) (y) +

y

Z

0

�

a(0; �)R

x

1

(0; �; 0; y)�

�R

yx

1

(0; �; 0; y)

�

 (�)d� +

y

Z

0

R(0; �; 0; y)F (0; �)d�; (1.56)

u

y

(x; 0) = R

y

1

(x; 0;x; 0)'(x) +

x

Z

0

�

b(�; 0)R

y

1

(�; 0;x; 0)�

�R

xy

1

(�; 0;x; 0)

�

'(�)d� +

x

Z

0

R(�; 0;x; 0)F (�; 0)d�: (1.57)

It easily follows from (1.51) that

R

x

1

(0; y; 0; y) = �b(0; y); R

y

1

(x; 0;x; 0) = �a(x; 0): (1.58)

Substituting the expressions obtained in (1.56), (1.57) for u

x

and u

y

into

the boundary conditions (1.2) and taking into consideration the equalities

u(x; 0) = '(x), u(0; y) =  (y) and (1.58), (1.46), we �nd that

�N

1

a(x; 0)'(x) +N

1

x

Z

0

�

b(�; 0)R

y

1

(�; 0;x; 0)�

�R

xy

1

(�; 0;x; 0)

�

'(�)d� + S

1

'(x) = f

3

(x); 0 � x � x

0

; (1.59)

�M

2

b(0; y) (y) +

+M

2

y

Z

0

�

a(0; �)R

x

1

(0; �; 0; y)�R

yx

1

(0; �; 0; y)

�

 (�)d� +

+N

2

 

(1)

(y) + S

2

 (y) = f

4

(y); 0 � y � y

0

; (1.60)

where

f

3

(x) = f

1

(x) �N

1

x

Z

0

R(�; 0;x; 0)F (�; 0)d�;
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f

4

(y) = f

2

(y)�M

2

y

Z

0

R(0; �; 0; y)F (0; �)d�:

Obviously, the problem (1.1), (1.2) in the class

�

C

2

(D) is equivalent to

the system of equations (1.59), (1.60) with respect to unknown functions

' 2

�

C

2

[0; x

0

],  2

�

C

2

[0; y

0

].

Let the condition

(S

1

� aN

1

)

�

�




1

6= 0: (1.61)

be ful�lled. From (1.48), (1.49) we have

K

1

(�; x) = b(�; 0)R

y

1

(�; 0;x; 0)�R

xy

1

(�; 0;x; 0) =

=

�

a

x

(�; 0) + a(�; 0)b(�; 0)� c(�; 0)

�

exp

�

�

Z

x

b(�; 0)d�

�

; (1.62)

K

2

(�; y) = a(0; �)R

x

1

(0; �; 0; y)�R

yx

1

(0; �; 0; y) =

=

�

b

y

(0; �) + a(0; �)b(0; �)� c(0; �)

�

exp

�

�

Z

y

a(0; �)d�

�

: (1.63)

Let

 

0

(y) =  

(1)

(y);  (y) =

y

Z

0

 

0

(�)d�: (1.64)

By virtue of (1.61){(1.64) and owing to the condition N

2

j




2

6= 0, the

system of equations (1.59), (1.60) can be rewritten in the form

'(x) +N

1

�(x)

x

Z

0

K

1

(�; x)'(�)d� = f

5

(x); 0 � x � x

0

; (1.65)

 

0

(y) + �(y)

y

Z

0

 

0

(�)d� +

+M

2

N

�1

2

y

Z

0

K

3

(�; y) 

0

(�)d� = f

6

(y); 0 � y � y

0

; (1.66)

where �(x) = (S

1

� aN

1

)

�1

(x; 0), �(y) = N

�1

2

(S

2

� bM

2

)(0; y), K

3

(�; y) =

R

y

�

K

2

(�; y)d�, f

5

(x) = �(x)f

3

(x), f

6

(y) = N

�1

2

f

4

(y).
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Since equations (1.65) and (1.66) are second order Volterra type integral

equations, for equations (1.65) and (1.66) to be solvable, respectively, in the

classes

�

C

2

[0; x

0

] and

�

C

1

[0; y

0

], it is su�cient to require that

K

1

(�; x) 2 C

1

�

0 �

�

x

� x

0

�

;

@

2

K

1

(�; x)

@x

2

2 C

�

0 �

�

x

� x

0

�

; f

5

2

�

C

2

[0; x

0

];

(1.67)

K

2

(�; y) 2 C

�

0 �

�

y

� y

0

�

;

@K

2

(�; y)

@y

2 C

�

0 �

�

y

� y

0

�

; f

6

2

�

C

1

[0; y

0

]:

(1.68)

Due to the requirements imposed on the coe�cients a, b, c of equation

(1.1) and the functions F , f

1

, f

2

, the condition (1.68) will obviously be ful-

�lled. However, for the condition (1.67) to be valid, one should additionally

require that

f

1

2 C

2

(OP

1

); f

(2)

1

(0)�N

1

F

x

(0; 0) = 0:

Consider now the case where the condition (1.61) is violated, i.e.,

(S

1

� aN

1

)

�

�




1

= 0: (1.69)

Since, by the assumption, jM

1

j+ jN

1

j 6= 0, M

1

; N

1

; S

1

= const, we have

on account of (1.46) and (1.69)

a

�

�

OP

1

= const : (1.70)

When the condition (1.69) is ful�lled, equation (1.59) with respect to

the unknown function '(x) is an integral Volterra type equation of the �rst

kind

x

Z

0

K

1

(�; x)'(�)d� = N

�1

1

f

3

(x); 0 � x � x

0

: (1.71)

Di�erentiating both parts of equation (1.71) with respect to x and taking

into account (1.70), we get

(ab� c)(x; 0)'(x) � b(x; 0)

x

Z

0

K

1

(�; x)'(�)d� = N

�1

1

f

(1)

3

(x): (1.72)

Similarly, when the condition

(ab� c)

�

�




1

6= 0 (1.73)



31

is ful�lled, in order that equation (1.72) to be solvable in the class

�

C

2

[0; x

0

],

we should require that

f

1

2 C

3

(OP

1

); F 2 C

2

(OP

1

); f

(2)

1

(0)�N

1

F

x

(0; 0) = 0;

f

(3)

1

(0)�N

1

F

xx

(0; 0) +N

1

b(0; 0)F

x

(0; 0) = 0:

If, however, the condition (1.73) is violated, i.e.,

(ab� c)

�

�




1

= 0;

then, according to (1.62), (1.70), we have

K

1

(�; x) � 0:

In this case the left-hand side of equation (1.71) is equal identically to

zero and the equality

f

3

(x) = f

1

(x)�N

1

x

Z

0

�

exp

�

Z

x

b(�; 0)d�

�

F (�; 0)d� � 0; 0 � x � x

0

;

is a necessary and su�cient condition for the problem (1.1), (1.2) to be solv-

able in the class

�

C

2

(D); moreover, the homogeneous problem corresponding

to (1.1), (1.2) has an in�nite number of linearly independent solutions which

are given by

u(x; y) = R(x; 0;x; y)'(x) +

+

x

Z

0

�

b(�; 0)R(�; 0;x; y)�R

x

(�; 0;x; y)

�

'(�)d�;

where '(x) is an arbitrary function of the class

�

C

2

[0; x

0

].

Thus the following theorem is valid.

Let the conditions M

1

= 0, N

2

6= 0 be ful�lled. Then for

(S

1

� aN

1

)j




1

6= 0, the problem (1:1), (1:2) is uniquely solvable in the class

�

C

2

(D) if f

1

2 C

2

(


1

), f

(2)

1

(0)�N

1

F

x

(0; 0) = 0. If, however, (S

1

�aN

1

)j




1

=

0, then for (ab�c)j




1

6= 0 the problem (1:1), (1:2) is uniquely solvable in the

class

�

C

2

(D) if f

1

2 C

3

(


1

), F 2 C

2

(


1

), f

(2)

1

(0)�N

1

F

x

(0; 0) = 0, f

(3)

1

(0)�

N

1

F

xx

(0; 0) + N

1

b(0; 0)F

x

(0; 0) = 0. In the case where (S

1

� aN

1

)j




1

= 0

and (ab � c)j




1

= 0, for the problem (1:1), (1:2) to be solvable in the class

�

C

2

(D), it is necessary and su�cient that

f

1

(x) �N

1

x

Z

0

exp

�

�

Z

x

b(�; 0)d�

�

F (�; 0)d� � 0; 0 � x � x

0

;
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moreover, the homogeneous problem corresponding to (1:1), (1:2) has an

in�nite number of linearly independent solutions which are given by

u(x; y) = R(x; 0;x; y)'(x) +

+

x

Z

0

�

b(�; 0)R(�; 0;x; y)�R

x

(�; 0;x; y)

�

'(�)d�;

where '(x) is an arbitrary function of the class

�

C

2

[0; x

0

], and R(x; y;x

1

; y

1

)

is a Riemann function for equation (1:1).

The casesM

1

j




1

6= 0, N

2

j




2

= 0 andM

1

j




1

= N

2

j




2

= 0 can be considered

in a similar manner.

x

O(0; 0)

For simplicity, below we shall assume that in the problem (1.3), (1.4)




1

: y = �

1

x; 0 � x � x

0

; 


2

: x = �

2

y; 0 � y � y

0

;

�

i

= const > 0; i = 1; 2; �

1

x

0

< y

0

; �

2

y

0

< x

0

:

Let N

1

j




1

6= 0, M

2

j




2

6= 0, and let the second condition of (1.13) be

ful�lled, while the �rst one be violated only at one point O(0; 0) in the form

M

1

(x) = x

p

!(x);

where !(x) 6= 0, 0 � x � x

0

, p > 0 and !(x) 2 C[0; x

0

].

It is known that every solution u(x; y) of equation (1.3) of the class

C

1;1

�

(D), � > �1, can be represented uniquely as [6]

u(x; y) = e'(x) +

e

 (y);

where e'(x) 2 C[0; x

0

], e'

(1)

(x) 2 C

�

(0; x

0

],

e

 (y) 2 C[0; y

0

],

e

 

(1)

(y) 2

C

�

(0; y

0

], e'(0) =

e

 (0) = 0.

In the notations '(x) = u

x

(x; y) = e'

(1)

(x),  (y) = u

y

(x; y) =

e

 

(1)

(y), we

rewrite the boundary conditions (1.13) in the form of a system of equations

x

p

!(x)'(x) +N

1

(x) (�

1

x) = f

1

(x); 0 < x � x

0

; (1.74)

M

2

(y)'(�

2

y) +N

2

(y) (y) = f

2

(y); 0 < y � y

0

; (1.75)

with respect to unknown functions '(x) 2 C

�

(0; x

0

],  (y) 2 C

�

(0; y

0

].

It is easily seen that the system of equations (1.74), (1.75) is equivalent

to the system

x

p

'(x) � b

1

(x)'(�

0

x) = f

3

(x); 0 < x � x

0

; (1.76)

 (y) = �(N

�1

2

M

2

)(y)'(�

2

y) + (N

�1

2

f

2

)(y); 0 < y � y

0

; (1.77)
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where �

0

=�

1

�

2

< 1, b

1

(x)=(!

�1

N

1

)(x)(N

�1

2

M

2

)(�

1

x), f

3

(x)=(!

�1

f

1

)(x)�

(!

�1

N

1

)(x)(N

�1

2

f

2

)(�

1

x).

The following lemma holds.

The homogeneous equation corresponding to (1:76) has an

in�nite number of linearly independent solutions in the class C

�

(0; x

0

] for

all �.

Proof. It can be easily veri�ed that the function

�(t) = t

p

2

(

log t

log �

0

�1)

belongs to the class C

1

[0;1), tends to zero as t ! +0 more rapidly than

any power t

m

, m > 0, �(t) > 0 for t > 0 and strictly monotonically increases

on the segment 0 � t � �

1=2

0

; moreover,

�(�

0

t) = t

p

�(t): (1.78)

Bearing in mind (1.78), after substitution '(x) = �(x)'

1

(x), the homo-

geneous equation corresponding to (1.76) takes with respect to the unknown

function '

1

the form

'

1

(x)� b

1

(x)'

1

(�

0

x) = 0; 0 < x � x

0

: (1.79)

For simplicity, let b

1

(x) = const 6= 0. According to (1.26), every solution

of (1.79), continuous in the half-interval 0 < x � x

0

, can be represented in

the form

'

1

(x) =

8

>

>

<

>

>

:

'

0

1

(x); �

0

x

0

� x � x

0

;

b

�n

1

(x)

1

'

0

1

�

�

�n

1

(x)

0

x

�

; 0 < x < �

0

x

0

;

n

1

(x) =

h

log x

log �

0

i

;

(1.80)

where [

log x

log �

0

] is an integer part of the number [

log x

log �

0

], while '

0

1

is an arbitrary

function of the class C[�

0

x

0

; x

0

] satisfying '

0

1

(x

0

)� b

1

'

0

1

(�

0

x

0

) = 0.

If jb

1

j < 1, then

jb

1

j

�n

1

(x)

� jb

1

j

�

log x

log �

0

= x

�

log jb

1

j

log �

0

; (1.81)

and for jb

1

j � 1 we have

jb

1

j

�n

1

(x)

� jb

1

j

�

log x

log �

0

+1

= jb

1

jx

�

log jb

1

j

log �

0

: (1.82)

From (1.80){(1.82) we have

j'

1

(x)j � ecx

�

log jb

1

j

log �

0

k'

0

1

k

C[�

0

x

0

;x

0

]

; (1.83)

where ec = max(1; jb

1

j).
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Since the function �(x) along with all its derivatives vanishes for x! +0

more rapidly than any power x

m

, m > 0, owing to (1.83) we have

lim

x!+0

�

�

x

��

�(x)'

1

(x)

�

�

= 0

for any �. Therefore the function '(x) = �(x)'

1

(x), being the solution of

equation (1.76), belongs to the class C

�

(0; x

0

].

Because the function '

0

1

(x) in (1.80) is arbitrary, equation (1.76) has

in fact an in�nite number of linearly independent solutions of the class

C

�

(0; x

0

]. �

By Lemma 1.11, when condition M

1

j




1

6= 0 is violated at one point

O(0; 0) only, the homogeneous problem corresponding to (1.3), (1.4) has an

in�nite number of linearly independent solutions in the class C

1;1

�

(D) for

all � > �1. At the same time, we can �nd a functional space C

1;1

�;�

(D) in

which the problem (1.3), (1.4) is uniquely solvable.

Introduce into consideration the space

C

1;1

�;�

(D) =

n

u 2 C(D) \ C

1

(DnO) : u(0; 0) = 0; �

�1

(x)u

x

2 C

�

(DnO);

y

�p

log �

2

log �

0

�

�1

(y)u

y

2 C

�

(DnO); u

xy

2 C(DnO)

o

;

where

C

�

(DnO) =

n

u 2 C(DnO) : sup

z2DnO

jzj

��

ju(z)j < +1

o

:

As it is shown above, the problem (1.3), (1.4) in the class C

1;1

�;�

(D) is

equivalently reduced to the system of equations (1.76), (1.77) with respect

to the unknown functions '(x) and  (y), where

�

�1

(x)'(x) 2 C

�

(0; x

0

]; y

�p

log �

2

log �

0

�

�1

(y) (y) 2 C

�

(0; y

0

]:

The spaces consisting of the functions '(x) and  (y) and satisfying these

conditions we denote, respectively, by C

�;�

(0; x

0

] and C

�;y

q

1

�

(0; y

0

], where

q

1

= p

log �

2

log �

0

.

If '(x) 2 C

�;�

(0; x

0

], then it is obvious that '(�

2

y) 2 C

�;y

q

1

�

(0; y

0

].

Therefore by virtue of (1.77) we require that f

2

2 C

�;y

q

1

�

(0; y

0

].

Since

x

p

'(x); '(�

0

x) 2 C

�;x

p

�

(0; x

0

]

and

f

2

(�

1

x) 2 C

�;y

q

2

y

q

1

(0; y

0

] = C

�;y

p

�

(0; y

0

];

where q

2

= p

log �

1

log �

0

and q

1

+ q

2

= p owing to �

1

�

2

= �

0

, in equation (1.76)

in order to f

3

2 C

�;x

p

�

(0; x

0

] we require of the boundary function f

1

that

f

1

2 C

�;x

p

�

(0; x

0

]. Therefore if we consider the problem (1.3), (1.4) in the

class C

1;1

�;�

(D), then we shall assume that in the boundary conditions (1.3)

f

1

2 C

�;x

p

�

(0; x

0

]; f

2

2 C

�;y

q

1

�

(0; y

0

]:
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Let �

1

= b

1

(0) = (!

�1

N

�1

2

N

1

M

2

)(0).

For � > �

log j�

1

j

log �

0

equation (1:76) is uniquely solvable in

the class C

�;�

(0; x

0

], while for � < �

log j�

1

j

log �

0

equation (1:76) is solvable in

the class C

�;�

(0; x

0

]; moreover, the homogeneous equation corresponding to

(1:76) has an in�nite number of linearly independent solutions in this class.

Proof. Because of (1.78), substituting in equation (1.76) '(x) = �(x)'

1

(x)

for the unknown function '

1

(x), we obtain the equation

'

1

(x)� b

1

(x)'

1

(�

0

x) = f(x); (1.84)

where '

1

(x) 2 C

�

(0; x

0

], if '(x) 2 C

�;�

(0; x

0

] and f(x) = x

�p

�

�1

(x)f

3

(x) 2

C

�

(0; x

0

].

It is now evident that Lemma 1.12 is a direct consequence of Lemma 1.7

applied to equation (1.84). �

Thus the following theorem is valid.

Let N

i

j




i

6= 0, i = 1; 2, M

2

j




2

6= 0 and M

1

(x) = x

p

!(x),

p > 0, !(x) 2 C[0; x

0

], !(x) 6= 0, x 2 [0; x

0

]. Then for � > �

log j�

1

j

log �

0

the problem (1:3), (1:4) is uniquely solvable in the class C

1;1

�;�

(D), while

for � < �

log j�

1

j

log �

0

the problem (1:3), (1:4) is solvable in the class C

1;1

�;�

(D);

moreover, the homogeneous problem corresponding to (1:3), (1:4) has an

in�nite number of linearly independent solutions in this class.
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CHAPTER II

x

In the plane of variables x, y let us consider a system of linear di�erential

equations of the type

Au

xx

+ 2Bu

xy

+ Cu

yy

+A

1

u

x

+B

1

u

y

+ C

1

u = F; (2.1)

where A, B, C, A

1

, B

1

, C

1

are given real n� n-matrices, F is a given and

u is an unknown n-dimensional real vector, respectively, and it is assumed

that detC 6= 0, n > 1.

Denote by p(x; y; �; �) the characteristic determinant of the system (2.1),

that is,

p(x; y; �; �) = detQ(x; y; �; �);

where Q(x; y; �; �) = A(x; y)�

2

+ 2B(x; y)�� + C(x; y)�

2

.

Since detC 6= 0, we have the representation

p(x; y; 1; �) = detC

l

Y

i=1

�

�� �

i

(x; y)

�

k

i

;

l

X

i=1

k

i

= 2n;

l = l(x; y); k

i

= k

i

(x; y); i = 1; : : : ; l:

Obviously, the system (2.1) degenerates parabolically only at the point

(x; y) in the case l = 1. The system (2.1) is said to be hyperbolic at (x; y)

if l > 1 and all the roots �

1

(x; y); : : : ; �

l

(x; y) of the polynomial p(x; y; 1; �)

are real numbers.

It can be easily veri�ed that [6]

k

i

(x; y) � n� rankQ

�

x; y; 1; �

i

(x; y)

�

; i = 1; : : : ; l:

The hyperbolic system (2.1) is said to be normally hyperbolic at the point

(x; y) if the equalities [6]

k

i

(x; y) = n� rankQ

�

x; y; 1; �

i

(x; y)

�

; i = 1; : : : ; l;

are ful�lled.

Below we shall assume that at every point (x; y) of the domain of de�-

nition of the coe�cients A, B, C the system (2.1) is normally hyperbolic,

and the multiplicities k

1

(x; y); : : : ; k

l

(x; y) of the roots �

1

(x; y); : : : ; �

l

(x; y)

of the characteristic polynomial p(x; y; 1; �) do not depend on the variables

x, y, i.e., k

i

= const, i = 1; : : : ; l.

Note that strictly hyperbolic systems, i.e. when l = 2n, k

i

= 1, i =

1; : : : ; 2n, form a subclass of normally hyperbolic systems.

Let 


i

: x = x

i

(t), y = y

i

(t), 0 � t <1, i = 1; 2, be simple curves of the

class C

k

, k � 2, coming out of the origin O(0; 0), having no common point at
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t > 0 and dividing the plane into two simply connected unbounded angles.

Denote by D the angle between 


1

and 


2

whose size at the point O(0; 0)

is less than �. In x2 under certain restrictions imposed on the curves 


1

, 


2

and characteristics of the system (2.1), we construct the domain D

1

� D

representing either a curvilinear quadrangle or a triangle (depending on the

location of certain points P

1

, P

2

on 


1

, 


2

) with a vertex at O(0; 0) which

is bounded by 


1

, 


2

and well-de�ned characteristics of the system (2.1),

coming out of the points P

1

, P

2

. D

1

is assumed to be a subdomain of the

domain of de�nition of the system (2.1).

Consider the boundary value problem formulated as follows [6]: �nd in

the domain D

1

a regular solution u(x; y) of the system (2.1), satisfying on

the segments OP

1

and OP

2

of the curves 


1

and 


2

the conditions

�

M

1

u

x

+N

1

u

y

+ S

1

u

�

�

�

OP

1

= f

1

; (2.2)

�

M

2

u

x

+N

2

u

y

+ S

2

u

�

�

�

OP

2

= f

2

; (2.3)

where M

i

, N

i

, S

i

, i = 1; 2, are given real m

i

� n-matrices, f

i

, i = 1; 2,

are given m

i

-dimensional vectors and m

1

and m

2

are non-negative integers

which will be de�ned below.

Introduce the functional spaces

�

C

k

(D

1

) =

n

u 2 C

k

(D

1

) : @

i;j

u(0; 0) = 0; 0 � i+ j � k

o

;

@

i;j

=

@

i+j

@x

i

@y

j

;

�

C

k

�

(D

1

) =

n

u 2

�

C

k

(D

1

) : max

i+j=k

sup

z2D

1

nO

jzj

��

j@

i;j

u(z)j <1

o

;

�1 < � <1:

Obviously,

�

C

k

�

(D

1

) =

�

C

k

(D

1

) for � � 0. Analogously we introduce the

weighted spaces

�

C

k

�

(OP

i

), i = 1; 2.

When considering problems (2.1){(2.3) in the class

�

C

k

�

(D

1

), k � 2,

� � 0, we shall require that A;B;C 2 C

k

(R

2

), where R

2

is the plane

of variables x; y; A

1

; B

1

; C

1

2 C

k�1

(D

1

); M

i

; N

i

; S

i

2 C

k�1

(OP

i

), i = 1; 2;

f

i

2

�

C

k�1

�

(OP

i

), i = 1; 2; F 2

�

C

k�1

��1

(D

1

).

x




1




2

m

1

m

2

D

1

D

P

In x3 it will be shown that under certain assumptions made with respect

to the coe�cients A, B, C of the system (2.1), the roots of the characteristic

polynomial p(x; y; 1; �) at every point (x; y) 2 R

2

can be renumerated so

that �

i

(x; y) 2 C

k

(R

2

), i = 1; : : : ; l.
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Through every point (x; y) 2 R

2

there pass l characteristic curves L

i

(x; y),

i = 1; : : : ; l, of the system (2.1), satisfying the ordinary di�erential equations

dx+ �

i

(x; y)dy = 0; i = 1; : : : ; l:

Let the location of the curves 


1

, 


2

on the plane be such that while

moving towards O(0; 0) along 


2

and then along 


1

, the domain D bounded

by 


1

, 


2

remains to the left. Renumerate the roots of the polynomial

p(x; y; 1; �) in such a way that the characteristic curves L

1

(P

1

); : : : ; L

l

(P

1

)

corresponding to the roots �

1

; : : : ; �

l

and coming out of the point P

1

into

the domain fP 2 D : jP � P

1

j < "g would turn out to be renumerated

counter-clockwise if we count from L

1

(P

1

), where " is a su�ciently small

positive number.

If the curves 


1

and 


2

do not have a common tangent line at O(0; 0),

then we denote by l

0

, 0 � l

0

� l, the number of di�erent characteristics

issued from O(0; 0) into the domain f(x; y) 2 D : x

2

+y

2

< "

2

g. In the case

where 


1

, 


2

have a common tangent line at O(0; 0), we assume l

0

= 0.

Below we impose on the curves 


1

, 


2

and the characteristics L

i

(P ),

P 2 D, i = 1; : : : ; l, the following restrictions.

1. Each of the curves 


1

, 


2

either is a characteristic of the system (2.1)

or it has characteristic direction at none of its point.

2. For i > l

0

every characteristic L

i

(P ), P 2 DnO, extended maximally

to either side in D possesses one of the following properties:

a) it entirely coincides with one of the curves 


1

or 


2

;

b) it intersects 


1

(


2

) only at one point, when 


1

(


2

) is a non-characte-

ristic curve or 


1

(


2

) is a characteristics of the system (2.1), not belonging

to the family L

i

.

If, however, 1 � i � l

0

, then the characteristics L

i

(O) divide D into two

simply-connected unbounded angles and the characteristics L

i

(P ) intersect

the curve 


1

or 


2

at one point only, depending on the location of the point

P in DnL

i

(O).

3. The family of characteristics L

i

is described in D by the equation

L

i

: 


i

(x; y) = const, 1 � i � l, where 


i

2 C

k

(D) and j grad


i

jj

D

6= 0.

For the sake of simplicity, let the characteristics L

i

(P

1

), i = 1; : : : ; l,

issued from the point P

1

into D not intersect the curve 


2

at the point P

2

.

We take the number m

1

of boundary conditions in (2.2) to be equal to the

number of characteristics, with regard for their multiplicities, issued from

the point P

1

into D and not intersecting with the closed segment OP

2

� 


2

.

Substituting the point P

1

by P

2

and the segment OP

2

by OP

1

� 


1

, we

can determine analogously the value m

2

. In particular, if m

i

= 0, then the

segment OP

i

� 


i

, i = 1; 2, becomes completely free from the boundary

conditions. It is clear that under such a choice the numbers m

1

and m

2

depend on the location of the points P

1

and P

2

on the curves 


1

and 


2

;

moreover, 0 � m

i

� 2n, i = 1; 2.

Let us introduce into the consideration the domains D

1

and D

P

, P 2

DnO. If m

i

> 0, i = 1; 2, then let D

1

be a curvilinear quadrangle with a



39

vertex at the point O(0; 0), bounded by the curves 


1

, 


2

, L

s

0

(P

1

), L

s

1

(P

2

),

where L

s

0

(P

1

) is the last (moving counter-clockwise) characteristic, coming

out of the point P

1

into the domain D and not intersecting the closed

segment OP

2

, while L

s

1

(P

2

) is the last (moving clockwise) characteristic

coming out of the point P

2

into the angle D and not intersecting with

the closed segment OP

1

. In this case D

P

is a curvilinear quadrangle with

a vertex at the point O(0; 0), bounded by the curves 


1

, 


2

, L

s

0

(P ) and

L

s

1

(P ). Clearly, s

1

= s

0

+ 1 for 0 < m

1

< 2n and s

1

= 1, s

0

= l for

m

1

= 2n, l

0

> 0, but in the case m

1

= 2n, l

0

= 0 the number m

2

= 0.

If, however, m

1

= 0, then D

1

and D

P

are curvilinear triangles bounded,

respectively, by the curves 


1

, 


2

, L

1

(P

2

) and 


2

, L

1

(P ), L

l

(P ). Similarly,

form

2

= 0 the domainsD

1

and D

P

are bounded, respectively, by the curves




1

, 


2

, L

l

(P

1

) and 


1

, L

1

(P ), L

l

(P ).

x

Owing to normal hyperbolicity of the system (2.1), at every point (x; y)

we have rankQ(x; y; 1; �

i

(x; y)) = n�k

i

, 1 � i � l. Hence dimKerQ(x; y; 1;

�

i

(x; y)) = k

i

, where KerQ(x; y; 1; �

i

(x; y)) is a kernel of the matrix ope-

rator Q(x; y; 1; �

i

(x; y)) acting in R

n

. Let f�

ij

g

k

i

j=1

be a basis chosen ar-

bitrarily in KerQ(x; y; 1; �

i

(x; y)). It can be easily veri�ed that at every

point (x; y), the value �

i

(x; y), 1 � i � l, is an eigen-value, while the

2n-dimensional vectors (�

ij

; �

i

�

ij

)(x; y) corresponding to �

i

(x; y) are eigen-

vectors of the matrix operator

A

0

(x; y) =













0 �E

C

�1

A 2C

�1

B













(x; y):

Note that if the 2n-dimensional vector (�

1

ij

; �

2

ij

)(x; y) is a an eigen-vector of

the operator A

0

corresponding to the eigen-value �

i

(x; y), then �

2

ij

(x; y) =

�

i

(x; y)�

1

ij

(x; y), and �

1

ij

(x; y) 2 KerQ(x; y; 1; �

i

(x; y)). Since the system

(2.1) is normally hyperbolic, the vectors (�

ij

; �

i

�

ij

), i = 1; : : : ; l, j =

1; : : : ; k

i

, form a complete system of eigen-vectors of the operator A

0

(x; y),

and hence diagonalizing the operator, A

0

we obtain the equality

K

�1

A

0

K = D

0

(2.4)

at the point (x; y), where

K =

�

�

11

� � � �

1k

1

�

21

� � � �

lk

l

�

1

�

11

� � � �

1

�

1k

1

�

2

�

21

� � � �

l

�

lk

l

�

;

D

0

= diag

�

� �

1

; : : : ;��

1

;��

2

; : : : ;��

2

; : : : ;��

l

�

:

Denote by �

r

the square f(x; y) 2 R

2

: jxj < r; jyj < rg. Since the

matrix operator A

0

is diagonalizable, belongs to the class C

k

(R

2

) and the

multiplicities k

i

of the eigen-values �

i

, i = 1; : : : ; l, do not depend on the

variables x, y, owing to the results of [72], for any �xed r > 0 at every point
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(x; y) 2 �

r

we can renumerate the numbers �

i

(x; y), i = 1; : : : ; l, and choose

the basis vectors �

ij

(x; y), j = 1; : : : ; k

i

, in the space KerQ(x; y; 1; �

i

(x; y))

such that �

i

(x; y) 2 C

k

(�

r

), i = 1; : : : ; l, and �

ij

(x; y) 2 C

k

(�

r

), i =

1; : : : ; l; j = 1; : : : ; k

i

. From this it is not di�cult to see that we can

choose the numbering of �

1

; : : : ; �

l

such that �

i

(x; y) 2 C

k

(R

2

), i = 1; : : : ; l.

Indeed, performing additional renumeration, we may assume that for any

r > 0

�

r

1

(0; 0) < �

r

2

(0; 0) < � � � < �

r

l

(0; 0) (2.5)

and �

r

i

(x; y) 2 C

k

(�

r

), i = 1; : : : ; l. Now let us show that (2.5) implies the

validity of the same inequalities at any other point (x; y) 2 �

r

, i.e.,

�

r

1

(x; y) < �

r

2

(x; y) < � � � < �

r

l

(x; y): (2.6)

If at a point (x

0

; y

0

) 2 �

r

the inverse inequality �

r

i

(x

0

; y

0

) > �

r

j

(x

0

; y

0

)

took place for i < j, then due to the continuity of the function g

ij

(x; y) =

�

r

i

(x; y)��

r

j

(x; y) and because of the inequalities g

ij

(0; 0) < 0, g

ij

(x

0

; y

0

) >

0, one could �nd on the portion of the straight line connecting the points

(0; 0) and (x

0

; y

0

), a point (x

1

; y

1

) 2 �

r

such that g

ij

(x

1

; y

1

) = 0, i.e.,

�

r

i

(x

1

; y

1

) = �

r

j

(x

1

; y

1

), but this equality contradicts the fact that at every

point (x; y) all the numbers �

r

1

(x; y); : : : ; �

r

l

(x; y) di�er. Since inequalities

(2.6) are valid for any r and for 0 < r

1

< r

2

the sets f�

r

1

1

(x; y); : : : ; �

r

1

l

(x; y)g

and f�

r

2

1

(x; y); : : : ; �

r

2

l

(x; y)g coincide at every point (x; y) 2 �

r

1

, we get

�

r

1

i

(x; y) = �

r

2

i

(x; y) for (x; y) 2 �

r

1

; i = 1; : : : ; l: (2.7)

It follows from (2.7) that the functions

�

i

(x; y) = �

r

i

(x; y) for (x; y) 2 �

r

; i = 1; : : : ; l;

belong to the class C

k

(R

2

).

Since the domain D

1

constructed in x2 is bounded, D

1

� �

r

for some

r > 0. Therefore, owing to the above arguments, the basis vectors �

ij

(x; y)

will be assumed to be chosen in the space KerQ(x; y; 1; �

i

(x; y)) such that

�

ij

(x; y) 2 C

k

(D

1

), i = 1; : : : ; l, j = 1; : : : ; k

i

.

Without loss of generality we may assume that the domain D

P

, P (x

0

; y

0

)

2 D

1

, constructed in x2 is located entirely in the half-plane y � y

0

; more-

over, every characteristic L

i

(x

0

; y

0

), 1 � i � l, of the system (2.1) is-

sued from the point P (x

0

; y

0

) into the closed domain D

P

to the intersec-

tion with one of the curves 


1

or 


2

admits parametrization of the type

L

i

(x

0

; y

0

) : x = z

i

(x

0

; y

0

; y) 2 C

k

, y = t. Otherwise, as it can be easily

veri�ed, because of the requirement 3 imposed on the characteristics L

i

,

this can be achieved by means of a non-degenerate transform of variables

ex = J

1

(x; y), ey = J

2

(x; y), J

1

(0; 0) = J

2

(0; 0) = 0 which translates the

families of characteristics L

s

0

(x; y) and L

s

1

(x; y) to those of straight lines

ey + ex = const and ey � ex = const, respectively, while the domain D

1

to a

subdomain

e

D

1

of the half-plane ey � 0. In the plane of variables ex, ey, every
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characteristic

e

L

i

(ex

0

; ey

0

), 1 � i � l, issued from the point

e

P (ex

0

; ey

0

) 2

e

D

1

into the the domain

e

D

e

P

to the intersection with the curve e


1

or e


2

will

entirely lie in the quarter-plane ey+ ex � ey

0

+ ex

0

, ey� ex � ey

0

� ex

0

, and hence

at every point

e

P (ex

0

; ey

0

) 2

e

D

1

the tangent to the characteristic

e

L

i

(ex

0

; ey

0

)

is not parallel to the axis oex. This, in its turn, implies that the portion

of the characteristic

e

L

i

(ex

0

; ey

0

) which is located in the domain

e

D

1

admits a

parametrization of the form ex = ez

i

(ex

0

; ey

0

; t) 2 C

k

, ey = t.

Denote by !

i

(x

0

; y

0

) the ordinate of the point of intersection of the char-

acteristic L

i

(x

0

; y

0

), issued from the point P (x

0

; y

0

) 2 D

1

into the domain

D

P

, with one of the curves 


1

or 


2

. This curve depends both on the index

i of the characteristic L

i

and on the location of the point P in D

1

and we

denote it by 


i(P )

. According to the requirements imposed on the charac-

teristics L

i

and the curves 


1

, 


2

we have !

i

2 C

k

(D

1

), !

i

(x

0

; y

0

) � y

0

,

(x

0

; y

0

) 2 D

1

; moreover, L

i

(P ) \ D

P

: x = z

i

(x

0

; y

0

; t) 2 C

k

, y = t,

!

i

(x

0

; y

0

) � t � y

0

.

Below we shall assume that a portion OP

i

of the curve 


i

is described

in terms of the equation x = 


i

(y), 0 � y � d

i

, i = 1; 2. One can easily

verify that the problem (2.1){(2.3) in the class

�

C

k

�

(D

1

) can be equivalently

rewritten in the form

v

y

+A

0

v

x

+B

0

v + C

0

u

0

= F

0

; (2.8)

�

� �

1

@

@x

+

@

@y

�

u = ��

1

v

1

+ v

2

; (2.9)

�

M

1

v

1

+N

1

v

2

+ S

1

u

�

�

�

OP

1

= f

1

; (2.10)

�

M

2

v

1

+N

2

v

2

+ S

2

u

�

�

�

OP

2

= f

2

; (2.11)

�

d


i

dy

@

@x

+

@

@y

�

u

�

�

�

OP

i

=

�

d


i

dy

v

1

+ v

2

�

�

�

�

OP

i

; i = 1; 2; (2.12)

where

A

0

=













0 �E

C

�1

A 2C

�1

B













; B

0

=













0 0

C

�1

A

1

C

�1

B

1













;

C

0

=













0 0

C

�1

C

1

0













;

v

1

= u

x

; v

2

= u

y

; u 2

�

C

k

�

(D

1

); v = (v

1

; v

2

) 2

�

C

k�1

�

(D

1

);

u

0

= (u; 0), F

0

= (0; C

�1

F ) and E is the unit n� n-matrix.

In the case l

0

= 0, one should write instead of (2.12) the equality

�

d


1

dy

@

@x

+

@

@y

�

u

�

�

�

OP

1

=

�

d


1

dy

v

1

+ v

2

�

�

�

�

OP

1

:

If u 2

�

C

k

�

(D

1

) is a solution of the problem (2.1){(2.3), then the system of

vectors u, v

1

= u

x

, v

2

= u

y

will, obviously, give the solution of the problem
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(2.8){(2.12). Conversely, let u 2

�

C

k

�

(D

1

), v = (v

1

; v

2

) 2

�

C

k�1

�

(D

1

) be a

solution of the problem (2.8){(2.12). Let us show that u is a solution of the

problem (2.1){(2.3), and v

1

= u

x

, v

2

= u

y

. For simplicity, let us assume

that �

1

= const. It follows from the �rst n equations of the system (2.8)

that v

1y

= v

2x

. Next, because of (2.9) we have

�

� �

1

@

@x

+

@

@y

�

(u

x

� v

1

) =

=

@

@x

�

� �

1

@

@x

+

@

@y

�

u�

�

� �

1

@

@x

+

@

@y

�

v

1

=

=

@

@x

(��

1

v

1

+ v

2

) + �

1

v

1x

� v

1y

=

= ��

1

v

1x

+ v

2x

+ �

1

v

1x

� v

1y

= v

2x

� v

1y

= 0:

Thus u

x

�v

1

� 0, since, by requirements imposed both on the characteristics

L

i

and on the curves 


1

, 


2

, the system of equations (2.9), (2.12) is uniquely

solvable with respect to u

x

and u

y

on the segments OP

1

� 


1

, OP

2

� 


2

.

Moreover, (u

x

�v

1

)j

OP

1

= (u

x

�v

1

)j

OP

2

= 0, if l

0

> 1 and (u

x

�v

1

)j

OP

1

= 0

for l

0

= 0. Because of u

x

= v

1

, it follows from (2.9) that u

y

= v

2

and by

(2.8), (2.10), (2.11) we easily obtain that u is a solution of the problem

(2.1){(2.3). In the case �

1

(x; y) 6� const, we shall act as follows. Denote by

e

�(x; y) a function of the class C

1

(D

1

) such that r

1

e

� = r�

1

and

e

�� � 6= 0

in D

1

, where r

1

= ��

1

@

@x

+

@

@y

, r

2

= �

e

�

@

@x

+

@

@y

. By equalities v

1y

= v

2x

and r

1

e

� = r

2

�

1

, we can easily verify that

r

1

r

2

= r

2

r

1

; r

2

(��

1

v

1

+ v

2

) = r

1

(�

e

�

1

v

1

+ v

2

);

whence, taking into account (2.9), we get

r

1

�

r

2

u� (�

e

�v

1

+ v

2

)

�

= r

2

r

1

u�r

2

(��

1

v

1

+ v

2

) =

= r

2

�

r

1

u� (��

1

v

1

+ v

2

)

�

= 0:

From this, due to the unique solvability of the system of equations (2.9),

(2.12) with respect to u

x

and u

y

on OP

1

and OP

2

and, as a consequence, of

the equalities (r

2

u�(�

e

�v

1

+v

2

))j

OP

1

[OP

2

= 0 or (r

2

u�(�

e

�v

1

+v

2

))j

OP

1

=

0 for l

0

> 0 and l

0

= 0, respectively, we �nd that r

2

u� (�

e

�v

1

+ v

2

) = 0 in

D

1

. Since

e

� � � 6= 0 in D

1

, it follows from (2.9) and the obtained equality

r

2

u�(�

e

�v

1

+v

2

) = 0 that u

x

= v

1

, u

y

= v

2

which, in its turn, implies that

u is a solution of the problem (2.1){(2.3). To construct the function

e

�(x; y)

with properties indicated above, we rewrite the equality r

1

e

� = r

2

�

1

in

terms of the linear �rst order di�erential equation

�

� �

1

@

@x

+

@

@y

�

e

�+ �

1x

e

� = �

1y

:
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Integrating this equation as an ordinary di�erential equation along the

�rst characteristic L

1

of the system (2.1) and taking as the initial Cauchy

data su�ciently large absolute values

e

� on OP

1

[OP

2

for l

0

> 0 or on OP

1

for l

0

= 0, we get the function

e

� satisfying the conditions r

1

e

� = r

2

�

1

and

e

�� �

1

6= 0 in D

1

.

Substitution of the unknown function v = Kw by (2.8){(2.12) results in

w

y

+D

0

w

x

= B

2

w + C

2

u

0

+ F

1

; (2.13)

�

� �

1

@

@x

+

@

@y

�

u = (��

1

K

1

+K

2

)w; (2.14)

�

(M

1

K

1

+N

1

K

2

)w + S

1

u

�

�

�

OP

1

= f

1

; (2.15)

�

(M

2

K

2

+N

2

K

2

)w + S

2

u

�

�

�

OP

2

= f

2

; (2.16)

�

d


i

dy

@

@x

+

@

@y

�

u

�

�

�

OP

i

=

�

d


i

dy

K

1

+K

2

�

w

�

�

�

OP

i

; i = 1; 2; (2.17)

where B

2

= �K

�1

(K

y

+A

0

K

x

+B

0

K), C

2

= �K

�1

C

0

, F

1

= K

�1

F

0

, and

K

1

and K

2

are the matrices of order n� 2n composed, respectively, of the

�rst and the last n rows of the matrix K.

Integrate the (q

i

+ j)-th equation of the system (2.13), where q

1

= 0,

q

i

= k

1

+ � � � + k

i�1

, j = 1; : : : ; k

i

, along the i-th characteristic L

i

(x; y)

coming out of P (x; y) 2 D

1

into the domain D

P

, from P (x; y) to the point

of intersection of L

i

(x; y) with the curve 


1

or 


2

, depending both on the

index i of the characteristic L

i

and on the location of P in D

1

, and integrate

equation (2.14) with respect to the �rst characteristic. We obtain

w

q

i

+j

(x; y) = w

q

i

+j

�




i(P )

(!

i

(x; y); !

i

(x; y)

�

+

+

y

Z

!

i

(x;y)

�

2n

X

p=1

a

1

ijp

w

p

+

n

X

p=1

b

1

ijp

u

p

�

�

z

i

(x; y; t); t

�

dt+ F

2

ij

(x; y); (2.18)

1 � i � l; 1 � j � k

i

;

u(x; y) = g(!

1

(x; y)) +

+

y

Z

!

1

(x;y)

�

(��

1

K

1

+K

2

)w

��

z

1

(x; y; t); t

�

dt; (2.19)

where a

1

ijp

, b

1

ijp

, F

2

ij

are well-de�ned functions depending only on the coef-

�cients and the right-hand side of the system (2.1); moreover, by (2.17) we

have

g(!

1

(x; y)) = u

�




1(P )

(!

1

(x; y); !

1

(x; y)

�

=

=

!

1

(x;y)

Z

0

�

d


1(P )

dy

K

1

+K

2

�

w

�




1(P )

(t); t

�

dt:
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Let

'

1

q

i

+j

(y) = w

q

i

+j

(


1

(y); y); 0 � y � d

1

;

i = 1; : : : ; s

0

; j = 1; : : : ; k

i

;

'

2

q

i

+j

(y) = w

q

i

+j

(


2

(y); y); 0 � y � d

2

;

i = 1; : : : ; l

0

; j = 1; : : : ; k

i

;

'

2

q

i

+j�k

0

(y) = w

q

i

+j

(


2

(y); y); 0 � y � d

2

;

i = s

0

+ 1; : : : ; l; j = 1; : : : ; k

i

;

where k

0

=

s

0

P

i=l

0

+1

k

i

, the numbers l

0

and s

0

are determined in x2, and the

number of components of the vector '

i

(y) is obviously equal to m

i

, i = 1; 2.

Due to the requirements imposed on the curves 


1

, 


2

and L

i

, we can see

that

!

i

(


1

(y); y) =

(

y for i = 1; : : : ; s

0

;

�

1

i

(y) for i = s

0

+ 1; : : : ; l;

!

i

(


2

(y); y) =

8

>

<

>

:

y for i = 1; : : : ; l

0

;

�

2

i

(y) for i = l

0

+ 1; : : : ; s

0

;

y for i = s

0

+ 1; : : : ; l;

where !

i

(x; y) 2 C

k

(D

1

), �

1

i

(y) 2 C

k

[0; d

1

], i = s

0

+ 1; : : : ; l, �

2

j

(y) 2

C

k

[0; d

2

], j = l

0

+ 1; : : : ; s

0

, and �

1

l

(y) � 0, if 


1

is a characteristic of the

system (2.1). Analogously, �

2

l

0

+1

(y) � 0, if 


2

is a characteristic, and the

remaining functions �

p

i

(y) satisfy the inequality �

p

i

(y) < y for 0 < y � d

p

,

p = 1; 2.

Substituting the expressions for w(x; y) and u(x; y) from (2.18) and (2.19)

into the boundary conditions (2.15) and (2.16), we get

G

1

0

(y)'

1

(y) +

l

X

i=s

0

+1

G

1

i

(y)'

2

�

�

1

i

(y)

�

+

+(T

1

w)(y) + (T

2

u)(y) = f

3

(y); 0 � y � d

1

;

G

2

0

(y)'

2

(y) +

s

0

X

j=l

0

+1

G

2

j

(y)'

1

�

�

2

j

(y)

�

+

+(T

3

w)(y) + (T

4

u)(y) = f

4

(y); 0 � y � d

2

;

(2.20)

where G

1

i

, G

2

j

, i = s

0

+ 1; : : : ; l; j = l

0

+ 1; : : : ; s

0

are well-de�ned matrices

of the class C

k�1

, and T

i

, i = 1; : : : ; 4, are linear integral operators.

Obviously, G

i

0

, i = 1; 2, from (2.20) are the matrices of order m

i

�m

i

which can be represented as the product

G

i

0

= �

i

� V

i

; i = 1; 2;
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where �

i

= (M

i

; N

i

), i = 1; 2, are rectangular m

i

� 2n-matrices and V

i

,

i = 1; 2, are matrices of order 2n�m

i

written in the form

V

1

=

�

�

11

� � � �

1k

1

� � � �

s

0

1

� � � �

s

0

k

s

0

�

1

�

11

� � � �

1

�

1k

1

� � � �

s

0

�

s

0

1

� � � �

s

0

�

s

0

k

s

0

�

;

V

2

=

�

�

11

� � � �

l

0

k

l

0

�

s

0

+1;1

� � � �

lk

l

�

1

�

11

� � � �

l

0

�

l

0

k

l

0

�

s

0

+1

�

s

0

+1;1

� � � �

l

�

lk

l

�

:

Under the assumption that

det

�

�

i

� V

i

�

�

�

OP

i

6= 0; i = 1; 2; (2.21)

we can rewrite equation (2.20) in the form

'

1

(y)�

l

X

i=s

0

+1

s

0

X

j=l

0

+1

G

3

ij

(y)'

1

�

�

1

ij

(y)

�

+

+(T

5

w)(y) + (T

6

u)(y) = f

5

(y); 0 � y � d

1

;

'

2

(y)�

s

0

X

i=l

0

+1

l

X

j=s

0

+1

G

4

ij

(y)'

2

�

�

2

ij

(y)

�

+

+(T

7

w)(y) + (T

8

u)(y) = f

6

(y); 0 � y � d

2

;

(2.22)

where �

1

ij

(y) = �

2

j

(�

1

i

(y)), �

2

ij

(y) = �

1

j

(�

2

i

(y)), G

3

ij

and G

4

ij

are matrices of

ordersm

1

�m

1

andm

2

�m

2

, and T

5

, T

6

, T

7

, T

8

are linear integral operators.

If 


1

or 


2

is a characteristic of the system (2.1), then we will have respec-

tively �

1

lj

(y) = �

2

il

(y) � 0, i; j = l

0

+1; : : : ; s

0

, and �

1

il

0

+1

(y) = �

2

l

0

+1j

(y) � 0,

i; j = s

0

+1; : : : ; l. Therefore our discussion below will concern the remain-

ing functions �

1

ij

and �

2

ij

which, as is easily veri�ed, possess the following

properties:

1) �

p

ij

2 C

k

[0; d

p

], �

p

ij

(0) = 0, p = 1; 2;

2) �

p

ij

, p = 1; 2, are strictly monotonically increasing functions;

3) �

p

ij

(y) < y, 0 < y � d

p

, p = 1; 2;

4) if the curves 


1

and 


2

do not have a common tangent line at the point

O(0; 0), then

0 � �

p

ij

=

d�

p

ij

dy

(0) < 1; p = 1; 2; (2.23)

or

�

p

ij

=

d�

p

ij

dy

(0) = 1; p = 1; 2

otherwise.

The validity of property 1) is obvious. To prove the validity of the other

properties, we shall give geometric interpretation of the functions �

p

ij

. Let a

characteristic L

i

(Q

1

) be issued from Q

1

(y; 


1

(y)) 2 OP

1

� 


1

to the inter-

section with 


2

at the point Q

2

, and let a characteristic L

j

(Q

2

) be issued
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from Q

2

to the intersection with 


1

at Q

3

. It is easily seen that the ordinate

of Q

2

is equal to �

1

i

(y), while that of Q

3

is equal to �

1

ij

(y) = �

2

j

(�

1

i

(y)). In a

similar manner we can determine �

2

ij

(y) by interchanging the curves 


1

and




2

. The validity of properties 2) and 3) follows directly from the geometrical

meaning of the functions �

p

ij

if we take into account the requirements which

have been imposed on the curves 


1

, 


2

and characteristics L

i

.

Let us now prove the validity of property 4).

In a neighborhood V of O(0; 0) one can specify a family of characteris-

tics L

i

in the form of the equality L

i

: �

i

(x; y) = const, where �

i

2 C

k

(V ),

jr�

i

jj

V

6= 0, i = 1; : : : ; l. Since r�

i

(0; 0) = (

@�

i

@x

;

@�

i

@y

)(0; 0) = c

i

(1; �

i

(0; 0)),

c

i

= const 6= 0, the Jacobian of transformation of the independent variables

ey = �

i

(x; y), ex = �

j

(x; y) at the point O(0; 0) is di�erent from zero for the

�xed i and j, i 6= j. Therefore, in a su�ciently small neighborhood V of

the point O(0; 0) this mapping will be a di�eomorphism. In the plane of

variables ex, ey let us denote by e


i

the image of the curve 


i

\ V , i = 1; 2,

under this mapping. By the assumptions on the curves 


1

, 


2

and charac-

teristics L

i

, L

j

, the curves e


1

, e


2

are located in the angle ex � 0, ey � 0 and

described by the equations e


1

: ey = e


1

(ex), e


2

: ey = e


2

(ex), 0 � ex � ", " > 0,

where e


1

; e


2

2 C

k

, 0 < e


1

(ex) < e


2

(ex) for 0 < ex � " and e


1

(0) = e


2

(0) = 0.

Introduce into the consideration the function e�

1

ij

(ex), 0 � ex � ", which under

the above-mentioned transform corresponds to the function �

1

ij

(y). Let us

draw the straight line parallel to the axis oex from

e

Q

1

(ex; e


1

(ex)) 2 e


1

to the

intersection with the curve e


2

at

e

Q

2

and the straight line parallel to the

axis oey from

e

Q

2

to the intersection with e


1

at

e

Q

3

. The value e�

1

ij

(ex) is equal

to the abscissa of

e

Q

3

, and hence,

e�

1

ij

(ex) = e


�1

2

�

e


1

(ex)

�

; 0 � ex � ":

If 


1

and 


2

have a common tangent line at O(0; 0), then it is evident

that e


(1)

1

(0) = e


(1)

2

(0), otherwise 0 � e


(1)

1

(0) < e


(1)

2

(0). Consequently,

de�

1

ij

dex

(0) =

e


(1)

1

(0)

e


(1)

2

(0)

= 1, if 


1

and 


2

have a common tangent line at O(0; 0),

and 0 �

de�

1

ij

dex

(0) < 1, otherwise.

Let us now show that

d�

1

ij

dy

(0) =

de�

1

ij

dex

(0) ;

which will imply the validity of property 4). As is easily seen, the functions

�

1

ij

(y) and e�

1

ij

(ex) are connected by the relation

�

1

ij

(y) = �

2

�

e�

1

ij

(�

j

(


1

(y); y)); e


1

�

e�

1

ij

(�

j

(


1

(y); y))

�

�

for su�ciently small y, where x = �

1

(ex; ey), y = �

2

(ex; ey) realize the mapping

inverse to the given one, ex = �

j

(x; y), ey = �

i

(x; y).
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Since

e


(1)

1

(0) =

d�

i

(


1

(y); y)

dy

�

d�

j

(


1

(y); y)

dy

�

�1

�

�

�

y=0

=

=

@�

i

@x

(0; 0)


(1)

1

(0) +

@�

i

@y

(0; 0)

@�

j

@x

(0; 0)


(1)

1

(0) +

@�

j

@y

(0; 0)

;

@�

2

@ex

=

�

@�

i

@x

�

;

@�

2

@ey

=

@�

j

@x

�

;

� =

@�

j

@x

@�

i

@y

�

@�

i

@x

@�

j

@y

;

we have

d�

1

ij

dy

(0) =

@�

2

@ex

(0; 0)

de�

1

ij

dex

(0)

�

@�

j

@x

(0; 0)


(1)

1

(0) +

@�

j

@y

(0; 0)

�

+

+

@�

2

@ey

(0; 0)e


(1)

1

(0)

de�

1

ij

dex

(0)

�

@�

j

@x

(0; 0)


(1)

1

(0) +

@�

j

@y

(0; 0)

�

=

=

de�

1

ij

dex

(0)

�

@�

j

@x

(0; 0)


(1)

1

(0) +

@�

j

@y

(0; 0)

�

�

�

�

�

@�

i

@x

(0; 0) +

@�

j

@x

@�

i

@x

(0; 0)


(1)

1

(0) +

@�

i

@y

(0; 0)

@�

j

@x

(0; 0)


(1)

1

(0) +

@�

j

@y

(0; 0)

�

�

�1

=

=

de�

1

ij

dex

(0):

Now we can easily calculate the value

�

1

ij

=

d�

1

ij

dy

(0) =

de�

1

ij

dex

(0) =

e


(1)

1

(0)

e


(1)

2

(0)

=

=

@�

i

@x

(0; 0)


(1)

1

(0) +

@�

i

@y

(0; 0)

@�

j

@x

(0; 0)


(1)

1

(0) +

@�

j

@y

(0; 0)

�

@�

i

@x

(0; 0)


(1)

2

(0) +

@�

i

@y

(0; 0)

@�

j

@x

(0; 0)


(1)

2

(0) +

@�

j

@y

(0; 0)

�

�1

=

=

(


(1)

1

(0) + �

i

(0; 0))(


(1)

2

(0) + �

j

(0; 0))

(


(1)

1

(0) + �

j

(0; 0))(


(1)

2

(0) + �

i

(0; 0))

;

since r�

i

(0; 0) = c

i

(1; �

i

(0; 0)), c

i

= const, i = 1; : : : ; l. The case of the

function �

2

ij

is considered in a similar way.

Remark. It is obvious that when conditions (2.21) are ful�lled, the prob-

lem (2.1){(2.3) in the class

�

C

k

�

(D

1

) is equivalent to the system of integro-

functional equations (2.18), (2.19), (2.22) with respect to unknown functions

u 2

�

C

k

�

(D

1

), w 2

�

C

k�1

�

(D

1

) and '

i

2

�

C

k�1

�

[0; d

i

], i = 1; 2.
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x

Let us consider functional equations of the type

(K

1p

')(y) = '(y)�

l

X

i=s

0

+1

s

0

X

j=l

0

+1

G

3

ijp

(y)'

�

�

1

ij

(y)

�

= g

1

(y); (2.24)

0 � y � d

1

; p = 0; 1; : : : ; k � 1;

(K

2p

 )(y) =  (y)�

s

0

X

i=l

0

+1

l

X

j=s

0

+1

G

4

ijp

(y) 

�

�

2

ij

(y)

�

= g

2

(y); (2.25)

0 � y � d

2

; p = 0; 1; : : : ; k � 1;

where

G

3

ijp

(y) = G

3

ij

(y)

�

d�

1

ij

dy

(y)

�

p

; G

4

ijp

(y) = G

4

ij

(y)

�

d�

2

ij

dy

(y)

�

p

;

and the values G

3

ij

, G

4

ij

, �

1

ij

, �

2

ij

are determined in equations (2.22).

Remark. As is easily seen, the expressions K

1p

'

1

and K

2p

'

2

for p = 0

coincide with the functional parts of equations (2.22). Moreover, if we dif-

ferentiate p times the expression (K

10

')(y) with respect to y, then in the

expression obtained after di�erentiation the sum of those summands which

involve the function '(y) with the derivative '

(p)

(y), yields (K

1p

'

(p)

)(y).

Similar remark holds also for the operator K

2p

.

We shall consider equations (2.24) and (2.25) in the spaces

�

C

k�1+��p

[0; d

1

]

and

�

C

k�1+��p

[0; d

2

].

Denote by em

1

the number of characteristics taking into account their

multiplicities, issued from the point P

1

into the domain D

1

and intersecting

an open segment OP

2

. The number em

2

can be de�ned in a similar manner

by substituting the point P

1

by P

2

and OP

2

by an open segment OP

1

. It is

easily seen that em

1

em

2

= 0 if, for example, either l

0

= 2n or m

1

m

2

= 0.

Obviously, the columns 2n�m

i

of the matrix V

i

, i = 1; 2, are composed

of the well-de�ned columns of the matrix K, where the matrices K, V

1

, V

2

have been introduced in x3. Denote by

e

V

i

, i = 1; 2, the matrix of order

2n� (2n �m

i

), composed of the remaining columns of the matrix K, i.e.,

of the columns not belonging to the matrix V

i

.

We have the following

Let either em

1

em

2

= 0 or at least one of the equalities (�

1

�

e

V

1

)j

OP

1

= 0 or (�

2

�

e

V

2

)j

OP

2

= 0 hold. Then equations (2:24) and (2:25)

are uniquely solvable in the spaces

�

C

k�1+��p

[0; d

1

] and

�

C

k�1+��p

[0; d

2

] for

all k � 2, � � 0.
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The proof follows from the fact that under the conditions of Lemma 2.1

either all values �

1

ij

� �

2

ij

� 0 or all matrices G

3

ij

� G

4

ij

� 0. In both cases

the operators K

1p

and K

2p

are identical in the spaces

�

C

k�1+��p

[0; d

1

] and

�

C

k�1+��p

[0; d

2

], i.e., K

1p

' = ', K

2p

 =  .

Consider the functions

h

1

(�) =

l

X

i=s

0

+1

s

0

X

j=l

0

+1

(�

1

ij

)

��1

kG

3

ij

(0)k; �1 < � <1;

h

2

(�) =

s

0

X

i=l

0

+1

l

X

j=s

0

+1

(�

2

ij

)

��1

kG

4

ij

(0)k; �1 < � <1;

where k � k is the norm of the matrix operator, acting from one Euclidean

space of the other.

Assume that the curves 


1

and 


2

do not have a common tangent line

at the point O(0; 0). If for some values of the indices i, j, k�

1

ij

G

3

ij

(0)k

and k�

2

ij

G

4

ij

(0)k are di�erent from zero, then by (2.23) the functions h

1

and h

2

are continuous and strictly monotonically decreasing on (�1;1);

moreover, lim

�!�1

h

i

(�) = +1 and lim

�!+1

h

i

(�) = 0, i = 1; 2. Therefore there

exist unique real numbers �

1

and �

2

such that h

1

(�

1

) = 1 and h

2

(�

2

) = 1.

If, however, all the values k�

1

ij

G

3

ij

(0)k = 0, then we assume �

1

= �1.

Similarly, assume �

2

= �1 if all the values k�

2

ij

G

4

ij

(0)k = 0. It is evident

that all these cases are realizable if either em

1

em

2

= 0 or at least one of the

equalities (�

i

�

e

V

i

)(0) = 0, i = 1; 2, holds.

Assume that the curves 


1

, 


2

do not have a common tan-

gent line at the point O(0; 0), and em

1

em

2

6= 0, (�

i

�

e

V

i

)j

OP

i

6= 0, i = 1; 2.

Then for k + � > �

0

the equations (2:24) and (2:25) are uniquely solvable

in the spaces

�

C

k�1+��p

[0; d

1

] and

�

C

k�1+��p

[0; d

2

], and the estimates







(K

�1

1p

g

1

)(y)







R

m

1

= k'(y)k

R

m

1

�

� c

1

y

k�1+��p

kg

1

k �

C

k�1+��p

[0;d

1

]

; (2.26)







(K

�1

2p

g

2

)(y)







R

m

2

= k (y)k

R

m

2

�

� c

2

y

k�1+��p

kg

2

k �

C

k�1+��p

[0;d

2

]

; (2.27)

hold, where c

1

, c

2

are positive constants not depending on g

1

, g

2

.

Proof. Condition k + � > �

0

imples

h

1

(k + �) =

l

X

i=s

0

+1

s

0

X

j=l

0

+1

(�

1

ij

)

k�1+�

kG

3

ij

(0)k < 1:
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Therefore, owing to the continuity of �

1

ij

,

d�

1

ij

dy

, G

3

ij

and equalities

d�

1

ij

dy

(0) =

�

1

ij

< 1, there exist positive numbers " (" < d

1

), � and � such that for

0 � y � " the inequalities







G

3

ij

(y)







�







G

3

ij

(0)







+ �; (2.28)

d�

1

ij

dy

(y) � �

1

ij

+ �;







G

3

ijp

(y)







=

=










�

d�

1

ij

dy

(y)

�

p

G

3

ij

(y)










� (�

1

ij

+ �)

p

�

kG

3

ij

(0)k+ �

�

; (2.29)

�

1

ij

(y) � (�

1

ij

+ �)y; (2.30)

l

X

i=s

0

+1

s

0

X

j=l

0

+1

(�

1

ij

+ �)

k�1+�

�

kG

3

ij

(0)k+ �

�

= � > 1: (2.31)

are valid.

Since the functions �

1

ij

possess properties 1){3) cited in x3, there exists a

natural number q

0

such that for q � q

0

�

1

i

q

j

q

�

�

1

i

q�1

j

q�1

(� � � (�

1

i

1

j

1

(y)) � � � )

�

� "; 0 � y � d

1

; (2.32)

where s

0

+ 1 � i

s

� l, l

0

+ 1 � j

s

� s

0

, s = 1; : : : ; q.

Because of the property 3), for the functions �

1

ij

and the inequalities

(2.30) and (2.32) we have

�

1

i

q

j

q

�

�

1

i

q�1

j

q�1

(� � � (�

1

i

1

j

1
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�

=
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1

i

q

j

q

�

�
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i

q�1

j
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(� � � (�

1

i

q

0

j

q

0

(�

1

i

q

0

�1

j

q

0

�1

(� � � (�

1

i

1

j

1

(y)) � � � ))) � � � )

�

�

� (�

1

i

q

j

q

+ �)�

1

i

q�1

j

q�1

�

� � � (�

1

i

q

0

j

q

0

(�

1

i

q

0

�1

j

q

0

�1

(� � � (�

1

i

1

j

1

(y)) � � � ))) � � �

�

�

� � � � � (�

1

i

q

j

q

+ �)(�

1

i

q�1

j

q�1

+ �) � � � (�

1

i

q

0

+1

j

q

0

+1

+ �)�

��

1

i

q

0

j

q

0

�

�

1

i

q

0

�1

j

q

0

�1

(� � � (�

1

i

1

j

1

(y)) � � � )

�

�

�

h

q

Y

s=q

0

+1

(�

1

i

s

j

s

+ �)

i

y; 0 � y � d

1

; q > q

0

: (2.33)

Introduce into the consideration the operators �

1p

, K

�1

1p

acting by the

formulas

(�

1p

')(y) =

l

X

i=s

0

+1

s

0

X

j=l

0

+1

G

3

ijp

(y)'

�

�

1

ij

(y)

�

;

K

�1

1p

= I +

1

X

q=1

�

q

1p

;



51

where I is the identical operator. Obviously, K

�1

1p

is formally inverse to

K

1p

, i.e., K

1p

K

�1

1p

= K

�1

1p

K

1p

= I . Therefore it su�ces for us to show that

K

�1

1p

is continuous in the space

�

C

k�1+��p

[0; d

1

].

It can be easily seen that the expression �

q

1p

g

1

is a sum consisting of the

summands of the form

J

i

1

j

1

���i

q

j

q

(y) =

= G

3

i

1

j

1

p

(y)G

3

i

2

j

2

p

�

�

1

i

1

j

1

(y)

�

G

3

i

3

j

3

p

�

�

1

i

2

j

2

(�

1

i

1

j

1

(y))

�

� � �

� � �G

3

i

q

j

q

p

�

�

1

i

q�1

j

q�1

(�

1

i

q�2

j

q�2

(� � � (�

1

i

1

j

1

(y)) � � � ))

�

�

�g

1

�

�

1

i

q

j

q

(�

1

i

q�1

j

q�1

(� � � (�

1

i

1

j

1

(y)) � � � ))

�

;

where s

0

+ 1 � i

s

� l, l

0

+ 1 � j

s

� s

0

, s = 1; : : : ; q.

Let

max

s

0

+1�i�l

max

l

0

+1�j�s

0

max

0�y�d

i







G

3

ijp

(y)







R

m

1

= �

p

:

By virtue of (2.28){(2.33) we have
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j

q
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1

i

1

j

1
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R
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�
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q

0

p
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i

q

0
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j

q

0
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p
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G

3

i

q
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j

q

0
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i

q

j
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i

q

j

q

(0)







+ �
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h

q

Y

s=q

0

+1

(�
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i
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i
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q
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h

q

Y
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0
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i

s

j
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1

]

(2.34)

for q > q

0

, g

1

2

�

C

k�1+��p

[0; d

1

], and
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i

1

j

1
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q

j

q
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R

m

1

�
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q
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� �

q

p

y

k�1+��p
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C

k�1+��p
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1

]

(2.35)

for 0 < q � q

0

.

Because of (2.34), (2.35) and (2.31) we have
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l
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=
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3
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(2.36)

for q > q

0

, and
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for 0 < q � q

0

, where

c

3

= �

q

0

p

�

�q

0

�

X

i
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�
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0
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�
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i
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;:::;i
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1

�

:

From (2.36) and (2.37) we �nally obtain
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m
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1 + c
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;

whence it follows that the operator K

�1

1p

is continuous in the space

�

C

k�1+��p

[0; d

1

], and the estimate (2.26) is valid. The operator K

�1

2p

is con-

sidered in a similar manner. �

Let the curves 


1

, 


2

have a common tangent line at the

point O(0; 0), and em

1

em

2

6= 0, (�

i

�

e

V

i

)j

OP

i

6� 0, i = 1; 2. Then for h

i

(1) <

1, i = 1; 2, the equations (2:24) and (2:25) are uniquely solvable in the

spaces

�

C

k�1+��p

[0; d

1

] and

�

C

k�1+��p

[0; d

2

] for all k � 2, � � 0, and the

estimates (2:26) and (2:27) take place.

The proof of Lemma 2.3 does not di�er from that of Lemma 2.2 if in

inequalities (2.28){(2.31) we substitute the di�erent from zero numbers �

1

ij

by unity.
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It easily follows from Lemmas 2.1{2.3 that if either em

1

em

2

= 0 or at least

one of the equalities (�

1

�

e

V

1

)(O) = 0 or (�

2

�

e

V

2

)(O) = 0 holds, then the

assertion of Lemma 2.1 is valid for all k � 2, � � 0.

Let the conditions (2:21) be ful�lled. If either em

1

em

2

= 0

or at least one of the equalities (�

1

�

e

V

1

)(O) = 0 or (�

2

�

e

V

2

)(O) = 0 holds,

then the problem (2:1){(2:3) is uniquely solvable in the class

�

C

k

�

(D

1

) for all

k � 2, � � 0.

Let the conditions (2:21) be ful�lled, and em

1

em

2

6= 0, (�

i

�

e

V

i

)(O) 6= 0, i = 1; 2. If the curves 


1

, 


2

do not have a common tangent line

at the point O(0; 0), then for k+� > �

0

the problem (2:1){(2:3) is uniquely

solvable in the class

�

C

k

�

(D

1

).

Let the conditions (2:21) be ful�lled, and em

1

em

2

6= 0, (�

i

�

e

V

i

)(O) 6= 0, i = 1; 2. If the curves 


1

, 


2

have a common tangent line at

the point O(0; 0), then for h

i

(1) < 1, i = 1; 2, the problem (2:1){(2:3) is

uniquely solvable in the class

�

C

k

�

(D

1

) for all k � 2, � � 0.

Before passing to the proof of Theorems 2.1{2.3, let us make some re-

marks.

1. Since the 2n � m

i

-matrix V

i

, i = 1; 2, has a maximal rank equal

to m

i

, for any normally hyperbolic system (2.1) one can always indicate

boundary conditions (2.2), (2.3) such that the conditions (2.21) are ful�lled

when conditions cited in x2 hold.

2. The values �

0

and h

i

(1), i = 1; 2, in Theorems 2.2 and 2.3 depend only

on the coe�cients A, B, C, M

i

, N

i

, S

i

, i = 1; 2, of the problem (2.1){(2.3)

and the direction of the tangents to 


1

and 


2

at the point O(0; 0).

3. When conditions of Theorems 2.1{2.3 are violated, as it has been

shown in Chapter I for one equation of hyperbolic type, the problem (2.1){

(2.3) may turn out to be ill-posed. In particular, the homogeneous problem

corresponding to (2.1){(2.3) may have an in�nite number of linearly inde-

pendent solutions.

Proof of Theorems 2:1{2:3. Using the method of successive approximations

we solve the system of equations (2.18), (2.19) and (2.2) with respect to

unknown functions u 2

�

C

k

�

(D

1

), w 2

�

C

k�1

�

(D

1

) and '

i

2

�

C

k�1

�

[0; d

i

],

i = 1; 2.

Assume

u

0

(x; y) � 0; w

0

(x; y) � 0; '

i

0

(y) � 0; i = 1; 2;

w

q

i

+j;m

(x; y) = e'

i(P )

q

i

+j;m

(!

i

(x; y)) +

y

Z

!

i

(x;y)

�

2n

X

p=1

a

1

ijp

w

p;m�1

+
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+

n

X

p=1

b

1

ijp

u

p;m�1

�

�

z

i

(x; y; t); t

�

dt+ F

2

ij

(x; y); (2.38)

1 � i � l; 1 � j � k

i

;

u

m

(x; y) =

!

1

(x;y)

Z

0

�

d


1(P )

dy

K

1

+K

2

�

w

m�1

�




1(P )

(t); t

�

dt+

+

y

Z

!

1
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�

(��

1

K

1
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2

)w

m�1

��

z

1

(x; y; t); t

�

dt; (2.39)

where

e'

i(P )

q

i

+j;m

(!

i

(x; y)) =

8

>

>

>

>

>

<

>

>

>

>

>

:

'

i(P )

q

i

+j;m

(!

i

(x; y)); 1 � i � l

0

; 1 � j � k

i

;

'

1

q

i

+j;m

(!

i

(x; y)); l

0

+ 1 � i � s

0

; 1 � j � k

i

;

'

2

q

i

+j�k

0

;m

(!

i

(x; y)); s

0

+ 1 � i � l; 1 � j � k

i

;

k

0

=

s

0

P
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0

+1

k

i

;

The values '

1

m

(y) and '

2

m

(y) are determined from the equations

(K

10

'

1

m

)(y) + (T

5

w

m�1

)(y) + (T

6

u

m�1

)(y) = f

5

(y) (2.40)

and

(K

20

'

2

m

)(y) + (T

7

w

m�1

)(y) + (T

8

u

m�1

)(y) = f

6

(y): (2.41)

The operators K

10

and K

20

here act by formulas (2.24), (2.25) for p = 0.

We rewrite the system of equations (2.18), (2.19) in a more convenient

form

w

m

(x; y) = e'

P;m

(x; y) +

+

l

X

i=1

y

Z

!

i

(x;y)

�




1i

w

m�1
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u
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��

z

i
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�

dt+ F

2

(x; y); (2.42)

u

m

(x; y) =

!

1
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Z

0

e




3
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�
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y
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4

w
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�

z

1
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�
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where the (q

i

+ j)-th component of the vector e'

P;m

(x; y) is equal to

e'

i(P )

q

i

+j;m

(!

i

(x; y)), 1 � i � l, 1 � j � k

i

, and 


1i

, 


2i

,

e




3

,

e




4

are well-

de�ned matrices.



55

It is easily seen that the operators T

5

w
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6
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and T

7
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i=s

0

+1

�

2

j

(y)

Z

�

2

ji

(y)

�

E

2

3ij

w

m�1

+E

2

4ij

u

m�1

��

z

i

(


1

(�

2

j

(y)); �

2

j

(y); t); t

�

dt;

where E

p

1i

,E

p

2i

, E

p

3ij

, E

p

4ij

, p = 1; 2, are well-de�ned matrices.

The following estimates hold:







u

m+1

(x; y)� u

m

(x; y)







�M

�

M

m

�

m!

y

m+k+��1

; (2.44)







w

m+1

(x; y)� w

m

(x; y)







�M

�

M

m

�

m!

y

m+k+��1

; (2.45)







'

1

m+1

(y)� '

1

m

(y)







�M

�

M

m

�

m!

y

m+k+��1

; (2.46)







'

2

m+1

(y)� '

2

m

(y)







�M

�

M

m

�

m!

y

m+k+��1

; (2.47)

where M

�

and M

�

are su�ciently large positive numbers not depending on

m.

Due to the requirements imposed on f

1

, f

2

and F , we have f

5

2

�

C

k�1

�

[0; d

1

],

f

6

2

�

C

k�1

�

[0; d

2

], F 2

�

C

k�1

�

(D

1

). Therefore, it is obvious that the estimates







@

i;j

F

2

(x; y)







� �

1

y

k�1+��(i+j)

; (2.48)

(x; y) 2 D

1

; 0 � i+ j � k � 1;







@

i

f

4+j

(y)







� �

1+j

y

k�1+��i

; (2.49)

0 � y � d

j

; j = 1; 2; 0 � i � k � 1;

�

i

= const > 0; i = 1; 2; 3;
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are valid since, by the assumption, D

1

is such that for any point z =

x+

p

�1y 2 D

1

the two-sided estimate y � jzj =

p

x

2

+ y

2

�

(max

i=1;2

max

0�y�d

i

j


(1)

i

(y)j)y is valid.

Since u

0

� w

0

� 0, '

1

0

� '

2

0

� 0 and under the conditions of Theorems

2.1{2.3 the estimates (2.26), (2.27) are valid for p = 0, we have from (2.40),

(2.41) and (2.49) that







'

i

1

(y)� '

i

0

(y)







=







'

i

1

(y)







� c

3

�

4

y

k�1+�

; i = 1; 2 (2.50)

c

3

= max(c

1

; c

2

); �

4

= max(�

2

;�

3

):

In its turn, it follows from (2.50) that







e'

P;1

(x; y)� e'

P;0

(x; y)







=







e'

P;1

(x; y)







=

=

X

1�i�l

X

1�j�k

i

�

�

e'

i(P )

q

i

+j;1

(!

i

(x; y))

�

�

�

�

X

1�i�l

X

1�j�k

i

c

3

�

4

(!

i

(x; y))

k�1+�

� 2nc

3

�

4

y

k�1+�

; (2.51)

since

P

1�i�l

P

1�j�k

i

1 = 2n, and as noted in x3, 0 � !

i

(x; y) � y, i = 1; : : : ; l.

Now, by virtue of (2.48) and (2.51), from (2.42) and (2.43) we have







w

1

(x; y)� w

0

(x; y)







=







w

1

(x; y)







�

�







e'

P;1

(x; y)







+







F

2

(x; y)







�

� 2nc

3

�

4

y

k�1+�

+�

1

y

k�1+�

= (2nc

3

�

4

+�

1

)y

k�1+�

; (2.52)







u

1

(x; y)� u

0

(x; y)







=







u

1

(x; y)







= 0: (2.53)

Under the assumption that the estimates (2.44){(2.47) are valid for m,

m > 0, let us prove their validity for m + 1 for su�ciently large M

�

and

M

�

.

From (2.40) we have

�

K

10

('

1

m+2

� '

1

m+1

)

�

(y) = �T

9

(w

m+1

� w

m

; u

m+1

� u

m

)(y): (2.54)

Furthermore, for the right-hand side of equation (2.54) the estimate







T

9

(w

m+1

� w

m

; u

m+1

� u

m

)(y)







�

�

l

X

i=s

0

+1

y

Z

�

1

i

(y)

�

kE

1

1i

kkw

m+1

� w

m

k+

+kE

1

2i

kku

m+1

� u

m

k

��

z

i

(


1

(y); y; t); t

�

dt+
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+

l

X

j=s

0

+1

s

0

X

i=l

0

+1

�

1

j

(y)

Z

�

1

ij

(y)

�

kE

1

3ij

kkw

m+1

� w

m

k+

+kE

1

4ij

kku

m+1

� u

m

k

��

z

i

(


2

(�

1

j

(y)); �

1

j

(y); t); t

�

dt: (2.55)

is valid.

The largest of the numbers max

y;t

kE

p

1j

(y; t)k, max

y;t

kE

p

2j

(y; t)k,

max

y;t

kE

p

3ij

(y; t)k, max

y;t

kE

p

4ij

(y; t)k, we denote by �

p

, p = 1; 2. Since 0 �

�

1

ji

(y) � �

1

j

(y) � y and owing to (2.44) and (2.45), we have from (2.55)

that







T

9

(w

m+1

� w

m

; u

m+1

� u

m

)(y)







�

� �

1

M

�

M

m

�

m!

�

l

X

i=s

0

+1

y

Z

�

1

i

(y)

2t

m+k+��1

dt+

+

l

X

j=s

0

+1

s

0

X

i=l

0

+1

�

1

j

(y)

Z

�

1

ij

(y)

2t

m+k+��1

dt

�

�

� 2�

1

M

�

M

m

�

m!

�

l

X

i=s

0

+1

1 +

l

X

j=s

0

+1

s

0

X

i=l

0

+1

1

�

y

Z

0

t

m+k+��1

dt �

� 2�

1

M

�

M

m

�

m!

(l + l

2

)

1

m+ k + �

y

m+k+�

�

� 2(l + l

2

)�

1

M

�

M

m

�

(m+ 1)!

y

m+1+k+��1

: (2.56)

Now (2.54), (2.56) and (2.26) imply







'

1

m+2

(y)� '

1

m+1

(y)







�

� 2(l + l

2

)c

1

�

1

M

�

M

m

�

(m+ 1)!

y

m+1+k+��1

: (2.57)

for p = 0.

Similarly, from (2.41), (2.44), (2.45) and (2.27) we �nd
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m+2

(y)� '

2

m+1

(y)







�

� 2(l + l

2

)c

2

�

2

M

�

M

m

�

(m+ 1)!

y

m+1+k+��1

: (2.58)

Proceeding similarly as in deducing the estimate (2.51), we obtain
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(x; y)� e'

P;m+1

(x; y)







� �

3

M

�

M

m

�

(m+ 1)!

y

m+1+k+��1

; (2.59)
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where �

3

= 4n(l+ l

2

)c

3

e

�

2

,

e

�

2

= max(�

1

; �

2

).

Denote by � the largest of the numbers max

D

1

k


1i

k, max

D

1

k


2i

k, max

D

1

k

e




3

k,

max

D

1

k

e




4

k, where the matrices 


1i

, 


2i

, i = 1; : : : ; l,

e




3

,

e




4

are determined

in (2.42), (2.43). By virtue of (2.59) we have from (2.42) and (2.43)
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(x; y) � w

m+1
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+

+

l
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y

Z

!

i
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�

k
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kkw
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m
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kku

m+1

� u

m

k
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z

i

(x; y; t); t

�

dt �

� �

3

M

�

M

m

�

(m+ 1)!

y

m+1+k+��1

+ 2l�

y

Z

0

M

�

M

m

�

m!

t

m+k+��1

dt �

� (�

3

+ 2l�)M

�

M

m

�

(m+ 1)!

y

m+1+k+��1

; (2.60)
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(x; y)� u

m+1
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� 2�M

�

M

m

�

(m+ 1)!

y

m+1+k+��1

; (2.61)

since 0 � !

i

(x; y) � y, i = 1; : : : ; l.

It immediately follows from (2.50), (2.52), (2.53), (2.57), (2.58), (2.60)

and (2.61) that if we put

M

�

= 2nc

3

�

4

+�

1

; M

�

= max

�

2(l + l

2

)c

1

�

1

; 2(l+ l

2

)c

2

�

2

; �

3

+ 2l�

�

;

the estimates (2.44){(2.47) will be valid for any integer m � 0.

Di�erentiating the equalities (2.40){(2.47) with respect to x and y and

using the obtained estimates (2.44){(2.47) as well as the solvability of equa-

tions (2.24) and (2.25) and the estimates (2.26) and (2.27) for p = 1, we

analogously obtain










@

@x

(u

m+1

� u

m

)(x; y)










�M

�

1

M

m�1

�1

(m� 1)!

y

m+k+��2

;










@

@y

(u

m+1

� u

m

)(x; y)










�M

�

1

M

m�1

�1

(m� 1)!

y

m+k+��2

;










@

@x

(w

m+1

� w

m

)(x; y)










�M

�

1

M

m�1

�1

(m� 1)!

y

m+k+��2

;










@

@y

(w

m+1

� w

m

)(x; y)










�M

�

1

M

m�1

�1

(m� 1)!

y

m+k+��2

;










@

@y

('

1

m+1

� '

1

m

)(y)










�M

�

1

M

m�1

�1

(m� 1)!

y

m+k+��2

;










@

@x

('

2

m+1

� '

2

m

)(y)










�M

�

1

M

m�1

�1

(m� 1)!

y

m+k+��2
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Continuing this process, we �nd that for m � i+ j, 0 � i+ j � k � 1







@

i;j

(u

m+1

� u
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(m� i� j)!

y

m+k+��i�j�1

;







@

i;j

(w

m+1

� w

m

)(x; y)







�M

�

i+j

M
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p
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p

m
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�M

�
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M
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(m� i� j)!

y

m+k+��i�j�1

;

p = 1; 2;

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(2.62)

where M

�

i

, M

�i

, i = 1; : : : ; k� 1, are su�ciently large positive numbers not

depending on m.

It follows from (2.62) that the series

u(x; y) = lim

m!1

u

m

(x; y) =

1

X

m=1

�

u

m

(x; y)� u

m�1

(x; y)

�

;

w(x; y) = lim

m!1

w

m

(x; y) =

1

X

m=1

�

w

m

(x; y)� w

m�1

(x; y)

�

;

'

p

(y) = lim

m!1

'

p

m

(y) =

1

X

m=1

�

'

p

m

(y)� '

p

m�1

(y)

�

; p = 1; 2;

converge in the spaces

�

C

k�1

�

(D

1

),

�

C

k�1

�

[0; d

p

], p = 1; 2, and on account of

(2.40){(2.43) the limit functions u, w, '

1

, '

2

satisfy the system of equa-

tions (2.18), (2.19), (2.22). Hence it follows that u

x

= K

1

w, u

y

= K

2

w,

where K =

�

K

1

K

2

�

is the 2n � 2n-matrix from (2.4). Consequently, u

x

; u

y

2

�

C

k�1

�

(D

1

) since w 2

�

C

k�1

�

(D

1

), K 2 C

k

(D

1

), and therefore u 2

�

C

k

�

(D

1

).

Thus we have shown that the obtained function u(x; y) is a solution of the

problem (2.1){(2.3) in the class

�

C

k

�

(D

1

).

Let us now show that under the conditions of Theorem 2.1{2.3 the

problem (2.1){(2.3) has no other solution in the class

�

C

k

�

(D

1

). Indeed,

if u(x; y) 2

�

C

k

�

(D

1

) is a solution of the homogeneous problem correspond-

ing to (2.1){(2.3), then the corresponding functions u, w, '

1

, '

2

satisfy the

homogeneous system of equations
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n
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u

p

�

�

z
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(x; y; t); t

�

dt;

1 � i � l; 1 � j � k

i

;

u(x; y) =

!

1

(x;y)

Z
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�

d


1(P )
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K
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+K
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�

w
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�

dt+
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y
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!

1
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(x; y; t); t
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dt;
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'

1

)(y) + (T

5

w)(y) + (T

6

u)(y) = 0;

(K

20

'

2

)(y) + (T

7

w)(y) + (T

8

u)(y) = 0:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(2.63)

To the system of equations (2.63), let us apply the method of successive

approximations taking u, w, '

1

, '

2

as zero approximations. Since these

functions satisfy the system of equations (2.63), every next approximation

will coincide with it, that is,

u

m

(x; y) � u(x; y); w

m

(x; y) � w(x; y);

'

p

m

(y) � '

p

(y); p = 1; 2:

Taking into consideration that these functions satisfy the estimates of the

type (2.48), (2.49), and arguing as in deducing the estimates (2.44){(2.47),

we obtain

ku(x; y)k =







u

m+1

(x; y)







�

f

M

�

f

M

m

�

m!

y

m+k+��1

;

kw(x; y)k =







w

m+1

(x; y)







�

f

M

�

f

M

m

�

m!

y

m+k+��1

;

k'

1

(y)k =







'

1

m+1

(y)







�

f

M

�

f

M

m

�

m!

y

m+k+��1

;

k'

2

(y)k =







'

2

m+1

(y)







�

f

M

�

f

M

m

�

m!

y

m+k+��1

;

whence in the limit as m!1, we �nd that

u � w � '

1

� '

2

� 0: �

The particular case of the boundary value problem (2.1){(2.3) is the

problem of Goursat type, when the boundary conditions (2.2), (2.3) have

the form

u

�

�

OP

1

= f

1

; (2.64)
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u

�

�

OP

2

= f

2

: (2.65)

Di�erentiating the equalities (2.64) and (2.65) with respect to the tangent

to the curves 


1

and 


2

, we have

�

d


1

dy

u

x

+ u

y

�

�

�

�

OP

1

= f

(1)

1

; (2.66)

�

d


2

dy

u

x

+ u

y

�

�

�

�

OP

2

= f

(1)

2

: (2.67)

Below we shall assume that all the requirements imposed on the curves




1

,


2

and the characteristics of the system (2.1) quoted in x2, are ful�lled;

moreover, the number l

0

= 0 and the points P

1

and P

2

are located on the

curves 


1

and 


2

such that m

1

= m

2

= n.

It is easily seen that in the class

�

C

k

�

(D

1

), k � 2, � � 0, the problem

(2.1), (2.64), (2.65) is equivalent to the problem (2.1), (2.66), (2.67).

Since the matrix coe�cients for the problem (2.1), (2.66), (2.67) have in

the boundary conditions (2.66), (2.67) the form

M

i

=

d


i

dy

E; N

i

= E; S

i

= 0; i = 1; 2;

where E is the unit n � n-matrix, it is obvious that the conditions (2.21)

are equivalent to the following ones

rank

�

�

ij

; 1 � i � s

0

; 1 � j � k

i

	

�

�

OP

1

= n; (2.68)

rank

�

�

ij

; s

0

< i � l; 1 � j � k

i

	

�

�

OP

2

= n: (2.69)

In this case the equalities

e

U

1

= U

2

and

e

U

2

= U

1

are valid, the condition

(�

i

�

e

U

i

)(O) = 0 being ful�lled if and only if 


i

= L

i

0

(O), 1 � i

0

� l, and

k

i

0

= n.

From Theorems 2.1{2.3 we have the following assertions:

1. Let the conditions (2.68), (2.69) be ful�lled. If either em

1

em

2

= 0 or at

least one of the equalities (�

1

�U

2

)(O) = 0 or (�

2

�U

1

)(O) = 0 holds, then

the problem (2.1), (2.64), (2.65) is uniquely solvable in the class

�

C

k

�

(D

1

)

for all k � 2, � � 0.

2. Let the conditions (2.68), (2.69) be ful�lled, and em

1

em

2

6= 0, (�

1

�

U

2

)(O) 6= 0, (�

2

� U

1

)(O) 6= 0. If the curves 


1

, 


2

do not have a common

tangent line at the point O(0; 0), then for k + � > �

0

the problem (2.1),

(2.64), (2.65) is uniquely solvable in the class

�

C

k

�

(D

1

).

3. Let the conditions (2.68), (2.69) be ful�lled, and em

1

em

2

6= 0, (�

1

�

U

2

)(O) 6= 0, (�

2

� U

1

)(O) 6= 0. If the curves 


1

, 


2

do not have a common

tangent line at the point O(0; 0), then for h

i

(1) < 1, i = 1; 2, the problem

(2.1), (2.64), (2.65) is uniquely solvable in the class

�

C

k

�

(D

1

) for all k � 2,

� � 0.
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Remark. Let D

P

, P 2 D

1

, be the domain constructed in x2 of the

present chapter, and let 


iP

= 


i

\ @D

P

, i = 1; 2. As is seen from the

proofs of Theorems 2.1{2.3, when conditions of these theorems are ful�lled,

the domain of dependence of the solution u(x; y) of the problem (2.1){(2.3)

for the point P 2 D

1

is contained in the domain D

P

, and for the solution

u(x; y) the estimate

kuk �

C

k

�

(D

P

)

� c

�

2

X

i=1

kf

i

k �

C

k�1

�

(


iP

)

+ kFk �

C

k�1

��1

(D

P

)

�

;

is valid, where c = const > 0 does not depend on F and f

i

, i = 1; 2,

kuk �

C

k

�

(D

P

)

= max

i+j=k

sup

z2D

P

nO

jzj

��

�

�

@

i;j

u(z)

�

�

; @

i;j

=

@

i+j

@x

i

@y

j

:

The norms in the spaces

�

C

k�1

�

(


ip

) and

�

C

k�1

��1

(D

P

) are de�ned analo-

gously.

x

Let us consider a normally hyperbolic system with constant coe�cients

of the type

Au

xx

+ 2Bu

xy

+ Cu

yy

= 0: (2.70)

As the curves 


1

and 


2

let us take straight beams 


i

: x = 


0

i

y, y � 0,




0

i

= const, i = 1; 2, 


0

1

> 


0

2

. Denote by D the angle contained between the

beams 


1

and 


2

and located in a half-plane y � 0. On the beams 


1

and 


2

let us take arbitrarily the points P

1

and P

2

di�erent from O(0; 0) and assume

that the straight line passing through P

1

and P

2

is not a characteristic of the

system (2.70). Because of the fact that 


1

and 


2

are the straight beams,

and the characteristics L

i

: x + �

i

y = const, �

i

= const, i = 1; : : : ; l, of

the system (2.70) are the straight lines, all the requirements of x2, imposed

both on 


1

, 


2

and L

i

, i = 1; : : : ; l, will be ful�lled. In a similar way as in

x2, we construct the domain D

1

and determine the numbers m

1

and m

2

.

Introduce into the consideration the following spaces

�

C

k

�;�

(D) =

n

u 2

�

C

k

(D) : max

i+j=k

sup

0<jzj�1;z2D

jzj

��

�

�

@

i;j

u(z)

�

�

<1;

max

i+j=k

sup

jzj�1;z2D

jzj

��

�

�

@

i;j

u(z)

�

�

<1

o

; k � 2; � � 0; � � 0;

�

C

k

�

(D) =

n

u 2

�

C

k

(D) : max

i+j=k

sup

0<jzj�1;z2D

jzj

��

�

�

@

i;j

u(z)

�

�

<1

o

;

k � 2; � � 0:

The space

�

C

k

�

(D

1

) has been introduced at the end of x1 in Chapter II.
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Below the m

i

� n-matrices M

i

, N

i

, i = 1; 2, appearing in the boundary

conditions (2.2), (2.3) are assumed to be constant, and S

i

= 0, i = 1; 2.

When considering the problem (2.70), (2.2), (2.3) in the spaces

�

C

k

�

(D)

and

�

C

k

�;�

(D), we assume that equalities (2.2) and (2.3) take place respec-

tively on the beams 


1

and 


2

.

When investigating the same problem in the above-mentioned spaces, the

use will be made of the Bochner method of solution of functional equations

which will be cited below.

When considering the problem (2.70), (2.2), (2.3) in the classes

�

C

k

�

(D),

�

C

k

�;�

(D),

�

C

k

�

(D

1

) it is required that f

i

2

�

C

k�1

�

(


i

), f

i

2

�

C

k�1

�;�

(


i

), f

i

2

�

C

k�1

�

(OP

i

), i = 1; 2, respectively, where f

1

and f

2

are the right-hand sides

of equalities (2.2), (2.3).

Similarly, as in x3, the problem (2.70), (2.2), (2.3) in the class

�

C

k

�

(D

1

) is

reduced equivalently to the system of equations (2.20) in whichG

i

0

= �

i

�V

i

,

'

i

2

�

C

k�1

�

[0; d

i

], i = 1; 2, �

1

j

(y) = �

1

j

y, 0 � �

1

j

= const, j = s

0

+ 1; : : : ; l,

�

2

i

(y) = �

2

i

y, 0 � �

2

i

= const, i = l

0

+ 1; : : : ; s

0

, T

j

= 0, j = 1; : : : ; 4,

f

3

= f

1

, f

4

= f

2

.

After substitution e'(t) = ('

1

(d

1

t); '

2

(d

2

t)) we rewrite the obtained sys-

tem of equations in the form of one equation

G

0

e'(t) +

r

X

i=1

G

i

e'(�

i

t) =

e

f(t); (2.71)

where e' 2

�

C

k�1

�

[0; 1], G

i

, i = 0; : : : ; r, are well-de�ned real constant (m

1

+

m

2

)� (m

1

+m

2

)-matrices; moreover, G

0

=

�

G

1

0

0

0 G

2

0

�

, 0 < �

i

= const < 1,

i = 1; : : : ; r, and

e

f(t) 2

�

C

k�1

�

[0; 1].

Analogously one can show that the problem (2.70), (2.2), (2.3) in the

classes

�

C

k

�

(D),

�

C

k

�;�

(D) is equivalent to the system of equations (2.71) with

respect to an unknown function e' belonging, respectively, to the spaces

�

C

k�1

�

[0;1) and

�

C

k�1

�;�

[0;1).

Di�erentiating equation (2.71) (k � 1) times with respect to t, we get

(G )(t) = G

0

 (t) +

r

X

i=1

�

k�1

i

G

i

 (�

i

t) = f(t); (2.72)

where  (t) = e'

(k�1)

(t), f(t) =

e

f

(k�1)

(t).

Obviously, equation (2.71) with respect to e' 2

�

C

k�1

�;�

[0;1) (

�

C

k�1

�

[0;1),

�

C

k�1

�

[0; 1]) is equivalent to equation (2.72) with respect to  2

�

C

�;�

[0;1)

(

�

C

�

[0;1),

�

C

�

[0; 1]).



64

Denote by � the set of all real numbers f�

0

; �

1

; : : : ; �

i

; : : : g representable

in the form

r

P

i=1

n

i

log �

i

, where n

i

are arbitrary integers, and �

0

= 0, �

i

6= �

j

for i 6= j.

Let

�(s) = det

�

G

0

+

r

X

i=1

�

k�1

i

G

i

e

s log �

i

�

:

It is obvious that �(s) is an entire function represented as

�(s) =

m

0

X

i=0

�

i

e

e�

i

s

; e�

i

2 �; (2.73)

where �

i

, e�

i

are certain real numbers, and e�

m

0

< e�

m

0

�1

< � � � < e�

0

� 0.

We can easily see that in the case �(s) � 0, the homogeneous problem

corresponding to (2.72) has for any s a non-trivial solution of the type

 (t) = c(s)t

s

, kc(s)k 6= 0. Evidently, if detG

0

6= 0, then �(s) 6� 0.

Below we shall assume that �(s) 6� 0, and in this case one can suppose

that �

i

6= 0, i = 0; : : : ;m

0

in equality (2.73).

The setM of real parts of all zeros of the entire function �(s) is a �nite

or countable bounded closed set; moreover, this set is empty if and only

if �(s) = �

0

e

e�

0

s

[11]. The set M divides the real axis of the plane of the

variable s = Re s+ i Im s into not more than a countable set of intervals

e

�

i

,

i = 0; 1; 2; : : : , among which there are the half-lines (�1 < Re s < b

0

) =

e

�

0

,

(a

0

< Re s <1) =

e

�

1

.

It is shown in [12], [13] that the analytic almost-periodic function

1

�(s)

expands in the strip �

i

= fs : Re s 2

e

�

i

g into an absolutely convergent

series of the type

1

�(s)

=

1

X

j=0




ij

e

�

j

s

; �

j

2 �; (2.74)

whose coe�cients can be uniquely determined.

Since e�

0

> e�

j

, j = 1; : : : ;m

0

, we have

�

�

�

m

0

X

j=1

�

�1

0

�

j

e

(e�

j

�e�

0

)s

�

�

�

< 1

for Re s > c

0

, where c

0

is a su�ciently large real number. Therefore for

Re s > c

0

there takes place an expansion

1

�(s)

=

h

�

0

e

e�

0

s

�

1 +

m

0

X

j=1

�

�1

0

�

j

e

(e�

j

�e�

0

)s

�i

�1

=

= �

�1

0

e

�e�

0

s

�

1 +

1

X

i=1

(�1)

i

�

m

0

X

j=1

�

�1

0

�

j

e

(e�

j

�e�

0

)s

�

i

�

: (2.75)
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Due to the uniqueness theorem for analytic almost-periodic functions

[49], the coe�cients 


1j

of the series (2.74) in the strip �

1

can be de�ned

from the expansion (2.75), and hence




1j

= 0 for �

j

> �e�

0

� 0: (2.76)

Denote by �

ij

the algebraic supplement of the element with the indices

j, i of the determinant �(s),

�

ij

(s) =

N

0

X

p=0

�

ijp

e

�

p

s

; i; j = 1; : : : ;m

1

+m

2

;

where N

0

is a natural number and �

ijp

are de�nite real numbers.

Denote by g

ij

p

the element of the matrix �

k�1

p

G

p

with indices i, j, where

�

0

= 1, p = 0; : : : ; r, i; j = 1; : : : ;m

1

+m

2

.

Because of determinant properties, we can easily see that for Re s 2 �

i

0

,

i

0

� 0,

1

�(s)

m

1

+m

2

X

j=1

�

r

X

�

0

=0

g

ij

�

0

e

s log �

�

0

�

�

j�

(s) =

=

1

X

p=0

m

1

+m

2

X

j=1

r

X

�

0

=0

N

0

X

q=0

g

ij

�

0

�

j�q




i

0

p

e

(log �

�

0

+�

p

+�

q

)s

=

=

1

X

�=0

�

X

(p;j;�

0

;q)2J

�

g

ij

�

0

�

j�q




i

0

p

�

e

�

�

s

=

(

1 for i = �;

0 for i 6= �;

(2.77)

where J

�

is the set of all collections (p; j; �

0

; q) of numbers p, j, �

0

, q for

which log �

�

0

+ �

p

+ �

q

= �

�

.

From (2.77), due to the absolute convergence of the series (2.74) in

the strip �

i

0

, and because of the uniqueness theorem for analytic almost-

periodic functions, we obtain

X

(p;j;�

0

;q)2J

�

g

ij

�

0

�

j�q




i

0

p

=

8

>

<

>

:

1 for i = �; � = 0;

0 for i = �; � � 1;

or i 6= �; � � 0:

(2.78)

Analogous reasonings as in the case of the expression

1

�(s)

m

1

+m

2

X

�=1

�

r

X

�

0

=0

g

�j

�

0

e

s log �

�

0

�

�

i�

(s)

result in the equalities

X

(p;�;�

0

;q)2J

�

g

�j

�

0

�

i�q




i

0

p

=

8

>

<

>

:

1 for i = j; � = 0;

0 for i = j; � � 1;

or i 6= j; � � 0:

(2.79)
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Let now

e

G

i

0

= (

e

G

i

0

1

; : : : ;

e

G

i

0

m

1

+m

2

) be the operator acting by the for-

mula

(

e

G

i

0

i

f)(t) =

1

X

p=0

m

1

+m

2

X

�=1

N

0

X

q=0

�

i�q




i

0

p

f

�

(e

�

p

+�

q

t); (2.80)

i = 1; : : : ;m

1

+m

2

:

The lemma below is due to Bochner [11].

The operator G de�ned by the formula (2:72) is invertible

in the space

�

C

�;�

[0;1) and G

�1

=

e

G

i

0

if

M \ I

�;�

= ?; I

�;�

=

�

min(�; �);max(�; �)

�

� �

i

0

:

In the spaces

�

C

�

[0;1) and

�

C

�

[0; 1] the following lemma takes place.

The assertion of Lemma 2:4 is valid in the space

�

C

�

[0;1)

for � > supM = sup

x2M

x and in

�

C

�

[0; 1] if detG

0

6= 0 and � > supM, in

both cases G

�1

and

e

G

1

being equal.

To prove Lemma 2.5 we shall use the Bochner method [11]. � > supM

implies that � 2 �

1

, and hence, since the series (2.74) is absolutely conver-

gent in �

1

, we have

c

1

=

1

X

j=0

j


1j

je

�

j

�

<1: (2.81)

Suppose p

t

(f) = sup

�2(0;t]

k�

��

f(�)k

R

m

1

+m

2

.

By (2.76) the function

e

G

1i

f at the point t > 0 depends only on those val-

ues of f which it takes on the segment [0; t

0

t], where t

0

= e

(�e�

0

+ max

0�q�N

0

�

q

)

.

Therefore we have

p

t

(

e

G

1

f) � max

1�i�m

1

+m

2

p

t

(

e

G

1i

f) �

�

1

X

p=0

m

1

+m

2

X

�=1

N

0

X

q=0

max

1�i�m

1

+m

2

�

�

�

i�q

e

�

q

�

�

�

j


1p

je

�

q

�

p

t

0

t

(f) �

� (m

1

+m

2

)(N

0

+ 1)

�

max

i;�;q

�

�

�

i�q

e

�

q

�

�

�

�

c

1

p

t

0

t

(f): (2.82)

When deducing (2.82), the use has been made of (2.81) and the fact

that p

t

(

e

f

�

) � e

(�

p

+�

q

)�

p

t

0

t

(f

�

), where

e

f

�

(t) = f

�

(e

�

p

+�

q

t). From (2.82) it

follows that the operator

e

G

1

is continuous in the space

�

C

�

[0;1).
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Let us check that G

e

G

1

= I , where I is the identity operator. If G

e

G

1

=

((G

e

G

1

)

1

; : : : ; (G

e

G

1

)

m

1

+m

2

), then by (2.78) and (2.80) we have

�

(G

e

G

1

)

i

f

�

(t) =

r

X

�

0

=0

m

1

+m

2

X

j=1

g

ij

�

0

(

e

G

1j

f)(�

�

0

t) =

=

r

X

�

0

=0

m

1

+m

2

X

j=1

1

X

p=0

m

1

+m

2

X

�=1

N

0

X

q=0

g

ij

�

0

�

j�q




1p

f

�

�

e

log �

�

0

+�

p

+�

q

t

�

=

=

m

1

+m

2

X

�=1

1

X

�=0

�

X

(p;j;�

0

;q)2J

�

g

ij

�

0

�

j�q




1p

�

f

�

(e

�

�

t) = f

i

(t);

which proves the equality G

e

G

1

= I . In a similar way, using equality (2.79),

we can easily check that

e

G

1

G = I . Thus G

�1

=

e

G

1

, and Lemma 2.5 is

proved in the space

�

C

�

[0;1).

Let now detG

0

6= 0 and � > supM. From (2.73) it follows that e�

0

= 0

for detG

0

6= 0. Therefore by (2.76) we have 


1j

= 0 for �

j

> 0. Since

log �

i

< 0, i = 1; : : : ; r, in the expansion

�

ij

(s) =

N

0

X

p=0

�

ijp

e

�

p

s

we have �

ijp

= 0 for �

p

> 0, and thus �

i�q




1p

= 0 or �

p

+ �

q

> 0. Hence

the operator

e

G

1

de�ned by (2.80) acts from the space

�

C

�

[0; 1] into itself. It

remains for us to note that the operatorG in the space

�

C

�

[0;1) is invertible

for � > supM, and G

�1

=

e

G

1

. �

For � > supM and detG

0

= 0 the equation (2:72) is solv-

able in the space

�

C

�

[0; 1], and the homogeneous equation corresponding to

(2:72) has in the space

�

C

�

[0; 1] an in�nite number of linearly independent

solutions.

Proof. If f 2

�

C

�

[0; 1], then let

e

f be an arbitrary continuous extension of f

from the segment [0; 1] to [0;1). Clearly,

e

f 2

�

C

�

[0;1), since

e

f(t) = f(t)

for 0 � t � 1. By Lemma 2.5 the equation G =

e

f is uniquely solvable in

the space

�

C

�

[0;1) for � > supM. It is also clear that the vector function

e

 (t) =  (t) = (G

�1

e

f)(t) de�ned on the segment 0 � t � 1 belongs to the

space

�

C

�

[0; 1] and is the solution of (2.72).

Let us show that dimKerG = 1. Since detG

0

= 0, there exists a non-

degenerate (m

1

+m

2

) � (m

1

+m

2

)-matrix 
 such that the last q

0

rows of
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the matrix G

0


 are zero, where q

0

= (m

1

+m

2

) � rankG

0

> 0. Consider

the operator G

�

de�ned by

(G

�

 )(t) = G

0


 (t) +

r

X

i=1

G

i


 (�

i

t);  2

�

C

�

[0; 1]:

Assume e�

0

= max

1�i�r

�

i

, 0 < e�

0

< 1. Let

e

 = (

e

 

1

; : : : ;

e

 

m

1

+m

2

) be an

arbitrary vector function of the class

�

C

�

[0; 1] such that

e

 

i

� 0 when i =

1; : : : ;m

1

+ m

2

� q

0

and

e

 

i

(t) 6� 0,

e

 

i

(t) = 0 for t 2 [0; e�

0

] when i =

m

1

+m

2

�q

0

+1; : : : ;m

1

+m

2

. It can be easily seen that G

�

e

 = 0, and hence

G = 0, where  = 


e

 . Therefore dimKerG =1, since det
 6= 0. �

Remark. As the example of equation (2.72) with r = 1 shows, in the case

where conditions of Lemmas 2.4{2.6 are violated, the unique solvability of

the equation (2.72) may not hold. For r = 1 the following assertion is

valid: a) equation (2.72) in the space

�

C

�;�

[0;1) for M \ f�; �g 6= ? as

well as in the spaces

�

C

�

[0;1) and

�

C

�

[0; 1] for � 2 M is not normally

Hausdor� solvable; b) equation (2.72) is normally Hausdor� solvable in the

space

�

C

�;�

[0;1) for M \ I

�;�

6= ?, M \ f�; �g = ?, and for � < � we

have { = d

0

� d

�

0

= +1, d

0

= dimKerG = 1, d

�

0

= dimKerG

�

= 0,

while for � > � we have conversely { = �1, d

0

= 0, d

�

0

= 1; c) equation

(2.72) is normally Hausdor� solvable in the spaces

�

C

�

[0;1) and

�

C

�

[0; 1]

for � � supM, � 62M; moreover, in both cases { = +1, d

0

=1, d

�

0

= 0.

This assertion can be proved by using the same method as we have used in

proving Lemma 1.7 in x2 of Chapter I.

Recall that the condition detG

0

6= 0 is equivalent to the ful�lment of

the conditions (2.21); moreover, if detG

0

6= 0, then the entire function

�(s) 6� 0. Denote byM

0

the set of real parts of zeros of the entire function

�

0

(s) = det

�

G

0

+

r

X

i=1

G

i

e

(s�1) log �

i

�

:

Since �(s) = �

0

(s+ k), we haveM =M

0

� k = fx� k : x 2M

0

g.

From Lemmas 2.4{2.6 we have the following

The problem (2:70), (2:2), (2:3) is uniquely solvable in: a)

the class

�

C

k

�;�

(D) for �

0

(s) 6� 0 and (M

0

� k) \ I

�;�

= ?; b) the class

�

C

k

�

(D) for �

0

(s) 6� 0 and k + � > supM

0

; c) the class

�

C

k

�

(D

1

) if the

conditions (2:21) are ful�lled and k + � > supM

0

. In the case �

0

(s) 6� 0,

k + � > supM

0

, if at least one of the conditions (2:21) is violated, then

the problem (2:70), (2:2), (2:3) is solvable in the class

�

C

k

�

(D

1

), and the
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homogeneous problem corresponding to (2:70), (2:2), (2:3) has an in�nite

number of linearly independent solutions.

Remarks.

1. As noted above, when the conditions of Theorem 2.4 are violated in

the classes

�

C

k

�;�

(D),

�

C

k

�

(D),

�

C

k

�

(D

1

) the problem (2.70), (2.2), (2.3) may

turn out to be ill-posed.

2. If the set M

0

is empty, then �

0

(s) 6� 0, and owing to Theorem 2.4,

the problem (2.70), (2.2), (2.3) is uniquely solvable in the classes

�

C

k

�;�

(D),

�

C

k

�

(D) for all k � 2, � � 0, � � 0, as well as in the class

�

C

k

�

(D

1

) when the

conditions (2.21) are ful�lled for all k � 2, � � 0. When the conditions of

Theorem 2.1 are ful�lled, it is obvious that �

0

(s) � detG

0

6= 0, and hence

the set M = ?. Therefore, in the case of the problem (2.70), (2.2), (2.3)

Theorem 2.1 is a direct consequence of the assertion b) of Theorem 2.4.

3. It can be easily veri�ed that �

0

� supM

0

, where �

0

is a number

occurring in the condition k + � > �

0

of Theorem 2.2 in the case of the

problem (2.70), (2.2), (2.3). Therefore, the condition � > sup(M

0

� k) or,

what is the same, the condition k + � > supM

0

in Theorem 2.4 is more

exact than the condition k + � > �

0

in Theorem 2.2.

4. In the case �

0

(s) � 0, one can easily verify that in the classes

�

C

k

�;�

(D),

�

C

k

�

(D),

�

C

k

�

(D

1

) for all k � 2, � � 0 the homogeneous problem correspond-

ing to (2.70), (2.2), (2.3) has an in�nite number of linearly independent

solutions.
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CHAPTER III

x

In the plane of variables x, y let us consider a system of linear di�erential

equations of the type

y

m

Au

xx

+ 2y

m

2

Bu

xy

+ Cu

yy

+ au

x

+ bu

y

+ cu = F; (3.1)

where A, B, C, a, b, c are given real n�n-matrices, F and u are, respectively,

given and unknown n-dimensional vectors, m = const > 0, n > 1.

Below A, B, C are assumed to be constant matrices, detC 6= 0, and the

polynomial p

0

(�) = det(A+2B�+C�

2

) is assumed to have only simple real

roots �

1

; : : : ; �

2n

. In this case the system (3.1) is strictly hyperbolic for y >

0, and the line of parabolic degeneration y = 0 is not a characteristic of the

system (3.1). Under these conditions the numbers y

m

2

�

1

; : : : ; y

m

2

�

2n

are the

roots of the characteristic polynomial p(y;�) = det(y

m

A+ 2y

m

2

B�+ C�

2

)

of the system (3.1), and the curves determined by the equations

L

i

(P ) : x+

2�

i

m+ 2

y

m+2

2

= x

0

+

2�

i

m+ 2

y

m+2

2

0

; i = 1; : : : ; 2n; y

0

> 0;

and passing through the point P (x

0

; y

0

) are characteristics of the system

(3.1).

Denote by D a domain lying in the half-plane y > 0 and bounded by two

adjoint characteristics




1

: x+

2�

i

1

m+ 2

y

m+2

2

= 0; 


2

: x+

2�

i

2

m+ 2

y

m+2

2

= 0; �

i

1

< �

i

2

;

of the system (3.1), coming out of the origin O(0; 0). Take arbitrarily on




1

a point P

1

di�erent from O(0; 0) and choose the numbering of character-

istic curves L

i

(P

1

), i = 1; : : : ; 2n, coming out of P

1

into the angle D such

that starting from L

1

(P

1

), they follow each other counter-clockwise. On

the curve 


2

let us �x the point P

2

lying strictly between the two points

of intersection of characteristics L

n

(P

1

) and L

n+1

(P

1

) with the curve 


2

.

Denote by D

1

� D the characteristic quadrangle with a vertex at O(0; 0),

bounded by the characteristics 


1

, 


2

, L

n

(P

1

) and L

n+1

(P

2

). Under these

assumptions it is evident that




1

= L

2n

(O) : x+

2�

2n

m+ 2

y

m+2

2

= 0; 


2

= L

1

(O) : x+

2�

1

m+ 2

y

m+2

2

= 0:

For convenience we shall assume below that �

n

> 0 and �

n+1

< 0.
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Consider the characteristic problem formulated as follows [38]: �nd in

the domain D

1

a regular solution u(x; y) of the system (3.1), satisfying on

the segments OP

i

of the characteristics 


i

the following conditions

uj

OP

i

= f

i

; i = 1; 2; (3.2)

where f

1

, f

2

are given n-dimensional real vectors, f

1

(O) = f

2

(O).

Below we asume that a, b, c, F 2 C

1

(D

1

), f

i

2 C

2

(OP

i

), i = 1; 2, and

moreover, in the domain D

1

sup

D

1

nO

ky

(1�

m

2

)

ak <1; sup

D

1

nO

ky

(1�

m

2

)

a

x

k <1;

sup

D

1

nO

ky

�(�+

m

2

�1)

Fk <1; sup

D

1

nO

ky

�(��2)

F

x

k <1; � = const > 0;

f

i

(O) = 0; sup

OP

i

nO

ky

�(�+

m

2

+1�j)

f

(j)

i

k <1; i = 1; 2; j = 1; 2;

where k � k denotes the norm in R

n

.

Since the roots �

1

; : : : ; �

2n

of the polynomial p

0

(�) are simple, we can

easily verify that dimKer(A + 2B�

i

+ C�

2

i

) = 1, i = 1; : : : ; 2n. Let the

vectors �

i

2 Ker(A+ 2B�

i

+ C�

2

i

) and k�

i

k 6= 0, i = 1; : : : ; 2n.

In x4 we shall prove the following

Let the condition

rankf�

1

; : : : ; �

n

g = rankf�

n+1

; : : : ; �

2n

g = n (3.3)

be ful�lled. Then there exists a positive integer �

0

depending only on the

coe�cients A, B, C, � of the system (3:1) such that for � > �

0

the problem

(3:1), (3:2) is uniquely solvable in the class

n

u 2 C

2

(D

1

) : @

i;j

u(0; 0) = 0;

sup

D

1

nO

ky

�(�+

m

2

+1�(

m

2

+1)i�j)

@

i;j

uk <1; 0 � i+ j � 2

o

; (3.4)

@

i;j

=

@

i+j

@x

i

@y

j

:

It should be noted that the condition

sup

D

1

nO

ky

(1�

m

2

)

ak <1

for the lower coe�cient a of the system (3.1) is a generalization of the well-

known Gellerstedt's condition when (3.1) is a scalar equation (n = 1; A =

�C = 1; B = 0).
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x

Consider the following 2n� 2n-matrices:

A

0

=













0 �E

C

�1

A 2C

�1

B













;

e

A

0

=













0 �E

y

m

C

�1

A 2y

m

2

C

�1

B













;

K =

�

�

1

: : : �

2n

�

1

�

1

: : : �

2n

�

2n

�

;

e

K =

�

y

�

m

2

�

1

: : : y

�

m

2

�

2n

�

1

�

1

: : : �

2n

�

2n

�

;

where E is the unit n� n-matrix.

It can be easily veri�ed that

K

�1

A

0

K = D

0

;

e

K

�1

e

A

0

e

K =

e

D

0

: (3.5)

Here D

0

= diag[��

1

; : : : ;��

2n

],

e

D

0

= diag[�y

m

2

�

1

; : : : ;�y

m

2

�

2n

].

Assume K = colon(K

1

;K

2

), K

�1

= (K

0

1

;K

0

2

), where K

1

, K

2

and K

0

1

,

K

0

2

are matrices of orders n� 2n and 2n� n, respectively.

Obviously,

e

K = colon

�

y

�

m

2

K

1

;K

2

�

;

e

K

�1

=

�

y

m

2

K

0

1

;K

0

2

�

: (3.6)

Owing to (3.6) we have

e

K

y

= �

m

2

colon

�

y

�

m

2

�1

K

1

; 0

�

;

e

K

�1

e

K

y

= �

m

2y

K

0

1

�K

1

: (3.7)

If

B

0

=













0 0

C

�1

a C

�1

b













; (3.8)

then

e

K

�1

B

0

e

K =

1

y

e

B

0

+

e

B

1

; (3.9)

where

e

B

0

= y

1�

m

2

K

0

2

C

�1

aK

1

,

e

B

1

= K

0

2

C

�1

bK

2

. Since by the assumption

sup

D

1

nO

ky

(1�

m

2

)

ak <1; sup

D

1

nO

ky

(1�

m

2

)

a

x

k <1;

we have

sup

D

1

nO

k

e

B

0

k = sup

D

1

nO

ky

(1�

m

2

)

K

0

2

C

�1

aK

1

k <1;

sup

D

1

nO

k

e

B

0x

k = sup

D

1

nO

ky

(1�

m

2

)

K

0

2

C

�1

a

x

K

1

k <1:

(3.10)
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x

In the class (3.4) we can rewrite equivalently the problem (3.1), (3.2) in

the form

v

y

+

e

A

0

v

x

+B

0

v + C

0

u

0

= F

0

; (3.11)

�

� y

m

2

�

1

@

@x

+

@

@y

�

u = �y

m

2

�

1

v

1

+ v

2

; (3.12)

�

� y

m

2

�

2n

v

1

+ v

2

��

�

2�

2n

m+2

y

m+2

2

; y

�

= f

(1)

1

(y); 0 � y � d

1

;

�

� y

m

2

�

1

v

1

+ v

2

��

�

2�

1

m+2

y

m+2

2

; y

�

= f

(1)

2

(y); 0 � y � d

2

;

9

=

;

(3.13)

u

�

�

2�

2n

m+ 2

y

m+2

2

; y

�

= f

1

(y); 0 � y � d

1

; (3.14)

where d

i

is the ordinate of the point P

i

2 


i

, i = 1; 2, and the 2n � 2n-

matrices

e

A

0

, B

0

have been introduced in x2,

C

0

= diag(0; C

�1

c); u

0

= (0; u); F

0

= (0; F );

v

1

= u

x

; v

2

= u

y

;

v = (v

1

; v

2

); v

1

2 C

1

�;

m

2

+1;1

; v

2

2 C

1

�+

m

2

;

m

2

+1;1

:

(3.15)

Here

C

k

�;p

1

;p

2

=

n

u 2 C

k

(D

1

) : @

i;j

u(0; 0) = 0;

sup

D

1

nO







y

�(��p

1

i�p

2

j)

@

i;j

u







<1; 0 � i+ j � k

o

:

In fact, if u is a solution of the problem (3.1), (3.2) from the above-

mentioned class, then it is obvious that u, v

1

= u

x

, v

2

= u

y

satisfy the

problem (3.11){(3.14), and (v

1

; v

2

) belongs to the class (3.15). Conversely,

let u, v

1

, v

2

be solutions of the problem (3.11){(3.14) for which (3.4), (3.15)

hold. Let us show that u is a solution of the problem (3.1), (3.2) and

v

1

= u

x

, v

2

= u

y

. From the �rst n equations of the system (3.11) we have

that v

1y

= v

2x

. Furthermore, equation (3.12) yields

�

� y

m

2

�

1

@

@x

+

@

@y

�

(u

x

� v

1

) =

=

@

@x

�

� y

m

2

�

1

@

@x

+

@

@y

�

u�

�

� y

m

2

�

1

@

@x

+

@

@y

�

v

1

=

=

@

@x

�

� y

m

2

�

1

v

1

+ v

2

�

+ y

m

2

�

1

v

1x

� v

1y

= v

2x

� v

1y

= 0:

which in its turn implies that u

x

� v

1

= 0, since because of (3.12){(3.14)

and the inequality �

1

6= �

2n

we have (u

x

�v

1

)j

OP

1

nO

= 0, while at the point

O(0; 0) the function (u

x

� v

1

) vanishes by the assumption u

x

, v

1

2 C

1

(D

1

),
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sup

D

1

nO

ky

��

u

x

k < 1, sup

D

1

nO

ky

��

v

1

k < 1 and � > 0. Since u

x

= v

1

, (3.12)

implies u

y

= v

2

and by (3.11)-(3.14) we can easily get that u is a solution

of the problem (3.1){(3.2).

Note that for the above converse assertion to be valid, it su�ces to require

of the unknown function u that u 2 C

1

�+

m

2

;

m

2

;0

. In this case one should

consider the di�erential expression (�y

m

2

�

1

@

@x

+

@

@y

)(u

x

�v

1

) in a generalized

sense. By virtue of (3.12) and the equality v

1y

� v

2x

= 0, for any function

' 2 C

1

0

(D

1

) we have

Z

D

1

(u

x

� v

1

)

�

� y

m

2

�

1

@

@x

+

@

@y

�

'dxdy =

=�

Z

D

1

u

@

@x

�

� y

m

2

�

1

@

@x

+

@

@y

�

'dxdy+

Z

D

1

h�

� y

m

2

�

1

@

@x

+

@

@y

�

v

1

i

'dxdy =

=

Z

D

1

h�

� y

m

2

�

1

@

@x

+

@

@y

�

u

i

@

@x

'dxdy +

Z

D

1

h�

� y

m

2

�

1

@

@x

+

@

@y

�

v

1

i

'dxdy =

=

Z

D

1

�

� y

m

2

�

1

v

1

+ v

2

�

@

@x

'dxdy +

Z

D

1

h�

� y

m

2

�

1

@

@x

+

@

@y

�

v

1

i

'dxdy =

= �

Z

D

1

h

@

@x

�

� y

m

2

�

1

v

1

+ v

2

�i

'dxdy +

+

Z

D

1

h�

� y

m

2

�

1

@

@x

+

@

@y

�

v

1

i

'dxdy =

Z

D

1

(v

1y

� v

2x

)'dxdy = 0;

whence by Theorem 1.4.2 of [26, p. 19] we can conclude that the continuous

function u

x

� v

1

is constant along the characteristics L

1

: x +

2�

1

m+2

y

m+2

2

=

const, and since (u

x

�v

1

)j

OP

1

= 0, we have u

x

�v

1

= 0 inD

1

. The remaining

part of our discussion is similar.

As a result of the substitution v =

e

Kw of the unknown function, and

owing to (3.15), instead of (3.11){(3.14) we shall have

w

y

+

e

D

0

w

x

= B

2

w + C

2

u

0

+ F

1

;

�

� y

m

2

�

1

@

@x

+

@

@y

�

u =

�

� y

m

2

�

1

e

K

1

+

e

K

2

�

w;

�

� y

m

2

�

2n

e

K

1

+

e

K

2

�

w

�

�

2�

2n

m+2

y

m+2

2

; y

�

= f

(1)

1

(y); 0 � y � d

1

;

�

� y

m

2

�

1

e

K

1

+

e

K

2

�

w

�

�

2�

1

m+2

y

m+2

2

; y

�

= f

(1)

2

(y); 0 � y � d

2

;

u

�

�

2�

2n

m+2

y

m+2

2

; y

�

= f

1

(y); 0 � y � d

1

;

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

(3.16)

where B

2

= �

e

K

�1

e

Ky �

e

K

�1

B

0

e

K, C

2

= �

e

K

�1

C

0

, F

1

=

e

K

�1

F

0

, and

e

K

1

and

e

K

2

are the matrices of order n� 2n composed, respectively, of the �rst

and the last n rows of the matrix

e

K.



75

By (3.6){(3.9) we have

e

K

1

= y

�

m

2

K

1

;

e

K

2

= K

2

;

B

2

=

m

2y

K

0

1

�K

1

�

1

y

e

B

0

�

e

B

1

;

(3.17)

�y

m

2

�

1

e

K

1

+

e

K

2

= ��

1

K

1

+K

2

=

=

�

0; (�

2

� �

1

)�

2

; : : : ; (�

2n

� �

1

)�

2n

�

;

�y

m

2

�

2n

e

K

1

+

e

K

2

= ��

2n

K

1

+K

2

=

=

�

(�

1

� �

2n

)�

1

; : : : ; (�

2n�1

� �

2n

)�

2n�1

; 0

�

:

Taking into account (3.17), we rewrite the problem (3.16) in the form

w

y

+

e

D

0

w

x

=

1

y

(B

3

w + yC

2

u

0

) + F

1

; (3.18)

�

� y

m

2

�

1

@

@x

+

@

@y

�

u =

�

� �

1

K

1

+K

2

�

w; (3.19)

�

� �

2n

K

1

+K

2

�

w

�

�

2�

2n

m+2

y

m+2

2

; y

�

= f

(1)

1

(y); 0 � y � d

1

;

�

� �

1

K

1

+K

2

�

w

�

�

2�

1

m+2

y

m+2

2

; y

�

= f

(1)

2

(y); 0 � y � d

2

;

9

=

;

(3.20)

u

�

�

2�

2n

m+ 2

y

m+2

2

; y

�

= f

1

(y); 0 � y � d

1

: (3.21)

Here B

3

=

m

2

K

0

1

K

1

�

e

B

0

� y

e

B

1

, and by (3.10) we have

sup

D

1

nO

kB

3

k <1; sup

D

1

nO

kB

3x

k <1: (3.22)

It follows from (3.6) that v

1

= y

�

m

2

K

1

w, v

2

= K

2

w, w = y

m

2

K

0

1

v

1

+

K

0

2

v

2

. Therefore (v

1

; v

2

) belongs to the class (3.15) if and only if w 2

C

1

�+

m

2

;

m

2

+1;1

.

Let L

i

(x

0

; y

0

) : x = z

i

(x

0

; y

0

; t) = x

0

+

2�

i

m+2

y

m+2

2

0

�

2�

i

m+2

t

m+2

2

, y = t

be a parametrization of the characteristic curve L

i

(x

0

; y

0

) passing through

the point (x

0

; y

0

) 2 D

1

, i = 1; : : : ; 2n. Denote by !

i

(x; y) the ordinate of

the point of intersection of the characteristic L

i

(x; y) with the curve 


1

for

1 � i � n and with the curve 


2

for n < i � 2n, (x; y) 2 D

1

. It can be

easily veri�ed that

!

i

(x; y) =

=

8

>

<

>

:

h

m+2

2

(�

i

� �

2n

)

�1

�

x+

2�

i

m+2

y

m+2

2

�i

2

m+2

; i = 1; : : : ; n;

h

m+2

2

(�

i

� �

1

)

�1

�

x+

2�

i

m+2

y

m+2

2

�i

2

m+2

; i = n+ 1; : : : ; 2n:

(3.23)
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Let D

Q

, Q 2 D

1

nO, be the curvilinear quadrangle with a vertex at

O(0; 0), bounded by the characteristics 


1

, 


2

, L

n

(Q) and L

n+1

(Q). Since by

the assumption �

n

> 0 and �

n+1

< 0, the domain D

Q

, Q(x

0

; y

0

) 2 D

1

nO,

is located entirely in the half-plane y � y

0

. Therefore it follows from the

construction of the function !

i

(x; y) that

0 � !

i

(x; y) � y; (x; y) 2 D

1

; i = 1; : : : ; 2n; (3.24)

because the segment of the characteristic L

i

(Q), issued from the point Q 2

D

1

nO up to the intersection with the curve 


1

for 1 � i � n and with the

curve 


2

for n < i � 2n, is contained entirely in D

Q

.

By virtue of (3.23) we can easily see that

!

i

�

�

�

OP

1

=

8

>

<

>

:

y; i = 1; : : : ; n;

�

i

y; i = n+ 1; : : : ; 2n� 1;

0; i = 2n;

!

i

�

�

�

OP

2

=

8

>

<

>

:

0; i = 1;

�

i

y; i = 2; : : : ; n;

y; i = n+ 1; : : : ; 2n:

(3.25)

Here

�

i

=

(

�

(�

i

� �

1

)

�1

(�

i

� �

2n

)

�

2

m+2

; i = n+ 1; : : : ; 2n� 1;

�

(�

i

� �

2n

)

�1

(�

i

� �

1

)

�

2

m+2

; i = 2; : : : ; n;

moreover, by (3.24) we have

�

1

= �

2

= 0; 0 < �

i

< 1; i = 2; : : : ; 2n� 1: (3.26)

Suppose

'

i

(y) =

8

<

:

w

i

j

OP

1

= w

i

�

�

2�

2n

m+2

y

m+2

2

; y

�

; 0 � y � d

1

; i = 1; : : : ; n;

w

i

j

OP

2

= w

i

�

�

2�

1

m+2

y

m+2

2

; y

�

; 0 � y � d

2

; i = n+ 1; : : : ; 2n:

Since � > 0, it is obvious that '

i

(0) = w

i

(0; 0) = 0, i = 1; : : : ; 2n.

Integrating the i-th equation of the system (3.18) along the i-th charac-

teristic L

i

(x; y) from P (x; y) 2 D

1

to the point of intersection of L

i

(x; y)

with the curve 


1

for i � n and with the curve 


2

for i > n, while the equa-

tion (3.19) along the �rst characteristic, and taking into account (3.21), we

obtain

w

i

(x; y) = '

i

�

!

i

(x; y)

�

+

+

y

Z

!

i

(x;y)

1

t

�

2n

X

j=1

B

3ij

w

j

+

n

X

j=1

tC

2ij

u

j

�

�

z

i

(x; y; t); t

�

dt+ F

2

i

(x; y); (3.27)

i = 1; : : : ; 2n;



77

u(x; y) = f

1

�

!

1

(x; y)

�

+

+

y

Z

!

1

(x;y)

(��

1

K

1

+K

2

)w

�

z

1

(x; y; t); t

�

dt; (3.28)

where F

2

i

(x; y) =

R

y

!

i

(x;y)

F

1

i

(z

i

(x; y; t); t)dt.

We rewrite the system of equations (3.27) in the form of one equation

w(x; y) = e'(x; y) +

+

2n

X

i=1

y

Z

!

i

(x;y)

1

t

(B

4i

w + C

3i

u)

�

z

i

(x; y; t); t

�

dt+ F

2

(x; y); (3.29)

where B

4i

and C

3i

are well-de�ned matrices of orders 2n� 2n and 2n� n,

respectively, and e'(x; y) = ('

1

(!

1

(x; y)); : : : ; '

2n

(!

2n

(x; y))).

Substituting the expression for the value w(x; y) from (3.29) into the

boundary condition (3.20) and using the equalities (3.25), we get

G

1

0

'

1

(y) +

2n�1

X

i=n+1

G

1

i

'

2

(�

i

y) + T

1

(w; u)(y) = f

3

(y);

0 � y � d

1

;

G

2

0

'

2

(y) +

n

X

j=2

G

2

j

'

1

(�

j

y) + T

2

(w; u)(y) = f

4

(y);

0 � y � d

2

;

(3.30)

where '

1

(y) = ('

1

(y); : : : ; '

n

(y)), '

2

(y) = ('

n+1

(y); : : : ; '

2n

(y)); G

1

i

, G

2

j

are well-de�ned constant n�n-matrices; T

i

(w; u), i = 1; 2, are linear integral

operators; f

3

and f

4

are given in terms of the known functions f

1

, f

2

, F .

Because of (3.17), (3.20) we can easily see that

G

1

0

=

�

(�

1

� �

2n

)�

1

; : : : ; (�

n

� �

2n

)�

n

�

;

G

2

0

=

�

(�

n+1

� �

1

)�

n+1

; : : : ; (�

2n

� �

1

)�

2n

�

:

Therefore, when the condition (3.3) is ful�lled, the matrices G

1

0

and G

2

0

are

invertible, and we can rewrite equations (3.30) equivalently as

'

1

(y)�

2n�1

X

i=n+1

n

X

j=2

G

1

ij

'

1

(�

i

�

j

y) + T

3

(w; u)(y) = f

5

(y);

0 � y � d

1

;

'

2

(y)�

2n�1

X

i=n+1

n

X

j=2

G

2

ij

'

2

(�

i

�

j

y) + T

4

(w; u)(y) = f

6

(y);

0 � y � d

2

;

(3.31)
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where G

1

ij

= (G

1

0

)

�1

G

1

i

(G

2

0

)

�1

G

2

j

, G

2

ij

= (G

2

0

)

�1

G

2

j

(G

1

0

)

�1

G

1

i

, and T

3

and

T

4

are linear integral operators.

It is easily seen that the operators T

3

and T

4

are given by

T

3

(w; u)(y) =

2n

X

i=n+1

y

Z

�

i

y

1

t

(B

5i

w + C

5i

u)

�

z

i

(


1

(y); y; t); t

�

dt+

+

2n

X

i=n+1

n

X

j=1

�

i

y

Z

�

i

�

j

y

1

t

(B

6ij

w + C

6ij

u)

�

z

j

(


2

(�

i

y); �

i

y; t); t

�

dt;

T

4

(w; u)(y) =

n

X

j=1

y

Z

�

j

y

1

t

(B

7j

w + C

7j

u)

�

z

j

(


2

(y); y; t); t

�

dt+

+

2n

X

i=n+1

n

X

j=1

�

j

y

Z

�

i

�

j

y

1

t

(B

8ij

w + C

8ij

u)

�

z

i

(


1

(�

j

y); �

j

y; t); t

�

dt:

(3.32)

Here x = 


i

(y) is the equation of the curve 


i

, i = 1; 2, and B

5i

, C

5i

, B

6ij

,

C

6ij

, B

7j

, C

7j

, B

8ij

, C

8ij

are well-de�ned matrices.

By (3.23) and the requirements imposed on f

1

, f

2

, and F , one can easily

verify that the values F

2

, f

5

, f

6

from (3.29), (3.31) satisfy for � > 1 the

following conditions:

F

2

2 C

1

�+

m

2

;

m

2

+1;1

; f

4+i

2 C

1

(OP

i

);

sup

OP

i

nO

ky

�(�+

m

2

)

f

4+i

k <1; sup

OP

i

nO

ky

�(�+

m

2

�1)

f

(1)

4+i

k <1; i = 1; 2:

Remark. Obviously, the problem (3.1), (3.2) in the class (3.4) is equiva-

lent to the system of equations (3.28), (3.29), (3.31) with respect to unknown

functions u, w, '

1

and '

2

, where

u 2 C

1

�+

m

2

;

m

2

;0

; w 2 C

1

�+

m

2

;

m

2

+1;1

;

'

i

2 C

1

�+

m

2

;1

=

n

'

i

2 C

1

[0; d

i

] : sup

0<y�d

i

ky

�(�+

m

2

)

'

i

k <1;

sup

0<y�d

i

ky

�(�+

m

2

�1)

d

dy

'

i

k <1

o

; i = 1; 2:

Indeed, w 2 C

1

�+

m

2

;

m

2

+1;1

implies that v = (v

1

; v

2

) belongs to the class

(3.15), and since u

x

= v

1

and u

y

= v

2

, the function u belonging to C

1

�+

m

2

;

m

2

;0

will also belong to C

2

�+

m

2

+1;

m

2

+1;1

, i.e., to the class (3.4).
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x

Introduce into consideration the functional equations

(�

p

'

p

)(y) = '

p

(y)�

2n�1

X

i=n+1

n

X

j=2

G

p

ij

'

p

(�

i

�

j

y) = g

p

(y); (3.33)

0 � y � d

p

; p = 1; 2;

where G

p

ij

, �

i

, �

j

are de�ned in (3.31).

Assume h

p

(�) =

2n�1

P

i=n+1

n

P

j=2

(�

i

�

j

)

�

kG

p

ij

k, p = 1; 2. By (3.3), (3.17), (3.20)

and (3.26) we have 0 < �

i

�

j

< 1, kG

p

ij

k 6= 0, i = n + 1; : : : ; 2n � 1; j =

2; : : : ; n; p = 1; 2. Therefore the functions h

1

(�) and h

2

(�) are continuous

and strictly monotonically decreasing on (�1;1); moreover, lim

�!�1

h

i

(�) =

+1 and lim

�!+1

h

i

(�) = 0, i = 1; 2. Hence there exist the unique real num-

bers �

1

and �

2

such that h

1

(�

1

) = 1 and h

2

(�

2

) = 1. Let �

0

= max(�

1

; �

2

).

According to Lemma 2.2 of Chapter II, equations (3.33) are uniquely

solvable in the spaces

�

C

�

[0; d

p

], p = 1; 2, for � > �

0

, and we have the

estimates

k(�

�1

p

g

p

)(y)k = k'

p

(y)k � �

p�

y

�

kg

p

k �

C

�

[0;d

p

]

; p = 1; 2; (3.34)

where �

p�

= (1� h

p

(�))

�1

> 0, lim

�!+1;

�>�

0

�

p�

= 1, p = 1; 2.

Equations (3.31) in terms of (3.33) take the form

(�

1

'

1

)(y) + T

3

(w; u)(y) = f

5

(y); 0 � y � d

1

;

(�

2

'

2

)(y) + T

4

(w; u)(y) = f

6

(y); 0 � y � d

2

:

(3.35)

We shall solve the system of equations (3.28), (3.29), (3.35) with respect

to unknown functions u, w, '

1

, '

2

by the method of successive approxima-

tions.

Assume

u

0

(x; y) � 0; w

0

(x; y) � 0; '

i

0

(y) � 0; i = 1; 2;

u

k

(x; y) = f

1

�

!

1

(x; y)

�

+

y

Z

!

1

(x;y)

(��

1

K

1

+K

2

)w

k�1

�

z

1

(x; y; t); t

�

dt;

w

k

(x; y) = e'

k

(x; y) +

+

2n

X

i=1

y

Z

!

i

(x;y)

1

t

(B

4i

w

k�1

+ C

3i

u

k�1

)

�

z

i

(x; y; t); t

�

dt+ F

2

(x; y);
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where e'

k

(x; y) = ('

1;k

(!

1

(x; y)); : : : ; '

2n;k

(!

2n

(x; y))), and the values '

1

k

(y)

= ('

1;k

(y); : : : ; '

n;k

(y)) and '

2

k

(y) = ('

n+1;k

(y); : : : ; '

2n;k

(y)) are to be

determined from the equations

(�

1

'

1

k

)(y) + T

3

(w

k�1

; u

k�1

)(y) = f

5

(y);

(�

2

'

2

k

)(y) + T

4

(w

k�1

; u

k�1

)(y) = f

6

(y):

Remark. By virtue of (3.22), the coe�cients at the unknown functions

u and w appearing in the equalities (3.29) and (3.30) along with their �rst

derivatives with respect to x are bounded uniformly in the norm in D

1

nO.

Owing to the estimates (3.34), equality (3.32) and the above remark, we

have the following

There exists a real number �

1

� 1 depending only on the

coe�cients of the system (3:1) such that for � > �

1

the estimates

ku

k+1

(x; y)� u

k

(x; y)k �M

1�

y

�+

m

2

q

k

1�

;

kw

k+1

(x; y)� w

k

(x; y)k �M

1�

y

�+

m

2

q

k

1�

;

k'

i

k+1

(y)� '

i

k

(y)k �M

1�

y

�+

m

2

q

k

1�

; i = 1; 2;

are valid, where positive numbers M

1�

and q

1�

do not depend on k, q

1�

as

a function of � strictly monotonically decreases for � > �

1

, and q

1�

< 1,

lim

�!+1

q

1�

= 0.

On the basis of Lemma 1 we prove

There exists a positive number �

2

, �

2

� �

1

, depending only

on the coe�cients of the system (3:1) such that for � > �

2

the estimates










@

@x

u

k+1

(x; y)�

@

@x

u

k

(x; y)










�M

2�

y

�

q

k

2�

;










@

@y

u

k+1

(x; y)�

@

@y

u

k

(x; y)










�M

2�

y

�+

m

2

q

k

2�

;










@

@x

w

k+1

(x; y) �

@

@x

w

k

(x; y)










�M

2�

y

��1

q

k

2�

;










@

@y

w

k+1

(x; y)�

@

@y

w

k

(x; y)










�M

2�

y

�+

m

2

�1

q

k

2�

;










@

@y

'

i

k+1

(y)�

@

@y

'

i

k

(y)










�M

2�

y

�+

m

2

�1

q

k

2�

; i = 1; 2;

are valid. Here positive numbers M

2�

and q

2�

do not depend on k, q

2�

as

a function of � strictly monotonically decreases for � > �

2

, and q

2�

< 1,

lim

�!+1

q

2�

= 0.

The lemma below holds.
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The homogeneous system of equations corresponding to

(3:28), (3:29), (3:31) has only the trivial solution in the class of functions

u;w 2 C

0

�+

m

2

;0;0

; '

i

2 C[0; d

i

]; sup

0<y�d

i

ky

�(�+

m

2

)

'

i

k <1; i = 1; 2;

where � > �

2

.

From Lemmas 3.1{3.3 we have

For � > �

2

the system of equations (3:28), (3:29), (3:31)

has the unique solution in the class of functions

u 2 C

1

�+

m

2

;

m

2

;0

; w 2 C

1

�+

m

2

;

m

2

+1;1

; '

i

2 C

1

�+

m

2

;1

; i = 1; 2:

From the remark at the end of x3 and Lemma 3.4 it follows that when

the conditions (3.3) are ful�lled and � > �

2

, the problem (3.1), (3.2) is

uniquely solvable in the class (3.4); moreover, we can choose the number �

2

to depend only on the coe�cients A, B, C and a of the system (3.1). �

x

Let us consider the system of the form

Au

xx

+ 2y

m

2

Bu

xy

+ y

m

Cu

yy

+ au

x

+ bu

y

+ cu = F; (3.36)

where A, B, C, a, b, c are given real n � n-matrices, F is a given and u is

an unknown n-dimensional real vector, 0 < m = const < 2, n > 1.

Below A, B, C are assumed to be constant matrices, detA 6= 0, and

the polynomial p

0

(�) = det(A�

2

+ 2B� + C) of degree 2n is assumed to

have simple real roots �

1

; : : : ; �

2n

. Under these assumptions the system

(3.36) for y > 0 is strictly hyperbolic, and the line of parabolic degeneration

y = 0 is a characteristic of the system (3.36). It is easily seen that the

numbers y

m

2

�

1

; : : : ; y

m

2

�

2n

are the roots of the characteristic polynomial

p(y;�) = det(A�

2

+ 2y

m

2

B�+ y

m

C) of the system (3.36), while the curves

de�ned by the equations

L

i

(P ) : �

i

x+

2

2�m

y

2�m

2

= �

i

x

0

+

2

2�m

y

2�m

2

0

; i = 1; : : : ; 2n; y

0

> 0;

and passing through P (x

0

; y

0

) are characteristics of the system (3.36).

Denote by D the domain lying in the half-plane y > 0 and bounded by

the two adjoint characteristics




1

: �

i

1

x+

2

2�m

y

2�m

2

= 0; 


2

: �

i

2

x+

2

2�m

y

2�m

2

= 0;

�

i

2

< �

i

1

< 0;

of the system (3.36), coming out of the origin O(0; 0). Let us take arbitrar-

ily on 


1

a point P

1

di�erent from zero and choose the numbering of the

characteristic curves L

i

(P

1

), i = 1; : : : ; 2n, coming out of P

1

into the angle
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D, such that starting from L

1

(P

1

) they follow each other counter-clockwise.

Let us �x on the curve 


2

a point P

2

lying strictly between the two points

of intersection of the characteristics L

n

(P

1

) and L

n+1

(P

1

) with the curve




2

. Let D

0

� D be the characterisitc quadrangle with a vertex at the point

O, bounded by the characteristics 


1

, 


2

, L

n

(P

1

) and L

n+1

(P

2

).

Consider the characteristic problem formulated as follows [40]: �nd in

the domain D

0

a regular solution u(x; y) of the system (3.36) satisfying on

the segments OP

i

of characterisitcs 


i

the following conditions

uj

OP

i

= f

i

; i = 1; 2; (3.37)

where f

1

, f

2

are given n-dimensional real vectors, f

1

(0) = f

2

(0).

Note that owing to the character of degeneration of the system (3.36) the

condition m < 2 whose ful�lment is not needed when considering problem

(3.1), (3.2), is of great importance. In contrast to the problem (3.1), (3.2)

where a condition of Gellerstedt type is imposed on the lowest coe�cient a

at u

x

, in considering the problem (3.36), (3.37) a condition of similar type

is to be imposed on the coe�cient b at u

y

.

Below we assume that a, b, c, F 2 C

1

(D

0

), f

i

2 C

2

(OP

i

), i = 1; 2, and

moreover, in the domain D

0

sup

D

0

nO

ky

1�m

bk <1 for m > 1;

sup

D

0

nO

kx

�(�+

m

2�m

�1)

Fk <1; sup

D

0

nO

kx

�(��2)

F

y

k <1; � = const > 0;

f

i

(0) = 0; sup

OP

i

nO

kx

�(�+

m

2�m

)

f

(1)

i

k <1;

sup

OP

i

nO

kx

�(�+

m

2�m

�1)

f

(2)

i

k <1; i = 1; 2:

Since the system (3.36) is strictly hyperbolic, we have dimKer(A�

2

i

+

2B�

i

+ C) = 1, i = 1; : : : ; 2n. Let �

i

2 Ker(A�

2

i

+ 2B�

i

+ C), k�

i

k 6= 0,

i = 1; : : : ; 2n.

Under the assumption that �

n

< �

2n

< �

n+1

, the following theorem is

valid.

If

rank

�

�

1

; : : : ; �

n

	

= rank

�

�

n+1

; : : : ; �

2n

	

= n; (3.38)

then there exists a positive number �

0

depending only on the coe�cients A,

B, C, b of the system (3:36) such that for all � > �

0

the problem (3:36),

(3:37) is uniquely solvable in the class of functions

n

u 2 C

2

(D

0

) : @

i;j

u(0; 0) = 0;

sup

D

0

nO

kx

�(�+

2

2�m

�i�

2

2�m

j)

@

i;j

uk <1; 0 � i+ j � 2

o

;
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@

i;j

=

@

i+j

@x

i

@y

j

:

As examples show, when either the condition (3.38) or the inequality

� > �

0

is violated, the homogeneous problem corresponding to (3.36), (3.37)

may have an in�nite number of linearly independent solutions.

The proof of Theorem 3.2 goes by the same scheme as that of Theorem

3.1. For details the reader may refer to [40].
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CHAPTER IV

x

In the space of variables x

1

, x

2

, t let us consider the wave equation

�u �

@

2

u

@t

2

�

@

2

u

@x

2

1

�

@

2

u

@x

2

2

= F; (4.1)

where F is a given real function and u is an unknown real function.

Denote by D : k

1

t < x

2

< k

2

t, 0 < t < t

0

, �1 � k

i

= const � 1,

i = 1; 2, k

1

< k

2

, the domain lying in a half-space t > 0 bounded by the

plane surfaces S

i

: k

i

t�x

2

= 0, 0 � t � t

0

, i = 1; 2, and by the plane t = t

0

.

For equation (4.1) let us consider the boundary value problem formulated

as follows [44, 45]: �nd in the domain D a solution u(x

1

; x

2

; t) of equation

(4.1) satisfying the boundary conditions

u

�

�

S

i

= f

i

; i = 1; 2; (4.2)

where f

i

, i = 1; 2, are given real functions on S

i

with (f

1

� f

2

)j

S

1

\S

2

= 0.

Note that when jk

i

j = 1, the surface S

i

is a characteristic surface for

the equation (4.1), while when jk

i

j < 1, this surface is time-type. In the

case where jk

i

j = 1, i = 1; 2, the problem (4.1), (4.2) represents a multidi-

mensional analogue of the formulated in the introduction Goursat problem

for the equation of string oscillation. For jk

1

j < 1 and jk

2

j = 1 the prob-

lem (4.1), (4.2) represents a multidimensional analogue of the �rst Darboux

problem and for jk

i

j < 1, i = 1; 2, it represents a multidimensional analogue

of the second Darboux problem.

For the equation (4.1) one can also consider the boundary value prob-

lem formulated as follows: �nd in the domain D a solution u(x

1

; x

2

; t) of

equation (4.1) satisfying the boundary conditions

@u

@n

�

�

�

S

1

= f

1

; (4.3)

u

�

�

S

2

= f

2

; (4.4)

where f

i

, i = 1; 2, are given real functions and

@

@n

is the derivative along

the outer normal to S

1

.

Below we shall prove existence and uniqueness theorems both for regular

and for strong solutions of the problems (4.1), (4.2) and (4.1), (4.3), (4.4)

in the class W

1

2

.
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Denote by C

1

�

(D) the space of functions of the class C

1

(D), having

bounded supports, i.e.

C

1

�

(D) =

�

u 2 C

1

(D) : diam suppu <1

	

:

The spaces C

1

�

(S

i

), i = 1; 2, are de�ned in a similar way.

Denote byW

1

2

(D), W

2

2

(D) andW

1

2

(S

i

), i = 1; 2, the well-known Sobolev

spaces. Note that C

1

�

(D) is an everywhere dense subspace of the spaces

W

1

2

(D) and W

2

2

(D), while C

1

�

(S

i

) is an everywhere dense subspace of the

space W

1

2

(S

i

), i = 1; 2.

Let f

i

2W

1

2

(S

i

), i = 1; 2, F 2 L

2

(D). A function u 2W

1

2

(D)

is said to be a strong solution of the problem (4.1), (4.2) of the class W

1

2

if there exists a sequence u

n

2 C

1

�

(D) such that u

n

! u, �u

n

! F and

u

n

j

S

i

! f

i

i = 1; 2, in the spaces W

1

2

(D), L

2

(D) and W

1

2

(S

i

), i = 1; 2,

respectively, i.e., for n!1

ku

n

� uk

W

1

2

(D)

! 0; k�u

n

� Fk

L

2

(D)

! 0;

ku

n

j

S

i

� f

i

k

W

1

2

(S

i

)

! 0; i = 1; 2:

Below we shall also introduce the notion of the strong solution of the

problem (4.1), (4.3), (4.4) in the class W

1

2

.

x

The following lemma holds.

When �1 � k

1

< 0 and 0 < k

2

� 1, the estimate

kuk

W

1

2

(D)

� C

�

2

X

i=1

kf

i

k

W

1

2

(S

i

)

+ kFk

L

2

(D)

�

; (4.5)

is valid for any u 2 W

2

2

(D), where f

i

= uj

S

i

, i = 1; 2, F = �u, and a

positive constant C does not depend on u.

Proof. Since the space C

1

�

(D) (C

1

�

(S

i

)) is a dense subspace of the spaces

W

1

2

(D) and W

2

2

(D) (W

1

2

(S

i

)), due to the known theorems of embedding of

W

2

2

(D) in W

1

2

(D) and W

2

2

(D) in W

1

2

(S

i

) it su�ces to prove the validity of

the estimate (4.5) for the functions u of the class C

1

�

(D).

Introduce the notation:

D

�

=

�

(x; t) 2 D : t < �

	

; D

0�

= @D

�

\ ft = �g; 0 < � � t

0

;

S

i�

= @D

�

\ S

i

; i = 1; 2;

S

�

= S

1�

[ S

2�

; �

1

= cos([n; x

1

); �

2

= cos([n; x

2

); �

3

= cos(

c

n; t):
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Here n = (�

1

; �

2

; �

3

) is the unit vector of the outer normal to @D

�

; more-

over, as is easily seen,

n

�

�

S

1�

=

�

0;

�1

p

1 + k

2

1

;

k

1

p

1 + k

2

1

�

; n

�

�

S

2�

=

�

0;

1

p

1 + k

2

2

;

�k

2

p

1 + k

2

2

�

;

nj

D

0�

= (0; 0; 1):

Therefore for �1 � k

1

< 0 and 0 < k

2

� 1 we have

�

3

�

�

S

i�

< 0; i = 1; 2; �

�1

3

(�

2

3

� �

2

1

� �

2

2

)

�

�

S

i

> 0; i = 1; 2: (4.6)

Multiplying both parts of (4.1) by 2u

t

, where u 2 C

1

�

(D), F = �u,

integrating the obtained expression over D

�

, and taking into account (4.6),

we get

2

Z

D

�

Fu

t

dxdt =

Z

D

�

�

@u

2

t

@t

+ 2u

x

1

u

tx

1

+ 2u

x

2

u

tx

2

�

dxdt�

�2

Z

S

�

�

u

x

1

u

t

�

1

+ u

x

2

u

t

�

2

�

ds =

Z

D

0�

�

u

2

t

+ u

2

x

1

+ u

2

x

2

�

dx +

+

Z

S

�

��

u

2

t

+ u

2

x

1

+ x

2

x

2

�

�

3

� 2

�

u

x

1

u

t

�

1

+ u

x

2

u

t

�

2

��

ds =

=

Z

D

0�

�

u

2

t

+ u

2

x

1

+ u

2

x

2

�

dx+

Z

S

�

�

�1

3

��

�

3

u

x

1

� �

1

u

t

�

2

+

+

�

�

3

u

x

2

� �

2

u

t

�

2

+

�

�

2

3

� �

2

1

� �

2

2

�

u

2

t

�

ds �

�

Z

D

0�

�

u

2

t

+ u

2

x

1

+ u

2

x

2

�

dx+

Z

S

�

�

�1

3

��

�

3

u

x

1

� �

1

u

t

�

2

+

+

�

�

3

u

x

2

� �

2

u

t

�

2

�

ds: (4.7)

Putting

w(�) =

Z

D

0�

�

u

2

t

+ u

2

x

1

+ u

2

x

2

�

dx; eu

i

= �

3

u

x

i

� �

i

u

t

; i = 1; 2;

C

1

= max

�

p

1 + k

2

1

jk

1

j

;

p

1 + k

2

2

jk

2

j

�

;

from (4.5) we have

w(�) � C

1

Z

S

�

�

eu

2

1

+ eu

2

2

�

ds+

Z

D

�

�

F

2

+ u

2

t

�

dxdt �
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� C

1

Z

S

�

�

eu

2

1

+ eu

2

2

�

ds+

�

Z

0

d�

Z

D

0�

u

2

t

dx+

Z

D

�

F

2

dxdt �

� C

1

Z

S

�

�

eu

2

1

+ eu

2

2

�

ds+

�

Z

0

w(�)d� +

Z

D

�

F

2

dxdt: (4.8)

Let (x; �

x

) be the point of intersection of the surface S

1

[ S

2

and the

straight line, parallel to the axis t and passing through (x; 0). We have

u(x; �) = u(x; �

x

) +

�

Z

�

x

u

t

(x; t)dt;

which implies

Z

D

0�

u

2

(x; �)dx �

� 2

Z

D

0�

u

2

(x; �

x

)dx+ 2j� � �

x

j

Z

D

0�

dx

�

Z

�

x

u

2

t

(x; t)dt =

= 2

Z

S

�

�

�1

3

u

2

ds+ 2j� � �

x

j

Z

D

�

u

2

t

dxdt �

� C

2

�

Z

S

�

u

2

ds+

Z

D

�

u

2

t

dxdt

�

; (4.9)

where C

2

= 2max(C

1

; t

0

).

Introducing the notation

w

0

(�) =

Z

D

0�

�

u

2

+ u

2

t

+ u

2

x

1

+ u

2

x

2

�

dx

and adding inequalities (4.8) and (4.9), we obtain

w

0

(�) � C

2

h

Z

S

�

�

u

2

+ eu

2

1

+ eu

2

2

�

ds+

�

Z

0

w

0

(�)d� +

Z

D

�

F

2

dxdt

i

;

from which by Gronwall's lemma we �nd that

w

0

(�) � C

3

h

Z

S

�

�

u

2

+ eu

2

1

+ eu

2

2

�

ds+

Z

D

�

F

2

dxdt

i

; (4.10)

where C

3

= const > 0.
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We can easily see that the operator �

3

@

@x

i

��

i

@

@t

is an interior di�erential

operator on the surface S

�

. Therefore by virtue of (4.2) the inequality

Z

S

�

�

u

2

+ eu

2

1

+ eu

2

2

�

ds � C

4

2

X

i=1

kf

i

k

2

W

1

2

(S

i�

)

; C

4

= const > 0; (4.11)

is valid.

It follows from (4.10) and (4.11) that

w

0

(�) � C

5

�

2

X

i=1

kf

i

k

2

W

1

2

(S

i�

)

+ kFk

2

L

2

(D

�

)

�

; C

5

= const > 0: (4.12)

Integrating both parts of (4.12) with respect to � , we get (4.5). �

Remark 1. It should be noted that the constant C in (4.5) tends to in-

�nity for k

1

! 0 or k

2

! 0 and in the limiting case where k

1

= 0 or k

2

= 0,

i.e., for S

1

: x

2

= 0, 0 � t � t

0

or S

2

: x

2

= 0, 0 � t � t

0

, this estimate

becomes, generally speaking, invalid. At the same time, following the proof

of Lemma 4.1, we can easily see that (4.5) is also valid for k

1

= 0 or for

k

2

= 0 if f

1

= uj

S

1

= 0 or f

2

= uj

S

2

= 0.

Remark 2. Below along with (4.1) we consider the equation

Lu � �u+ au

x

1

+ bu

x

2

+ cu

t

+ du = F; (4.13)

where the coe�cients a, b, c and d are given bounded measurable func-

tions in the domain D. Moreover, it will be shown that the solvability of

the problem (4.13), (4.2) follows from the solvability of the problem (4.1),

(4.2) and the fact that in speci�cally chosen equivalent norms of the spaces

L

2

(D), W

1

2

(D), W

1

2

(S

i

), i = 1; 2, the lower terms in equation (4.13) cause

arbitrarily small perturbations.

In the spaceW

1

2

(D) we consider the following equivalent norm depending

on a parameter 


kuk

2

D;1;


=

Z

D

e

�
t

�

u

2

+ u

2

t

+ u

2

x

1

+ u

2

x

2

�

dxdt; 
 > 0:

In the same way we introduce the norms kFk

D;0;


, kf

i

k

S

i

;1;


in the spaces

L

2

(D), W

1

2

(S

i

), i = 1; 2.

Using the energetic estimate (4.12), we obtain an a priori estimate for u 2

C

1

�

(D) with respect to the norms k�k

D;1;


, k�k

S

i

;1;


, k�k

D;0;


. Multiplying

both parts of (4.12) by e

�
�

and integrating the obtained inequality with

respect to � from 0 to t

0

, we get

kuk

2

D;1;


=

t

0

Z

0

e

�
�

w

0

(�)d� �
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� C

5

�

2

X

i=1

t

0

Z

0

e

�
�

kf

i

k

2

W

1

2

(S

i�

)

d� +

t

0

Z

0

e

�
�

kFk

2

L

2

(D

�

)

d�

�

: (4.14)

We have

t

0

Z

0

e

�
�

kFk

2

L

2

(D

�

)

d� =

t

0

Z

0

e

�
�

h

�

Z

0

�

Z

D

0�

F

2

dx

�

d�

i

d� =

=

t

0

Z

0

h

Z

D

0�

F

2

dx

t

0

Z

�

e

�
�

d�

i

d� =

1




t

0

Z

0

�

e

�
�

� e

�
t

0

�

h

Z

D

0�

F

2

dx

i

d� �

�

1




t

0

Z

0

e

�
�

h

Z

D

0�

F

2

dx

i

d� =

1




kFk

2

D;0;


; (4.15)

where D

0�

= @D

�

\ ft = �g, 0 < � � t

0

.

Analogously we obtain

t

0

Z

0

e

�
�

kf

i

k

2

W

1

2

(S

i�

)

d� �

C

6




kf

i

k

2

S

i

;1;


; i = 1; 2; (4.16)

where C

6

is a positive constant independent of f

i

and 
.

Under conditions of Lemma 4.1 from (4.14){(4.16) we obtain the follow-

ing a priori estimate for u 2W

2

2

(D)

kuk

D;1;


�

C

7

p




�

2

X

i=1

kf

i

k

S

i

;1;


+ kFk

D;0;


�

; (4.17)

where C

7

= const > 0 does not depend on u and 
.

Consider now the problem (4.1), (4.3), (4.4) in the case where k

1

= 0,

i.e., S

1

: x

2

= 0, 0 � t � t

0

, 0 < k

2

� 1, and in the boundary condition

(4.3) the function f

1

= 0, that is,

@u

@n

�

�

�

S

1

= 0: (4.18)

For any u 2 W

2

2

(D) satisfying the homogeneous boundary

condition (4:18), the estimate

kuk

W

1

2

(D)

� C

�

kf

2

k

W

1

2

(S

1

)

+ kFk

L

2

(D)

�

(4.19)

is valid, where f

2

= uj

S

2

, F = �u and a positive constant C does not depend

on u.



90

Proof. Denote by D

�

: �k

2

t < x

2

< 0, 0 < t < t

0

the domain which is

symmetric to D with respect to the plane x

2

= 0 and by D

0

: �k

2

t <

x

2

< k

2

t, 0 < t < t

0

the domain which is the union of domains D and D

�

together with a piece of a plane surface x

2

= 0, 0 < t < t

0

.

It can be easily veri�ed that if we extend evenly the function u 2W

2

2

(D)

satisfying the homogeneous boundary condition (4.18) to the domain D

�

,

then the obtained function u

0

u

0

(x

1

; x

2

; t) =

(

u(x

1

; x

2

; t); x

2

� 0;

u(x

1

;�x

2

; t); x

2

< 0;

(4.20)

will belong to the classW

2

2

(D

0

). By (4.5) the function u

0

2W

2

2

(D

0

) satis�es

the estimate

ku

0

k

W

1

2

(D

0

)

� C

�

kf

1

k

W

1

2

(S

�

2

)

+ kf

2

k

W

1

2

(S

2

)

+ kF

0

k

L

2

(D

0

)

�

; (4.21)

where S

�

2

: k

2

t+ x

2

= 0, 0 � t � t

0

, f

1

= uj

S

�

2

, f

2

= uj

S

2

, F

0

= �u

0

.

Now it remains only to note that in (4.21)

ku

0

k

W

1

2

(D

0

)

=

p

2kuk

W

1

2

(D)

; kf

1

k

W

1

2

(S

�

2

)

= kf

2

k

W

1

2

(S

2

)

;

kF

0

k

L

2

(D

0

)

=

p

2kFk

L

2

(D)

because of (4.20). �

Remark 3. Arguments similar to those given in proving the estimate

(4.17) enable us to prove that for any u 2 W

2

2

(D) satisfying the homo-

geneous boundary condition (4.18) the estimate

kuk

D;1;


�

C

p




�

kf

2

k

S

2;1;


+ kFk

D;0;


�

; (4.22)

is valid, where f

2

= uj

S

2

, F = �u, and C is a positive constant independent

of u and 
.

Remark 4. It follows from (4.5) and (4.19) that when conditions of Lem-

mas 4.1 and 4.2 are ful�lled, the problems (4.1), (4.2) and (4.1), (4.3), (4.4),

respectively, cannot have more than one strong solution of the class W

1

2

.

We can also show that for the problem (4.1), (4.2) the uniqueness theorem

is likewise valid for the weak solution of the class W

1

2

.

Let k

1

= 0 and k

2

= 1, i.e., S

1

: x

2

= 0, 0 � t � t

0

, while S

2

: t� x

2

= 0,

0 � t � t

0

is a characteristic surface. Suppose S

3

= @D \ ft = t

0

g,

V = fv 2W

1

2

(D) : vj

S

1

[S

3

= 0g.
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Let f

i

2W

1

2

(S

i

), i = 1; 2, F 2 L

2

(D). A function u 2W

1

2

(D)

is called a weak solution of the problem (4.1), (4.2) of the class W

1

2

if it

satis�es both the boundary conditions (4.2) and the identity

Z

D

(u

t

v

t

� u

x

1

v

x

1

� u

x

2

v

x

2

)dxdt +

+

Z

S

2

@f

2

@N

vds+

Z

D

Fvdxdt = 0 (4.23)

for any v 2 V , where

@

@N

is a derivative with respect to a conormal to S

2

,

N is the unit conormal vector at the point (x; t) 2 @D with the direction

cosines

cos

d

Nx

1

= cosdnx

1

; cos

d

Nx

2

= cosdnx

2

; cos

c

Nt = � cos

b

nt;

and n is the unit vector of the outward normal to @D. Since on the charac-

teristic surface S

2

the direction of the conormal N coincides with that of a

bicharacteristic lying on S

2

, the value

@f

2

@N

is determined correctly.

For k

1

= 0, k

2

= 1 the problem (4:1), (4:2) cannot have

more than one weak solution of the class W

1

2

.

Proof. Let a function u 2 W

1

2

(D) satisfy the identity (4.23) with uj

S

i

=

f

i

= 0, i = 1; 2, F = 0. In this identity we take as v the function

v(x

1

; x

2

; t) =

(

0 for t � �;

R

t

�

u(x

1

; x

2

; �)d� for jx

2

j � t � �;

(4.24)

where 0 < � � t

0

.

Obviously, v 2 V and

v

t

= u; v

x

i

=

t

Z

�

u

x

i

(x

1

; x

2

; �)d�; i = 1; 2;

v

tx

i

= u

x

i

; v

tt

= u

t

:

(4.25)

By virtue of (4.24) and (4.25) the identity (4.23) for f

2

= 0, F = 0 will

take the form

Z

D

�

�

v

tt

v

t

� v

tx

1

v

x

1

� v

tx

2

v

x

2

�

dxdt = 0;

i.e.,

Z

D

�

@

@t

�

v

2

t

� v

2

x

1

� v

2

x

2

�

dxdt = 0; (4.26)

where D

�

= D \ ft < �g.
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Applying Gauss-Ostrogradsky's formula to the left-hand side of (4.26),

we obtain

Z

@D

�

�

v

2

t

� v

2

x

1

� v

2

x

2

�

cos

b

ntds = 0: (4.27)

Since @D

�

= S

1�

[ S

2�

[ S

3�

, for S

i�

= @D

�

\ S

i

, i = 1; 2, S

3�

=

@D

�

\ ft = �g and

cos

b

nt

�

�

S

1�

= 0; cos

b

nt

�

�

S

2�

= �

1

p

2

; cos

b

nt

�

�

S

3�

= 1;

u

�

�

S

i�

= f

i

= 0; i = 1; 2; v

x

i

�

�

S

3�

= 0; i = 1; 2; v

t

= u;

it follows from (4.27) that

Z

S

3�

u

2

dx

1

dx

2

+

1

p

2

Z

S

2�

�

v

2

x

1

+ v

2

x

2

�

ds = 0:

Hence, uj

S

3�

= 0 for any � from (0; t

0

]. Therefore, u � 0 in D. �

It should be noted that Lemma 4.3 is also valid for k

1

= �1, k

2

= 1.

Remark 5. Since the strong solution of the problem (4.1), (4.2) of the

class W

1

2

is at the same time a weak solution of the class W

1

2

, it follows

from Lemma 4.3 that if the strong solution of that problem of the class W

1

2

exists, then the same solution will be the unique weak solution of the class

W

1

2

.

x

For a point P

0

(x

0

1

; x

0

2

; t

0

) 2 D the domain of dependence of

the solution u(x

1

; x

2

; t) of the problem (4:1), (4:2) of the class C

2

(D) or

W

2

2

(D) is contained inside the characteristic cone of the past

@K

P

0

: t = t

0

�

q

(x

1

� x

0

1

)

2

+ (x

2

� x

0

2

)

2

with the vertex at P

0

.

Proof. Suppose




P

0

= D \K

P

0

; S

iP

0

= S

i

\ @


P

0

; i = 1; 2;

where K

P

0

: t < t

0

�

p

(x

1

� x

0

1

)

2

+ (x

2

� x

0

2

)

2

is the interior of @K

P

0

.

To prove the above lemma it su�ces to show that if

f

i

�

�

S

iP

0

� u

�

�

S

iP

0

= 0; i = 1; 2; F

�

�




P

0

� �u

�

�




P

0

= 0; (4.28)

then uj




P

0

= 0.



93

Consider �rst the case u 2 C

2

(D). Denote by S

3P

0

the remainder part

of the boundary of 


P

0

, i.e., S

3P

0

= @


P

0

n(S

1P

0

[ S

2P

0

). According to our

construction, the surface S

3P

0

is a part of @K

P

0

. Therefore

�

3

�

�

S

3P

0

= const > 0;

�

�

2

3

� �

2

1

� �

2

2

�

�

�

S

3P

0

= 0; (4.29)

where n = (�

1

; �

2

; �

3

) is the unit vector of outward normal to @


P

0

.

Multiplying both parts of (4.1) by 2u

t

and integrating the obtained ex-

pression over 


P

0

, taking into account (4.6), (4.28), (4.29) and the argu-

ments we used in obtaining inequality (4.7), we get

0 = 2

Z




P

0

Fu

t

dxdt =

=

Z

@


P

0

��

u

2

t

+ u

2

x

1

+ u

2

x

2

�

�

3

� 2

�

u

x

1

u

t

�

1

+ u

x

2

u

t

�

2

��

ds =

=

Z

@


P

0

�

�1

3

��

�

3

u

x

1

� �

1

u

t

�

2

+

�

�

3

u

x

2

� �

2

u

t

�

2

+

+

�

�

2

3

� �

2

1

� �

2

2

�

u

2

t

�

ds �

�

Z

S

3P

0

�

�1

3

��

�

3

u

x

1

� �

1

u

t

�

2

+

�

�

3

u

x

2

� �

2

u

t

�

2

�

ds: (4.30)

When deducing inequality (4.30), we have used the fact that the operator

�

3

@

@x

i

� �

i

@

@t

is an inner di�erential operator on the surface @


P

0

and, in

particular, by virtue of (4.28) the equalities

�

�

3

@u

@x

i

� �

i

@u

@t

�

�

�

�

S

1P

0

[S

2P

0

= 0; i = 1; 2;

hold on S

1P

0

[ S

2P

0

.

Since �

3

> 0 on S

3P

0

, inequality (4.30) implies

�

�

3

u

x

i

� �

i

u

t

�

�

�

S

3P

0

= 0; i = 1; 2: (4.31)

Taking into account that u 2 C

2

(D) and the inner di�erential operators

�

3

@

@x

i

� �

i

@

@t

, i = 1; 2, are linearly independent on the two-dimensional

connected surface S

3P

0

, (4.31) immediately yields

u

�

�

S

3P

0

� const : (4.32)

But because of (4.28)

u

�

�

S

3P

0

\(S

1P

0

[S

2P

0

)

= 0;

from which due to (4.32) we conclude that

u

�

�

S

3P

0

� 0: (4.33)
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In particular, (4.33) implies u(P

0

) = 0.

If now we take an arbitrary pointQ 2 


P

0

, then (4.28) implies the validity

of the same equalities after substitution of the point P

0

by Q. Therefore,

repeating the above arguments for the domain 


Q

, we obtain u(Q) = 0.

Hence, in the case u 2 C

2

(D) we have uj




P

0

= 0.

Let now u 2 W

2

2

(D) and equalities (4.28) be valid. It can be easily

veri�ed that for any point Q 2 


P

0

the inequality (4.30) is also valid after

substitution of the point P

0

by Q, that is

Z

S

3Q

�

�1

3

��

�

3

u

x

1

� �

1

u

t

�

2

+

�

�

3

u

x

2

� �

2

u

t

�

2

�

ds � 0:

whence, due to the fact that �

3

j

S

3Q

= const > 0, we get

Z

S

3Q

��

�

3

u

x

1

� �

1

u

t

�

2

+

�

�

3

u

x

2

� �

2

u

t

�

2

�

ds = 0: (4.34)

Denote by �

Q

a piecewise smooth curve which at the same time is the

boundary of a two-dimensional connected surface S

3Q

. Obviously,

�

Q

= S

3Q

[ (S

1Q

[ S

2Q

): (4.35)

Using the fact that on S

3Q

inner di�erential operators �

3

@

@x

i

��

i

@

@t

, i = 1; 2,

are independent, it is not di�cult to obtain for any v 2 W

1

2

(S

3Q

) the

following estimate

Z

S

3Q

v

2

ds � C

�

Z

�

Q

v

2

ds+

+

Z

S

3Q

��

�

3

v

x

1

� �

1

v

t

�

2

+

�

�

3

v

x

2

� �

2

v

t

�

2

�

ds

�

; (4.36)

where C = const > 0 does not depend on v, and the trace vj

�

Q

2 L

2

(�

Q

)

is correctly determined in virtue of the corresponding embedding theorem.

Since u 2 W

2

2

(D), the traces uj

S

3Q

2 W

1

2

(S

3Q

) and uj

�

Q

2 L

2

(�

Q

) are

correctly determined in virtue of the embedding theorems. Therefore, due

to (4.25) and (4.35) we have

u

�

�

�

Q

= 0: (4.37)

From (4.34), (4.36) and (4.37) we obtain

Z

S

3Q

u

2

ds �

� C

�

Z

�

Q

u

2

ds+

Z

S

3Q

��

�

3

u

x

1

� �

1

u

t

�

2

+

�

�

3

u

x

2

� �

2

u

t

�

2

�

ds

�

= 0;
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from which it immediately follows that

Z

S

3Q

u

2

ds = 0; u

�

�

S

3Q

= 0; 8Q 2 


P

0

: (4.38)

Since u 2 W

2

2

(D), in virtue of (4.38) and applying Fubini's theorem we

can conclude that

u

�

�




P

0

= 0: �

Remark 1. The assertion of Lemma 4.4 is also valid for the problem (4.1),

(4.3), (4.4). Moreover, the above arguments should be modi�ed only on the

part S

1P

0

of the boundary 


P

0

. In this case for k

1

= 0 and due to (4.18)

we have

Z

S

1P

0

��

u

2

t

+ u

2

x

1

+ u

2

x

2

�

�

3

� 2

�

u

x

1

u

t

�

1

+ u

x

2

u

t

�

2

��

ds = 0:

Remark 2. It follows from Lemma 4.4 that the wave process described by

the problem (4.1), (4.2) or (4.1), (4.3), (4.4) propagates with a �nite speed.

Therefore, if u 2 C

1

(D) is a solution of the problem (4.1), (4.2) or (4.1),

(4.3), (4.4) for f

i

2 C

1

�

(S

i

), i = 1; 2, F 2 C

1

�

(D), then u 2 C

1

�

(D).

x

In this section we intend to concern ourselves with the question of solv-

ability of the problem (4.1), (4.2) in the case where

k

1

= �1; k

2

= 1; (4.39)

that is, a multidimensional analogue of the Goursat problem, and in the

case where

�1 < k

1

< 0; k

2

= 1; (4.40)

that is, a multidimensional analogue of the �rst Darboux problem.

First we shall prove the existence of regular solutions of these problems

of the class C

1

�

(D) and then the existence of strong solutions of the class

W

1

2

.

Below we shall get an integral representation of regular solutions of the

problem (4.1), (4.2) by using the method suggested in [6].

Let us denote by D

"�

the part of the domain D which is bounded by the

surfaces S

1

, S

2

, a circular cone K

"

: r

2

= (t� t

0

)

2

(1� ") with the vertex at

(x

0

; t

0

) 2 D and by a cylinder H

�

: r

2

= �

2

, where r

2

= (x

1

� x

0

1

)

2

+ (x

2

�

x

0

2

)

2

, and " and � are su�ciently small positive numbers.
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For any two twice continuously di�erentiable functions u and v we have

the obvious identity

u�v � v�u =

2

X

i=1

@

@x

i

�

v

@u

@x

i

� u

@v

@x

i

�

�

@

@t

�

v

@u

@t

� u

@v

@t

�

: (4.41)

Integrating (4.41) over the domain D

"�

, where u 2 C

1

(D) \ C

2

(D) is a

regular solution of (4.1), and

v = E(r; t; t

0

) =

1

2�

log

t� t

0

�

p

(t� t

0

)

2

� r

2

r

;

we shall have

Z

@D

"�

h

E(r; t; t

0

)

@u

@N

�

@E(r; t; t

0

)

@N

u

i

ds+

+

Z

D

"�

FE(r; t; t

0

)dxdt = 0; (4.42)

where N is the unit conormal vector at the point (x; t) = (x

1

; x

2

; t) 2 @D

"�

with direction cosines

cos

d

Nx

1

= cosdnx

1

; cos

d

Nx

2

= cosdnx

2

; cos

c

Nt = � cos

b

nt;

and n is the unit vector of the outer normal to @D

"�

.

Passing in equality (4.42) to the limit for "! 0, � ! 0, we obtain

t

0

Z

x

0

2

u(x

0

1

; x

0

2

; t)dt =

=

Z

S

�

1

[S

�

2

h

@E(r; t; t

0

)

@N

u�E(r; t; t

0

)

@u

@N

i

ds�

Z

D

�

FE(r; t; t

0

)dxdt;

where D

�

is the domain D

"�

for " = � = 0, and S

�

i

= S

i

\ @D

�

, i = 1; 2. By

di�erentiation we �nd that

u(x

0

1

; x

0

2

; t

0

) =

d

dt

0

�

Z

S

�

1

[S

�

2

h

@E(r; t; t

0

)

@N

u�E(r; t; t

0

)

@u

@N

i

ds�

�

Z

D

�

FE(r; t; t

0

)dxdt

�

: (4.43)

Remark 1. Since in the case (4.39) the direction of the conormal N on

the characteristic surface S

�

i

coincides with that of a bicharacteristic lying

on S

�

i

, i = 1; 2, we can, alongside with the value uj

S

�

i

= f

i

, calculate

@u

@N

over

the surface S

�

i

. Therefore in the case (4.39) equality (4.43) gives the integral
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representation of a regular solution of the multidimensional analogue (4.1),

(4.2) of the Goursat problem.

Remark 2. In the case (4.40) the surface S

�

1

is not characteristic. There-

fore to obtain an integral representation of a regular solution of the multi-

dimensional analogue (4.1), (4.2) of the �rst Darboux problem one should

eliminate the value

@u

@N

j

S

�

1

in the right-hand side of the representation (4.43).

In the case (4.40) without loss of generality we can assume that for the

domain D the value k

1

= 0, i.e., D : 0 < x

2

< t, 0 < t < t

0

, since the case

where k

1

6= 0 is reduced to the case k

1

= 0 by a suitable Lorentz transform

under which the wave operator � is invariant. Let us introduce the point

P

0

(x

0

1

;�x

0

2

; t

0

) which is symmetric to P (x

0

1

; x

0

2

; t

0

) with respect to the plane

x

2

= 0. For this aim we denote by D

"

a part of the domain D bounded by

the cone K

0

"

: (x

1

� x

0

1

)

2

+ (x

2

+ x

0

2

)

2

= (t� t

0

)

2

(1� ") with the vertex at

P

0

and the boundary @D. Obviously, @D

"

\ S

1

� S

�

1

and @D

0

\ S

1

= S

�

1

.

Assume @D

0

\ S

2

=

e

S

2

, er =

p

(x

1

� x

0

1

)

2

+ (x

2

+ x

0

2

)

2

. Integrating now

(4.41) over D

"

, where u 2 C

1

(D)\C

2

(D) is a regular solution of (4.1), and

v = E(er; t; t

0

) =

1

2�

log

t� t

0

�

p

(t� t

0

)

2

� er

2

er

;

and taking into account that the function E(er; t; t

0

) has no singularities in

the domain D

0

, we obtain, after passing to the limit for "! 0, the equality

d

dt

0

�

Z

S

�

1

[S

�

2

h

@E(er; t; t

0

)

@N

u�E(er; t; t

0

)

@u

@N

i

ds�

�

Z

D

0

FE(er; t; t

0

)dxdt

�

= 0: (4.44)

Since r = er for x

2

= 0, we have E(er; t; t

0

) = E(r; t; t

0

) on S

�

1

. Therefore

eliminating

@u

@N

j

S

�

1

from (4.43) and (4.44), we �nally obtain the integral

representation of a regular solution of a multidimensional analogue of the

�rst Darboux problem (4.1), (4.2) for k

1

= 0, k

2

= 1

u(x

0

1

; x

0

2

; t

0

) =

d

dt

0

�

Z

S

�

1

h

@E(r; t; t

0

)

@N

�

@E(er; t; t

0

)

@N

i

uds+

+

Z

S

�

2

h

@E(r; t; t

0

)

@N

�E(r; t; t

0

)

@u

@N

i

ds�

�

Z

e

S

2

h

@E(er; t; t

0

)

@N

u�E(er; t; t

0

)

@u

@N

i

ds+

+

Z

D

0

FE(er; t; t

0

)dxdt�

Z

D

�

FE(r; t; t

0

)dxdt

�

: (4.45)
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Remark 3. According to the above remarks, the formulas (4.43) and

(4.45) determine uniquely regular solutions of multidimensional analogues

of the Goursat and the �rst Darboux problems, respectively. Moreover, us-

ing the arguments of paper [25], we can show that for any F 2 C

1

�

(D),

f

i

2 C

1

�

(S

i

), i = 1; 2, these solutions belong to the class C

1

�

(D).

Below, using a somewhat di�erent method, we shall show that for any

F 2 C

1

�

(D), f

i

2 C

1

�

(S

i

), i = 1; 2, the solution of the multidimensional

analogue of the Goursat problem (4.1), (4.2) will belong to the class C

1

�

(D)

in the case (4.39). This method consists in reducing the spatial-type prob-

lem (4.1), (4.2) to the plane Goursat problem with a parameter. For the

solution of the problem the necessary estimates depending on the parameter

will be obtained.

If u is a solution of the problem (4.1), (4.2) of the class C

1

�

(D) in the

case (4.39), then after the Fourier transform with respect to the variable x

1

equation (4.1) and the boundary conditions (4.2) take the form

@

2

v

@t

2

�

@

2

v

@x

2

2

+ �

2

v = �; (4.46)

v

�

�

l

i

= g

i

; i = 1; 2; (4.47)

where

v(�; x

2

; t) =

1

p

2�

1

Z

�1

u(x

1

; x

2

; t)e

�ix

1

�

dx

1

is the Fourier transform of the function u(x

1

; x

2

; t) and �, g

1

, g

2

are the

Fourier transforms respectively of the functions F , f

1

, f

2

with respect to

the variable x

1

. Here l

1

: t� x

2

= 0, 0 � t � t

0

, l

2

: t+ x

2

= 0, 0 � t � t

0

are the segments of beams lying in the plane of variables x

2

, t and coming

out of the origin O(0; 0).

Thus, after the Fourier transform with respect to x

1

, the spatial-type

problem (4.1), (4.2) is reduced to the plane Goursat problem (4.46), (4.47)

with a parameter � in the domain D

0

: �t < x

2

< t, 0 < t < t

0

of the plane

of variables x

2

, t.

Remark 4. If u(x

1

; x

2

; t) is a solution of the problem (4.1), (4.2) of the

class C

1

�

(D), then v(�; x

2

; t) will be a solution of the problem (4.46), (4.47)

of the class C

1

(D

0

) which at the same time, according to the Paley-Wiener

theorem, is an entire analytic function with respect to �, satisfying the

following growth condition: for any integer N � 0 there exists a constant

K

N

such that [26, 73]

�

�

v(�; x

0

2

; t

0

)

�

�

� K

N

�

1 + j�j

2

�

�N

e

dj Im�j

; (4.48)
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where

d = d(x

0

2

; t

0

) = max

(x

1

;x

0

2

;t

0

)2suppu

jx

1

j;

moreover, as the constant K

N

we can take the value [73]

K

N

= K

N

(x

0

2

; t

0

) =

1

p

2�

Z

jx

1

j<d

�

�

�

�

1�

@

2

@x

2

1

�

N

u(x

1

; x

0

2

; t

0

)

�

�

�

dx

1

:

According to the same theorem, if v(�; x

2

; t) belongs to the class C

1

(D

0

)

with respect to the variables x

2

, t for �xed �, and with respect to � it is an

entire analytic function satisfying the estimates (4.48) for some d = const >

0, then the function u(x

1

; x

2

; t), being the inverse Fourier transform of the

function v(�; x

2

; t), belongs to the class C

1

�

(D).

According to our assumptions, the estimates similar to (4.48) are valid

for the functions �, g

1

, g

2

which belong respectively to the classes C

1

(D

0

),

C

1

(l

1

), C

1

(l

2

) and are entire analytic functions with respect to �.

In new variables

� =

1

2

(t+ x

2

); � =

1

2

(t� x

2

); (4.49)

retaining the same notations for the functions v, �, g

i

the problem (4.46),

(4.47) will take the form

@

2

v

@�@�

+ �

2

v = �; (4.50)

v

�

�




i

= g

i

; i = 1; 2: (4.51)

Here a solution v = v(�; �; �) of equation (4.50) is considered in the domain




0

of the plane of variables �, � which is the image of the domain 


0

under the linear transform (4.49), 


i

being the image of l

i

under the same

transform. Obviously, the domain 


0

is the triangle OP

1

P

2

with vertices

O(0; 0), P

1

(t

0

; 0), P

2

(0; t

0

), and 


1

: � = 0, 0 � � � t

0

and 


2

: � = 0,

0 � � � t

0

are the sides OP

1

and OP

2

of the triangle.

As is well known, under the assumptions with respect to the functions �,

g

i

the problem (4.50), (4.51) has a unique solution v of the class C

1

(


0

)

which can be represented in the form [6]

v(�; �; �) = R(�; 0; �; �)g

1

(�; �) +R(0; �; �; �)g

2

(�; �)�

�R(0; 0; �; �)g

1

(�; 0)�

�

Z

0

@R(�; 0; �; �)

@�

g

1

(�; �)d� �

�

�

Z

0

@R(0; � ; �; �)

@�

g

2

(�; �)d� +
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+

�

Z

0

d�

�

Z

0

R(�; � ; �; �)�(�; �; �)d�; (4.52)

where g

1

(�; �) = v(�; �; 0), 0 � � � t

0

, g

2

(�; �) = v(�; 0; �), 0 � � � t

0

, are

the Goursat data for v, and R(�

1

; �

1

; �; �) is the Riemann function for the

equation (4.50).

As is known, the Riemann function R(�

1

; �

1

; �; �) for the equation (4.50)

can be expressed by the Bessel function of zero order as [17]

R(�

1

; �

1

; �; �) = J

0

�

2�

p

(� � �

1

)(� � �

1

)

�

: (4.53)

Remark 5. Since the Bessel function J

0

(z) of a complex argument z is

an entire analytic function, the formula (4.52) in virtue of (4.53) gives a

solution of (4.50) satisfying the Goursat data

v(�; �; 0) = g

1

(�); 0 � � � t

0

;

v(�; 0; �) = g

2

(�); 0 � � � t

0

:

(4.54)

The solution is the entire analytic function with respect to the complex

parameter �.

From the well-known representation of the Bessel function [63]

J

0

(z) =

1

2�

�

Z

��

exp(iz sin�)d� (4.55)

we can easily get that

J

0

0

(z) = �

z

2�

�

Z

��

cos

2

�exp(iz sin�)d�;

whence

dJ

0

(2�

p

�x)

dx

= �

�

2

�

2�

�

Z

��

cos

2

�exp(i2�

p

�x sin�)d�: (4.56)

Now (4.53), (4.55) and (4.56) yield the following equalities and estimates

R(�; 0; �; �) = R(0; �; �; �) = 1;

�

�

R(0; 0; �; �)

�

�

� exp

�

2

p

��j Im�j

�

� exp

�

2t

0

j Im�j

�

;

�

�

�

@R(�; 0; �; �)

@�

�

�

�

� 2j�j

2

� exp

�

2

p

��j Im�j

�

� 2j�j

2

t

0

exp

�

2t

0

j Im�j

�

;

�

�

�

@R(0; � ; �; �)

@�

�

�

�

� 2j�j

2

� exp

�

2

p

��j Im�j

�

� 2j�j

2

t

0

exp

�

2t

0

j Im�j

�

;

�

�

R(�; � ; �; �)

�

�

� exp

�

2

p

��j Im�j

�

� exp

�

2t

0

j Im�j

�

:
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From this, assuming without restriction of generality that for the functions

�, g

1

, g

2

the estimates (4.48) are, owing to our assumptions, valid with

respect to � with the same constants K

N

and d, we obtain for a solution

v(�; �; �) of the problem (4.50) representable in the form (4.52), the following

estimates

jv(�; �; �)j � jg

1

(�; �)j + jg

2

(�; �)j+ jg

1

(�; 0)j exp

�

2t

0

j Im�j

�

+

+2j�j

2

t

0

exp

�

2t

0

j Im�j

�

�

Z

0

jg

1

(�; �)jd� +

+2j�j

2

t

0

exp

�

2t

0

j Im�j

�

�

Z

0

jg

2

(�; �)jd� +

+exp

�

2t

0

j Im�j

�

�

Z

0

d�

�

Z

0

j�(�; �; �)jd� �

� 2K

N

(1 + j�j

2

)

�N

exp

�

dj Im�j

�

+

+exp

�

2t

0

j Im�j

�

K

N

(1 + j�j

2

)

�N

exp

�

dj Im �j

�

+

+2j�j

2

t

0

exp

�

2t

0

j Im�j

�

�K

N

(1 + j�j

2

)

�N

exp

�

dj Im�j

�

+

+2j�j

2

t

0

exp

�

2t

0

j Im�j

�

�K

N

(1 + j�j

2

)

�N

exp

�

dj Im�j

�

+

+exp

�

2t

0

j Im�j

�

��K

N

(1 + j�j

2

)

�N

exp

�

dj Im�j

�

�

�

e

K

N�1

(1 + j�j

2

)

N�1

exp

�

e

dj Im�j

�

: (4.57)

Here

e

K

N�1

= (3 + 5t

2

0

)K

N

;

e

d = 2t

0

+ d;

d = max

(x

1

;x

2

;t)2I

jx

1

j; I = suppF [ supp f

1

[ supp f

2

;

K

N

=

1

2�

Z

jx

1

j<d

max

0�i�2

max

(x

0

2

;t)2D

0

�

�

'

i

(x

1

; x

0

2

; t

0

)

�

�

dx

1

;

'

0

=

�

1�

@

2

@x

2

1

�

N

F; '

i

=

�

1�

@

2

@x

2

1

�

N

f

i

; i = 1; 2:

Owing to (4.57) and the Paley-Wiener theorem, the function v(�; �; �),

after returning to the initial variables x

2

, t will, by the formulas (4.49), be

the Fourier transform of a function u(x

1

; x

2

; t) of the class C

1

�

(D). More-

over, due to (4.50) and (4.51) the function u(x

1

; x

2

; t) 2 C

1

�

(D) will be the

unique solution of the problem (4.1), (4.2) of the above-mentioned class. �

Now, using the fact that the problem (4.1), (4.2) is solvable in the class

C

1

�

(D), we shall prove the existence of a strong solution of the class W

1

2

of

that problem.
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It is well-known that the spaces C

1

�

(D), C

1

�

(S

i

), i = 1; 2, are everywhere

dense in the spaces L

2

(D), W

1

2

(S

i

), i = 1; 2, respectively. Therefore there

exist sequences F

n

2 C

1

�

(D) and f

in

2 C

1

�

(S

i

), i = 1; 2, such that

lim

n!1

kF � F

n

k

L

2

(D)

= lim

n!1

kf

i

� f

in

k

W

1

2

(S

i

)

= 0; i = 1; 2: (4.58)

Moreover, since by the condition (f

1

� f

2

)j

S

1

\S

2

= 0, one can take the

sequences f

1n

and f

2n

such that (f

1n

� f

2n

)j

S

1

\S

2

= 0, n = 1; 2; : : : .

As it was shown above, under the conditions (4.39) or (4.40) there exists

a sequence u

n

2 C

1

�

(D) of solutions of the problem (4.1), (4.2) for F = F

n

,

f

i

= f

in

, i = 1; 2.

By virtue of (4.5) we have

ku

n

� u

m

k

W

1

2

(D)

�

� C

�

2

X

i=1

kf

in

� f

im

k

W

1

2

(S

i

)

+ kF

n

� F

m

k

L

2

(D)

�

: (4.59)

It follows from (4.58) and (4.59) that the sequence of functions u

n

is

fundamental in the space W

1

2

(D). Therefore, due to the completeness of

the space W

1

2

(D) there exists a function u 2 W

1

2

(D) such that u

n

! u,

�u

n

! F and u

n

j

S

i

! f

i

, i = 1; 2, in W

1

2

(D), L

2

(D) and W

1

2

(S

i

), i = 1; 2,

respectively, for n!1. Consequently, the function u is the strong solution

of the problem (4.1), (4.2) of the class W

1

2

. The uniqueness of the strong

solution of the problem (4.1), (4.2) of the class W

1

2

follows from inequality

(4.5).

Thus the following theorem is valid.

Let the condition (4:39) or (4:40) be ful�lled. Then for any

f

i

2 W

1

2

(S

i

), i = 1; 2, F 2 L

2

(D) there exists a unique strong solution u

of the problem (4:1), (4:2) of the class W

1

2

for which the estimate (4:5) is

valid.

Consider now the question of solvability of multi-dimensional analogues

of the Goursat and the �rst Darboux problem for the hyperbolic equation

(4.13) with the wave operator � in the principal part. To prove the solv-

ability of the problem (4.13), (4.2) under the conditions (4.39) or (4.40),

we shall use the solvability of the problem (4.1), (4.2) and the a priori esti-

mate (4.17) in speci�cally chosen norms of spaces L

2

(D), W

1

2

(D), W

1

2

(S

i

),

i = 1; 2, from which it follows that the lowest terms in the equation (4.13)

give arbitrarily small perturbations.

Consider the space

V

0

= L

2

(D)�W

1

2

(S

1

)�W

1

2

(S

2

):

To the problem (4.13), (4.2) there corresponds the unbounded operator

T :W

1

2

(D)! V

0
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with the domain of de�nition 


T

= C

1

�

(D) �W

1

2

(D), acting by the formula

Tu =

�

Lu; u

�

�

S

1

; u

�

�

S

2

�

; u 2 


T

:

It can be easily proved that the operator T admits a closure T . In fact,

let u

n

2 


T

, u

n

! 0 in W

1

2

(D) and let Tu

n

! (F; f

1

; f

2

) in V

0

. First we

shall show that F = 0. For ' 2 C

1

0

(D) we have

(Lu

n

; ') = (u

n

;�') + (Ku

n

; '); (4.60)

whereKu = au

x

1

+bu

x

2

+cu

t

+du. Since inW

1

2

(D), u

n

! 0, from (4.60) we

have that (Lu

n

; ') ! 0. On the other hand, by the assumption, Lu

n

! F

in L

2

(D). Therefore (F; ') = 0 for any ' 2 C

1

0

(D), and hence, F = 0.

The equalities f

1

= f

2

= 0 follow from the facts that u

n

! 0 in W

1

2

(D),

and the contraction operator u! (uj

S

1

; uj

S

2

) acts boundedly from W

1

2

(D)

to L

2

(S

1

)� L

2

(S

2

). �

To the problem (4.1), (4.2) there corresponds an unbounded operator

T

0

: W

1

2

(D) ! V

0

obtained from the operator T for a = b = c = d = 0. As

it was shown above, the operator T

0

also admits a closure T

0

. Obviously,

the operator K

0

: W

1

2

(D) ! V

0

acting by the formula K

0

u = (Ku; 0; 0) is

bounded, and

T = T

0

+K

0

: (4.61)

Note that the domains of de�nition 


T

and 


T

0

of the closed operators

T and T

0

coincide by virtue of (4.61) and the fact that K

0

is bounded.

It is easily seen that from the existence of the bounded operator T

�1

right inverse to T , de�ned on the whole space V

0

follow the existence and

uniqueness of the strong solution of the problem (4.13), (4.2) of the class

W

1

2

, as well as the estimate (4.5) for this solution.

The fact that under the conditions (4.39) or (4.40) the operator T

0

has

its bounded right inverse T

�1

0

: V

0

! W

1

2

(D), follows from the Theorem

4.1 and the estimate (4.5) which, as it is shown above, can be rewritten in

equivalent norms in terms of (4.17). It is easy to see that the operator

K

0

T

�1

: V

0

! V

0

is bounded, and in virtue of (4.17) its norm admits the estimate

kK

0

T

�1

0

k �

C

7

C

8

p




; (4.62)

where C

8

is a positive constant depending only on the coe�cients a, b, c

and d of equation (4.13).

By virtue of (4.62), the operator (I +K

0

T

�1

0

) : V

0

! V

0

has a bounded

inverse (I +K

0

T

�1

0

)

�1

for su�ciently large 
, where I is the unit operator.

Now it remains for us only to note that the operator

T

�1

0

�

I +K

0

T

�1

0

�

�1
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is a bounded operator right inverse to T and de�ned on the whole space V

0

.

Thus the following theorem is proved.

Let the condition (4:39) or (4:40) be ful�lled. Then for any

f

i

2 W

1

2

(S

i

), i = 1; 2, and F 2 L

2

(D) there exists a unique strong solution

u of the problem (4:13), (4:2) of the class W

1

2

for which the estimate (4:5)

is valid.

x

Discussion of this paragraph will be concerned with the question of solv-

ability of the problem (4.1), (2) in the case

�1 < k

1

< 0; 0 < k

2

< 1; (4.63)

that is, with a multidimensional analogue of the second Darboux problem.

Unlike the cases (4.39) and (4.40) considered in the previous section, the

fact that for (4.63) none of the surfaces S

1

and S

2

is characteristic, means

that for regular solutions of the problem (4.1), (4.2) there is no integral

representation. To a certain extent this circumstance makes investigation

of this problem di�cult. Below we shall prove the existence of regular and

strong solutions of the problem (4.1), (4.2) of the classW

1

2

in the case (4.63)

by reducing the problem to a mixed type problem for a hyperbolic equation

of second order in a cylinder.

To this end we shall need the following

Let G be a bounded subdomain of D with a piecewise smooth

boundary, bounded from above by the plane t = t

0

and at the sides by the

planes S

1

, S

2

, as well as by piecewise smooth time-type surfaces S

3

, S

4

on

which the following inequalities are valid:

�

3

�

�

S

3

< 0; �

3

�

�

S

4

< 0; (4.64)

where n = (�

1

; �

2

; �

3

) is the unit vector of the outer normal to @G; more-

over, S

3

\ S

4

= ?. Let K

+

P

0

: t > t

0

+

p

(x

1

� x

0

1

)

2

+ (x

2

� x

0

2

)

2

be the

domain bounded by the characteristic cone of the future with the vertex at

P

0

(x

0

1

; x

0

2

; t

0

). Let u

0

2 C

1

(G) and g

i

= u

0

j

@G\S

i

, i = 1; 2, F

0

= �u

0

,

X = supp g

1

[ supp g

2

[ suppF

0

, Y = [

P

0

2X

K

+

P

0

. Denote by S

"

3

, S

"

4

the

"-neighbourhoods of surfaces S

3

, S

4

, where " is a �xed su�ciently small

positive number. Then, if

u

0

�

�

S

3

[S

4

= 0; (4.65)

Y \

�

S

"

3

[ S

"

4

�

= ?; (4.66)

then the function

u(P ) =

(

u

0

(P ); P 2 G;

0; P 2 DnG
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is a solution of the problem (4:1), (4:2) of the class C

1

�

(D) with

f

i

(P ) =

(

g

i

(P ); P 2 @G \ S

i

;

0; P 2 S

i

n(@G \ S

i

);

i = 1; 2;

F (P ) =

(

F

0

(P ); P 2 G;

0; P 2 DnG:

Proof. To prove the lemma it su�ces to show that the function u

0

2 C

1

(G)

vanishes on the set G \ (S

"

3

[ S

"

4

).

Let P

0

2 G \ (S

"

3

[ S

"

4

) be an arbitrary point of this set. We shall show

that u

0

(P

0

) = 0.

The use will be made of the notation of Lemma 4.4 and of x3:




P

0

= G \K

P

0

; S

iP

0

= S

i

\ @


P

0

; i = 1; 2; 3; 4;

S

5P

0

= @K

P

0

\ @


P

0

:

Obviously, @


P

0

= [

5

i=1

S

iP

0

.

According to the assumptions of Lemma 4.5, we have

�

3

�

�

S

iP

0

< 0; i = 1; 2; 3; 4;

�

�1

3

�

�

2

3

� �

2

1

� �

2

2

�

�

�

S

iP

0

> 0; i = 1; 2; 3; 4;

(4.67)

�

3

�

�

S

5P

0

> 0;

�

�

2

3

� �

2

1

� �

2

2

�

�

�

S

5P

0

= 0; (4.68)

where n = (�

1

; �

2

; �

3

) is the unit vector of the outer normal to @


P

0

.

On account of (4.65) and (4.66) and the fact that P

0

2 G\ (S

"

3

[S

"

4

), we

have

u

0

�

�

S

iP

0

= 0; i = 1; 2; 3; 4; �u

0

�

�




P

0

= F

0

�

�




P

0

= 0: (4.69)

Multiplying both parts of the equation �u

0

= F

0

by 2

@u

0

@t

, integrating

the obtained expression over 


P

0

, taking into account (4.67){(4.69) and the

arguments used when obtaining inequalities (4.7) and (4.30), we get

0 = 2

Z




P

0

F

0

@u

0

@t

dxdt =

=

Z

@


P

0

�

�1

3

h�

�

3

@u

0

@t

� �

1

@u

0

@t

�

2

+

�

�

3

@u

0

@x

2

� �

2

@u

0

@t

�

2

+

+

�

�

2

3

� �

2

1

� �

2

2

�

�

@u

0

@t

�

2

i

ds �

�

Z

S

5P

0

�

�1

3

h�

�

3

@u

0

@x

1

� �

1

@u

0

@t

�

2

+

�

�

3

@u

0

@x

2

� �

2

@u

0

@t

�

2

i

ds;
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whence on account of �

3

j

S

5P

0

> 0, we �nd

�

�

3

@u

0

@x

i

� �

i

@u

0

@t

�

�

�

�

S

5P

0

= 0; i = 1; 2:

The remaining reasonings repeat word by word the proof of Lemma 4.4.

Consequently, u(P

0

) = 0 and Lemma 4.5 is proved completely. �

Remark 1. It is easy to see that Lemma 4.5 remains also valid in the

case when conditions (4.64) are violated on a set ! � S

3

[ S

4

of zero two-

dimensional measure, i.e., �

3

j

!

= 0. In particular, if ! =

m

[

i=1




i

is a union of a

�nite number of smooth curves 


i

� S

3

[S

4

and �

3

j

!

= 0, �

3

j

(S

3

[S

4

)n!

< 0,

then Lemma 4.5 remains correct.

We shall need this circumstance below in proving Theorem 4.3.

Remark 2. It should be also noted that Lemmas 4.4 and 4.5, in fact,

suggest us a way of constructing the solution of the problem (4.1), (4.2) in

the case (4.63) which is given below and consists in reduction of the initial

problem (4.1), (4.2) to a mixed-type problem for a second order hyperbolic

equation in a cylinder.

Below the functions f

1

and f

2

in the boundary conditions (4.2) are as-

sumed to vanish on the straight line � = S

1

\ S

2

, i.e.,

f

i

�

�

�

= 0; i = 1; 2: (4.70)

The set of functions of the class W

1

2

(S

i

) satisfying (4.70) is denoted by

�

W

1

2

(S

i

;�), that is,

�

W

1

2

(S

i

;�) =

�

f 2W

1

2

(S

i

) : f

�

�

�

= 0

	

; i = 1; 2:

We have the following

Let the condition (4:63) be ful�lled. Then for any f

i

2

�

W

1

2

(S

i

;�), i = 1; 2, and F 2 L

2

(D) there exists a unique strong solution u

of the problem (4:1), (4:2) of the class W

1

2

for which the estimate (4:5) is

valid.

Proof. Denote by S

0

i

: k

i

t � x

2

= 0, 0 � t < +1, i = 1; 2, the half-plane

containing the carrier S

i

in the boundary conditions (4.2) and by D

0

the

dihedral angle contained between the half-planes S

0

1

and S

0

2

. It is well-

known that the function f

i

2

�

W

1

2

(S

i

;�) can be extended to the half-plane

S

0

i

as a function

e

f

i

of the class

�

W

1

2

(S

i

), i.e., (f

i

�

e

f

i

)j

S

i

= 0,

e

f

i

2

�

W

1

2

(S

0

i

),

i = 1; 2. Assume

e

F (P ) =

(

F (P ); P 2 D;

0; P 2 D

0

nD:

Obviously,

e

F 2 L

2

(D

0

).
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If C

1

0

(D

0

), C

1

0

(S

0

i

), i = 1; 2, are the spaces of �nite in�nitely di�eren-

tiable functions, then, as we know, they are everywhere dense respectively

in L

2

(D

0

),

�

W

1

2

(S

0

i

), i = 1; 2. Therefore there exist sequences F

n

2 C

1

0

(D

0

)

and f

in

2 C

1

0

(S

0

i

), i = 1; 2, such that

lim

n!1

k

e

F � F

n

k

L

2

(D

0

)

= lim

n!1

k

e

f

i

� f

in

k

W

1

2

(S

0

i

)

= 0; i = 1; 2: (4.71)

In the plane of variables x

2

, t let us introduce the polar coordinates r,

' taking the axis t as the polar axis. We count the polar angle ' from the

polar axis assuming it to be positive clockwise. Denote by '

i

the size of a

bihedral angle contained between the half-planes S

0

i

and x

2

= 0, 0 � t <

+1, i = 1; 2. Since the half-planes S

0

i

are of time-type (�1 < k

1

< 0,

0 < k

2

< 1), we have 0 < '

i

<

�

4

, i = 1; 2.

In passing from the rectangular coordinates x

1

, x

2

, t to the system of

coordinates x

1

, � = log r, ', the bihedral angle D

0

transforms to an in�nite

layer

H =

�

�1 < x

1

<1; �1 < � <1; �'

1

< ' < '

2

	

;

and the equation (4.1), written in terms of the former notation for the

functions u and F , will take the form

e

�2�

L(�; '; @)u = F; (4.72)

where @ = (

@

@x

1

;

@

@�

;

@

@'

), L(�; '; @) is a second order di�erential operator of

hyperbolic type with respect to � with in�nitely di�erentiable coe�cients

depending on � and '.

In the plane x

1

, ' let us consider a convex domain 
 of the class C

1

,

bounded by the segments of straight lines l

1

: ' = �'

1

, l

2

: ' = '

2

and by

the curves 


1

: x

1

= g('), �'

1

� ' � '

2

, 


2

: x

2

= �g('), �'

1

� ' � '

2

.

Here g(') 2 C

1

(�'

1

; '

2

) \ C[�'

1

; '

2

], g(') > 0 for �'

1

� ' � '

2

,

g

(1)

(') > 0 for �'

1

< ' < 0, g

(1)

(0) = 0, g

(1)

(') < 0 for 0 < ' < '

2

and

g

(2)

(') < 0 for �'

1

< ' < '

2

; moreover,

min

�

g(�'

1

); g('

2

)

�

> 1 + t

0

+ d; (4.73)

where d = max(d

1

; d

2

; d

3

),

d

i

= sup

(x

1

;x

2

;t)2supp f

i

jx

1

j; i = 1; 2;

d

3

= sup

(x

1

;x

2

;t)2suppF

jx

1

j:

Denote by H

0

� H a cylindrical domain 
� (�1;1) of the class C

1

,

where (�1;1) is the � -axis, and denote by @H

0

its lateral surface @
 �

(�1;1). Upon the inverse transform (x

1

; �; ')! (x

1

; x

2

; t), the cylindrical

domain H

0

transforms to an unbounded domain G

0

� D

0

bounded by

surfaces

e

S

i

= S

0

i

\ @G

0

, i = 1; 2,

e

S

3

and

e

S

4

.
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Below we shall show that the surfaces

e

S

3

and

e

S

4

are of time-type on

which the following conditions

�

3

�

�

(

e

S

3

[

e

S

4

)n!

< 0; �

3

�

�

!

= 0; (4.74)

are ful�lled, where ! is the union of two smooth curves !

1

and !

2

lying on

e

S

3

[

e

S

4

.

Indeed, it can be easily seen that

e

S

1

and

e

S

2

are the images of cylindrical

surfaces S

0

1

= l

1

�(�1;1) � @H

0

and S

0

2

= l

2

�(�1;1) � @H

0

, while

e

S

3

and

e

S

4

are the images of the surfaces S

0

3

= 


1

� (�1;1) � @H

0

and S

0

4

=




2

� (�1;1) � @H

0

when the inverse transform (x

1

; �; ') ! (x

1

; x

2

; t) is

applied. Dividing the surface S

0

3

into two parts S

0

3

= S

0

3+

[ S

0

3�

, where

S

0

3+

= 


1+

� (�1;1); S

0

3�

= 


1�

� (�1;1);




1+

: x

1

= g('); 0 < ' < '

2

; 


1�

: x

1

= g('); �'

1

< ' < 0;

we can see that the image

e

S

3+

�

e

S

3

of S

0

3+

admits upon the inverse trans-

form (x

1

; �; ')! (x

1

; x

2

; t) the following parametric representation

e

S

3+

: x

1

= g('); x

2

= � sin';

t = � cos'; 0 < ' < '

2

; 0 < � < +1;

from which for the unit vector n = (�

1

; �

2

; �

3

) of the outer normal to @G

0

we obtain the following on the part

e

S

3+

n

�

�

e

S

3+

=

�

�

p

�

2

+ g

0

2

(')

;

�g

0

(') cos'

p

�

2

+ g

0

2

(')

;

g

0

(') sin'

p

�

2

+ g

0

2

(')

�

: (4.75)

Taking into account the structure of the domain 
, we can conclude

from (4.75) that

e

S

3+

is a time-type surface on which �

3

j

e

S

3+

< 0. Assertion

similar to this one is proved for the remaining parts

e

S

3�

,

e

S

4+

and

e

S

4�

of

the surfaces

e

S

3

and

e

S

4

. To prove �nally the validity of (4.74), it su�ces to

note that on the curves

!

1

= @

e

S

3+

\ @

e

S

3�

; !

2

= @

e

S

4+

\ @

e

S

4�

;

which are the images of the straight lines e!

1

: x

1

= g(0), ' = 0, �1 < � <

1 and e!

2

: x

1

= �g(0), ' = �, �1 < � < 1, the third component �

3

of

the unit vector of the normal n vanishes.

Let us determine on the boundary @G

0

of the domain G

0

the function

�

n

of the class C

1

as follows

�

n

�

�

e

S

i

= f

in

; i = 1; 2; �

n

�

�

e

S

3

= �

n

�

�

e

S

4

= 0; n = 1; 2; : : : :

The fact that �

n

2 C

1

0

(@G

0

) follows from the structure of the domain

G

0

and inequality (4.73), as well as from the smoothness and location of

supports of the functions f

in

2 C

1

0

(S

0

i

), i = 1; 2.
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When passing to the variables x

1

, � , ' the functions �

n

and F

n

will trans-

form to some functions for which we retain the same notation. Obviously,

�

n

2 C

1

0

(@H

0

); F

n

2 C

1

0

(H

0

): (4.76)

For hyperbolic equation (4.72) with F = F

n

let us consider in the cylinder

H

0

the following mixed-type problem with "zero Cauchy data" for � = �1:

e

�2�

L

1

(�; '; @)v = F

n

; (4.77)

v

�

�

@H

0

= �

n

: (4.78)

Taking into account (4.76), the mixed problem (4.77), (4.78), due to the

results of [4], [74], has a unique solution v = v

n

of the class C

1

(H

0

) which

turns into identical zero for � < �M , where M = const is a su�ciently

large positive number.

Returning to the initial variables x

1

, x

2

, t and retaining former notation

for the functions v

n

and F

n

, we get that:

1) the function u

0

n

= v

n

j

@G

0

\D

belongs to the class C

1

(G

0

\D) and

satis�es the equation

�u

0

n

= F

n

;

2) u

0

n

on the lateral part [

4

i=1

e

S

0

i

of the boundary domain G

0

\D satis�es

the conditions

u

n

�

�

e

S

0

3

[

e

S

0

4

= 0; u

n

�

�

e

S

i

= f

in

; i = 1; 2;

where, as is easily seen, the surface

e

S

0

i

is a part of S

i

for i = 1; 2 and is a

part of

e

S

i

for i = 3; 4 appearing in conditions (4.74).

Therefore, on account of (4.73), (4.74) as well as of Lemma 4.5 and

Remark 1, the function

u

n

(P ) =

(

u

0

n

(P ); P 2 G

0

;

0; P 2 DnG

0

belongs to the class C

1

�

(D) and is a solution of the problem (4.1), (4.2) for

f

i

= f

in

, i = 1; 2, and F = F

n

.

By virtue of (4.5) we have

ku

n

� u

m

k

W

1

2

(D)

�

� C

�

2

X

i=1

kf

in

� f

im

k

W

1

2

(S

i

)

+ kF

n

� F

m

k

L

2

(D)

�

: (4.79)

From (4.71) and (4.79) it follows that the sequence of the functions u

n

is

fundamental in the space W

1

2

(D). Therefore, since the space W

1

2

(D) is

complete, there exists a function u 2 W

1

2

(D) such that u

n

! u, �u

n

! F

and u

n

j

S

i

! f

i

, i = 1; 2, in the spaces W

1

2

(D), L

2

(D) and W

1

2

(S

i

), i = 1; 2,

respectively, as n ! 1. Consequently, u is a strong solution of problem

(4.1), (4.2) of the class W

1

2

. The uniqueness of the strong solution of the
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problem (4.1), (4.2) of the class W

1

2

follows from the inequality (4.5). Thus

Theorem 4.3 is proved completely. �

Repeating word by word the same arguments connected with equivalent

norms which led us to Theorem 4.2, we get that the following theorem is

valid.

Let the condition (4:63) be ful�lled. Then for any f

i

2

�

W

1

2

(S

i

;�), i = 1; 2, and F 2 L

2

(D) there exists a unique strong solution

u of the problem (4:13), (4:2) of the class W

1

2

for which estimate (4:5) is

valid.

x

Consider the problem (4.1), (4.3), (4.4) in the case where

k

1

= 0; k

2

= 1; (4.80)

that is, S

1

: x

2

= 0, 0 � t � t

0

is a time-type surface, S

2

: t � x

2

= 0,

0 � t � t

0

is a characteristic surface, and let in the boundary condition

(4.3) the function f

1

= 0, that is,

@u

@n

�

�

�

S

1

= 0: (4.81)

We have the following

Let the condition (4:80) be ful�lled. Then for any f

2

2

C

1

�

(S

2

) and F 2 C

1

�

(D) satisfying

@

k

F

@n

k

�

�

�

S

1

= 0; k = 1; 3; 5; : : : ; (4.82)

the problem (4:1), (4:81), (4:4) is uniquely solvable in the class C

1

�

(D).

Proof. Denote by D

�

: �t < x

2

< 0, 0 < t < t

0

the domain which is

symmetric to the domain D : 0 < x

2

< t, 0 < t < t

0

, with respect to the

plane x

2

= 0 and by D

0

: �t < x

2

< t, 0 < t < t

0

the domain being the

union of the domains D and D

�

and the piece of the plane surface x

2

= 0,

0 < t < t

0

.

If we extend evenly the function F 2 C

1

�

(D) to the domain D

�

, then

because of (4.82) the function F

0

obtained in the domain D

0

,

F

0

(x

1

; x

2

; t) =

(

F (x

1

; x

2

; t); x

2

� 0;

F (x

1

;�x

2

; t); x

2

< 0;

will belong to the class C

1

�

(D

0

). Denote by f

�

1

the function de�ned on

S

�

1

: t+ x

2

= 0, 0 � t � t

0

by

f

�

1

�

�

S

�

1

= f

�

1

(x

1

; x

2

;�x

2

) = f

2

(x

1

;�x

2

;�x

2

) = f

2

�

�

S

2

: (4.83)
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Obviously, f

�

1

2 C

1

�

(S

�

1

).

In the domain D

0

let us now consider the problem of determination of a

solution u

0

(x

1

; x

2

; t) of the equation

�u

0

= F

0

(4.84)

belonging to the class C

1

�

(D

0

) and satisfying the boundary conditions

u

0

�

�

S

�

1

= f

�

1

; u

0

�

�

S

2

= f

2

: (4.85)

It is shown in x4 of the present chapter that a multidimensional analogue

of the Goursat problem (4.84), (4.85) for F

0

2 C

1

�

(D

0

), f

�

1

2 C

1

�

(S

�

1

),

f

2

2 C

1

�

(S

2

) has a unique solution u

0

of the class C

1

�

(D

0

). Let us show

now that the restriction of this function to the domain D, i.e., u = u

0

j

D

, is

a solution of the problem (4.1), (4.81), (4.4) of the class C

1

�

(D). To this

end it su�ces to show that the function u

0

(x

1

; x

2

; t) is even with respect to

the variable x

2

. Because the function F

0

is even with respect to the variable

x

2

, and the functions f

1

and f

2

are connected by equality (4.83), we can

easily verify that the function eu(x

1

; x

2

; t) = u

0

(x

1

;�x

2

; t) is also a solution

of the same problem (4.84), (4.85) of the class C

1

�

(D

0

). But due to a

priori estimate (4.5), the problem (4.84), (4.85) cannot have more than one

solution of the above-mentioned class. Therefore, eu(x

1

; x

2

; t) � u

0

(x

1

; x

2

; t),

i.e., the solution u

0

(x

1

; x

2

; t) of equation (4.84) is an even function with

respect to x

2

. This implies

@u

0

@n

j

x

2

=0

= 0, i.e., the boundary condition

(4.81) is ful�lled for u = u

0

j

D

. Thus, the function u = u

0

j

D

2 C

1

�

(D) is a

solution of the problem (4.1), (4.81), (4.4). The uniqueness of this solution

of the problem (4.1), (4.81), (4.4) follows from a priori estimate (4.19). �

Let f

2

2 W

1

2

(S

2

), F 2 L

2

(D). The function u 2 W

1

2

(D) is

said to be a strong solution of the problem (4.1), (4.81), (4.4) of the class

W

1

2

if there exists a sequence u

n

2 C

1

�

(D) such that

@u

n

@n

j

S

1

= 0, u

n

! u,

�u

n

! F and u

n

j

S

2

! f

2

in the spaces W

1

2

(D), L

2

(D) and W

1

2

(S

2

),

respectively.

The following theorem holds.

Let the condition (4:80) be ful�lled. Then for any f

2

2

W

1

2

(S

2

) and F 2 L

2

(D) there exists a unique strong solution u of the prob-

lem (4:1), (4:81), (4:4) of the class W

1

2

for which the estimate (4:19) is

valid.

Proof. It is known that the space C

1

0

(D) � C

1

�

(D) of in�nitely di�eren-

tiable �nite functions in the domain D is everywhere dense in L

2

(D), while

the space C

1

�

(S

2

) is everywhere dense inW

1

2

(S

2

). Therefore there exist the

sequences F

n

2 C

1

0

(D) and f

2n

2 C

1

�

(S

2

) such that

lim

n!1

kF � F

n

k

L

2

(D)

= lim

n!1

kf

2

� f

2n

k

W

1

2

(S

2

)

= 0: (4.86)
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Since the functions F

n

2 C

1

0

(D) satisfy the conditions (4.82), according

to Lemma 4.6 there exists a sequence u

n

2 C

1

�

(D) of solutions of the

problem (4.1), (4.81), (4.4) with F = F

n

, f

2

= f

2n

.

On account of (4.19) we have

ku

n

� u

m

k

W

1

2

(D)

�

� C

�

kf

2n

� f

2m

k

W

1

2

(S

2

)

+ kF

n

� F

m

k

L

2

(D)

�

: (4.87)

It follows from (4.86), (4.87) that the sequence of functions u

n

is fundamen-

tal in the spaceW

1

2

(D). Therefore, since the spaceW

1

2

(D) is complete, there

exists a function u 2 W

1

2

(D) such that u

n

! u, �u

n

! F and u

n

j

S

2

! f

2

respectively in the spaces W

1

2

(D), L

2

(D) and W

1

2

(S

2

) as n ! 1. Conse-

quently, u is a strong solution of the problem (4.1), (4.81), (4.4) of the class

W

1

2

. The uniqueness of this solution follows from (4.19). �

Using equivalent norms depending on a parameter and arguing as while

proving Theorem 4.2 of x4, we can prove

Let the condition (4:80) be ful�lled. Then for any f

2

2

W

1

2

(S

2

), and F 2 L

2

(D) there exists a unique strong solution u of the

problem (4:13), (4:81), (4:4) of the class W

1

2

for which the estimate (4:19)

is valid.

x

Consider in the space R

n

, n > 2, a strictly hyperbolic equation of the

type

p(x; @)u(x) = f(x); (4.88)

where @ = (@

1

; : : : ; @

n

), @

j

=

@

@x

j

, p(x; �) is a real polynomial of order 2m,

m > 1, with respect to � = (�

1

; : : : ; �

n

), f is a given function, and u is an

unknown real function. It is assumed that in (4.88) the coe�cients at higher

derivatives are constant and the other coe�cients are �nite and in�nitely

di�erentiable in R

n

.

Let D be a conic domain in R

n

, i.e., D together with a point x 2 D

contains the entire beam tx, 0 < t < 1. Denote by � the cone @D. D is

assumed to be homeomorphic to the conic domain x

2

1

+ � � �+x

2

n�1

�x

2

n

< 0,

x

n

> 0, and �

0

= �nO is assumed to be a connected (n � 1)-dimensional

manifold of the class C

1

, where O is the vertex of �.

Consider the boundary value problem [43]: �nd in the domain D a solu-

tion u(x) of the equation (4.88) satisfying the boundary conditions

@

i

u

@�

i

�

�

�

�

0

= g

i

; i = 0; : : : ;m� 1; (4.89)

where � = �(x) is the outer normal to �

0

at the point x 2 �

0

, and g

i

,

i = 0; : : : ;m� 1, are given real functions.
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In this section we investigate the question whether the problem (4.88),

(4.89) can be correctly formulated in special weighted spaces W

k

�

(D) when

the cone � is assumed not to be characteristic and to have a quite de�nite

orientation.

Denote by p

0

(�) the characteristic polynomial of (4.88), i.e., the higher

homogeneous part of the polynomial p(x; �). The strict hyperbolicity of

the equation (4.88) implies the existence of a vector � 2 R

n

such that the

straight line � = �� + �, where � 2 R

n

is an arbitrarily chosen vector

not parallel to � and � is a real parameter, intersects the cone of normals

K : p

0

(�) = 0 of the equation (4.88) at 2m real di�erent points. In other

words, the equation p

0

(�� + �) = 0 has 2m real di�erent roots with respect

to �. The vector � is called a spatial-type normal. As is known, the set

of all spatial-type normals form two connected centrally symmetric convex

conic domains whose boundaries K

1

and K

2m

give the internal cavity of the

cone of normals K [17]. The surface S � R

n

is called characteristic at a

point x 2 S if the normal to S at x belongs to K.

Let the vector � be a spatial-type normal and the vector � 6= 0 vary

in the plane orthogonal to �. Then the roots of the characteristic polyno-

mial p

0

(�� + �) with respect to � can be renumbered so that �

2m

(�) <

�

2m�1

(�) < � � � < �

1

(�). It is obvious that the vectors �

i

(�)� + � cover the

cavities K

i

of K, when the � varies on the plane orthogonal to �. Since

�

m�j

(�) = ��

m+j+1

(��), 0 � j � m�1, the cones K

m�j

and K

m+j+1

are

centrally symmetric with respect to the point (0; : : : ; 0). It is well-known

that the straight beams whose orthogonal planes are tangential planes to one

of the cavities K

i

at a point di�erent from the vertex, are bicharacteristics

of equation (4.88).

Assume that there exists a plane �

0

such that �

0

\K

m

= f(0; : : : ; 0)g.

This means that the cones K

1

; : : : ;K

m

are located on one side of �

0

and the

cones K

m+1

; : : : ;K

2m

on the other. Put K

�

i

= \

�2K

i

f� 2 R

n

: � � � < 0g,

where � � � is the scalar product of the vectors � and �. Since �

0

\K

m

=

f(0; : : : ; 0)g, K

�

i

is a conic domain and

K

�

m

� K

�

m�1

� : : : � K

�

1

; K

�

m+1

� K

�

m+2

� : : : � K

�

2m

:

It is easy to verify that @(K

�

i

) is a convex cone whose generatrices are bichar-

acteristics; note that in this case none of the bicharacteristics of equation

(4.88) comes from the point (0; : : : ; 0) into the cone @(K

�

m

) or @(K

�

m+1

) [17].

Let us consider

The surface �

0

is characteristic at none of its points and

each generatrix of the cone � has the direction of a spatial-type normal;

moreover, � � K

�

m

[ O or � � K

�

m+1

[ O.

Denote by W

k

�

(D), k � 2m, �1 < � <1, the function space with the
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norm [48]

kuk

2

W

k

�

(D)

=

k

X

i=0

Z

D

r

�2��2(k�i)

�

�

�

@

i

u

@x

i

�

�

�

2

dx;

where

r = (x

2

1

+ � � �+ x

2

n

)

1

2

;

@

i

u

@x

i

=

@

i

u

@x

i

1

: : : @x

i

n

n

; i = i

1

+ � � �+ i

n

:

The space W

k

�

(�) is de�ned in a similar manner.

Consider the space

V =W

k+1�2m

��1

(D)�

m�1

Y

i=0

W

k�i

��

1

2

(�):

Assume that to the problem (4.88), (4.89) there corresponds an un-

bounded operator

T :W

k

�

(D)! V

with the domain of de�nition 


T

=W

k+1

��1

(D) �W

k

�

(D), acting as

Tu =

�

p(x; @)u; u

�

�

�

0

; : : : ;

@

i

u

@�

i

�

�

�

�

0

; : : : ;

@

m�1

u

@�

m�1

�

�

�

�

0

�

; u 2 


T

:

It is obvious that the operator T admits the closure T .

The function u is called a strong solution of the problem (4.88), (4.89) of

the class W

k

�

(D) if u 2 


T

, Tu = (f; g

0

; : : : ; g

m�1

) 2 V , which is equivalent

to the existence of a sequence u

i

2 


T

= W

k+1

��1

(D) such that u

i

! u in

W

k

�

(D) and

�

p(x; @)u

i

; u

i

�

�

�

0

; : : : ;

@

m�1

u

i

@�

m�1

�

�

�

�

0

�

!

�

f; g

0

; : : : ; g

m�1

�

in the space V . Below, by a solution of the problem (4.88), (4.89) of the

class W

k

�

(D) will be meant a strong solution of this problem in the sense

indicated above.

We shall prove

Let condition 1 be ful�lled. Then there exists a real number

�

0

= �

0

(k) > 0 such that for � � �

0

problem (4:88), (4:89) is uniquely

solvable in the class W

k

�

(D) for any f 2 W

k+1�2m

��1

(D), g

i

2 W

k�i

��

1

2

(�),

i = 0; : : : ;m� 1, and for the solution u we have the estimate

kuk

W

k

�

(D)

� c

�

m�1

X

i=0

kg

i

k

W

k�i

��

1

2

(�)

+ kfk

W

k+1�2m

��1

(D)

�

; (4.90)

where c is a positive constant not depending on f , g

i

, i = 0; : : : ;m� 1.
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First we shall show that Condition 1 implies the following conditions:

Take any point P 2 �

0

and choose a Cartesian system of coordinates

x

0

1

; : : : ; x

0

n

having the vertex at P and such that the x

0

n

-axis is directed

along the generatrix of � passing through P , while the x

0

n�1

-axis is directed

along the inner normal to � at that point.

The surface �

0

is characteristic at none of its point. Each

generatrix of the cone � has the direction of a spatial-type normal, and

exactly m characteristic planes of the equation (4:88) pass through the (n�

2)-dimensional plane x

0

n

= x

0

n�1

= 0 connected with an arbitrary point

P 2 �

0

into the angle x

0

n

> 0, x

0

n�1

> 0.

Denote by ep

0

(�) the characteristic polynomial of (4.88) written in terms

of the coordinate system x

0

1

; : : : ; x

0

n

connected with an arbitrarily chosen

point P 2 �

0

.

The surface �

0

is characteristic at none of its point. Each

generatrix of � has the direction of a spatial-type normal and for Re s > 0

the number of roots �

j

(�

1

; : : : ; �

n�2

; s) of the polynomial ep

0

(i�

1

; : : : ; i�

n�2

;

�; s) with Re�

j

< 0, taking into account their multiplicities, is equal to m,

i =

p

�1.

When condition 3 is ful�lled, the polynomial ep

0

(i�

1

; : : : ; i�

n�2

; �; s) can

be written as �

�

(�)�

+

(�), where for Re s > 0 the roots of the polyno-

mials �

�

(�) and �

+

(�) lie, respectively, to the left and to the right of

the imaginary axis, while the coe�cients are continuous for s, Re s � 0,

(�

1

; : : : ; �

n�2

) 2 R

n�2

, �

2

1

+ � � � + �

2

n�2

+ jsj

2

= 1 [4]. On the left side

of the boundary conditions (4.89), to the di�erential operator b

j

(x; @),

0 � j � m � 1, written in terms of the coordinate system x

0

1

; : : : ; x

0

n

connected with P 2 �

0

, there corresponds the characteristic polynomial

b

j

(�) = �

j

n�1

. Therefore, since the degree of �

�

(�) is equal to m, the

following condition will be ful�lled.

For any point P 2 �

0

and any s, Re s � 0, and (�

1

; : : : ; �

n�2

)

2 R

n�2

, such that �

2

1

+� � �+�

2

n�2

+jsj

2

= 1, the polynomials b

j

(i�

1

; : : : ; i�

n�2

;

�; s) = �

j

, j = 0; : : : ;m� 1, are linearly independent, as polynomials of �,

modulo �

�

(�).

We shall now show that condition 1 implies condition 2, while the latter

implies condition 3. Let us consider the case � � K

�

m+1

[ O. The second

case � � K

�

m

[ O is treated analogously. Let P 2 �

0

and x

0

1

; : : : ; x

0

n

be

the coordinate system connected with this point. Since the generatrix 


of � passing through P is a spatial-type normal, the plane x

0

n

= 0 passing

through P is a spatial-type plane.

Denote by K

j

^the boundary of the convex shell of K

j

and by K

?

j

the set

which is the union of all bicharacteristics corresponding to K

j

and coming

out of O along the outer normal toK

j

, 1 � j � 2m. Obviously, (K

j

)̂

�

= K

�

j

,

@(K

�

j

) = (K

j

)̂

?

.
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Let us now show that the plane �

1

, parallel to the plane x

0

n

= 0 and

passing through the point (0; : : : ; 0), is the plane of support to the cone

K

m

^at the point (0; : : : ; 0). Indeed, it is evident that the plane N � � = 0,

N 2 R

n

n(0; : : : ; 0), � 2 R

n

, is the plane of support to K

m

^ at the point

(0; : : : ; 0) if and only if the normal vector N to this plane taken with the

sign + or � belongs to the closure of the conic domain (K

m

)̂

�

= K

�

m

. Now it

remains for us to note that the conic domains K

�

m

and K

�

m+1

are centrally

symmetric with respect to (0; : : : ; 0), and the generatrix � passing through

P is perpendicular to �

1

and, by the condition, belongs to K

�

m+1

[ O.

Since x

0

n

= 0 is a spatial-type plane, the two-dimensional plane � : x

0

1

=

� � � = x

0

n�2

= 0 which passes through the generatrix 
 directed along the

spatial-type normal, intersects the cone of normalsK

P

of the equation (4.88)

with the vertex at the point P by 2m di�erent real straight lines [17]. The

planes orthogonal to these straight lines and passing through the (n � 2)-

dimensional plane x

0

n

= x

0

n�1

= 0, give all 2m characteristic planes passing

through this plane.

The straight lines x

0

n

= 0 and x

0

n�1

= 0 divide the two-dimensional plane

� into four right angles �

1

: x

0

n�1

> 0, x

0

n

> 0; �

2

: x

0

n�1

< 0, x

0

n

> 0;

�

3

: x

0

n�1

< 0, x

0

n

< 0; �

4

: x

0

n�1

> 0, x

0

n

< 0. It is easily seen that

exactly m characteristic planes of equation (4.88) pass through the (n� 2)-

dimensional plane x

0

n

= x

0

n�1

= 0 into the angle x

0

n

> 0, x

0

n�1

> 0, if and

only if exactly m straight lines from the intersection of K

P

with the two-

dimensional plane � pass into the angle �

4

. The latter fact really occurs,

since: 1) the plane x

0

n

= 0 is the plane of support to K

m

^and therefore to all

K

1

; : : : ;K

2m

; 2) the planes x

0

n

= 0, x

0

n�1

= 0 are not characteristic because

the generatrices of � have a spatial-type direction and � is not characteristic

at the point P .

Now it will be shown that condition 2 implies condition 3. By virtue

of Condition 2 the plane x

0

n�1

= 0 is not characteristic and therefore the

polynomial ep

0

(i�

1

; : : : ; i�

n�2

; �; s) for � has exactly 2m roots. In this case,

if Re s > 0, the number of roots �

j

(�

1

; : : : ; �

n�2

; s), with the multiplicity of

the polynomial ep

0

(i�

1

; : : : ; i�

n�2

; �; s) taken into account, will be equal to

m provided that Re�

j

< 0.

Indeed, recalling that equation (4.88) is hyperbolic, for Re s > 0 the

equation ep

0

(i�

1

; : : : ; i�

n�2

; �; s) = 0 has no purely imaginary roots with

respect to �. Since the roots �

j

are the continuous functions of s, we can

determine the number of roots �

j

with Re�

j

< 0 by passing to the limit as

Re s! +1.

Since the equality

ep

0

(i�

1

; : : : ; i�

n�2

; �; s) = s

2m

ep

0

�

i

�

1

s

; : : : ; i

�

n�2

s

;

�

s

; 1

�

holds, it is clear that the ratios

�

j

s

, where �

j

are the roots of the

equation ep

0

(i�

1

; : : : ; i�

n�2

; �; s) = 0, tend to the roots �

j

of the equation

ep

0

(0; : : : ; 0; �; 1) = 0 as Re s! +1. The latter roots are real and di�erent
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because equation (4.88) is hyperbolic. If s is taken positive and su�ciently

large, then for �

j

6= 0 we have �

j

= s�

j

+ o(s). But �

j

6= 0, since the

plane x

0

n

= 0 is not characteristic. Therefore the number of roots �

j

with

Re�

j

< 0 coincides with the number of roots �

j

with �

j

< 0. Since the char-

acteristic planes of equation (4.88) passing through the (n� 2)-dimensional

plane x

0

n

= x

0

n�1

= 0, are determined by the equalities �

j

x

0

n�1

+x

0

n

= 0, j =

1; : : : ; 2m, condition 2 implies that the number of roots �

j

with Re�

j

< 0

is equal to m.

We give another equivalent description of the space W

k

�

(D). On the

unit sphere S

n�1

: x

2

1

+ � � � + x

2

n

= 1 let us choose a coordinate system

(!

1

; : : : ; !

n�1

) such that in the domain D the transformation

I : � = log r; !

j

= !

j

(x

1

; : : : ; x

n

); j = 1; : : : ; n� 1;

is one-to-one, nondegenerate and in�nitely di�erentiable. Since the cone � =

@D is strictly convex at the point O(0; : : : ; 0), such coordinates evidently

exist. Under the above transformation the domain D turns to an in�nite

cylinder G bounded by an in�nitely di�erentiable surface @G = I(�

0

).

Introduce the functional space H

k




(G), �1 < 
 <1, with the norm

kvk

2

H

k




(G)

=

k

X

i

1

+j=0

Z

G

e

�2
�

�

�

�

@

i

1

+j

v

@�

i

1

@!

j

�

�

�

2

d!d�;

where

@

i

1

+j

v

@�

i

1

@!

j

=

@

i

1

+j

v

@�

i

1

@!

j

1

1

: : : @!

j

n�1

n�1

; j = j

1

+ � � �+ j

n�1

:

As it is shown in [48], the function u(x) 2 W

k

�

(D) if and only if eu =

u(I

�1

(�; !)) 2 H

k

(�+k)�

n

2

(G), and the estimates

c

1

keuk

H

k

(�+k)�

n

2

(G)

� kuk

W

k

�

(D)

� c

2

keuk

H

k

(�+k)�

n

2

(G)

hold, where I

�1

is the transformation inverse to I and the positive constants

c

1

and c

2

do not depend on u.

It is easy to see that the condition v 2 H

k




(G) is equivalent to the con-

dition e

�
�

v 2 W

k

(G), where W

k

(G) is the Sobolev space. Denote by

H

k




(@G) the set of all  such that e

�
�

 2 W

k

(@G), and by W

k

��

1

2

(�) the

set of all ' for which e' = '(I

�1

(�; !)) 2 H

k

(�+k)�

n

2

(@G). Assume that

k'k

W

k

��

1

2

(�)

= ke'k

H

k

(�+k)�

n

2

(@G)

:

Spaces W

k

�

(D) possess the following simple properties:

1) if u 2 W

k

�

(D), then

@

i

u

@x

i

2 W

k�i

�

(D), 0 � i � k;

2) W

k+1

��1

(D) �W

k

�

(D);



118

3) if u 2W

k

��1

(D), then by the well-known embedding theorems we have

u

�

�

�

2W

k

��

1

2

(�);

@

i

u

@�

i

�

�

�

�

0

2W

k�i

��

1

2

(�); i = 1; : : : ;m� 1;

4) f = p(x; @)u 2W

k+1�2m

��1

(D) if u 2W

k+1

��1

(D).

In what follows we will need in spaces W

k

�

(D), W

k

��

1

2

(�) other norms

depending on the parameter 
 = (�+ k)�

n

2

and equivalent to the original

norms.

Put

R

n

!;�

=

�

�1 < � <1; �1 < !

i

<1; i = 1; : : : ; n� 1

	

;

R

n

!;�;+

=

�

(!; �) 2 R

n

!;�

: !

n�1

> 0

	

; !

0

= (!

1

; : : : ; !

n�2

);

R

n�1

!

0

;�

=

�

�1 < � <1; �1 < !

i

<1; i = 1; : : : ; n� 2

	

:

Denote by ev(�

1

; : : : ; �

n�2

; �

n�1

; �

n

�i
) the Fourier transform of the function

e

�
�

v(!; �), i.e.,

ev(�

1

; : : : ; �

n�1

; �

n

� i
) = (2�)

�

n

2

Z

v(!; �)e

�i!�

0

�i��

n

�
�

d!d�;

i =

p

�1; �

0

= (�

1

; : : : ; �

n�1

);

and by bv(�

1

; : : : ; �

n�2

; !

n�1

; �

n

� i
) the partial Fourier transform of the

function e

�
�

v(!; �) with respect to !

0

, � .

In the above-considered spaces H

k




(R

n

!;�

) and H

k




(R

n

!;�;+

) we can intro-

duce the following equivalent norms:

jkvjk

2

R

n

;k;


=

Z

R

n

�




2

+ j�j

2

�

k

�

�

ev(�

1

; : : : ; �

n�1

; �

n

� i
)

�

�

2

d�;

jkvjk

2

R

n

+

;k;


=

1

Z

0

Z

R

n�1

k

X

j=0

�




2

+ j�

0

j

2

�

k�j

�

�

�

�

�

@

j

@!

j

n�1

bv(�

1

; : : : ; �

n�2

; !

n�1

; �

n

� i
)

�

�

�

2

d�

0

d!

n�1

:

Let '

1

; : : : ; '

N

be the partitioning of unity in G

0

= G \ f� = 0g, where

G = I(D), i.e.,

N

P

j=1

'

j

(!) � 1 in G

0

; '

j

2 C

1

(G

0

), the supports of the func-

tions '

1

; : : : ; '

N�1

lie in boundary half-neighborhoods, while the support
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of the function '

N

lies inside G

0

. Then for 
 = (�+ k)�

n

2

the equalities

jkujk

2

G;k;


=

N�1

X

j=1

jk'

j

ujk

2

R

n

+

;k;


+ jk'

N

ujk

2

R

n

;k;


;

jkujk

2

@G;k;


=

N�1

X

j=1

jk'

j

ujk

2

R

n�1

!

0

;�;k;


(4.91)

de�ne equivalent norms in the spaces W

k

�

(D) and W

k

��

1

2

(�), where the

norms on the right side of these equalities are taken in terms of local coor-

dinates [4].

Assume �rst that the equation (4.88) contains only higher terms, i.e.,

p(x; �) � p

0

(�). Equation (4.88) and the boundary conditions (4.89) written

in terms of the coordinates !, � will take the form

e

�2m�

A(!; @)u = f;

e

�i�

B

i

(!; @)u

�

�

@G

= g

i

; i = 0; : : : ;m� 1;

i.e.,

A(!; @)u =

e

f; (4.92)

B

i

(!; @)u

�

�

@G

= eg

i

; i = 0; : : : ;m� 1; (4.93)

where A(!; @) and B

i

(!; @) are, respectively, di�erential operators of orders

2m and i with in�nitely di�erentiable coe�cients depending only on !, while

e

f = e

2m�

f and eg

i

= e

i�

g

i

, i = 0; 1; : : : ;m� 1.

Thus under the transformation I : D ! G, the unbounded operator T

of the problem (4.88), (4.89) transforms to the unbounded operator

e

T : H

k




(G)! H

k+1�2m




(G)�

m�1

Y

i=0

H

k�i




(@G)

with the domain of de�nition H

k+1




(G), acting as

e

Tu =

�

A(!; @)u;B

0

(!; @)u

�

�

@G

; : : : ; B

m�1

(!; @)u

�

�

@G

�

;

where 
 = (�+ k)�

n

2

. Note that written in terms of the coordinates !, � ,

the functions f(!; �) 2 H

k+1�2m


�2m

(G), g

i

(!; �) 2 H

k�i


�i

(@G), i = 0; : : : ;m�1,

if f(x) 2 W

k+1�2m

��1

(D), g

i

(x) 2 W

k�i

��

1

2

(�), i = 0; 1; : : : ;m � 1. Therefore

the functions

e

f = e

2m�

f 2 H

k+1�2m




(G), eg

i

= e

i�

g

i

2 H

k�i




(@G), i =

0; : : : ;m� 1.

Since by Condition 1 each generatrix of the cone � has the direction

of a spatial-type normal, due to the convexity of K

m

each beam coming

out of the vertex O into the conic domain D also has the direction of a

spatial-type normal. Therefore equation (4.92) is strictly hyperbolic with

respect to the � -axis. It was shown above that the ful�llment of Condition
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1 implies that of Condition 4. Therefore, according to the results of [4],

for 
 � 


0

, where 


0

is a su�ciently large positive number, the operator

e

T

has a bounded right inverse operator

e

T

�1

. Thus for any

e

f 2 H

k+1�2m




(G),

eg

i

2 H

k�i




(@G), i = 0; 1; : : : ;m � 1, 
 � 


0

the problem (4.92), (4.93) is

uniquely solvable in the class H

k




(G) and for the solution u we have the

estimate

jkujk

2

G;k;


� c

�

m�1

X

i=0

jkeg

i

jk

@G;k�i;


+

1




jk

e

f jk

G;k+1�2m;


�

(4.94)

with a positive constant c not depending on 
,

e

f and eg

i

, i = 0; 1; : : : ;m�1.

Hence it immediately follows that the theorem and the estimate (4.90) are

valid in the case p(x; �) � p

0

(�).

Remark. Estimate (4.94) with the coe�cient

1




at jk

e

f jk

G;k+1�2m;


, ob-

tained in the appropriately chosen norms (4.91), enables one to prove The-

orem 4.7 also when equation (4.88) contains lower terms, since the latter

give arbitrarily small perturbations for su�ciently large 
.
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