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Abstract. In the present paper, for hyperbolic equations and systems
in angular domains, we consider the formulations of problems representing
natural continuation and further development of the well-known classical
formulations of Goursat and Darboux type problems. For a wide class
of linear normally hyperbolic equations and systems of second order, the
dependence of unique solvability of the problems under consideration on
the structure of an angular domain as well as on the weighted space in
which the solution is sought, is established. Some correct multidimensional
analogues of Goursat and Darboux type problems for hyperbolic equations
are also considered.
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The questions of searching for and investigation of correctly posed boun-
dary value problems are of great interest in the theory of equations and sys-
tems of hyperbolic type. Among these problems boundary value problems
for hyperbolic equations and systems representing natural continuation and
further development of the well-known classical formulations of the Goursat
and Darboux problems are especially interesting.

Unlike the multidimensional case, more simple structure of characteristic
manifolds in the two-dimensional case allows one to obtain most complete
results on the solvability of these problems for hyperbolic equations.

In the two-dimensional case for the equation of string oscillation written
in terms of the characteristic variables

the Goursat problem is formulated as follows [19, 24, 64, 75]: in a rectan-
gular domain Dy : 0 < z < a, 0 < y < b find a regular solution u(z,y) of
equation (1) of the class C'(Dy), satisfying on the segments of characteristics
n:y=0,0<z<aand v :2 =0,0 <y <b the following boundary
conditions

u

L= i=12, ()

where f;, 7 = 1,2, are given real functions satisfying the agreement condition
f1(0) = f2(0) at the origin O(0,0).

The solution u(z,y), continuous together with its partial derivatives u,,
Uy and ugy, is called regular in the domain Dy solution of equation (1).

To solve the problem (1), (2) the use can be made of the well-known
Asgeirsson’s mean value theorem [17] which in the case of equation (1) is
formulated as follows: if Q : a1 < z < aq, by < y < be is a characteristic
rectangle wholly contained in Dy, then for any regular solution u(x,y) of
equation (1) of the class C'(Dy), the equality

u(A) + u(C) = u(B) + u(K), (3)

is valid, where A(ai,b1), B(a1,bs2), C(az,b2), K(az,b1) are vertices of the
rectangle ().

Let M (x,y) be an arbitrary point of the domain Dy, and let Py (z,0) € v
and @1(0,y) € 72 be the points of intersection with 7, and 7, of the charac-
teristics of equation (1) coming out of M (x,y). Then by virtue of (3) applied
to the characteristic rectangle OP; M @1, the regular solution u(z,y) of the
Goursat problem (1), (2) of the class C(Dy), for fi € C'(0,a] N C[0,a],
f2 € C1(0,b] N C[0, ] is given by the formula

u(M) = fi(Pr) + f2(Q1) — f1(0). (4)

Let us now consider the Darboux problems [6, 19] for equation (1). De-
note by D; the domain lying at the angle z > 0, y > 0 and bounded by the



characteristics 1 : y =0, 0<z<a,ly :y=bkb<zx<a,ly:z=a,
0 < y < b of equation (1) and by a non-characteristic curve s : z = ky,
0 <y < b, where a, b and k are positive constants with kb < a.

The first Darboux problem: find in D; a regular solution u(z,y) of equa-
tion (1) of the class C'(D;) satisfying the boundary conditions

ul =fi, i=12, (5)

i
where f; and f» are given real functions belonging respectively to the classes
C'(0,a) N C[0,a] and C1(0,b) N C[0, b], and satisfying f1(0) = f2(0).

If M (z,y) is an arbitrary point of Dy, then by Py (z,0) € 1 and Q1 (ky,y)
€ p2 we denote the points of intersection with the curves pu; and po of
characteristics of equation (1) coming out of M (x,y). Let Py(ky,0) € uy
be the point of intersection with u; of the characteristic coming out of Q1.

Applying equality (3) to the characteristic rectangle P> M Py, we obtain
for the regular solution u(x,y) of the first Darboux problem (1), (5) the
following formula

u(M) = fi(P1) + f2(Q1) — fi(P2)- (6)

Denote now by D, the domain lying at the angle x > 0, y > 0 and
bounded by the characteristics I3 : y = b, kob < x < @, l4 : x = a, k1ja <
y < b of equation (1) and by non-characteristic curves o; : y = kjzx,
0<z<a,o9:2=koy, 0<y <D, where a, b and k;, ©+ = 1,2, are positive
constants satisfying k1a < b and k2b < a.

The second Darboux problem: find in Dy a regular solution w(z,y) of
equation (1) of the class C(D-) satisfying on the curves oy and o9 the
boundary conditions

u| =fi, i=12, (7)

where f;, ¢ = 1,2, are given real functions belonging to the same classes as
in the case of the problem (1), (5), and f1(O) = f2(O).

Remark. Tt is seen from the formulas (4) and (6) that the value of the
solution u(z,y) of both the Goursat problem (1), (2) and the first Darboux
problem (1), (5) at a point M (z,y) depends on the values of functions fi,
fo at a finite number of points. At the same time, as it will be seen below,
the value of the solution u(z,y) of the second Darboux problem (1), (7), if
it exists, will depend on the values of functions f;, f> at an infinite number
of points convergent to zero.

Let My (zo,y0) be an arbitrary point of Dy. By Lq(My) and Lo(My) we
denote, respectively, the characteristics = z¢ and y = yo of equation (1)
passing through M. Let P, € 01 and @1 € 03 be the points of intersection
of the characteristics Li(Mp) and L2 (My) of equation (1) with the curves
o1 and o». If the points P,_1 € 01 and Q,,—1 € 02 are well determined,
then by P, € o1 and ), € o2 we denote the points of intersection of



the characteristics L1(Q,—1) and La(P,—1) with o1 and o2, respectively.
Continuing this process, we shall get the sequences Py, P», ..., P,,... and
Q1,Q2,...,Qn,... of points lying respectively on o; and o9 and tending
for n — oo to the origin O.

Denote by M,, € D, the point of intersection of the characteristics Lo (P;,)
and L1(Q,). Obviously, the sequence of points M, also tends to the origin
O for n — oco. Without restriction of generality we can assume u(0) =
f1(0) = f2(0) = 0, since otherwise the function v = u— f1(O) is considered
as a new unknown function.

Applying (3) to the rectangle M,,_ P, M, Q,, we obtain

(Mo 1) = (P + (@) —u(My), n=12,.... (8
From (8) we have

n

u(Mo) = Y (=) [fu(P) + f2(Q0)] + (=1)"u(My). 9)
i=1
If the problem (1), (7) is solvable, then passing in (9) to the limit for
n — oo and taking into account that lim u(M,) = u(0O) = f1(0), we get

n—00
that the series

o0

1= (=)' [f1(P) + f2(Q)] (10)

i=1

converges. Thus the convergence of (10) is necessary and sufficient for the
problem (1), (7) to be solvable in the class of regular solutions introduced
above.

Passage in (9) to the limit for n — oo when f; = fo = 0 also shows that
in the class of regular solutions the second Darboux problem cannot have
more than one solution.

Now let us show that the series (10) converges not for all functions f;
and fy from the above mentioned classes. For the sake of simplicity let
a=b=1,0< k =k =k <1, fo =0, and let zg = yg = 1 be the
coordinates of My. As a function f; = fi(x) of the class C*(0,1) N C[0, 1],
we take
cos(w%ﬁ—i)

fi(z) =

In %a:
In this case (10) takes the form
[ee] o0
1 1
I'= Z Tri-1 ; Lo
i1 ll’lik i1 (’L—l)lnk+1n§

and, obviously, diverges.
Since in (10)
lim P, = lim @, =0,

n—o0 n—o0



to ensure convergence of this series we additionally require of the functions
f1 and f> to be regular in a neighborhood of O. For example, it suffices to
require that

fi1 €CY0,a]NC[0,a], fo € C*0,b]NCIO,b]

and for some a, 0 < a = const < 1, the first order derivatives of these
functions have integrable at O singularities of the type

< 1159 )| < G = const > 0. (11)

xd? ya7

£V ()] <

In this case, the series (10) and that obtained from (10) by termwise differ-
entiation with respect to = or y converge uniformly in D, and the regular
solution of the problem (1), (7) is given by the formula

o0

u(Mo) =Y ()" [f1(P) + £(Q4)]-

i=1

The solution and its partial derivatives with respect to x and y satisfy in
a neighborhood of O the estimates

—a C
u(z,y)| < Cy(lz] + 1)), Jue(@,y)] < e
(] + [y]) (12)
G C 0
uy(z,y)| < , = const > 0.
(=9 < Trgp > &

Thus, to ensure the solvability of the second Darboux problem (1), (7),
we have naturally come to the consideration of weighted spaces defined by
inequalities (11) for the functions fi, fo and by inequalities (12) for the
regular solutions of equation (1).

Chapter I of the present paper deals with the boundary value problems for
equation (1) which are formulated more generally than the above-mentioned
Goursat and Darboux type problems.

The results obtained for equation (1) are in a definite sense complete and
simple by form and serve as a visual model for investigation of boundary
value problems for second order hyperbolic systems with two independent
variables.

Let 1 :y = n(2), 0 <2 < 2, and 72 : 7 = 72(y), 0 < y < yo, be
the two simple smooth curves coming out of the origin O and lying wholly
at the angle z > 0, y > 0. Below it is assumed that the functions 7 (z)
and v2(y) are monotonically non-decreasing, i.e., 'yfl)(a:) >0, 751)(y) >0,
and v1(72(y)) < y for 0 < y < yo. Denote by D the domain lying at the
angle ¢ > 0, ¥y > 0 bounded by the curves 7;, 72 and the characteristics
Li(Py) : x =z and L2 (F) : y = yo coming out of the point Py(zo, yo).



Consider the boundary value problem formulated as follows [29]: find in
the domain D a regular solution u(z,y) of equation (1) satisfying on the
curves y; and 7, the following conditions

(Miug + Niwy)|. = fi, i=1,2, (13)

Vi
where M;, N;, fi, i = 1,2, are given real functions.

Remark. Note that the Goursat and Darboux type problems considered
above are reduced to a problem of the type (1), (13) by differentiating the
corresponding boundary conditions along the tangents of data carriers of
these problems.

The solution of the problem (1),(13) is sought in the following weight
space

CLY(D) = {u € C(D) : ug,uy,ugy € C(D\O), u(0,0) =0,

sup |z| 7% ug(2)] < 00, sup |z|T%uy(z)] < oo,
2€D\O 2€D\O

sup |27y, ()] < oo},
2€D\O

where z = z + 4y, i = /—1, and a > —1 is a real parameter.

Obviously, if u € CL1(D), then SUD, 5\ 0 |2|=(F ) |u(2)] < oo.

If the solution u(z,y) of the problem (1), (13) is sought in the space
CL1(D), then we require of the boundary functions f,, f» that

fi(z) € Co(m1) = {f1 € C(0,z9] : sup |a:’“f1(a:)| < oo},

0<z<zo

f2(4) € Cal2) = {2 €COwo] - sup [y~° foly)| < o0}

0<y<yo

It is shown that the correctness of the problem (1), (13) in the class
CLY(D) depends essentially on the parameter a, as well as on the angle
between the supports of boundary data 7; and 7, at the common point
O and their configuration [29]. For example, if the curves 7, 72 are not
characteristics of equation (1), do not have a common tangent line at O,

and M;|y, # 0, Ni|y, #0, i = 1,2, then for a > —11?1‘;;‘ the problem (1),
(13) is uniquely solvable in the class C1'!(D), while for a < —11?1‘;;‘ the

homogeneous problem corresponding to (1), (13) has an infinite number of
linearly independent solutions, where o = (M;' Ny MyN; 1) (0), 0 < 19 =
7 0% (0) < 1.

In the case where the curves 71, 72 have the same tangent line at O,
ie. 70 = vV(0)%Y(0) = 1 and M|, # 0, Ni|y, # 0, i = 1,2, then for
|o| < 1 the problem (1), (13) is uniquely solvable in the class CL'(D),
while for |o| > 1 the homogeneous problem corresponding to (1), (13) has




an infinite number of linear independent solutions [29]. We should also
note the work [53] in which sufficient conditions for unique solvability of the
problem (1), (13) in the class C2(D) are obtained in the case where y; and v,
are segments of non-characteristic straight lines coming out of the common
point O. The case |o| = 1 which corresponds to the case where the directions
of differentiation operators a% = Mi% + Nia%, ¢t = 1,2, appearing in
the boundary conditions (13) coincide at the point O, turned out to be
more complicated. More interesting results in this direction are obtained
by T. M. Makharadze [51, 52]. He has established that the correctness of
formulation of the problem under consideration depends on the parameter «,
the order of tangency of the curves 7, 7 and the directions of differentiation
operators (%, ailz at O. The results of Firmani concerning the second
Darboux problem in the case where the curves o; and oy have a common
tangent line at O are also worth mentioning [20-22].

In the same chapter it is shown that when condition M (z,y) # 0 or
Ny(z,y) # 0 is violated on the whole curve vy or 72, the existence of the
lowest terms in this problem may affect the correctness of formulation of the
problem (1), (13). The case where condition M;(z,y) # 0 or Na(z,y) # 0
violates at one point O only, is also considered. In this case, in the class
CL1(D) the homogeneous problem corresponding to (1), (13) has an infinite
number of linearly independent solutions. At the same time, the functional
space Cy (D) is determined such that the problem (1), (13) is uniquely
solvable.

Additional difficulties arise when we pass to second order hyperbolic sys-
tems. This has been first shown by A. V. Bitsadze [7] who constructed
examples of second order hyperbolic systems for which the corresponding
homogeneous characteristic problem (the Goursat problem with data on the
characteristics) has a finite or even an infinite number of linearly indepen-
dent solutions. Characteristic problem for second order hyperbolic systems
with two independent variables and constant leading coefficients has been
investigated in the works of the author [30-32]. In particular, these works
reveal new effects connected with the problems of smoothness of solutions
and the possibility for the characteristic problem to have a non-zero finite
index. Simple examples of second order hyperbolic systems in A. V. Bit-
sadze’s work [8] illustrate how the lowest terms affect the correctness of
formulation of the characteristic problems.

S. L. Sobolev [68], V. P. Mikhailov [58, 59] and L. A. Mel'tser [55] in-
vestigated some analogues of the Goursat type problem in the case of first
order hyperbolic systems with two independent variables.

Chapter II deals with the boundary value problems for second order linear
normal hyperbolic systems with variable coefficients of the type

Augy + 2Buyy + Cuyy + A1uy + Biuy + Cru = F

in the weighted spaces 8"’2(5) [33-37, 54]. Boundary conditions in these



problems are determined by a first order differential operator, while the
carrier of these conditions are the two arcs v, and v, with a common point
at the origin. The sufficient conditions imposed both on the coefficients of
the system and on the curves 7, 2 ensuring correctness of the problems in

]
the spaces C¥ (D) are also given in the same chapter. The structure of the
domain of definition of the solution is determined depending on the location
of data carriers with respect to the characteristics of the system.
Characteristic problems for second order linear hyperbolic systems of the

types

Y™ Aty + 2y Bugy + Cuyy + aug +buy +cu=F (14)
and

Augy +2y? Bugy +y"Cuyy + auy + buy +cu = F (15)

with parabolic degeneration along the straight line y = 0 are studied in
Chapter III. Boundary conditions in these problems are determined by
means of Goursat type data, while the carrier of these conditions are the
two arcs of adjoint characteristics of the system coming out of the point
of parabolic degeneration. Under certain conditions imposed on the coef-
ficients of the system and boundary operator, we prove theorems on the
unique solvability of these problems in special weighted spaces determined
with regard to the character of parabolic degeneration [38—40]. The condi-
tion obtained in this case and imposed on the lowest terms of the system is
an exact analogue of the well-known Gellerstedt’s condition for one equa-
tion.

It should be noted that the characteristic problem with boundary con-
ditions u|,, = fi, ¢ = 1,2, on segments of characteristics y; and 7, coming
out of the origin O(0,0), has been investigated by L. Sh. Agababyan and A.
B. Nersesyan [1-3] for one second order hyperbolic equation with parabolic
degeneration of the type

Y Ugy — Uyy + Qg +buy +cu = F

in a rectangle bounded by characteristics of that equation coming out of the
points 0(0,0) and P(0,1). The characteristic problem for the equation

2 _
Y Ugg — Uyy + atiy =0

has been studied by T. Sh. Kalmenov [27] in a triangular domain bounded
by the segment [0, 1] of the axis # and by pieces of characteristics coming
out of the points O(0,0) and (1(1,0). Note also the works of V. N. Vragov
[76] and B. A. Bubnov [15] where, in particular, the characteristic problem
in domains containing a segment of a line of degeneration is studied. The
case when OP; is a segment of a axis z and OP; is that of a characteristic
of one hyperbolic equation with parabolic degeneration for y = 0, has been
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studied in the works of V. N. Vragov [76] and A. M. Nakhushev [60-62],
while for the systems of the type

K(y)ugy — Euyy + aug + buy + cu = F,

this case has been studied by M. Meredov [56, 57].

In this chapter, the class of hyperbolic systems of the type (14) and (15)
for which characteristic problems are investigated, contains the systems with
non-split principal parts and the higher term Qy%Buxy different from zero.

The last Chapter IV concerns with certain multidimensional variants
of Goursat and Darboux type problems for linear hyperbolic differential
equations.

If in the two-dimensional case the problems of the Goursat and Darboux
type for hyperbolic equations and systems are investigated with sufficient
completeness, in the multidimensional case we have in this direction only
individual results. One of the main reasons is probably the existence of
a continual bundle of bicharacteristics of a hyperbolic equation, owing to
which, in particular, to ensure the correctness of this or that problem, one
should require definite orientation of data supports.

A multidimensional analogue of the Goursat problem (the Cauchy char-
acteristic problem) when the solution of a second order hyperbolic equation
is sought inside a characteristic conoid, has been studied by D’Adhemar
[18], Hadamard [25], S. L. Sobolev [69], Riesz [67], Lundberg [50], A. A.
Borgardt and D. A. Karnenko [14]. In the case when a second order hy-
perbolic system is split in its principal part, the same problem has been
investigated by Cagnac [16] in the four-dimensional space.

It should be noted that the Cauchy characteristic problem for a non-split
in the principal part second order hyperbolic system has not been studied
so far. Here, alongside with technical difficulties, there arise principal alge-
braic difficulties connected with determination of geometric structure of a
characteristic conoid in a vicinity of the vertex.

Certain multidimensional analogues of the first or the second Darboux
problems are treated by C. L. Sobolev [70], Garding [23], A. V. Bitsadze
[9], V. N. Vragov [76], T. Sh. Kalmenov [28] and Rassias [65, 66] for the
case where the solution of a second order hyperbolic equation is sought
in a conic domain, one part of whose boundary is of time-type and the
other is either characteristic or wholly of time-type. One variant of the
second Darboux problem in a conic domain of time-type is studied by S. S.
Kharibegashvili in the case where a second order hyperbolic system is non-
split in its principal part and for one hyperbolic equation of higher order
with constant coefficients at higher derivatives [41-43]. Note that for general
hyperbolic equations and systems both variants of the Darboux problems
in conic domains are not treated.

Other multidimensional analogues of the Goursat and Darboux problems
for one second order hyperbolic equation in a bihedral angle when either
both sides are characteristic or one side is characteristic and the other is a
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hypersurface of time-type, have been considered in the works of Beudon [5],
Hadamard [25], Tolen [71] and S. S. Kharibegashvili [44-46]. The second
Darboux problem when both sides are hypersurfaces of time-type is more
complicated. This case is considered by S. S. Kharibegashvili in [47].

In Chapter IV we shall restrict ourselves to the statement of the results
obtained in the course of investigation of multidimensional analogues of the
Goursat and Darboux problems for the second order hyperbolic equation
with the wave operator in its principal part in a bihedral angle of a quite
definite orientation [44-47]. The final paragraph of this chapter concerns
with a multidimensional variant of the second Darboux problem for a higher
order hyperbolic equation with constant coefficients at higher derivatives in
a conic domain located fully in the interior cone of rays [43].
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CHAPTER I

In the plane of variables x, y let us consider a second order hyperbolic
equation of the type

Ugy + Q1Ug + b1y + cru = F, (1.1)

where a1, by, ¢1, F are given real functions and « is an unknown one.

Let v1 :y =71 (), 0 <z < 2, and ¥ : z = 12(y), 0 < y < yo, be two
simple curves of the class C'!' coming out of the origin O(0,0) of the plane
of variables z, y and located completely in the angle z > 0, y > 0.

Below we shall assume that v1(72(y)) < y, 0 < y < yo, and each of
the curves v;, i = 1,2, either is a characteristic of equation (1.1) or it has
characteristic direction at none of its points, except maybe O(0,0). This
implies that if v; (72) is not a characteristic, then the function y = v, ()
(z = 72(y)) is strictly monotonically increasing. Denote by D the domain
lying at the angle z > 0, y > 0, bounded by the curves i, 72 and the
characteristics Li(Py) : © = zp and L2(Fp) : y = yo of equation (1.1),
coming out of the point Py (o, yo)-

Consider the boundary value problem formulated as follows: in the do-
main D find a regular solution u(zx,y) of (1.1) satisfying on ; and ~o

where M;, N;, S;, fi, i = 1,2, are given real functions.
The solution of the problem (1.1), (1.2) is sought in the weighted space

CL(D) = {u € C(D) : wp,uy,ay € C(D\O), u(0,0) =0,

sup |z| 7% ug(2)] < 00, sup |z|7%uy(z)] < oo,
2e€D\0 2eD\O

sup |Z|_(°‘_1)|umy(z)| < oo},
2€D\O
where z =z + iy, 7+ = vV—1, a > —1 is a real parameter.
Obviously, if u € C11(D), then SUP. 5\ 0 |2|~ () |u(2)] < oco.
When considering the problems (1.1), (1.2) in the space u € C}'' (D), we
require that aj,by,c; € C(D), M;, N;,S; € C(vi), i = 1,2,

fi(z) € Co(m) = {f1 € C(0,z0): sup |z “fi(a)| < oo},

0<z<zo
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fo(0) € Calt) = {f2 € COM] 5 sup [y folw)] < o0},
F(z) € Cy (D) = {F c0D\0): sup |z~ V|F(2)| < oo}.

2€D\O

For the sake of simplicity, we shall restrict ourselves to the consideration
of the equation of the string oscillation

Ugy =0, (1.3)
and in the boundary conditions (1.2) we shall agssume S; =0, = 1,2, i.e.,

(Miu, + Niuy)|V =fi, i=1,2. (1.4)

i

Denoting v = u, and w = u,, we can rewrite the problem (1.3), (1.4)
equivalently in the form

vy, =0, (1.5)
Uy =W 1.7

with boundary conditions
(M;v+ Niw)|7, =fi, i=1,2, (1.8)

(1)

(um +7 uy) |71 = (v + 'y{nw) | (1.9)

71
Indeed, if u(z,y) is a solution of the problem (1.3), (1.4), then it is clear
that the system of functions u, v and w satisfies (1.5)—(1.9). Conversely, let
u, v, w be a solution of the problem (1.5)—(1.9). Then, obviously, equalities
Uy = v, W = u, imply that u(z,y) is a solution of the problem (1.3), (1.4).
Therefore, by virtue of (1.7) it suffices to prove that u, = v.
Let g = v — u,. Then owing to (1.5)—(1.7), we have

Gy = Uy —Ugy =0 — (uy)y =0 —w, =0.
Hence g(z,y) = g(x), i.e.,
g(P) = g(P*) = (v —uy)|

where P* is the projection of an arbitrarily taken point P(z,y) € D on the
curve 1, parallel to the axis Oy.
By (1.7) and (1.9) we have

(1.10)

7’

(s Jr%nuyﬂ71 = (up +7Mw) |% = (v +7£1)w)|w,

whence uz|y, = v|y, and, according to (1.10), we get ¢ = 0 which means
that u, = v in D.
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Denoting v|,, = ¢(z) and wl|,, = ¥(y), we rewrite the boundary condi-
tions (1.8) as a system of two functional equations

Mio(z) + Nigp(n(z) = fi(z), 0<az <o, (1.11)

Myp(v2(y)) + Noto(y) = f2(y), 0 <y <o, (1.12)
with respect to the unknown functions (p, ) € Co(71) X Co(7y2)-
Evidently, if ¢(z) and v(y) are a solution of the system (1.11), (1.12),

then the functions u, v and w of the problem (1.5)—(1.9) can be uniquely
defined by the formulas

o(ey) = ple), wle,y) = P), ulz.y) = / vde + wdy,
OP

where OP C D is a curve connecting the point P(z,y) € D with the origin
0(0,0).
Below we shall assume that

M1|V1 £0, N2|V2 # 0. (1.13)

Excluding in the system (1.11), (1.12) the unknown function #(y), for
(z) we obtain the functional equation

Ty = ¢(z) — a(z)e(r(z)) = f(z), 0<z < 0. (1.14)
Here
a(z) = My ' (2)N1 (2) Ny ' (i (2)) Ma(n (2)), 1.15)
() =72 (71(33 , (1.16)
f@) = M7 (2) fi(2) = M7 (@) N1 (2) N5 (71.(2)) f2 (11(2))

Remark. It is obvious that when the conditions (1.13) are fulfilled, the
problem (1.3), (1.4) in the class C1'(D) is equivalently reduced to one
functional equation (1.14) with respect to the unknown function ¢(z) of
the class Cy (0, zo].

§ T V2
0(0,0)

Let 7o = 7(M(0). If the curves v, and 7> do not have a common tangent
line at 0(0,0), then due to the requirements imposed on y; and 7, we have
0 < 19 < 1, where 19 = 0 if and only if one of the curves v; or 7, has a
characteristic direction at this point.

If at least one of the curves v, or v is a characteristic of
equation (1.3), then equation (1.14) is uniquely solvable in the class Cy (0, zo]
for a > 0.
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Proof. Obviously, in this case 7(x) = 0. Moreover, since a > 0, from ¢(z)
(f(2)) € Ca(0,z0] we have p(x) (f(x)) € C[0,z0] and ¢(0) = 0 (£(0) = 0).
Therefore in this case equation (1.14) takes the trivial form

Let now 7, and 72 not be characteristics of (1.3). Then according to the
requirements imposed on 7; and s, the continuously differentiable function
7(x) defined by (1.16) is strictly monotonically increasing on [0, zo] and

7(0) =0, 0<7(z) <z for 0<x< . (1.17)

Therefore if 7, (z) = 7(1%-1(2)), 71 (x) = 7(x), 0 < x < xp, then according
to (1.17) the sequence {7 (x)}32; on the interval [0, zo] tends uniformly to
zero, as k — 0o. Hence there exists a natural number n such that

m(x) <e, 0<z<mo, k>n. (1.18)

Let equation (1.14) be uniquely solvable on the interval (0, €],
0 < & = const < xg, in the class Cy,(0,€]. Then equation (1.14) is likewise
uniquely solvable on the whole interval (0, zo] in the class Cy (0, 0], and its
solution p(z) can be represented in the form

vo(z), O0<z<e,
= n=l . 1.19
O W@ + 1w+ S wipe, wee
where @o(z) is the solution of equation (1.14) on (0,e] of the class Cy (0, €],
(A"@)(z) = a(z)a(r(2)) - a(Th=1(2)) (74 (2)), and the number n is chosen
by inequality (1.18).

Proof of Lemma 1.2 is trivial.
The following lemma is obvious.

In the class Cy(0,z0], (1.14) is equivalent to the equation

v(@) - a@) (") v(r@) = g@), 0<z<m,  (L20)

in the class Co(0, zo], where (z) =z~ %p(z) € Cy(0, zo], g(x) =2~ f(x) €
C()(O, 270].

Lemmas 1.2 and 1.3 immediately yield
Equation (1.14) is uniquely solvable in the class Cy (0, zo] if

and only if equation (1.20) is uniquely solvable for some e, 0 < & < zg, in
the class Cp(0,€].
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Let the curves v1\O and y2\O not be characteristics of equa-
tion (1.3) and at least one of them have characteristic direction at the point
O. Then equation (1.14) is uniquely solvable in the class Cy (0, xo] for a > 0.
If, however, —1 < a < 0, then (1.14) is uniquely solvable in the class
Cu (0, z9] when the condition

B (22

r—+0

<1 (1.21)

is fulfilled.

Proof. By virtue of Lemma 1.4, it suffices to prove that for sufficiently small
€ > 0 the operator

@0)(@) = o) (") " (r(a), (1.22)

appearing in (1.20) has in the space Cy(0,¢] the norm which is less than
unity, i.e.,

I Toll (0,61 o0, < 1- (1.23)
Really, in this case the Neumann series
(I-To) ' =T+To+-+T5 + -

for the operator Ty converges in the space Cy(0,¢] and the unique solution
(z) of (1.20) can be represented in the form

v=f+Tof+ - +Tg'f+--,

where [ is an identical operator.
In the first case, when a > 0 and at least one of the curves v; or 7, has
the characteristic direction at O, we have 5 = 7(1)(0) = 0, and

lim ‘a(aj)(%)a = lim |a(z)| lim (ﬂ)a:

r—+0 r—+0 r—+0 x
= 1a(0)|(rV(0))" = 0.

Therefore, since the function a(a:)(@)o‘ is continuous in a vicinity of zero,
there exists a sufficiently small number € > 0 such that for 0 < z < ¢ we

have
oo (")’

max <qg=const <1,

0<z<e

whence we get

@) (") v )| <

<q sup [¢(r(2))| <q sup [¢(2)] = qlldlley(,,
0<z<e 0<z<e

1 Tovllco(0,e] = sup
0<z<e
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ie.,
ITollco (0,6 (0,e] < ¢ < 1.
In the second case, when —1 < « < 0 and (1.21) is fulfilled, the estimate
(1.23) for the norm of the operator Ty defined by (1.22) can be proved
analogously. H

Let now the curves v, and v not be characteristics of equation (1.3) and
have no characteristic direction at O. In this case 0 < 79 < 1. Put o = a(0).

Let the curves v1\O and v2\O not be the characteristics of

equation (1.3) and have no characteristic direction at O. Then for a >
log |7
- log 10

, equation (1.14) is uniquely solvable in the class Cy (0, o).

Remark. In Lemma 1.6 for o = 0, that is for N;(0)M2(0) = 0, one should

assume _llt())gglz)l = —o00, and in this case equation (1.14) is uniquely solvable

for any a > —1.

Proof. Tt follows from the condition a > —ll(z)g ol that
g 7o

ol <1,
whence we directly obtain (1.21)

i i (2

z—+0

=lolry <1

which, as is shown in Lemma, 1.5, ensures the unique solvability of equation
(1.14) in the class Cy(0,¢]. W

Let the curves v1\O and y2\O not be characteristics of equa-

tion (1.3) and have no characteristic direction at O. If N1(0)M2(0) # 0,
then for a < _Egg_l;fol equation (1.14) is solvable in the class Co (0, 0], and
the homogeneous equation corresponding to (1.14) has an infinite number of

linearly independent solutions in this class.

Proof. Since N1(0)M(0) # 0, i.e. ¢ # 0 and a < _llt;gglgl, there exists a
positive number ¢, € < zg, such that for 0 < z < ¢ we have Ny(z) # 0,

M>(z) # 0, and
o (77)

X

>—=const >1, O<z<e. (1.24)

1
q

Since the function 7(z) is strictly monotone, for any z from the interval
0 < z < 7(e) there exists a unique natural number n; = n;(z) satisfying

T(e) <7 " (z) <e.

Analogously, for any z satisfying e; < z < z( there exists a unique
natural number ny = ny(z) such that

T(e) < ™2 () < e.
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By virtue of Lemma 1.3, it suffices to prove that equation (1.20) is solv-
able in the class Cy(0, €], and for the homogeneous equation corresponding
to (1.20) there exists an infinite number of linearly independent solutions
of this class.

Since the function 7(z) is strictly monotonically increasing, there exists
a function inverse to 7(x) which we denote by 77 1(z). It is easily seen that
the operator Ty defined by (1.22) is invertible, and

(T3 ") (@) = 0 (7 (=) (L))_az/}(fl(x)). (1.25)

Tz

It can be easily verified that every solution of (1.20) which is continuous
in a half-interval 0 < z < ¢ is given by

Yo(x), T(e) <z <e
ni(z) )
¢(x) — (T[)—nl(m)wo)(x) - ; (Toilg) (x)a 0<z < T(g)a (1.26)
na(z)—1
(13" 790) @)+ 5 (Tg)(a), =< v <,

where g (z) is an arbitrary function of the class C[r(g), ] satisfying the

condition o (£) — a(e)(HEL) ¢y (r(e)) = g(e)-

Let us show that if g € C(0, €], the function ¢ (x) given by (1.26) belongs
to the class Co(0, o] for any ¢ € C[r(g),€], wo(e) — a(s)(@)%ﬁo(r(s)) =
g(€). From this and owing to the the arbitrariness of the function g, we
obtain the assertion of Lemma 1.7.

Obviously, in order to prove that ¢ € Co(0,xo], it suffices to show that

the functions
ni(z)

(T, "1(96@[10 and Z i)

are bounded in the interval 0 < z < 7(g).
(1.24) and (1.25) yield

(T ™ o) (2)| < g™ L [po(@)] < max_fo(@),

r(e)<w<s
n1(z) ni(z) 1
\Z Fio)@| < Y@ sw lgl@)| < — sup g(x)]. W
i—1 0<x<xo —q 0<z<zo
Remark. One can prove that in the critical case where o = lzgglgl, equ-

ation (1.14) in the class Cy(0, ] is not Hausdorff normally solvable, that is,
the set of all right-hand sides f € C,(0,¢] for which (1.14) is solvable, is
everywhere dense in C, (0, €] but not coinciding with it.

From the above proven lemmas it follows that the following theorems are
valid.
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Let the conditions (1.13) be fulfilled and at least one of the
curves y1 or Yo be characteristics of equation (1.3). Then the problem (1.3),
(1.4) is uniquely solvable in the class C1*(D) for a > 0.

Let the conditions (1.13) be fulfilled, the curves v1\O and
Y2 \O not be characteristics of equation (1.3) and at least one of them have
characteristic direction at O. Then the problem (1.3), (1.4) is uniquely
solvable in the class CL1 (D) for a > 0. If, however, —1 < a < 0, then
the problem (1.3), (1.4) is uniquely solvable in the class CL1 (D), when the

condition
— T(z)\ @
Jim o) (57)

<1

is fulfilled.

Let the conditions (1.13) be fulfilled, the curves v1\O and
v \O not be characteristics of equation (1.3) and have no characteristic
direction at O. If N1(0)M2(0) = 0, then the problem (1.3), (1.4) is uniquely
solvable in the class CLY(D) for a > —1.

Let the conditions (1.13) be fulfilled, the curves v1\O and
v \O not be characteristics of equation (1.3) and have no characteristic

direction at O. If Ny (0)M(0) # 0, then for o > —217L the problem (1.3),

log 10
(1.4) is uniquely solvable T the class CLY(D), while for a < _llzgg_lgl it is
solvable in the class C11 (D), and the homogeneous problem corresponding
to (1.3), (1.4) has an infinite number of linearly independent solutions in

this class.

Remark. Using Picard’s method of successive approximations, one can
prove that the assertions of Theorems 1.1-1.3 and those of the first part of
Theorem 1.4 are also valid for the problem (1.1), (1.2) in the class C1*(D);
moreover, the estimate

2
lullear @y < €( Mfilleu +IFlle, @)
i=1

with a positive constant C' not depending on f; and F, is valid for the
solution u(z,y).

Here
lullgram) = sup [z *ua(2)] + sup [z *uy(2)] +
zeD\O zeD\O
+ sup [z Vugy (2)],
2€D\O

fillowiy = sup 12 °1fi2) IFlle, @ = swp [zl VIF(2)].
2€7:\O 2€D\O
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The assertion of the second part of Theorem 1.4 is likewise valid, but in
this case instead of the solvability of the problem (1.1), (1.2) in the class
CL1(D) there takes place the Hausdorff normal solvability [6]. Note also

—loglol " the Hausdorff normal solvability
g 70

of the problem (1.1), (1.2) in the class C}:' (D) will, generally speaking, be
violated.

that in the critical case where o =

0(0,0)

By virtue of the requirements imposed on the curves 7; and s in the
case where they have a common tangent line at O(0,0), we have 79 =
71 (0) = 1. The fact that |o| = |a(0)] = |[N; MM, * N, (0)] # 1 means
that the directions of differentiation in the boundary conditions (1.4) do not
coincide at O(0,0).

Repeating the same arguments as in §2, we can prove the validity of the
following

Let the conditions (1.13) be fulfilled, the curves v, and 7,
have a common tangent line at the point 0(0,0), but the directions of dif-
ferentiation in the boundary conditions (1.4) not coincide at this point, i.e.,
lo| # 1. If Ni(0)M=2(0) = 0, then the problem (1.3), (1.4) is uniquely solv-
able in the class CLY(D) for a > —1. If, however, N1(0)M(0) # 0, then
in the case |o| < 1 the problem (1.3), (1.4) is uniquely solvable in the class
CLY(D) for a > —1, while in the case |o| > 1 the problem (1.3), (1.4) is solv-
able in the class C11(D) for a > —1; moreover, the homogeneous problem
corresponding to (1.3), (1.4) has an infinite number of linearly independent
solutions.

Note that in this case, the remark following after Theorem 1.4 of the
previous paragraph is also valid.

§ 7 V2

0(0,0)

For the sake of simplicity we shall assume below that the curves vy, 72
and the coefficients M;, N;, ¢ = 1,2, in the boundary conditions (1.4) belong
to the class C°°. In this case it is obvious that 7(z) € C*°[0,zo], and the
coefficient a(z) € C*°[0, zo] in the functional equation (1.14).

Let 7, and 7, have a common tangent line at O(0,0) and the order of
tangency be equal to k. This, obviously, is equivalent to the conditions

n=710)=1, rP0)=0, 1<i<k, H*(0)£0. (1.27)
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Therefore the function 7(z) € C°°[0, x| can be represented in the form
1 (0)
(k+1)!
where A(z) = o(x) for z — 0, i.e., lir% A(z) =0.
T—r
Since 7(z) < x for 0 < = <z, (1.27) and (1.28) imply

B r(k+1)(0)
c= —W > 0. (129)

Taking into account (1.29), we rewrite (1.28) as

() =z + oF 4 N(z)zh T, (1.28)

7(z) = & — ca™ + Nz) . (1.30)

Assume 7,(z) = 7(1,—1(2)), 1(z) = 7(z), 0 < z < zp. As it is noted
above, the monotonicity of the function 7(z) and the validity of the condi-
tions (1.17) imply that the sequence of the functions {7, (z)}5%, vanishes
uniformly on [0, zo] for n — oo, i.e., T,(z) = 0, n — 0.

Below we shall concern ourselves with the asymptotics when the sequence
Tp = 7(Tn—1), 1 = = € (0,z0] tends to zero with respect to n.

The following lemma holds.

The behavior of the sequence x, = T,(x) for n — oo
can be written by the formula

&n
Vekn’
where the function &, = &,(x) tends uniformly on the segment 0 < x < xo
to unity as n — oo, i.e., &) =2 1, n — oo.

(1.31)

Ty =

Proof. Because of (1.30) and the well-known equality (1+7)? =1+ pn +
A1(n)n for p > 0, where lir% A1(n) =0, we have
n—

1 1 1
o [r(rpo)]P (Tp—1 — czﬁtll + /\(a:n_l)wﬁtll)p B
B zy g (1- Cwlfl—1 + /\(xn—l)xﬁ—ﬂp a
zy 1 (1 —pexy_y + Xa(@p-1)y_y)
1
= ——(1+pezh_| + As(zn1)2h_y) =
xn—l
1 _ _
=7 + pexl T8 + Ag(@no1)zh Y, (1.32)

where lim \;(n) =0, i =2, 3.
n—0
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Assuming p = k and n =4 in (1.32), we find that

1 1
s = + ck + /\3(371’—1)- (133)
T Li1

Adding equalities (1.33) for i = 2,3,...,n, we get

1 1 "
—Zx—,f+ck(n—1)+2yi,

o P
ie.,
1 1 -1 1Y,y
= — == 1.34
cknzk  ckna® n Tk (1.34)

where the sequence y; = y;(z) = A3(zi—1) = A3(7i—1(x)) tends uniformly
on the segment 0 < z < xq to zero, i.e., y;(x) = 0, n — oc.

Since
n—1

lim 7 =0, lim =1, lim y,=0
n—o00 ck;n;]jl n—oo N n—o00

and hence

1 n
o =0
2

1

we obtain finally from (1.34) that the sequence o =

m tends uniformly
on [0, 2] to unity. M

As already noted, coincidence of the directions of differentiation in the
boundary conditions (1.4) means that |o| = |a(0)] = 1. Let first a(0) =
o = 1. Then since a(z) € C*[0, x|, the representation

a(z) =14+ dze™ + p(z)z™, (1.35)

where lim u(z) = 0 and
z—0

) (m)
a?(0)=0, 1<i<m-1, a™(©0)#0, d=2= ,(0) .
m!
is valid.
Because of the fact that a(x) = 28, where Ki(x) = 1\]\/?1((?)’ Ky(z) =

% we have K (z) — Kao(z) = O(z™) for  — 0. Therefore, geomet-
rically the value m — 1 can be interpreted as the order of tangency of the
directions of differentiation at O(0,0) in the boundary conditions (1.4).

We rewrite equation (1.4) in the form
(To)(2) = o(z) = (Ap)(z) = f(z), 0<z <, (1.36)
where (Ag)() = a(@)p(r(2)).
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From (1.36) we have

p(r) = (A"p)(z) + Z(Aif)(a?), (1.37)

where A = T is the unit operator.

For m > k, equation (1.36) cannot have more than
one solution in the class Cy (0, 0], a > 0.

Proof. Let ¢(z) be a solution of the homogeneous equation corresponding
o (1.36) in the class C, (0, zo], @ > 0. Then because of (1.37) the equality
o(z) = (A"¢)(z) holds.
Equality (1.35) yields
la(z)] <1+ diz™, 0<z <z, (1.38)
for some d; = const > 0. Therefore
[(A"p) ()] = |a($)a(T(w))-'-G(Tn—l(w))w( w(@))] <
<A+diz™)(L+dim™(2)) -+ (14 dirq ( |<p Tn(x) )| (1.39)

As is known, the convergence of an infinite product H( + n;) is

o0

equivalent to that of the series ) ; if the values 7; have the same sign.
i=1

Therefore the convergence of the product

H (1+di7™())

is equivalent to that of the series

[ee]
which, in its turn, is equivalent to the convergence of the series ) ﬁ in
i=1

(o)
virtue of (1.31). The series Y ﬁ converges for m > k. Therefore there
i—1

i
exists a number M = const > 0 such that for n > 1 the equality
[T +dir@) <M (1.40)
i=1

is valid.
Inequalities (1.39) and (1.40) imply

[(A"p)()] < M |p(())]- (1.41)
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Since ¢ € Cy(0,z9] and o > 0, it is obvious that ¢ € C[0,z¢] and
©(0) = 0. Therefore, since the sequence {7,(x)}52, converges uniformly on
the segment 0 < z < z( to zero, we have

lim ¢(7,(z)) =0, 0<z < . (1.42)

n—o0

By virtue of (1.41) and (1.42), passing in the equality ¢(z) = (A"p)(x)
to the limit for n — oo, we finally obtain that ¢(z) =0. W

If f(z) € C3(0,20], B > k, then for m > k equation
(1.36) has the solution in the class Cy(0,20], 0 < a < f — k.

Proof. Tt can be easily verified that the functional series
A EY (1.43)
=0

is formally a solution of equation (1.36). Therefore, to prove that equation
(1.36) is solvable, it is sufficient to show that the series (1.43) converges in
the class Cy (0, z0], @ < B — k.

Since f € C3(0,z0], 8 > k, the equality

|f(@)] < Miz®zP) 0 <<z, (1.44)

where My = const > 0,is valid for 8y = k+e,e=8—k—a > 0.
From (1.31), (1.40), (1.44) and because 7;(z) < x, we have

(AT F)(= @l]a(r@)]-+-|a(ri1(2))]|£(7:(2)) | <
(e[S '3 81 (oh) R
< MM [ri(2)] [m] < MM (eh) T2 (145)

Since (1 > k, (1.45) implies the convergence of (1.43) in the class
Ca (0, 170]. |

Remark. The fact that the solution ¢(z) of equation (1.36) for f €
C3(0,20], B > k, does not, in general, belong to the class Cy(0,zo] for
a > B —k, is seen from the following example. It is not difficult to see that
the function po(z) = 2°7% € C5_(0,20]. By (1.30) and (1.35), we have

(To)(z) = 27 7* — a()(r(2))"* =
=2P7F — (14 de™ + p(x)z™)(z — cab Tt 4+ A(z)2zh )Pk =
=277 F — (14 da™ + p(z)a™)z? 5 (1 — ¢(8 — k)" + A(z)z") =
=c(B8 - k)z® + pi(z)2”
where ili% Nz) = ;13}) f(z) = 0. Hence the function fo(z) = (T'wo)(x) €
C3(0, 0], and the function ¢g(x) = 2°~* itself which does not belong to
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the class Cy (0, o] for any a > B — k, is the unique solution of equation
(1.36) for f(x) = fo(x).

Note that the above proven lemmas are also valid in the case a(0) =
o= —1.
Owing to Lemmas 1.9 and 1.10, the following theorem is valid.

Let o = 1, |o| =1 and m > k. Then the problem
(1.3), (1.4) cannot have more than one solution in the class Cy (0, 2], @ > 0.
If fi € Cs(vi), i = 1,2, where B > k, then the problem (1.3), (1.4) has a
unique solution in the class C1*(D), 0 < a < 3 — k.

We shall give the following results from [52] without proofs.

Let 1o = 1, |o| =1 and m = k, od > 0. Then for any
fi € C(0,20], i =1,2, B > k + 2'%‘, the problem (1.3), (1.4) is uniquely
solvable in the class CL'1 (D), where ‘—fl <a<pB—k-—d.

c

Theorem below does not involve the dependence between m and k.

Let 9 = 1, |o| = 1 and od < 0. Then for any f; €
Cs(0,20], i = 1,2, B > k, the problem (1.3), (1.4) is uniquely solvable in
the class CLY (D), where 0 < a < 3 — k.

§

7 Y2

As the example of the equation uz, = 0 shows, the problem (1.1), (1.2)
may appear to be ill-posed when the conditions (1.13) are violated. Below
we shall show that the existence of lower terms in equation (1.1) and in the
boundary conditions (1.2) may affect the correctness of the statement of the
problem (1.1), (1.2).

For simplicity let M; = const, N; = const, S; = const and |M;| + |N;| +
|Si] # 0,0 =1,2. Without loss of generality we may assume |M;|+|N;| # 0,
i = 1,2, since, otherwise, this can be achieved by differentiating the corre-
sponding boundary condition with respect to a tangent curve +;.

As v and 2 let us take the characteristic segments v : y = 0, 0 <
< z0,72:2=0,0<y < yo-

Let the second condition in (1.13) be fulfilled, while the first one be
violated on the whole segment 74, i.e.,

M| =0. (1.46)

71

Below we shall restrict ourselves to consideration of the problem (1.1),
(1.2) in the class

o

C*(D) = {u e 02(D) : 977u(0,0)

520y :0,0§i+j§2}
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and assume that a,b,¢ € C2(D), F € C'(D), F(0,0) = 0, f; = C(yi) =

{fi € C () : £:0) = £V (0) = 0}, i = 1,2.
Denote by R(x,y;z1,y1) the Riemann function which, by definition, is
the solution of the so-called conjugate equation [10]

Ryy — (aR)y — (bDR)y +cR =0 (1.47)
which on the characteristics ¢ = 1, y = y; takes the values
y
R(.’El, Y1, Z/l) = exp (/(l(ﬂ?l ) 77)d77) )
o (1.48)

T

R(Z‘, Yi; xlayl) = exp ( /b(fa yl)df) )
x1
where (z1,y1) is an arbitrarily fixed point in the domain Dj.

Due to (1.47) and (1.48), the function R(xz,y;z1,y:) satisfies the integral
equation

R(z,y;01,11) / b, y)R(E, ys 21,0 ) dE —

x
y

—/a(w,n)R(w,n;m,yl)dn+

Y1
T Y
+ / de / (€ m)R(E mi 21, y1)dn = 1. (1.49)
Y1

x1

It is known that equation (1.49) has the unique solution R(z,y;x1,y1)
which, as it can be easily verified, possesses the following continuous deriva-
tives

8;’7?6;11’7€1R(1‘,y; xlayl) € C(E X 5)7 (150)
0<i+;5<1, 0<ii+5 <2,

8i+j i1,j1 — 8i1+j1

Oxtoyl ? Y x1,Y1 31.111 Byil :

From (1.48) we have

ij —
where 9%, =

Ry(w1,y;71,91) — a(zr,y)R(z1,y;71,51) = 0,
Ry (z,y1;21,451) — b(z,y1)R(z,y1521,91) =0,
R(z1,y1;21,y1) = 1, (1.51)
Ryl(ar,y;a:,yl)+a(a:,y1)R(ar,y;a:,y1) =Y '
RI1 (xay;xlay) + b(arl,y)R(a:,y;xl,y) =Y,
R(z,y;z,y) = 1.
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On account of (1.50), every solution u(z,y) of equation (1.1) of the class
C?*(D) can be represented in the form [10]

u(z,y) = R(z,0;2,y)p(x) + R(0,y;2,9)¢(y) — R(0,0;2,y)¢(0) +

+/ R(0,m;2,y) — Ry (0,m; 2,1)]¢(n)dn +

+

Ot~ O\

Y
dg / R(¢, 7, y)F(€, m)dn, (152)
0

as the solution of the Goursat problem

u(z,0) = ¢(z), u(0,y) =v(y), ¢0)=1(0),
where ¢ and ¢ are given functions of the class C?.

When considering the problem (1.1), (1.2) in the class c? (D), one should
assume that

©D0) =ypP0)=0, i=0,1,2. (1.53)
From (1.52) and because of (1.53) we have

Uy (z,y) = (Re(z,0;2,y) + Ry, (7,05 2,y)) p(z) +
+R(z,0;2,1)9" (2) + R, (0,552, y)0(y) +

a(0,m)Ra, (0,7 2,y) = Rya, (0,152, y) ] (n)dn +

+
o\@

+[b(z,0)R(x,0; 2, y) — Ry (x,0;2,y) ] o(x) +

+ / R (6,0:2,4) — Ras, (6,0, )] (€)dE +

T

y
+/Rx n;x,y)F(x n)dn+/d£/Rz1 (& m;z,y)F (€, m)dy, (1.54)
0

0
uy(z,y) = Ry, (2,0;2,y)p(z) + (R (O,y,w,y)+Ry1(0,yyw,y)) (y) +

+R(0,y;2,9)Y™M () + [a(0,y)R(0,y; 2,y) — Ry (0,33 2,9)]v(y) +

+/ [a(0,m) Ry, (0,m;2,y) — Ryy, (0,152, 1) |4 (n)dn +
0



28

T

+ / [6(6,0) Ry (€, 0: 2, ) — Ry (6,052, )| p(€)de +

0
T

x Y
+ / R(&,yi 2, y)F (€, y)de + / de 0/ Ry, (€,m:2,y)F(€,m)dn. (1.55)

0 0

Assuming in equalities (1.54), (1.55) z = 0, y = 0 and taking into account
(1.53), we obtain

Yy
uy(0,y) = R, (0,y;0,9)¢ +/ Ry, (0,m;0,y) —
0
Y
—Ry2, (0,1;0,y)]¢(n)dn +/R 0,7;0,y)F(0,n)dn, (1.56)
0

T

uy(z,0) = Ry, (2,0; 2, 0)p(x) + / [b(E,0) Ry (€, 0;,0) —

Ry (6,052, 0] p(€)dé + / R(,0;,0)F(€,00de.  (L57)
0

It easily follows from (1.51) that
Rxl(oayvoay) = _b(oay)a Ry1 (CU,O,ZE,O) = —G,(ZE,O). (158)

Substituting the expressions obtained in (1.56), (1.57) for u, and w, into
the boundary conditions (1.2) and taking into consideration the equalities
u(z,0) = p(z), u(0,y) = ¥ (y) and (1.58), (1.46), we find that

~Nia(e,0)p() + Ny [ [HE0) Ry, (6,052,0) -
0
Ry, (6,0:2,0)]0(€)dE + Srp(a) = folw), 0<a<ao, (L59)
—M>b(0,y)¢(y) +

Y

+M2/ [a(0,m) Rz, (0,7;0,y) — Rya, (0,15 0,4) ]9 (n)dn +
0

+Np M (y) + Sotp(y) = faly), 0 <y < yo, (1.60)

where

T

fa(@) = filz) - Ny / R(€,0;2,0)F(£, 0)de,

0
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fa(y) = faly) — MQ/R(O:W;O::U)F(O:W)dn-

Obviously, the problem (1.1), (1.2) in the class C?(D) is equivalent to
the system of equations (1.59), (1.60) with respect to unknown functions

(S 02[0,.270], Y E 02[0,y0].
Let the condition

(S — aN1)|% #0. (1.61)
be fulfilled. From (1.48), (1.49) we have

Kl(faw) = b(€70)Ry1 (570;"17’0) - R.’L‘yl (570;"17’0) =
¢
= (a:(6,0) +a(€.0b(€,0) ~ €. 0) exp ( [ b(r0)dr),  (162)
Ks(n,y) = a(0,n) Ry, (0,1;0,y) — Rys, (0,7;0,y) =

= (by(0,m) + a(0,b(0,n) — c(0,m)) exp ( [ a(0,7)dr).  (1.63)

S S~

Let
o) =), () = / bo(r)dr. (1.64)

By virtue of (1.61)-(1.64) and owing to the condition N,|,, # 0, the
system of equations (1.59), (1.60) can be rewritten in the form

T

p(x) + Nl/\(w)/Kl(f,w)w(E)dﬁ =fs(x), 0<z<mo, (1.65)

boly) + () / bo(r)dr +

0

Y
+ My N ! / Ks(ry)bo(rdr = fay), 0<y<wo,  (166)
0

where A(z) = (S1 — aN1)™!(2,0), u(y) = N5 ' (Ss — bM>)(0,y), K3(1,y) =
S Ka(n,y)dn, fs(x) = M=) fa(2), foly) = N5 faly).
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Since equations (1.65) and (1.66) are second order Volterra type integral
equations, for equations (1.65) and (1.66) to be solvable, respectively, in the

classes C2[0, o] and C[0,yo], it is sufficient to require that

K& x) € C’l(O < ¢ < zo),

o<
2 ) (1.67)
aKaliaf’z) ec(0<i<n), fseC?m)
K»(n,y) € C(O < Z < yo),
(1.68)

6K2(777 y)

n oL
< ' < .
ay EC(O_y_yO)a fﬁec [ano]

Due to the requirements imposed on the coefficients a, b, ¢ of equation
(1.1) and the functions F', f, fo, the condition (1.68) will obviously be ful-
filled. However, for the condition (1.67) to be valid, one should additionally
require that

frec?or), f2(0)- NiF,(0,0) =0.

Consider now the case where the condition (1.61) is violated, i.e.,

(Sy —aNy)| =0. (1.69)

71

Since, by the assumption, |M;|+ |N1| # 0, My, N1,S; = const, we have
on account of (1.46) and (1.69)
a|OP1 = const . (1.70)

When the condition (1.69) is fulfilled, equation (1.59) with respect to
the unknown function ¢(z) is an integral Volterra type equation of the first
kind

/ Ky (€, 2)p(€)dE = N7 fo(a), 0< < o, (L.71)
0

Differentiating both parts of equation (1.71) with respect to x and taking
into account (1.70), we get

(ab — &) (&, 0)p () — b(z,0) / K, (6 0)p(e)de = Ny D (@), (L72)
0

Similarly, when the condition

(ab — c)|% £0 (1.73)
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is fulfilled, in order that equation (1.72) to be solvable in the class 8’2 [0, 2],
we should require that
fieCc®OP), Fec2or), f?(0)-NF,(0,0) =0,
) (0) = N1F,,(0,0) + N1b(0,0)F,(0,0) = 0.
If, however, the condition (1.73) is violated, i.e.,
(ab — c>|71 =0,
then, according to (1.62), (1.70), we have

Kl(f,x) =0.

In this case the left-hand side of equation (1.71) is equal identically to
zero and the equality

z £

fa(@) = filz) — N, / (exp/b(T, O)dT)F(f,O)df =0, 0<z <,

0 T
is a necessary and sufficient condition for the problem (1.1), (1.2) to be solv-

able in the class C?(D); moreover, the homogeneous problem corresponding
o (1.1), (1.2) has an infinite number of linearly independent solutions which
are given by

u(z,y) = R(z,0;2,y)p(z) +

+/@@®MUMw%Rﬁﬂme©%
0

where o(z) is an arbitrary function of the class C?[0, z)-
Thus the following theorem is valid.

Let the conditions My = 0, No # 0 be fulfilled. Then for
(S1 — aN1)|y, #0, the problem (1.1), (1.2) is uniquely solvable in the class

(jﬁﬁewm)ﬁ()MF@@—OMMWmﬂ&wMMﬁ:
0, then for (ab—c)|,, # 0 the problem (1.1), (1.2) is uniquely solvable in the

(
cluss C*(D) if fi € C2(), F € C2(m), £ (0) = NiF2(0,0) = 0, £{%(0) -
N1 F,2(0,0) + N15(0,0)F,(0,0) = 0. In the case where (S1 — aN1)|y, =0
and (ab — c)|,, = 0, for the problem (1.1), (1.2) to be solvable in the class

o __
C?(D), it is necessary and sufficient that

T

£
filz) — N, /exp (/b(T, O)dT)F(f,O)df =0, 0<z < o;

0
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moreover, the homogeneous problem corresponding to (1.1), (1.2) has an
infinite number of linearly independent solutions which are given by

u(z,y) = R(z,0;2,y)p(z) +

+ / [b(E, 0)R(E, 0: 2, y) — R (€, 052, )] (),
0

where () is an arbitrary function of the class C*[0, ], and R(x,y; 71, y1)
is a Riemann function for equation (1.1).

The cases Mi |y, # 0, Na|,, = 0and M|y, = Na|,, = 0 can be considered
in a similar manner.

§
0(0,0)

For simplicity, below we shall assume that in the problem (1.3), (1.4)
Nniy=mz, 0<z<z0, R2:2=p2y, 0<y<yo,
pi =const >0, i =1,2, pizo <yo, p2yo < Zo-

Let Ny|y, # 0, Ms|,, # 0, and let the second condition of (1.13) be
fulfilled, while the first one be violated only at one point O(0,0) in the form

M (z) = aPw(z),

where w(z) #0, 0 <z < z9, p >0 and w(z) € C[0, zo].
It is known that every solution u(z,y) of equation (1.3) of the class
CLY(D), a > —1, can be represented uniquely as [6]

u(z,y) = 3(z) + P(y),

where 3(z) € C[0,mo], V(z) € Cu(0,m0), ¥(y) € C[0,y0], ¥V (y) €

Ca(O,yO]; &(O) = ’(/}(O) =0. ~
In the notations p(x) = u, (z,y) = §" (x), P(y) = uy(z,y) = P (y), we
rewrite the boundary conditions (1.13) in the form of a system of equations
2Pw(z)p(z) + Ni(z)Y(p1z) = f(z), 0<z <=0, (1.74)

Ma(y)p(p2y) + Na(y)¥(y) = fa(y), 0 <y <o, (1.75)

with respect to unknown functions ¢(z) € Cy (0, zo], ¥(y) € Cu(0,yo].
It is easily seen that the system of equations (1.74), (1.75) is equivalent
to the system

Po(x) — bi(@)p(r0z) = f3(z), 0 <z < 0, (1.76)
P(y) = —(Ny ' Ma)(y)p(p2y) + (Ny ' f2)(y), 0<y <o, (1.77)
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where To=p1p2 < 1, bi(z)=(w™" N1)(2)(Ny ' M) (p12), f3(z)=(w" f1)(2)-
(W™ N (@) (N5 fo) (pr2).
The following lemma holds.

The homogeneous equation corresponding to (1.76) has an
infinite number of linearly independent solutions in the class Cy(0,zo] for
all a.

Proof. It can be easily verified that the function
x(#) = 55

belongs to the class C*°[0, 00), tends to zero as ¢ — +0 more rapidly than
any power t", m > 0, x(t) > 0 for ¢ > 0 and strictly monotonically increases

on the segment 0 < ¢ < 73/2; moreover,

x(7ot) = tPx (). (1.78)

Bearing in mind (1.78), after substitution ¢(z) = x(x)y1(x), the homo-
geneous equation corresponding to (1.76) takes with respect to the unknown
function ¢; the form

e1(z) — bi(z)p1(moz) =0, 0<z < 0. (1.79)

For simplicity, let by (z) = const # 0. According to (1.26), every solution
of (1.79), continuous in the half-interval 0 < x < x, can be represented in
the form

ol (), T0Zo < T < o,
p1(z) = bl_m(x)‘?? (T()_nl(x)ﬂ«")a 0 <z < 7100, (1.80)
m(o) = [jesz],

where [llo—oggTio] is an integer part of the number [ﬁ)—oggrio], while ¢! is an arbitrary

function of the class C[mwo, zo] satisfying ¢ (zo) — b1} (1070) = 0.
If |b1| < 1, then

oga og b1 |
|b1|7m(z) < |b1|_lt)gLT0 — x_lloggi(l) , (1.81)

and for |by| > 1 we have

ogax log |bq |
by~ @) < [by | TR T = |by |z e (1.82)
From (1.80)—(1.82) we have
_ _log|by]| 0

lp1(z)| <ca =m0 |lorl|ofrywo,wo] (1.83)

where ¢ = max(1, |b1]).
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Since the function x(z) along with all its derivatives vanishes for z — +0
more rapidly than any power ™, m > 0, owing to (1.83) we have

Jim |2 x (2)¢ ()] = 0

for any a. Therefore the function ¢(z) = x(z)p1(z), being the solution of
equation (1.76), belongs to the class C, (0, zo].

Because the function ¢9(z) in (1.80) is arbitrary, equation (1.76) has
in fact an infinite number of linearly independent solutions of the class
Ca(O,aro]. |

By Lemma 1.11, when condition M|,, # 0 is violated at one point
0(0,0) only, the homogeneous problem corresponding to (1.3), (1.4) has an
infinite number of linearly independent solutions in the class C1>'(D) for
all @ > —1. At the same time, we can find a functional space C}>\ (D) in
which the problem (1.3), (1.4) is uniquely solvable.

Introduce into consideration the space

CLA(D) = {ue cD)NC (D\0): u(0,0) =0, x *(x)u, € Ca(D\O),

log po — —
y PR T W)y € Ca(D\O), uay € C(D\O)},
where

C.(D\O) = {u €C(D\0): sup |2 “lu(z)| < +oo}.
2€D\O

As it is shown above, the problem (1.3), (1.4) in the class C}'\ (D) is
equivalently reduced to the system of equations (1.76), (1.77) with respect
to the unknown functions ¢ (z) and ¢ (y), where

X @)p(x) € Cal0,20], 3 "% x L (y)(y) € Ca(0, o).

The spaces consisting of the functions ¢(x) and ¥ (y) and satisfying these

conditions we denote, respectively, by Cq (0, z0] and Cy ya1,(0,y0], where

— ,logpo
Q= plog 70"

If (z) € Ca(0,20], then it is obvious that ¢(p2y) € Ca,yaiy(0,yo]-
Therefore by virtue of (1.77) we require that fo € Cy ya1(0,yo]-

Since

$p90($)7 90(7-037) € Ca,sz(oaﬂ«”o]

and

fo(pr1@) € Cayazyn (0,90] = Cayrx (0, 9ol
where ¢o = p}giﬁ; and g1 + g2 = p owing to p1p2 = Ty, in equation (1.76)
in order to f3 € Ca,zry(0,20] we require of the boundary function f; that
fi € Cqaovy(0,20]. Therefore if we consider the problem (1.3), (1.4) in the

class C}:) (D), then we shall assume that in the boundary conditions (1.3)

fl S Ca,sz(O,ﬂ?o]a f2 € Ca,yqlx(oayo]-
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Let o1 = bl(O) = (W_IN;1N1M2)(O)'

log |o1]

oz €quation (1.76) is uniquely solvable in

For a > —
. 1
the class Cq (0, x0], while for a < —%

the class Co (0, z0]; moreover, the homogeneous equation corresponding to
(1.76) has an infinite number of linearly independent solutions in this class.

equation (1.76) is solvable in

Proof. Because of (1.78), substituting in equation (1.76) ¢(z) = x(z)p1 ()
for the unknown function ¢ (), we obtain the equation

p1(z) = bi(x)1(T07) = f(2), (1.84)

where @1 () € Co(0,20), if () € Co 1 (0,z0] and f(z) =2 Px ' (2) f3(x) €
Ca (07 170]-

It is now evident that Lemma 1.12 is a direct consequence of Lemma 1.7
applied to equation (1.84). W

Thus the following theorem is valid.

Let Ni|y; #0, i = 1,2, M|, # 0 and My(z) = 2Pw(z),
p > 0, w(z) € C0,20], w(z) # 0, x € [0,20]. Then for a > —loglon]

log 10

the problem (1.3), (1.4) is uniquely solvable in the class Cég{(ﬁ), while
for a < =119 the problem (1.3), (1.4) is solvable in the class Cé’j((ﬁ);

log 10
moreover, the homogeneous problem corresponding to (1.3), (1.4) has an

infinite number of linearly independent solutions in this class.
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CHAPTER II

§

In the plane of variables z, y let us consider a system of linear differential
equations of the type

Augy + 2Buyy + Cuyy + A1y, + Biuy + Ciu = F, (2.1)

where A, B, C, Ay, By, C are given real n x n-matrices, F' is a given and
u is an unknown n-dimensional real vector, respectively, and it is assumed
that det C' # 0, n > 1.

Denote by p(x,y; £, n) the characteristic determinant of the system (2.1),
that is,

p(z,y;€,n) = det Q(z,y;§,m),

where Q(z,y;&,1) = A(z,y)&” + 2B(z,y)én + C(z,y)n*
Since det C' # 0, we have the representation

p(z, y,l,)\)—detCH /\ A xy Z

l:l(xay)a kl:kz( xr,y ), Z:].,,l

Obviously, the system (2.1) degenerates parabolically only at the point
(z,y) in the case [ = 1. The system (2.1) is said to be hyperbolic at (z,y)
if I > 1 and all the roots A\ (z,y), ..., \i(x,y) of the polynomial p(z,y; 1, A)
are real numbers.

It can be easily verified that [6]

kz(xay)Zn_rankQ(a:a:lhlaAl(z:y)): ’LZI,,I

The hyperbolic system (2.1) is said to be normally hyperbolic at the point
(x,y) if the equalities [6]

ki(xay):n_rankQ(xay;]-aAi(xay))a iz]—a---ala

are fulfilled.

Below we shall assume that at every point (z,y) of the domain of defi-
nition of the coefficients A, B, C' the system (2.1) is normally hyperbolic,
and the multiplicities ki (z,v), ..., ki(x,y) of the roots A\ (z,y), ..., N(z,y)
of the characteristic polynomial p(z,y; 1, \) do not depend on the variables
x, y,i.e., k; =const, i =1,...,1[.

Note that strictly hyperbolic systems, i.e. when | = 2n, k; = 1, i =
1,...,2n, form a subclass of normally hyperbolic systems.

Let v; : @ = z:(t), y = yi(t), 0 < t < 00, i = 1,2, be simple curves of the
class C*, k > 2, coming out of the origin O(0, 0), having no common point at
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t > 0 and dividing the plane into two simply connected unbounded angles.
Denote by D the angle between ; and 72 whose size at the point O(0,0)
is less than . In §2 under certain restrictions imposed on the curves 7y, v2
and characteristics of the system (2.1), we construct the domain D; C D
representing either a curvilinear quadrangle or a triangle (depending on the
location of certain points Py, P> on 71, 72) with a vertex at O(0,0) which
is bounded by v1, 72 and well-defined characteristics of the system (2.1),
coming out of the points Py, P,. D; is assumed to be a subdomain of the
domain of definition of the system (2.1).

Consider the boundary value problem formulated as follows [6]: find in
the domain D; a regular solution u(z,y) of the system (2.1), satisfying on
the segments OP; and OP» of the curves v, and 7, the conditions

(Mluz+N1uy+Slu)|OP1 :fl, (22)
(M2uz + N2uy + S2u) |OP2 = f27 (23)
where M;, N;, S;, i = 1,2, are given real m; X n-matrices, f;, i = 1,2,
are given m;-dimensional vectors and m; and ms are non-negative integers

which will be defined below.
Introduce the functional spaces

C*(D) = {u e C*(B) - 99u(0,0)=0, 0<i+j <k},
oiti
OxioyI ’
Ci@) = {ueC¥D): max sup || 0" u(z)] < oo},
+i=k .ch\o
—o0 < a < o0.

v =

Obviously, Col'ﬁ(ﬁl) — C* (D) for a < 0. Analogously we introduce the
weighted spaces C* (OP;), i = 1,2.

When considering problems (2.1)—(2.3) in the class 5§(ﬁ1), k> 2,
a > 0, we shall require that 4,B,C € C*(R?), where R? is the plane
of variables z,y; A, By,C; € C*~1(D,); M;,N;,S; € C*Y(OP), i =1,2;
fi € CE-Y(OR),i=1,2; F € CE_}(Dy).

§ Y12
mi
mo D1 DP

In §3 it will be shown that under certain assumptions made with respect
to the coefficients A, B, C of the system (2.1), the roots of the characteristic
polynomial p(z,y;1,)) at every point (z,y) € R? can be renumerated so
that \;(z,y) € C*(R?),i=1,...,1.
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Through every point (z,y) € R? there pass [ characteristic curves L;(z,y),
i=1,...,1, of the system (2.1), satisfying the ordinary differential equations

de + Ni(z,y)dy =0, i=1,...,1

Let the location of the curves 71, v2 on the plane be such that while
moving towards O(0, 0) along v, and then along 1, the domain D bounded
by 71, 72 remains to the left. Renumerate the roots of the polynomial
p(z,y;1,A) in such a way that the characteristic curves Ly (Py), ..., Li(Pr)
corresponding to the roots Aq,...,A; and coming out of the point P; into
the domain {P € D : |P — P;| < €} would turn out to be renumerated
counter-clockwise if we count from L;(P;), where ¢ is a sufficiently small
positive number.

If the curves 7; and 7> do not have a common tangent line at 0(0,0),
then we denote by ly, 0 < Iy < [, the number of different characteristics
issued from 0(0,0) into the domain {(z,y) € D : 2 +y* < £2}. In the case
where 71, 72 have a common tangent line at O(0,0), we assume lg = 0.

Below we impose on the curves 71, 72 and the characteristics L;(P),
PeD,i=1,...,1, the following restrictions.

1. Each of the curves 71, 72 either is a characteristic of the system (2.1)
or it has characteristic direction at none of its point.

2. For i > Iy every characteristic L;(P), P € D\O, extended maximally
to either side in D possesses one of the following properties:

a) it entirely coincides with one of the curves y; or 7s;

b) it intersects ;1 (72) only at one point, when v; (72) is a non-characte-
ristic curve or 1 (72) is a characteristics of the system (2.1), not belonging
to the family L;.

If, however, 1 < i < ly, then the characteristics L;(O) divide D into two
simply-connected unbounded angles and the characteristics L;(P) intersect
the curve ; or - at one point only, depending on the location of the point
P in D\L;(0).

3. The family of characteristics L; is described in D by the equation
L; : Qi(z,y) = const, 1 <i <[, where Q; € C*(D) and | grad ;|5 # 0.

For the sake of simplicity, let the characteristics L;(P;), i = 1,...,1,
issued from the point P; into D not intersect the curve v, at the point P».
We take the number m; of boundary conditions in (2.2) to be equal to the
number of characteristics, with regard for their multiplicities, issued from
the point P; into D and not intersecting with the closed segment OPy C 5.
Substituting the point P; by P, and the segment OP, by OP; C 7, we
can determine analogously the value mo. In particular, if m; = 0, then the
segment OP; C v;, ¢ = 1,2, becomes completely free from the boundary
conditions. It is clear that under such a choice the numbers m; and ma
depend on the location of the points P, and P, on the curves v, and 7s;
moreover, 0 <m; < 2n,:=1,2.

Let us introduce into the consideration the domains Dy and Dp, P €
D\O. If m; > 0, i = 1,2, then let D; be a curvilinear quadrangle with a
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vertex at the point O(0,0), bounded by the curves 1, y2, Ls, (P1), Ls, (P2),
where Lg, (Py) is the last (moving counter-clockwise) characteristic, coming
out of the point P; into the domain D and not intersecting the closed
segment OP,, while Ly, (P2) is the last (moving clockwise) characteristic
coming out of the point P, into the angle D and not intersecting with
the closed segment OP;. In this case Dp is a curvilinear quadrangle with
a vertex at the point O(0,0), bounded by the curves 1, v2, Ls,(P) and
L, (P). Clearly, sy = so+1for 0 < m; < 2n and sy = 1, so = [ for
m; = 2n, lp > 0, but in the case m; = 2n, lp = 0 the number my = 0.
If, however, m; = 0, then D; and Dp are curvilinear triangles bounded,
respectively, by the curves v1, v2, L1(P) and s, L1 (P), L;(P). Similarly,
for ms = 0 the domains D; and Dp are bounded, respectively, by the curves
Y1, V2, Ll(Pl) and Y1, Ll(P), LZ(P)

§

Owing to normal hyperbolicity of the system (2.1), at every point (z,y)
we have rank Q(z,y; 1, \i(z,y)) = n—k;, 1 < i <I. Hence dim Ker Q(z, y; 1,
Xi(z,y)) = ki, where Ker Q(z,y;1,\i(z,y)) is a kernel of the matrix ope-
rator Q(z,y;1, \;i(z,y)) acting in R™. Let {I/ij}?izl be a basis chosen ar-
bitrarily in Ker Q(z,y;1,\;(z,y)). It can be easily verified that at every
point (z,y), the value \;(z,y), 1 < i < [, is an eigen-value, while the
2n-dimensional vectors (v;;, Ajvi;)(x,y) corresponding to A;(z,y) are eigen-
vectors of the matrix operator

0 -F
AO(xay) = HclA 2013‘

(z,y).

Note that if the 2n-dimensional vector (v;,v};)(x,y) is a an eigen-vector of
the operator Ay corresponding to the eigen-value \;(z,y), then 1/2»2]- (z,y) =
Xi(z,y)vi;(z,y), and v};(z,y) € KerQ(z,y;1,\i(x,y)). Since the system

(2.1) is normally hyperbolic, the vectors (v;j,\ivij), ¢ = 1,...,1, j =

1,...,k;, form a complete system of eigen-vectors of the operator Ag(z,y),
and hence diagonalizing the operator, Ag we obtain the equality
K 'AyK = D, (2.4)
at the point (z,y), where
K= Vi1 T Vik, V21 T Vik,
Avir s Avig, Aaver 0 Nk )
DO :diag[—/\1,...,—/\1,—/\2,...,—/\2,...,—/\1].

Denote by A, the square {(z,y) € R*> : |z| < r, |y| < r}. Since the
matrix operator Ay is diagonalizable, belongs to the class C*(R?) and the
multiplicities k; of the eigen-values \;, i = 1,...,l, do not depend on the
variables z, y, owing to the results of [72], for any fixed r > 0 at every point
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(z,y) € A, we can renumerate the numbers \;(z,y),4 = 1,...,[, and choose
the basis vectors v;;(z,y), j =1,..., k;, in the space Ker Q(z,y; 1, \i(z,y))
such that \;(z,y) € C¥(A,), i = 1,...,1, and v;j(z,y) € CF(A,), i =
1,...,0; 7 = 1,...,k;. From this it is not difficult to see that we can
choose the numbering of 1, ..., \; such that \;(z,y) € C*(R?),i=1,...,1.
Indeed, performing additional renumeration, we may assume that for any
r>0

A7(0,0) < A5(0,0) < --- < A[(0,0) (2.5)

and Al (z,y) € C¥(A,),i=1,...,1. Now let us show that (2.5) implies the
validity of the same inequalities at any other point (z,y) € A, i.e.,

Ai(2,y) <Xp(z,y) <o < A(2,y)- (2.6)

If at a point (zo,y0) € A, the inverse inequality A!(zo,y0) > A% (w0, o)
took place for ¢ < j, then due to the continuity of the function g;;(x,y) =
Al (z,y) — A} (2, y) and because of the inequalities g;;(0,0) <0, g;;(zo,yo0) >
0, one could find on the portion of the straight line connecting the points
(0,0) and (zo,y0), a point (z1,y1) € A, such that g;;(z1,31) = 0, ie.,
A7 (1,y1) = Aj(z1,91), but this equality contradicts the fact that at every
point (z,y) all the numbers A{(z,y),...,A](z,y) differ. Since inequalities
(2.6) are valid for any r and for 0 < ry < ry the sets {\]*(z,y),...,\* (z,y)}

and {A\*(z,y),...,A\*(z,y)} coincide at every point (z,y) € A,,, we get
AN (z,y) = A2 (z,y) for (z,y) €A, i=1,...,1 (2.7)
It follows from (2.7) that the functions
Ai(z,y) = N (z,y) for (z,y) €A, i=1,...,1,

belong to the class C*(R?).

Since the domain D; constructed in §2 is bounded, D; C A, for some
r > 0. Therefore, owing to the above arguments, the basis vectors v;;(z,y)
will be assumed to be chosen in the space Ker Q(z,y; 1, A\i(z,y)) such that
yij(z,y) S Ck(bl), 1= 1,...,l, ] = 1,,]61

Without loss of generality we may assume that the domain Dp, P(xq,yo)
€ Dy, constructed in §2 is located entirely in the half-plane y < go; more-
over, every characteristic L;(zo,%0), 1 < i < [, of the system (2.1) is-
sued from the point P(zg,y0) into the closed domain Dp to the intersec-
tion with one of the curves 7; or v, admits parametrization of the type
Li(zo,v0) : © = zi(z0,y0;y) € C*, y = t. Otherwise, as it can be easily
verified, because of the requirement 3 imposed on the characteristics Lj;,
this can be achieved by means of a non-degenerate transform of variables
T = Ji(z,y), ¥ = J(zx,y), J1(0,0) = J2(0,0) = 0 which translates the
families of characteristics L, (z,y) and Ls, (x,y) to those of straight lines
Y+ = const and y — T = const, respectively, while the domain D; to a
subdomain D; of the half-plane y > 0. In the plane of variables Z, ¥, every
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characteristic Zi(fg,gjg), 1 < i < I, issued from the point 15(50,170) € D,
into the the domain 51; to the intersection with the curve 7; or 7, will
entirely lie in the quarter-plane y + < yo + %o, ¥ — T < Yo — To, and hence

at every point P(a:o,yo) € D, the tangent to the characteristic L; (Zo, o)
is not parallel to the axis ox. This, in its turn, implies that the portion

of the characteristic Ei(io, Jo) which is located in the domain D, admits a
parametrization of the form = = Z;(Zo, yo; t) € C*, y = t.

Denote by w;(zg,y0) the ordinate of the point of intersection of the char-
acteristic L;(zo, o), issued from the point P(zg,y0) € D; into the domain
ﬁp, with one of the curves v; or v,. This curve depends both on the index
i of the characteristic L; and on the location of the point P in D; and we
denote it by v;p). According to the requirements imposed on the charac-
teristics L; and the curves 7, 72 we have w; € C*(Dy), wi(zo,y0) < yo,
(70,y0) € Dy; moreover, Li(P) N Dp : z = zi(zo,y0;t) € C¥, y =
wi(7o,y0) <t < Yo.

Below we shall assume that a portion OP; of the curve ~y; is described
in terms of the equation z = v;(y), 0 <y < d;, i = 1,2. One can easily

verify that the problem (2.1)-(2.3) in the class C¥ (D) can be equivalently
rewritten in the form

vy + Agvy + Bov + Cou® = FP°, (2.8)
0 0
(_A1%+8_y)uz_/\lvl +’U2, (29)
(M1v1 + Nivs + Slu) |OP1 = fl, (210)
(M21)1 + Nyvy + SQU) |OP2 = fQ, (211)
dvi 0 0 d; .
il - (22 =1,2 2.12
(dy Ba:+6y)u‘opi (dyv1+v2)‘o&’ PEhe (2.12)
where
A — 0
0= |l 1A 20 1B 1A1 C'B;
H A, oH ’

VL = Uy, Uy =Uy, UE C”;(Dl), v=(v1,v2) € C’ffl(ﬁl),

u® = (u,0), F® = (0,C7'F) and FE is the unit n X n-matrix.
In the case lp = 0, one should write instead of (2.12) the equality

o 9
(B 3%+ 30 on, = (G + )l

If u € C% (D) is a solution of the problem (2.1)-(2.3), then the system of
vectors u, v1 = Uy, V2 = Uy will, obviously, give the solution of the problem
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(2.8)—(2.12). Conversely, let u € C¥(D1), v = (vi,v2) € Ck~1(Dy) be a
solution of the problem (2.8)—(2.12). Let us show that w is a solution of the
problem (2.1)—(2.3), and v1 = u,, v2 = u,. For simplicity, let us assume
that A\; = const. It follows from the first n equations of the system (2.8)
that v, = va,. Next, because of (2.9) we have

Sln (s Do

= —(—/\11)1 + ’1)2) + M1 — Uiy =

ox

= —AMUig + Vg + MV1z — V1y = V2 — V1y = 0.

Thus u, —v; = 0, since, by requirements imposed both on the characteristics
L; and on the curves 7, , ¥2, the system of equations (2.9), (2.12) is uniquely
solvable with respect to u, and u, on the segments OP; C 1, OP> C 7.
Moreover, (u; —v1)|op, = (uz—v1)|op, = 0,ifly > 1 and (u, —v1)|op, = 0
for Iy = 0. Because of u, = vy, it follows from (2.9) that u, = v, and by
(2.8), (2.10), (2.11) we easily obtain that u is a solution of the problem
(2.1)—(2.3). In the case A\ (z,y) # const, we shall act as follows. Denote by

Xz, y) a function of the class C'(D;) such that Vi = VA; and X — A # 0
in D;, where V; = _/\18% + 8%, Vo = —)\8% + 8%. By equalities v, = v2a

and VX = VA1, we can easily verify that
V1Vy =VaVy, VQ(—/\lvl + ’1)2) = Vl(—Xﬂn + 1)2),

whence, taking into account (2.9), we get

Vi (VQU — (—le + 1)2)) =VoViu— VQ(—/\1U1 + ’1)2) =
=V, (V1u — (—/\1’1)1 + 1)2)) =0.

From this, due to the unique solvability of the system of equations (2.9),
(2.12) with respect to u, and u, on OP; and OP, and, as a consequence, of
the equalities (Vou—(—Av1 +v2))|opuop, = 00r (Vau—(—=Avi +v2))|op, =
0 for Iy > 0 and Iy = 0, respectively, we find that Vou — (—le +v3) =01in
Dy. Since X — A # 0 in Dy, it follows from (2.9) and the obtained equality
Vaou— (—le +v2) = 0 that u, = v1, uy = v2 which, in its turn, implies that
u is a solution of the problem (2.1)~(2.3). To construct the function A(z, )
with properties indicated above, we rewrite the equality le = VoA in
terms of the linear first order differential equation

(- /\1(% + %)XJFAMX =\,
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Integrating this equation as an ordinary differential equation along the
first characteristic Ly of the system (2.1) and taking as the initial Cauchy
data sufficiently large absolute values X on OP,UOP; for lp > 0 or on OP;
for Ip = 0, we get the function A satisfying the conditions V1A = VaA; and
A— /\1 ;é 0 in 51.

Substitution of the unknown function v = Kw by (2.8)—(2.12) results in

wy + Dow, = Bow + Cou® + F*, (2.13)
o 9
(— /\1% + 8_y)u = (=M K1 + Ky)w, (2.14)
(M1 K1 + NiKs)w + Siu) | p = fi, (2.15)
(Mo K5 + NoKo)w + Sou) | = fo, (2.16)
dy; 0 0 d; )
(dy 8x+8y)u‘o& (dy 1 2)w‘0Pi’ i=12 (217

where By = —K_I(Ky + AoK, +BOK), Cy = —K_ICO, F' = K_IFO, and
K and K, are the matrices of order n x 2n composed, respectively, of the
first and the last n rows of the matrix K.

Integrate the (¢; + j)-th equation of the system (2.13), where ¢ = 0,
g = ki +---+ki_1,j =1,...,k;, along the i-th characteristic L;(z,y)
coming out of P(z,y) € D; into the domain Dp, from P(z,y) to the point
of intersection of L;(z,y) with the curve v; or vs, depending both on the
index i of the characteristic L; and on the location of P in D, and integrate
equation (2.14) with respect to the first characteristic. We obtain

Wy;+j (.’17, y) = We;+j (’YZ(P) (wl (17, y)7 Wi (17, y)) +

v 2n n
+ / (Z azljpwp + Z bzljpup) (zz(a:, y; t), t) dt + Ffj (z,y), (2.18)
p=1

=1
wi(z,y) P

1<i<l, 1<j<k,
u(a:,y) = g(wl(xay)) +
+ / ((—AlKl +K2)UJ) (zl(a:,y;t),t)dt, (219)

wi(z,y)

where aj;,, bj;,, F}; are well-defined functions depending only on the coef-
ficients and the right-hand side of the system (2.1); moreover, by (2.17) we

have

g(wi(z,y)) = U(%(P) (wi(z,y), w1 (ﬂf,y)) =

w1 (z,y)

dyi(p
/ ( dz(/ ) K, +K2)w(71(p)(t),t)dt.
0
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Let
Soéz"r,](y) = wa'+j(71(y);y)7 0 S () S dla
'L.ZI,...,S(); jzl,...,ki,
sOgnL](y) = wa'+j(72(y);y)7 0 S () S d27
i:]-a"'alo; j:]')"')ki)
O ik (W) = warj(12(y),y), 0<y<ds,
i=so+1,...,0; j=1,...,k;,
where kg = Y. k;, the numbers [y and sy are determined in §2, and the

i=lp+1
number of components of the vector ¢!(y) is obviously equal to m;, i = 1, 2.
Due to the requirements imposed on the curves 7, v2 and L;, we can see
that

for i=1,...,s,

wiln(y),y) = {yl

i (y) for i=s0+1,...,1,

y for i=1,...,1,
wi(y2(y),y) = 77 (y) for i=1lo+1,...,s0,
Y for i=s9+1,...,1,

where w;(z,y) € C¥(Dy), 7{(y) € C*[0,di], i = so+ 1,...,1, T7(y) €
C*[0,d2), j =lo+ 1,...,80, and 7/ (y) = 0, if 71 is a characteristic of the
system (2.1). Analogously, Tl20+1(y) = 0, if 72 is a characteristic, and the
remaining functions 77 (y) satisfy the inequality 77 (y) < y for 0 < y < dp,
p=12.

Substituting the expressions for w(z, y) and u(z, y) from (2.18) and (2.19)
into the boundary conditions (2.15) and (2.16), we get

Goly Z Gi ()@’ (i (y)) +
i=sp+1
+(Thw + (Thu = , 0<y<dy,
(Tow)(0) + (L)) = o(w), 0y < di 20
G2 (y Z G y)e' (T2 (y)) +
j=lo+1
+(Tsw)(y) + (Tau)(y) = faly), 0<y <do,
where G}, G3,i=s0+1,...,1; j =lo+1,..., 50 are well-defined matrices
of the class C*~!, and T}, i = 1,...,4, are linear integral operators.

Obviously, Gi, i = 1,2, from (2.20) are the matrices of order m; x m;
which can be represented as the product

Gy=TixV;, i=1,2,
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where T'; = (M;, N;), i = 1,2, are rectangular m; X 2n-matrices and V;,
1 = 1,2, are matrices of order 2n x m; written in the form

_ I/ll .. Vlkl .. VS[)l - .. I/SOkSO
V=1 N N A ’
[ DU Wik, soVsol *° s0Vsoksq
_ V11 o VlOklo VSO+1,1 o V”Cl
V2= A A N :
[R5 B loVioki, so+1Vso+1,1  * Wik,

Under the assumption that
det (D; x Vi)|,p #0, i=1,2, (2.21)

we can rewrite equation (2.20) in the form

l so
o'W - Y. Y GLwe (Thw) +
i=so+1 j=lo+1
+(Tsw)(y) + (Teu)(y) = f5(y), 0<y<di, (2.22)

S0 l
Cly)— > > GLwe () +
i=lp+1 j=s0+1
+(Trw)(y) + (Tzu)(y) = fs(y), 0 <y <dy,

where 755 (y) = 72(7} (y)), 775(y) = 7/ (77 (y)), G; and G}; are matrices of

orders my Xmy and ms Xme, and Ts, Tg, T7, Ty are linear integral operators.
If v1 or 72 is a characteristic of the system (2.1), then we will have respec-

tively Tllj (y)=73(y) =0,i,5 =lo+1,...,s0, and Ti110+1(y) = Tl2()+1j(y) =0,

i, =so+1,...,1. Therefore our discussion below will concern the remain-
ing functions Tilj and Ti2]- which, as is easily verified, possess the following

properties:

1) 77 € C*[0,d,), 75(0)=0,p=1,2;

2) 1., p = 1,2, are strictly monotonically increasing functions;

3) Tij(y) <y, 0< ) S dpa p= 172)

4) if the curves 7, and 72 do not have a common tangent line at the point
0(0,0), then

0< ol :d—;(()) <1, p=1,2, (2.23)
or 0
Ufj = d—yj(O) =1, p=12
otherwise.

The validity of property 1) is obvious. To prove the validity of the other
properties, we shall give geometric interpretation of the functions 7'5-. Let a
characteristic L;(Q1) be issued from Q1 (y,v1(y)) € OP; C 71 to the inter-
section with v, at the point ()2, and let a characteristic L;(Q)2) be issued
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from @5 to the intersection with ~; at Q3. It is easily seen that the ordinate
of Q2 is equal to 7/ (y), while that of Q3 is equal to 7;(y) = 77 (7 (y)). In a
similar manner we can determine Tl?j (y) by interchanging the curves 7, and
~s. The validity of properties 2) and 3) follows directly from the geometrical
meaning of the functions TZ- if we take into account the requirements which
have been imposed on the curves 71, 72 and characteristics L;.

Let us now prove the validity of property 4).

In a neighborhood V' of O(0,0) one can specify a family of characteris-
tics L; in the form of the equality L; : p;(z,y) = const, where p; € C*(V),
IVaillv #0,i=1,...,1. Since V1;(0,0) = (%%, 24)(0,0) = ci(1, i(0,0)),
¢; = const # 0, the Jacobian of transformation of the independent variables
¥ = pi(z,y), T = p;(x,y) at the point O(0,0) is different from zero for the
fixed i and j, i # j. Therefore, in a sufficiently small neighborhood V' of
the point O(0,0) this mapping will be a diffeomorphism. In the plane of
variables z, y let us denote by 7; the image of the curve v, NV, i = 1,2,
under this mapping. By the assumptions on the curves v, 7> and charac-
teristics L;, Lj, the curves 71, ¥» are located in the angle > 0, ¥ > 0 and
described by the equations ¥1 : § = 31 (Z), 72 : § = Y%=(Z), 0 <7 <¢e,e > 0,
where 71,72 € Ck, 0<% (T) < ¥(Z) for 0 < T < e and 4, (0) = 42(0) = 0.
Introduce into the consideration the function 7711] (Z), 0 < 7 < &, which under

the above-mentioned transform corresponds to the function 7;(y). Let us

draw the straight line parallel to the axis oF from Q1 (%,5 (%)) € %1 to the
intersection with the curve 7, at @2 and the straight line parallel to the
axis oy from Q3 to the intersection with ¥; at Q3. The value 7711] (7) is equal

to the abscissa of @3, and hence,

W@ =% (M@E), 0<F<e

K3

If 44 and 72 have a common tangent line at O(0,0), then it is evident
that %1)(0) = ?él)(O), otherwise 0 < %1)(0) < 751)(0). Consequently,
1

L (1
2(0) = %}TE;); =1, if 4, and 7, have a common tangent line at 0(0,0),
2
1
and 0 < d;;" (0) < 1, otherwise.
Let us now show that

dr,

dr}

20 ="70,

which will imply the validity of property 4). As is easily seen, the functions
75;(y) and 7;(Z) are connected by the relation

) = xe (701 0), )7 (7 (0 (0 (), )

for sufficiently small y, where x = x1(Z, ), ¥ = x2(Z, ) realize the mapping
inverse to the given one, ¥ = u;(z,y), ¥ = pi(z,y).
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Since
~(1) dpi( (), y) (dpi(n@)y)\ ' _
250,009 (0) + 22(0,0
% (0,0)1 " (0) + (0,0
P ) CO
0% A 9y A
_ Oy Oni_ Opi Ony
dr 0y Oz Oy’
we have
drL dF 1 ]
0= 2200207200000 + FL0.0) +
0 d7}. B O
+ 52 0,070 0 (F20,0%70) + F20,0)) =
_ A7y (Omy (1) Op,
= 2 O(F20.00"0) + F10,0) %
i Ay 220,00 (0) + 20,0\  _,
X — (0,0) + — BT 1 Ty A =
Ox Or 51(0,0)71" (0) + 22(0,0)
dr
— ]
- d7 (0)-

Now we can easily calculate the value

i T (1

2t (0,0)71" (0) + 22(0,0) 7 22(0,0)75" (0) + 2(0,0)
220,00/ (0) + 2(0,0) <8—‘;f(0,0w§”(0>+%—‘;j<0,0>> B
_ (% (0) +X:(0,0)) (24" (0) + X;(0,0))

(41 (0) + 20,0 (47 (0) + X(0,0))

since Vul(O 0) = ¢;(1,X;(0,0)), ¢; = const, i = 1,...,I. The case of the
function 7' is considered in a similar way.

Remark. It is obvious that when conditions (2.21) are fulfilled, the prob-

lem (2.1)—(2.3) in the class C¥ (D) is equivalent to the system of integro-
functional equations (2.18), (2.19), (2.22) with respect to unknown functions

u € C*(Dy), we C*=1 (D) and ¢* € Ck~10,d;], i = 1,2.
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Let us consider functional equations of the type

(K1pp)(y) Z Z GiinW)e(ri;(y) = 91(y),  (2.24)

i=so+1 j=lp+1
0<y<d, pZO,l,...,k—l,

(K2p9)(y) Z Z GiipW)Y(155() = 92(y),  (2:25)

i=lo+1 j=so+1
OSySd27 pZO,l,...,k—l,

where

G, () = G%@)(ddij@)p, Gy l) = G;z-(y)(%(y))p,

and the values G2,

3, Gi;, 7, 7 are determined in equations (2.22).

ijs Tijr Tij

Remark. As is easily seen, the expressions Kj,p! and Ka,p? for p = 0
coincide with the functional parts of equations (2.22). Moreover, if we dif-
ferentiate p times the expression (Kio¢)(y) with respect to y, then in the
expression obtained after differentiation the sum of those summands which
involve the function o(y) with the derivative o (y), yields (Ki,p®)(y).
Similar remark holds also for the operator Ksp.

We shall consider equations (2.24) and (2.25) in the spaces 5k,1+aﬂ,[0, dy]

]
and Ck—1+a—p[07 dQ]

Denote by m; the number of characteristics taking into account their
multiplicities, issued from the point P; into the domain D; and intersecting
an open segment OP,. The number my can be defined in a similar manner
by substituting the point P; by P, and OP, by an open segment OP;. It is
easily seen that myms = 0 if, for example, either Iy = 2n or myms = 0.

Obviously, the columns 2n x m; of the matrix V;, ¢ = 1,2, are composed
of the well-defined columns of the matrix K, where the matrices K, V1, V
have been introduced in §3. Denote by V,, i = 1,2, the matrix of order
2n X (2n — m;), composed of the remaining columns of the matrix K, i.e.,
of the columns not belonging to the matrix V;.

We have the following

Let either mims = 0 or at least one of the equalities (T'y X
Wlop, =0 or (Ty x Va)|op, = 0 hold Then equatzons (2.24) and (2.25)

are uniquely solvable in the spaces Ck 1+a—p[0,d1] and Ck 1+a—pl0, ds2] for
all k> 2, a > 0.
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The proof follows from the fact that under the conditions of Lemma 2.1

either all values 7;; = 7;; = 0 or all matrices G}; = G;‘J = 0. In both cases

the operators K1, and K, are identical in the spaces Ck_1+a_p [0, d1] and

Ck—1+06—1)[0’d2]7 i'e‘a Klp(p =, K2p¢ = ¢
Consider the functions

Z Z i)’ HIGE O, =00 < p < oo,

i=so+1 j=lp+1

Z Z 2 H|GLO)], —o0 < p < o0,

i=lp+1 j=so+1

where || - || is the norm of the matrix operator, acting from one Euclidean
space of the other.

Agsume that the curves 7; and 2 do not have a common tangent line
at the point 0(0,0). If for some values of the indices i, j, |lo};G?;(0)]]
and ||o7;,G7;(0)]| are different from zero, then by (2.23) the functlons hi
and hy are continuous and strictly monotonically decreasing on (—oo, 00);
moreover, lim h;(p) = +ooand lim h;(p) =0, i =1,2. Therefore there

p—>—00 p—r+00
exist unique real numbers p; and p2 such that hi(p;) = 1 and ha(p2) = 1.
If, however, all the values ||o0j;G%;(0)|| = 0, then we assume p; = —oo.
Similarly, assume py = —oc if all the values ||o7;G7;(0)]| = 0. Tt is evident

that all these cases are realizable if either m;ms = 0 or at least one of the
equalities (I'; x V;)(0) =0, 4 = 1,2, holds.

Assume that the curves 1, 72 do not have a common tan-
gent line at the point O(0,0), and mimq # 0, (I'; X Vi)lop, # 0, i = 1,2.
Then for k + a > po the equations (2.24) and (2.25) are uniquely solvable

in the spaces Cr_14a—pl0,d1] and Cr_14+q4-p[0,d2], and the estimates

(K 90) ) || gy = llp@)[|Rm1 <

< eyt p“ngCk o] (2.26)
(K3, 92) ()] gy = 10 () [|Rm2 <
< ey go (2.27)

Crmta—pl0da]

hold, where ¢y, co are positive constants not depending on g1, go.

Proof. Condition k + a > py imples

Lk +a) Z Z LETGE ()] < 1.

i=so+1 j=lp+1
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1
Therefore, owing to the continuity of 7 ZJ, dy , G3 and equalities d;;j (0) =
ailj < 1, there exist positive numbers e (¢ < dl) d and B such that for
0 <y < ¢ the inequalities

1G3 @) < |G 0)]| + 9, (2.28)
d’l'il-
d—y](y) < Uilj +9, ”Gm) ” =
delj 5
- H( dy () ) H (05 + 8)P (IIGZ;(0)]] +6), (2.29)
75(y) < (04; + 8)y, (2.30)

E: S (ol 0G4 6) = B> 1. (231

i=so+1 j=lp+1

are valid.

Since the functions 7' possess properties 1)-3) cited in §3, there exists a
natural number qo such that for ¢ > qo

(ko (e ) -r)) <6, 0<y<di, (2.32)

29Jq \ " tq—1]Jq—1 21J1

where so + 1 <i, <[, lg+1<js<sp,s=1,...,q.
Because of the property 3), for the functions Tilj
(2.30) and (2.32) we have

T T @) ) =
quﬁilh10-«n;h4ﬁ;,m%40-«ﬁﬁxy»~-»y-»)s

and the inequalities

< (oi,;, +0)7;. Tiq 1ja_ (- "(Tilqojqo(Tilqo,quO,l("'(Tilljl(y))"‘)))"') <
S o S (Uilqjq + 5)( lq 1jq—1 +6) T (07:1?0+1jq0+1 +6) x
XTilqgqu (Tilqo—qugfl (. B (Tilljl (y)) T )) S
q
<[ II GLi+0]y 0<y<d, 0> (2.33)
s=qo+1

K[! acting by the

Introduce into the consideration the operators Aip, K7y,

formulas

(A1pp) (y }j §j GL,we(th W),

i=so+1 j=lp+1

Ki'=T+ ZAlp,
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where I is the identical operator Obviously, fpl is formally inverse to

Kip, ie., KlpKf =K, Klp = I. Therefore it suffices for us to show that

Kl_p1 is continuous in the space C’k,Ha,p [0,d4].

It can be easily seen that the expression Agpgl is a sum consisting of the
summands of the form

Jirji-igi, (W) =
= Gfulp( )G?ww( 1111( ))Gfaaap( Tizja (Tilu'l ) -
G (Tl Ty o () )
><91( q]q(Tilq,qu,l(“‘(Tilljl (y))))),
where so + 1 <i, <l lp+1<js<sp,s=1,...,q

Let
s 1<l lo4+197% s 08y S 16 @ s = -
By virtue of (2.28)—(2.33) we have
”Jiljr--iqjq (y)”le = ||G11J1P )H
'||G?q0jq0p(7'i1q0,1jq0,1(Tilqo,zjq0,2( ( Tiyja (y) - || X
||qu0+uq0+w(7i1q0jqo CrRT N O ( i (¥)) - ))) I
”qujqp amtdamn ( (T ) )
><||91 Tiqjq("'Tilljl(y))"' ”le <
< (azqomqoﬂ + (G2 117 O +9) -+
- (Uilqjq ”quyq ” + 5

1 1 k—14+a—p
><|nqjq(---<n1jl<y>>---)| lolls, oS

<[ T ok, +07(IG3,. )] +9)] %
s=gqo+1
q
1_+6k1+ap]k1+ap —
X[SZI;IH(”’”S ) y loalle, o
q
= I (01, +0 (|62, 0] +9)]
s=gqo+1
Xy P g (2.34)

Cr-1+a-p[0,d1]
for ¢ > qo, g1 € Cr—14a—p[0,d1], and
||Ji1j1"'iqjq(y)||RM1 <

k—14+a—p
| lq]q ( l1.71 (y)) ) | ||gl||Co"k_1+a_p[07d1]
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<mt gl (235)

for 0 < q¢ < qo.
Because of (2.34), (2.35) and (2.31) we have

ALl = | X i @], <

215]15-++52g5]q

S( Z )7750[2 Z a 4 gyt

11,J15--+2%q0 »Jag i=so+1 j=lo+1

< (IG5l +8)]" Y g -

Cr—14a-p[0, d1]

— ¢y flyk1ta- p”ngC’e o (2.36)

for ¢ > qp, and

Al < eqytitorr 2.37
[y o) s € et el (23)

for 0 < ¢ < qo, where
qo
s=nepe( S ), a=m( Y 1)
ilyjly"'viqujqo ilvjlv"'vifﬂjq

From (2.36) and (2.37) we finally obtain

1B 9) W) gy = lle@)llrm <

qo [e%¢]
< g @) g + D NALg) D |y + D (AL g) W] oy <
q=1 g=qo+1
qo+1

< (1+C4q0+c3f_—ﬂ)yk L+a=p|lg |

Crcrtapl0.di]]
whence it follows that the operator K fpl is continuous in the space

Cr1+a—p[0,d1], and the estimate (2.26) is valid. The operator KQ_pl is con-
sidered in a similar manner. W

Let the curves y1, v2 have a common tangent line at the
point O(0,0), and mima #0, (T'; X Vi)|lop, 20, i =1,2. Then for h;(1) <
1, i = 1,2, the equations (2.24) and (2.25) are uniquely solvable in the

spaces Cr_14+a—p[0,d1] and ék,Ha,p[O,dg] for all k > 2, a > 0, and the
estimates (2.26) and (2.27) take place.

The proof of Lemma 2.3 does not differ from that of Lemma 2.2 if in
inequalities (2.28)~(2.31) we substitute the different from zero numbers o}
by unity.
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It easily follows from Lemmas 2.1-2.3 that if either mym2 = 0 or at least
one of the equalities (T'y x V7)(0) =0 or (I'z x V2)(O) = 0 holds, then the
assertion of Lemma 2.1 is valid for all £ > 2, a > 0.

Let the conditions (2.21) be fulfilled. If either mims = 0
or at least one of the equalities (T'1 x V1)(0) = 0 or (T'y x V3)(O) = 0 holds,

then the problem (2.1)—(2.3) is uniquely solvable in the class 5§(ﬁ1) for all
k>2,a>0.

Let the conditions (2.21) be fulfilled, and mims # 0, (I'; x
Vi)(O) #0, i =1,2. If the curves v1, 2 do not have a common tangent line
at the point O(0,0), then for k+ a > po the problem (2.1)—(2.3) is uniquely

solvable in the class 8”;(ﬁ1)

Let the conditions (2.21) be fulfilled, and mimo # 0, (I'; x
Vi)(O) # 0, i = 1,2. If the curves vy, v2 have a common tangent line at
the point 0(0,0), then for h;(1) < 1, i = 1,2, the problem (2.1)—(2.3) is

uniquely solvable in the class 8”&(51) forallk > 2, a>0.

Before passing to the proof of Theorems 2.1-2.3, let us make some re-
marks.

1. Since the 2n x m;-matrix V;, ¢ = 1,2, has a maximal rank equal
to my;, for any normally hyperbolic system (2.1) one can always indicate
boundary conditions (2.2), (2.3) such that the conditions (2.21) are fulfilled
when conditions cited in §2 hold.

2. The values pg and h;(1), i = 1,2, in Theorems 2.2 and 2.3 depend only
on the coefficients A, B, C, M;, N;, S;, i = 1,2, of the problem (2.1)—(2.3)
and the direction of the tangents to 1 and ~» at the point O(0,0).

3. When conditions of Theorems 2.1-2.3 are violated, as it has been
shown in Chapter I for one equation of hyperbolic type, the problem (2.1)-
(2.3) may turn out to be ill-posed. In particular, the homogeneous problem
corresponding to (2.1)—(2.3) may have an infinite number of linearly inde-
pendent solutions.

Proof of Theorems 2.1-2.3. Using the method of successive approximations
we solve the system of equations (2.18), (2.19) and (2.2) with respect to

unknown functions u € 5§(ﬁ1), w € 5’2*1(51) and ¢! € 5§*1[0,di],
i=1,2.

Assume
UO(xay) EO) wg(ar,y) EO, So(z)(y) EO, i:1727
Yy 2n
i(P
Wi (@,y) = Gy i@ )+ [ (Y aljwpm1 +
p=1

wi(z,y)
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n
p=1
1<i<l, 1<j<k,

wi(z,y)
dy
U (2,y) = / (%Kl + K2)wm—1('71(P)(t):t)dt +
0
Yy
+ / ((_)\1K1 + K2)wm71) (2’1 (il',‘, Y; t)a t) dta (239)
w1 (z,y)
where
P wilz,y),  1<i<ly, 1<j<k,
i(P) Puitiom Wi(T,)), lo+1<i<sy, 1<j<k;,
Potim@ilT:y) = 02 o (wilw,y), so+1<i<Il, 1<j<k,
S0
ko= > ki,
i=lg+1

The values oL, (y) and 2, (y) are determined from the equations
(K1093) (4) + (Tswm—1)(y) + (Toum—1)(y) = f5(y) (2.40)
and
(K2093) (4) + (Trwm—1)(y) + (Tsum—1)(y) = fo(y)- (2.41)

The operators K19 and Kap here act by formulas (2.24), (2.25) for p = 0.
We rewrite the system of equations (2.18), (2.19) in a more convenient
form

wm(w7y) = éb/p,m (w7y) +

y
+Z / (Qiwm—1 + Qogum—1) (zi(z, y; t), t)dt + F>(z,y), (2.42)

i=1

wi(z,y)
wi(z,y)
U (,y) = Qswim—1 (y1(p) (1), t)dt +
0
Y
+ / Qw1 (21 (2,53 ), 1) dt, (2.43)
wi(z,y)

where the (g; + j)-th component of the vector @, (,y) is equal to

P (wilz,y), 1< i <1, 1< j < ki, and Qug, Qg O3, Qy are well-

defined matrices.
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It is easily seen that the operators Tsw;,—1 + Tetum—1 and Trwp,—1 +
TsUp—1 from (2.40) and (2.41) can be represented in the form

To(Wrm—1,Um—1)¥y) = (Tswm-1 + Toum—1)(y) =
1 Y

= 3 [ Bl + B (s, pst) o) +
=ty

1 (y)
l J
+ Z Z / (E%me_l + Ei”’u/m_l) (Zl(’)Q (le (y))7 le (y)7 t)7 t) dt7

j=soti=lo+1 1"

Tro(Wm—1,Um—1)(Yy) = (Trwm—1 + T 1)(y) =
S0 Y

= > [ B+ Baun) (a0, 0t +

Sty
7 (y)

S0 1
+ Z Z / (B3ijwm—1 + Efjjum—1) (2i(n (77 (), 77 (y); 1), 1) dt,
j=lo+1 i:SO+1T]-2i(y)

where EY; B3, B3, By, p=1,2, are well-defined matrices.

The following estimates hold:

i1, ) = ()| < MRSl (2.44)
s ()~ wn (e, )| < My (2,45
b1 (@) ~ b )| < e e ymeesat, (2.46)
[21(0) = G| < be e ymesat, (247

where M, and M™* are sufficiently large positive numbers not depending on
m.

[e)
Due to the requirements imposed on fi, f» and F, we have f5 € C*~1[0, d,],

fe € CE=10,ds], F € C*~1(Dy). Therefore, it is obvious that the estimates

|07 F?(2,y)|| < ©yF~ o=+ (2.48)
(xay)ebla OSZ+]Sk_]—7
||6if4+j(y)|| < Oyttt (2.49)

O; =const >0, i=1,2,3,
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are valid since, by the assumption, D; is such that for any point z =

r+V/—1y € ﬁl the two-sided estimate y < |z| = /22 + y2 <
i lid.
(max max i () is valid

Since up = wo = 0, ¢} = ¥4 = 0 and under the conditions of Theorems
2.1-2.3 the estimates (2.26), (2.27) are valid for p = 0, we have from (2.40),
(2.41) and (2.49) that

el (W) — b @) = et @)|| < 30y~ Fe, i =1,2 (2.50)

cs = max(cy, ), ©4 = max(0,,03).
In its turn, it follows from (2.50) that

18rs (@) = Gro (@ )| = [Brs (@, 9)] =

=Y 2 |E ey <

1<i<l 1<5<k;

< Z Z 304 (w;(z,y))F 1 < 2nez04yF 71, (2.51)

1<i<t1<5<ks

since Y, Y 1=2n,andasnoted in §3, 0 < w;(z,y) <y, i=1,...,1.
1<<11<<k;

Now, by virtue of (2.48) and (2.51), from (2.42) and (2.43) we have

||w1(ar,y) _UJO(xay)” = ||w1(33,y)|| S
< || Gps (@, 0)[| + || F?(z,9)|| <
< ez @uyh Y 4 O yh it = (2nc3©4 + @1)yk_1+a, (2.52)
w1 (2, y) — uo(z,y)| = [|ur (z,y)|| = 0. (2.53)

Under the assumption that the estimates (2.44)—(2.47) are valid for m,
m > 0, let us prove their validity for m + 1 for sufficiently large M, and
M*.

From (2.40) we have

(K10(Pmi2 = Om41)) ®) = —To(Wm1 = Win, U1 = m) (y)- (2.54)

Furthermore, for the right-hand side of equation (2.54) the estimate

||T9(wm+1 — Wy, Um+1 — Um)(y)” <
1 Yy

<y / (1B Nwmsr — wiall +
=sotlory)

HEzillllwm1 = wmll) (zi(n (y), 95 8), ) dt +
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1 (y)

+ Z 5 / (B Mwmsr — wnll +

j=so+1i=lg+1 l(y)

HI B llwmsr = umll) (zi (a7} (9)), 75 ()5 8), )t (2.55)
is valid.
The largest of the numbers max 1By, Ol max 1E5; (y, )l
matx||E3”(y,t)||, ma;x” 42J( )|| we denote by fp, p = 1,2. Since 0 <
v, v,

75:(y) < 7/ (y) < y and owing to (2.44) and (2.45), we have from (2.55)

that

||T9(wm+1 — Wy, Um+1 — Um)(y)” <

Mmoo T
<6 M* ( S gpmtkta=tg |
m. i
TR ()
. ()
so
+ 2tm+’“+a*1dt) <

Yy
<2§1M* ( Z 1+ Z Z /tm“*“*ldtg
' i=so+1 j=so+1i=lp+1 0
M? 1
<2 M* [+ 1) ——ymthta <
&1 ( + )m+k+a <
2 * Min m+1+k+a—1
200+ P& M CES : (2.56)

Now (2.54), (2.56) and (2.26) imply
[emi2®) = omp W] <

Mm
201+ 1%) ¢ & M ¥ ————ymtithkta-t (2.57)

(m +1)!

for p = 0.
Similarly, from (2.41), (2.44), (2.45) and (2.27) we find

||80?n+2( ‘Pm+1 ||

L M am
2(l+12)02€2M my Flth+ 1. (258)

Proceeding similarly as in deducing the estimate (2.51), we obtain

~ ~ R -
||<pp,m+2 (Z',y) - SOP,m+1 (Z',y)“ S £3M mym+1+k+a 17 (259)
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where & = 4n(l + 12)C3§~2, 52 = max(&;, &a).

Denote by 7 the largest of the numbers max |||, max ||€;||, max ||Qs]],
D1 1 1

max ||S~)4||, where the matrices Qq;, Qs;, i =1,...,1, §~23, Q4 are determined
D

1
n (2.42), (2.43). By virtue of (2.59) we have from (2.42) and (2.43)

||wm—i-2(flj y) - wm+1($ay)” < ||()5P,m+2 (way) - &P,m«}»l (a:,y)” +

+Z / 190illllwmt1 = wimll + 12l lumsr = wmll) (zi(z, y; 1), t) dt <

“lui(e)
M / M
< €3M*7*ym+1+k+a—1 + 2l77 M*_*tm+k+a—1dt <
(m +1)! m!
* Mln m+1l+k+a—1
< (& +2M Y ; (2.60)

* Mln m a—
|2 (@, y) — w1 (z,y)|| < 20M my kel T (2.61)
since 0 < w;(z,y) <y,i=1,...,L
It immediately follows from (2.50), (2.52), (2.53), (2.57), (2.58), (2.60)
and (2.61) that if we put

M* = 2nc304 + 01, M, = max (2(l + 12)0151, 2(l + l2)02£2, 53 + 2[’[}),

the estimates (2.44)—(2.47) will be valid for any integer m > 0.

Differentiating the equalities (2.40)—(2.47) with respect to z and y and
using the obtained estimates (2.44)—(2.47) as well as the solvability of equa-
tions (2.24) and (2.25) and the estimates (2.26) and (2.27) for p = 1, we
analogously obtain

68 (Um1 — m)(w,y)H < Mf%ym+k+a—2’
68 (U1 — m)(w,y)H < Mf%ym+k+a—2’
g(wmﬂ —wm)(z,y H < M*%ym+k+a—2’
g(wmﬂ - wm)(z,y)H < Mf%ym+k+a—2’
68 (Pmt1 — @:n)(y)H < Mf%ym+k+a—2’
68(90m+1 H < Mflb 1)'ym+k+a 2
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Continuing this process, we find that form > i+ j,0<i+j<k-—-1

m—i—j W
.. % *i+ 7 — ==
107 (i1 — um) (@, y)|| < M7y ﬁymﬂﬁa (A
m—i—j
- _ A mebkda—ioj—1
||azJ(wm+1 wm)(a:,y)” <Mz*+]( Z_j)!ym a—i—j—1 (2.62)
m i—J
it it i
Haaylﬂ (@m—i—l H < M:;J _lzj_.]) ym+k+a i—J 1’
=1, 2 )
where M}, M,;, i =1,...,k—1, are sufficiently large positive numbers not

depending on m.
It follows from (2.62) that the series

o0

w(,) = Tim u(,y) = S (um(,y) = umo (9),

m

Il
-

(wm(x,y) — wm—1($,y)),

WE

w(z,y) = lim wpy(z,y) =

m—00 o
e’}
m=1

converge in the spaces C~1(Dy), C*1[0,d,], p = 1,2, and on account of
(2.40)—(2.43) the limit functions u, w, o', ¢? satisfy the system of equa-
tions (2.18), (2.19), (2.22). Hence it follows that v, = Kiw, uy, = Kow,
where K = (g;) is the 2n x 2n-matrix from (2.4). Consequently, u,,u, €

5’;;1@1) since w € 5’&’1(ﬁ1), K € C*(D,), and therefore u € 8”2(51)
Thus we have shown that the obtained function u(z,y) is a solution of the
problem (2.1)—(2.3) in the class C* (D).

Let us now show that under the conditions of Theorem 2.1-2.3 the
problem (2.1)—(2.3) has no other solution in the class C*(D;). Indeed,
if u(x,y) € C¥(D,) is a solution of the homogeneous problem correspond-

ing to (2.1)—(2.3), then the corresponding functions u, w, ', ©? satisfy the
homogeneous system of equations
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Waerj (@, y) = Pl (wilz, y)+ )
Y 2n n
+ / (Z alljpwp + Z blljpup) (zz(z, y;t), t) dt,
wiley) P P
1<i<l, 1<j<k,
Wl(xﬁy) d
u(r,y) = / (’Z(P)Kl+K2)w(71(P)(t)7t)dt+ (2.63)
) y
Yy
+ / (M Ky + Ks)w) (21 (z, y3t), ) dt,
i)
(K109 ) (y) + (Tsw)(y) + (Teu)(y) = 0,
(K209°)(y) + (Trw)(y) + (Tsu)(y) = 0. )

To the system of equations (2.63), let us apply the method of successive
approximations taking w, w, ¢!, ¢? as zero approximations. Since these

functions satisfy the system of equations (2.63), every next approximation
will coincide with it, that is,

’U,m(.’lf,y) Eu($7y)a wm(a:,y) Ew(w,y),
em(y) =¢"(y), p=12.

Taking into consideration that these functions satisfy the estimates of the

type (2.48), (2.49), and arguing as in deducing the estimates (2.44)—(2.47),
we obtain

—~ M™

(e, )| = s ()| < M* =y obre,
_

llw(z, y)|l = ||wm+1(a:,y)|| < M* m*! ymkta—l

|| 1( )H _ || 1 ( )” <M*@ m+k+a—1
w\y - Q0m+1 Yy = m| Yy ’

By
Ie? Wl = [|0hga ()| < M*—2—ymthtat

m/! ’

whence in the limit as m — oo, we find that

uzw=¢p'=¢*=0. B

The particular case of the boundary value problem (2.1)—(2.3) is the

problem of Goursat type, when the boundary conditions (2.2), (2.3) have
the form

ul op, = fi, (2.64)
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ulop, = fo- (2.65)

Differentiating the equalities (2.64) and (2.65) with respect to the tangent
to the curves v, and 7», we have

d
(B, -1 o
1
dy2 L)
(d—yux + uy) ‘OPQ e (2.67)

Below we shall assume that all the requirements imposed on the curves
~1,72 and the characteristics of the system (2.1) quoted in §2, are fulfilled;
moreover, the number Iy = 0 and the points P; and P, are located on the
curves y; and 2 such that m; = ms = n.

It is easily seen that in the class 5’3(51), k > 2, a > 0, the problem
(2.1), (2.64), (2.65) is equivalent to the problem (2.1), (2.66), (2.67).

Since the matrix coefficients for the problem (2.1), (2.66), (2.67) have in
the boundary conditions (2.66), (2.67) the form

Mi=Yig N B Si—o0, i=12
dy

where E is the unit n X n-matrix, it is obvious that the conditions (2.21)
are equivalent to the following ones

rank {v;;, 1 <i<sp, 1<j< ki}|opl =n, (2.68)
rank {v;;, so <i <1, 1§j§ki}|op2 =n. (2.69)

In this case the equalities ﬁl = U, and (72 = U; are valid, the condition
(T; x U;)(0) = 0 being fulfilled if and only if v; = L;,(0), 1 < ip < I, and
ki, = n.

From Theorems 2.1-2.3 we have the following assertions:

1. Let the conditions (2.68), (2.69) be fulfilled. If either m;m2 = 0 or at
least one of the equalities (I'; x Us)(O) = 0 or (I'y x U;)(0O) = 0 holds, then

the problem (2.1), (2.64), (2.65) is uniquely solvable in the class C* (D)
for all k> 2, a > 0.

2. Let the conditions (2.68), (2.69) be fulfilled, and mima # 0, (I'; x
Us3)(0) #0, (T's x Uy)(O) # 0. If the curves 71, 72 do not have a common
tangent line at the point O(0,0), then for k£ + a > po the problem (2.1),

(2.64), (2.65) is uniquely solvable in the class C¥ (D).

3. Let the conditions (2.68), (2.69) be fulfilled, and mim2 # 0, (I'1 x
U2)(0) #0, (T2 x Uy)(0O) # 0. If the curves 1, 72 do not have a common
tangent line at the point O(0,0), then for h;(1) < 1, ¢ = 1,2, the problem

(2.1), (2.64), (2.65) is uniquely solvable in the class C* (D) for all k > 2,
a > 0.

io
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Remark. Let Dp, P € D;, be the domain constructed in §2 of the
present chapter, and let «,, = 7, N0Dp, i = 1,2. As is seen from the
proofs of Theorems 2.1-2.3, when conditions of these theorems are fulfilled,
the domain of dependence of the solution u(z,y) of the problem (2.1)—(2.3)
for the point P € D; is contained in the domain Dp, and for the solution
u(z,y) the estimate

2
. < ( 1l Fll. )
140y 5, < (M, WP,
is valid, where ¢ = const > 0 does not depend on F and f;, i = 1,2,
oiti
Oxidyi

, oI =

N _ = max su 2|70 u(z
il 5, = i, s o709

The norms in the spaces 5”2’1(% ) and 515;11 (Dp) are defined analo-

gously.
§

Let us consider a normally hyperbolic system with constant coefficients
of the type

Atgy + 2Bugy + Cuyy = 0. (2.70)

As the curves v, and v, let us take straight beams v; : * = 7y, y > 0,
7Y = const, i = 1,2, 7Y > 42. Denote by D the angle contained between the
beams -1 and - and located in a half-plane y > 0. On the beams ~; and ~»
let us take arbitrarily the points P; and P> different from O(0,0) and assume
that the straight line passing through P; and P is not a characteristic of the
system (2.70). Because of the fact that ; and 7, are the straight beams,
and the characteristics L; : * + \;y = const, A\; = const, ¢ = 1,...,l, of
the system (2.70) are the straight lines, all the requirements of §2, imposed
both on 1, 72 and L;, : = 1,...,1, will be fulfilled. In a similar way as in
§2, we construct the domain D; and determine the numbers m, and ms..

Introduce into the consideration the following spaces

o _ o, __ ..
C§7B(D) :{u € C*(D): max sup |z|_°‘|8”7u(z)| < 00,
+i=k o< )21<1,2€D

max  sup |z|_5|8i’ju(z)| < oo}, k>2 a>0, >0,
9=k 221,260

C*(D) :{u € C*(D): max sup  |z|7*[9"u(z)| < oo},
+i=k o< |21<1,2€D
k>2, a>0.

The space Col'g(ﬁl) has been introduced at the end of §1 in Chapter II.
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Below the m; x n-matrices M;, N;, ¢ = 1,2, appearing in the boundary
conditions (2.2), (2.3) are assumed to be constant, and S; =0, i = 1, 2.

When considering the problem (2.70), (2.2), (2.3) in the spaces C* (D)

]
and C% 5(D), we assume that equalities (2.2) and (2.3) take place respec-
tively on the beams 1 and ~».
When investigating the same problem in the above-mentioned spaces, the
use will be made of the Bochner method of solution of functional equations
which will be cited below.

When cons1der1ng the problem (2.70), (2.2), (2.3) in the classes C* (D),
C 3(D), C”Z(ﬁ ) it is required that f; € C”c Yvi), fi € C’ijﬁl (vi), fi €
C”;’l(OPi), i = 1,2, respectively, where f; and f are the right-hand sides
of equalities (2.2), (2.3).

Similarly, as in §3, the problem (2.70), (2.2), (2.3) in the class C% (D) is
reduced equivalently to the system of equations (2.20) in which G§, = T'; x V;,
o' e CE10,d], i = 1,2, 7/ (y) = o}y, 0 < 0} = const, j = so+1,...,1,
2 (y) = 07y, 0 < g = const, i = lop+1,...,8, Tj =0, =1,...,4,

fs=fi, fa = fo.
After substitution @(t) = (¢'(dit), ¢*(d2t)) we rewrite the obtained sys-
tem of equations in the form of one equation

GO‘P + ZG%P Tz = )a (2-71)

where ¢ € 5”271[0, 1], Gi, i =0,...,r, are well-defined real constant (m; +
Gy 0

0 G3>,0<Ti:c0nst<1,

mgz) X (my +msy)-matrices; moreover, Go = (
i=1,...,7, and f(t) € Ck-10,1].
Analogously one can show that the problem (2.70), (2.2), (2.3) in the

classes C* (D), Ck ( ) is equivalent to the system of equations (2.71) with
respect to an unknown function @ belonging, respectively, to the spaces

C*=10,00) and C';,_Bl [0, ).
Differentiating equation (2.71) (k — 1) times with respect to ¢, we get

(GY)(t) = Goy(t +§j#1@¢n>—ﬂx (2.72)

where (1) = 31 (1), f() = F*7D (2).

Obviously, equation (2.71) with respect to ¢ € C’Z:Bl [0,00) (Ck~1[0, 0),
8”;_1[0, 1]) is equivalent to equation (2.72) with respect to ¢ € Col'a,g[O, 00)
(Cal0,00), Ca[0,1]).
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Denote by o the set of all real numbers {og,01,...,0;,...} representable
r
in the form )" n;log7;, where n; are arbitrary integers, and o9 = 0, 0; # 0}
i=1
for i #£ j.
Let

A(s) = det (GO + irf*Giesbgﬂ').
i=1

It is obvious that A(s) is an entire function represented as
mo -~
A(S) = Zmeais, &z € o, (273)
i=0

where n;, 0; are certain real numbers, and G, < Opo—1 < -+ < 7p < 0.

We can easily see that in the case A(s) = 0, the homogeneous problem
corresponding to (2.72) has for any s a non-trivial solution of the type
P(t) = c(s)t®, ||e(s)]| # 0. Evidently, if det Go # 0, then A(s) #Z 0.

Below we shall assume that A(s) Z 0, and in this case one can suppose
that n; # 0,4 =0,...,mp in equality (2.73).

The set 91 of real parts of all zeros of the entire function A(s) is a finite
or countable bounded closed set; moreover, this set is empty if and only
it A(s) = noe?®® [11]. The set M divides the real axis of the plane of the
variable s = Re s + 7 Im s into not more than a countable set of intervals fi,
i=0,1,2,..., among which there are the half-lines (—oo < Re s < bg) = Do,
(ap < Res < o00) =1I7.

It is shown in [12], [13] that the analytic almost-periodic function ﬁ

expands in the strip II; = {s : Res € fl} into an absolutely convergent
series of the type

1 - _
NG = Z'yije‘”s, oj € o, (2.74)
j=0

whose coefficients can be uniquely determined.
Since o9 > 7, j =1,...,mg, we have

mo -
Jj=1

for Res > ¢y, where ¢g is a sufficiently large real number. Therefore for
Re s > ¢y there takes place an expansion

ﬁ = [7706;03(1 + fn&lme(;f—%”)]*l -

j=1

= no’le’gos (1 + i(—l)i(%nglnje(;f;‘))s)i). (2.75)
i=1 j=1

<1
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Due to the uniqueness theorem for analytic almost-periodic functions
[49], the coefficients +,; of the series (2.74) in the strip II; can be defined
from the expansion (2.75), and hence

Y15 = 0 for gj > —ag > 0. (276)

Denote by A;; the algebraic supplement of the element with the indices
J, 1 of the determinant A(s),

oo ..
S):E Eijpepa 7’7.7:17'--7m1+m27

where Ny is a natural number and &;;, are definite real numbers.

Denote by g’J the element of the matrix Tk 1@, with indices 4, j, where
o=1,p=0,...,r,4,5=1,...,m1 + mao.

Because of determinant properties, we can easily see that for Res € II;,,
iO Z 07

A(s )m;i;m ( ZQU 2087y ) in(s) =

o0 mit+m r Np B
=2 Z >3 G GparvimpeoE T ot =
p=0 j=1 p'=04q=0
.- ij - 1 for i=p,
- Z( Z gpj’fqu%'op)e = {0 for i # (2.77)
v=0 (p,j,p',q)EJ P,

where J, is the set of all collections (p, j,p’,q) of numbers p, j, p’, q for
which log 7, + 0p + 04 = 03,

From (2.77), due to the absolute convergence of the series (2.74) in
the strip II;,, and because of the uniqueness theorem for analytic almost-
periodic functions, we obtain

1 for i=p, v=0,
Yo 9w =0 for i=p, v>1, (2.78)
(p.dp" ) €Ty or i #p, v>0.

Analogous reasonings as in the case of the expression

mi+ma

e ) > (Zg‘” o087 ) Ay )

result in the equalities

1 for i=j v=0,
Y g =0 for i=j, v>1, (2.79)
(p:p1p"0)ETy or i#j, v>0.
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Let now Gi, = (Gig1,-- - Gigm,+m,) be the operator acting by the for-
mula

oo mi+ms Np

GiiHB) =D Y stqmopfp eTr7ag), (2.80)

p=0 p=1 ¢=0
1=1,...,m1 +ms.

The lemma below is due to Bochner [11].

The operator G defined by the formula (2.72) is invertible
in the space Cy [0,00) and G~' = G, if
mnN Ioz,ﬁ =4, Ia,ﬁ = [min(a,ﬁ),max(a,ﬂ)] C Hio-

In the spaces C,[0,00) and C,[0,1] the following lemma takes place.

The assertion of Lemma 2.4 is valid in the space 5a[0,oo)
for a > supIM = sup = and in C,[0,1] if det Go # 0 and a > supIN, in
zeEM
both cases G~' and G being equal.

To prove Lemma 2.5 we shall use the Bochner method [11]. a > sup I
implies that « € TI;, and hence, since the series (2.74) is absolutely conver-
gent in I1;, we have

00
cp = Z |’)/1]'|€Uja < 00. (281)

Suppose p(f) = sup [|[774f(7)||gmi+ms-
TE€(0,¢]

By (2.76) the function G+, f at the point ¢ > 0 depends only on those val-

(7;0+ max ogq)

ues of f which it takes on the segment [0, tot], where to = e 0<asNo
Therefore we have
Giif) <
p(GLf) < 1<iS s ms Pt p(Guif) <
oo mi+mz2 Np
<SS m (e bl ) <
p=0 p=1 ¢=0
< (ma +ma)(No + 1)(11113? |€ipge”®®|) c1peot (f)- (2.82)

When deducing (2.82), the use has been made of (2.81) and the fact
that p(f,) < e(ap+aq)aptot(fp)a where f,(t) = fy(e Up+aqt) From (2.82) it

follows that the operator Gy is continuous in the space C [0, 00).



67

Let us check tNhat G(N}’l = I, where I is the identity operator. If G(N}’l =
((GG1)1, ..., (GG1)my+ms ), then by (2.78) and (2.80) we have

mi+ma

((GGh)if Z Z DGy f)(pt) =

mi+ms 0o mi+ms No

PO 3B b b o U

mi1+meo oo

= Z Z ( Z g:;]'.fqu%p) fole™t) = fi(t),

p=1 v=0 (p,j.p',q)€Jv

which proves the equality GGy = I. In a similar way, using equality (2.79),
we can easily check that G1G = I. Thus G~' = G4, and Lemma 2.5 is

proved in the space C,[0, 00).

Let now det Gy # 0 and a > sup M. From (2.73) it follows that o = 0
for det Go # 0. Therefore by (2.76) we have v1; = 0 for o; > 0. Since
logr; <0,i=1,...,r, in the expansion

No
) =Y &ijpe™?
p=0

we have &, = 0 for 0, > 0, and thus &;,,71, = 0 or Op + 04 > 0. Hence
the operator Gy defined by (2.80) acts from the space C’ [0, 1] into itself. It

remains for us to note that the operator G in the space C’a [0, 00) is invertible
for a > supIM, and G~ =G;. B

For a > sup I and det Gy = 0 the equation (2.72) is solv-
[e]
able in the space C,[0,1], and the homogeneous equation corresponding to
[e]

(2.72) has in the space C4[0,1] an infinite number of linearly independent
solutions.

Proof. If f € éa[(), 1], then let fbe an arbitrary continuous extension of f
from the segment [0,1] to [0, 00). Clearly, f € éa@, ), since f(t) = f(t)
for 0 <t < 1. By Lemma 2.5 the equation Gy = f is uniquely solvable in
tlle space éa[(), 00) fgr a > sup M. It is also clear that the vector function
P(t) = (t) = (G=1f)(t) defined on the segment 0 < t < 1 belongs to the

space C4[0, 1] and is the solution of (2.72).
Let us show that dim Ker G = oco. Since det Gy = 0, there exists a non-
degenerate (m; + ma) x (m; + mo)-matrix Q such that the last go rows of



68

the matrix GoQ are zero, where qo = (m1 + ms) — rank Gp > 0. Consider
the operator G* defined by

(@*)(t) = Go(t) + Y Gu(rit), v € C.0,1].

Assume 75 = max 7, 0 <7 < 1. Let¢ = (%,...,{Emﬁm) be an
i<r

arbitrary vector function of the class C4[0,1] such that ¢; = 0 when i =
1,...,my + my — qo and ¥;(t) #Z 0, ¥;(t) = 0 for t € [0,7p] when i =

mi+ma—qo+1,...,my+msz. It can be easily seen that G*¢) = 0, and hence
G = 0, where ¢» = Qip. Therefore dim Ker G = oo, since det 2 #0. H

Remark. As the example of equation (2.72) with r = 1 shows, in the case
where conditions of Lemmas 2.4-2.6 are violated, the unique solvability of
the equation (2.72) may not hold. For r = 1 the following assertion is

valid: a) equation (2.72) in the space 5%3[0, oo) for M N {a, f} # @ as
well as in the spaces Cy[0,00) and C4[0,1] for a € 9 is not normally
Hausdorff solvable; b) equation (2.72) is normally Hausdorff solvable in the
space Cy 3[0,00) for MN Iy 5 # &, MN {a, B} = &, and for a < § we
have s = dy —dj = +00, dy = dimKerG = o0, dj = dimKerG* = 0,
while for @ > 3 we have conversely s = —o0, dy = 0, dfj = oo; ¢) equation
(2.72) is normally Hausdorff solvable in the spaces C',[0,00) and C,[0,1]
for a < sup I, a ¢ M; moreover, in both cases 3¢ = +00, dy = 00, dfj = 0.
This assertion can be proved by using the same method as we have used in
proving Lemma 1.7 in §2 of Chapter I.

Recall that the condition det Gy # 0 is equivalent to the fulfilment of
the conditions (2.21); moreover, if det Gy # 0, then the entire function
A(s) £ 0. Denote by 9, the set of real parts of zeros of the entire function

Ag(s) = det (GO + Z Giels~los ﬂ').
i=1

Since A(s) = Ag(s+ k), wehave M =My —k={x —k:z € NMp}.
From Lemmas 2.4-2.6 we have the following
The problem (2.70), (2.2), (2.3) is uniquely solvable in: a)
the class C§7ﬁ(5) for Ao(s) Z 0 and My — k)N Iy = &; b) the class
Ck (D) for Ao(s) £ 0 and k + a > supMy; c) the class CF(Dy) if the

conditions (2.21) are fulfilled and k + o > sup My. In the case Ag(s) Z 0,
kE 4+ a > supMy, if at least one of the conditions (2.21) is violated, then

the problem (2.70), (2.2), (2.3) is solvable in the class C*(D;), and the
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homogeneous problem corresponding to (2.70), (2.2), (2.3) has an infinite
number of linearly independent solutions.

Remarks.
1. As noted above, when the conditions of Theorem 2.4 are violated in

the classes é”;ﬂ(ﬁ), éﬁ(ﬁ), 5’2(?1) the problem (2.70), (2.2), (2.3) may
turn out to be ill-posed.
2. If the set My is empty, then Ag(s) Z 0, and owing to Theorem 2.4,

the problem (2.70), (2.2), (2.3) is uniquely solvable in the classes C¥ 5(D),

Ck(D) for all k > 2, a >0, 8> 0, as well as in the class C* (D) when the
conditions (2.21) are fulfilled for all ¥ > 2, a > 0. When the conditions of
Theorem 2.1 are fulfilled, it is obvious that Ag(s) = det Gy # 0, and hence
the set M = &. Therefore, in the case of the problem (2.70), (2.2), (2.3)
Theorem 2.1 is a direct consequence of the assertion b) of Theorem 2.4.

3. It can be easily verified that py > sup 9y, where py is a number
occurring in the condition k + a > pp of Theorem 2.2 in the case of the
problem (2.70), (2.2), (2.3). Therefore, the condition a > sup(My — k) or,
what is the same, the condition k£ + a > sup 9y in Theorem 2.4 is more
exact than the condition k£ + « > pg in Theorem 2.2.

4. In the case Ag(s) = 0, one can easily verify that in the classes C¥ (D),
C* (D), C%(D,) for all k > 2, a > 0 the homogeneous problem correspond-

ing to (2.70), (2.2), (2.3) has an infinite number of linearly independent
solutions.
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CHAPTER III

In the plane of variables z, y let us consider a system of linear differential
equations of the type

y" Ay, + 2y%Bumy + Cuyy + au, + buy + cu = F, (3.1)

where A, B, C, a, b, ¢ are given real n X n-matrices, F' and u are, respectively,
given and unknown n-dimensional vectors, m = const > 0, n > 1.

Below A, B, C' are assumed to be constant matrices, det C' # 0, and the
polynomial py(\) = det(A+2BX+C\?) is assumed to have only simple real
roots Ai, ..., Asy. In this case the system (3.1) is strictly hyperbolic for y >
0, and the line of parabolic degeneration y = 0 is not a characteristic of the
system (3.1). Under these conditions the numbers y2 Ay, ...,y Ay, are the
roots of the characteristic polynomial p(y; \) = det(y™A + 2y% BX + C\?)
of the system (3.1), and the curves determined by the equations

2\;  mt2 2)\; m2
m_‘_lQ?J 2 :55'()'|‘m—_+_22y02 , 1=1,...,2n, yo >0,

LZ(P) T+

and passing through the point P(zg,yo) are characteristics of the system
(3.1).

Denote by D a domain lying in the half-plane y > 0 and bounded by two
adjoint characteristics

2/\i1 m42 2/\i2 m42
2 =0 : 2 =0, A\ i s
m+ 2y y V2T + m + 2y ) 1 < 2

T iT A+

of the system (3.1), coming out of the origin O(0,0). Take arbitrarily on
~1 a point Py different from O(0,0) and choose the numbering of character-
istic curves L;(Py), i = 1,...,2n, coming out of P; into the angle D such
that starting from L,(P;), they follow each other counter-clockwise. On
the curve 7, let us fix the point P, lying strictly between the two points
of intersection of characteristics L,(P;) and L,11(P1) with the curve ~s.
Denote by D; C D the characteristic quadrangle with a vertex at O(0,0),
bounded by the characteristics 1, Y2, L,(P1) and L,41(P>). Under these
assumptions it is evident that

2A2n m+2

2\ m42
2 :0 =L O : 2
m+2y y V2 1( ) T+

=0.
m+2y

Y1 = Lgn(O) T+

For convenience we shall assume below that A, > 0 and A\,4+; < 0.
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Consider the characteristic problem formulated as follows [38]: find in
the domain D; a regular solution u(z,y) of the system (3.1), satisfying on
the segments OP; of the characteristics 7; the following conditions

U|0Pi = fi, 1= ].,2, (32)
where f1, fo are given n-dimensional real vectors, fi(O) = f2(O).
Below we asume that a, b, ¢, F € C'(Dy), fi € C*(OP;), i = 1,2, and

moreover, in the domain D1

sup [ly" " %all < oo, sup [ly' T a,l| < o0,

Dl\O Dl\O
sup |ly~ @t 2 VDF|| < 00, sup |ly @D F,|| < 0o, a = const >0,
D1\O D1\O
fi(0)=0, sup [y HED I <00, i=1,2 j=1,2
OP;\O
where || - || denotes the norm in R™.
Since the roots Ap,..., A2, of the polynomial po(A) are simple, we can

easily verify that dim Ker(4A + 2BX\; + CA?) = 1, i = 1,...,2n. Let the
vectors v; € Ker(A + 2BX\; + C)A?) and ||v;]| #0,i =1,...,2n.
In §4 we shall prove the following

Let the condition

rank{vy,...,vp} =rank{vpi1,...,v2n} =n (3.3)

be fulfilled. Then there exists a positive integer agy depending only on the
coefficients A, B, C, « of the system (3.1) such that for a > ag the problem
(3.1), (3.2) is uniquely solvable in the class

{u e C2(D)) : 9%9u(0,0) = 0,

sup |ly~@FFTI-(BFDID)gidy|| < 0o, 0<i+j < 2}, (3.4)
Di\O

oiti
Oxioyl

o =
It should be noted that the condition

sup [ly"'~%)al| < oo
D1\O

for the lower coefficient a of the system (3.1) is a generalization of the well-
known Gellerstedt’s condition when (3.1) is a scalar equation (n = 1,4 =
—-C=1,B=0).
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§
Consider the following 2n x 2n-matrices:
A = 0 —-F i 0 —-F
0= llc—t4 207 'B||’ O |lymCtA 24FC'B||
141 Von =~ yi%lll yi%llgn
K = K =
<A1 141 e Agnllgn> ’ < Al 11 . )\inlgn ) ’
where E is the unit n x n-matrix.
It can be easily verified that
K '"AoK = Dy, K 'AyK = D,. (3.5)
Here Dy = diag[—\q, ..., —Aan], Do = diag[—y = A1, . .., —y2 Aan].

Assume K = colon(Ky, K»), K~ = (K, KY), where K, K> and K,
K9 are matrices of orders n x 2n and 2n x n, respectively.
Obviously,

K = colon (y*%Kl,KQ), K'= (y%K?,Kg). (3.6)
Owing to (3.6) we have

K, = =% colon (y"#7'K,,0), K7'K, = —%K? x K1 (3.7)

If

0 0

Cr—la Cr—lb ’ (38)

|

then

~ ~ 1~ ~
K 'ByK = 530 + By, (3.9)

where By = y' =% KYC 'aK,, B, = K{C~'bK,. Since by the assumption

sup |ly"~%)al| < oo, sup |ly"' "% a,|| < oo,
Di\O Di\O

we have

sup [|Bol| = sup [y~ FKIC aK, || < oo,
D1\O D1\O

no~ N\ o (3.10)
sup ||Bozl|| = sup |ly" "2/ K3C T a, K| < oc.
D1\O D1\O
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In the class (3.4) we can rewrite equivalently the problem (3.1), (3.2) in
the form

v, + Agv, + Bov + Coul’ = F°, (3.11)
m. O 0 m
(—y2/\1%+a—y)u——y2/\1v1 + vy, (3.12)
(=9 demmn o) (= 20" 0) = 1000, 0<y < |
(—y%)\lm +U2)(—7i:12 mz+2,y):f2(1)(y), 0<y<d,, -
2A2n m+2
_ = <y< :
u( mral ,y) fily), 0<y<d, (3.14)

where d; is the ordinate of the point P; € 7;, i = 1,2, and the 2n x 2n-
matrices Ay, By have been introduced in §2,

CO = dia‘g(oac_lc)a UO = (O,U), FO = (OaF)a
VL= Ug, V2 = Uy, (3.15)

_ 1 1
v=(v1,v2), V1 €Cqmys, V2E€C o m myy;.

Here

a,p1,P2

ok :{u e C%(Dy) : 8u(0,0) = 0,

sup ||y_(°‘_p1i_p2j)8i’ju|| <00,0<i+j< k}
D1\O
In fact, if u is a solution of the problem (3.1), (3.2) from the above-

mentioned class, then it is obvious that w, v1 = u,, va = u, satisfy the
problem (3.11)—(3.14), and (v, v2) belongs to the class (3.15). Conversely,
let u, v1, v3 be solutions of the problem (3.11)—(3.14) for which (3.4), (3.15)
hold. Let us show that w is a solution of the problem (3.1), (3.2) and
U1 = Ug, U2 = uy. From the first n equations of the system (3.11) we have
that v1, = va,. Furthermore, equation (3.12) yields

m, 0 0
(—y /\1% +a—y)(uz —v) =
0 m, 0 0 m, 0 0
=g~ g g )um (vFng g )u -
_ 2
- Ox
which in its turn implies that u, — vy = 0, since because of (3.12)—(3.14)

and the inequality A\; # A2, we have (uz —v1)|op,\o = 0, while at the point
0(0,0) the function (u, —v;) vanishes by the assumption u,, v; € C*(Dy),

( — y%/\ﬂn + 1)2) + y%/\lle — V1y = U2z —V1y = 0.
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sup ||y~ %uzl| < oo, sup |ly"%v1]] < oo and @ > 0. Since u, = vy, (3.12)
D1\O D1\O
implies u, = vo and by (3.11)-(3.14) we can easily get that « is a solution
of the problem (3.1)—(3.2).

Note that for the above converse assertion to be valid, it suffices to require
of the unknown function u that u € Cy m m o In this case one should

consider the differential expression (—y% A 2 +,9%)(Ux —uv1) in a generalized
sense. By virtue of (3.12) and the equality vi, — v2, = 0, for any function
p € C§°(Dy) we have

:—/u%(_yzl)\l%_p%)goda:dy-l-/[(—y%)\l%-l-a%/)vl]wda:dy _
(ot s D) Lt [ e Lot -
- [ (o o) s [0+ Lo
B __ [%(_y%zvl + 05 )| spdady +
(- y—A;)ﬁ + 5 Yor]edady = [ (o, = va)edady =0,

whence by Theorem 1.4.2 of [26, p. 19] we can conclude that the continuous
2)\1 m+2 _
—y 2 =
m—+2

const, and since (u; —v1)|op, = 0, we have u, —v; = 0in D;. The remaining
part of our discussion is similar. B

As a result of the substitution v = Kw of the unknown function, and
owing to (3.15), instead of (3.11)—(3.14) we shall have

function u, — vy is constant along the characteristics Ly : z +

wy+l~)0wm:B2w+C’2u0+F1, )
(—ﬁkznfﬁ+1~(z)w(—f,?jgymf,y)fol)(y), 0<y<di, \ (3.16)

(_y%/\lgl-l-fﬁ)w(_ri)b m;2’y):f2(1)(y), 0<y<ds,
m+42
u(_an—jE 2 ’y):fl(y)7 OSySdla J

Where~B2 = —I?_ll?y — I?_IB()I?, Cy = —I’\(/_ICO, F' = I?_IFO, and I?l
and K are the matrices of order n x 2n composed, respectively, of the first
and the last n rows of the matrix K.
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By (3.6)—(3.9) we have

K=y %K), K=K,
Bo= KO % K\ — LBy — By, (3.17)
o 2y y

—yT MK+ Ky = -\ K + Ky =
= (0, A= A)va, .oy (Aan — /\1)V2n),
—Z/%/\mﬁl + Ky = — XK1 + Ky =

= (A = Aen)vn, oo (Aon1 = A2n)V2n1,0).

Taking into account (3.17), we rewrite the problem (3.16) in the form

~ 1
Wy + Dyw, = Z(ng + nguo) + Fl, (318)
m. 0 0
(—yZ/\1%+a—y)U: (—/\1K1 +K2)1U, (319)
(= honky + Ka)u( = 223y y) = f(V(y), 0<y <, 520
(_AlKl +K2)w(_ri>4\}2 m;2ay):f2(1)(y)7 OSySd27 -
2Xon  mi2
_ = <y<d;. .
U( mt ol ’ ,y) fily), 0<y<dy (3.21)
Here Bs = 2K{K; — By — yBi, and by (3.10) we have
sup ||Bs]| < oo, sup [|Bs.|| < oo. (3.22)

D1\O DI\O

It follows from (3.6) that vy = y~ % Kyw, v = Kow, w = y* Kv; +
K9v,. Therefore (v1,vs) belongs to the class (3.15) if and only if w €
Crl

at T, m41,1"

m+2
Let Li(%0,%0) : * = 2i(%0,Y05t) = ¥o + %yﬁ — 33 Ly =t
be a parametrization of the characteristic curve L;(xo,yo) passing through
the point (zo,10) € D1, i = 1,...,2n. Denote by w;(z,y) the ordinate of
the point of intersection of the characteristic L;(z,y) with the curve v, for
1 < i < n and with the curve v, for n < i < 2n, (z,y) € D;. It can be
easily verified that

wi(xay):
2
_ . m+42 m+2
_ [mTH()‘l_)Qn) 1($+%+12y 2 ):| ’ ZZ]—; ,n, (3 23)
= 5 .
2200 =7 (o4 2y™) [T imns o
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Let Dg, @ € D;\O, be the curvilinear quadrangle with a vertex at
0(0,0), bounded by the characteristics v1, v, Ln(Q) and L, +1(Q). Since by
the assumption A, > 0 and \,+1 < 0, the domain Dg, Q(zo,y0) € D1\O,
is located entirely in the half-plane y < yo. Therefore it follows from the
construction of the function w;(z,y) that

ngl(xay) <y, (zay) 6517 ’L.ZI,...,QTL, (324)

because the segment of the characteristic L;(Q), issued from the point @) €
D1\O up to the intersection with the curve v, for 1 < i < n and with the
curve s for n < i < 2n, is contained entirely in Dg.

By virtue of (3.23) we can easily see that

Y, 1=1,...,n,

w; =<7y, t=n+1,...,2n—1,
OP; )
0, 1=2n,
(3.25)
0, i=1,
inP2: TiY, z::2,...,n,
Y, t=n+1,...,2n.
Here
2
[(/\i—/\1)71(/\i—/\2n)]'"+2, i=n+1,...,2n—1,
T = 5
' [(/\z - )\2n)_1(Ai - )‘1)] m+27 i = 27 -y 1S
moreover, by (3.24) we have
n=mn=0 0<r<l, i=2,...,2n—1. (3.26)
Suppose
wi|OP1:wi(_fn)‘j_"2 mgz,y), 0<y<d;, i=1,...,n,
vily) = 2, | mi2 .
wi|OP2:wi(_m+2 2 ,y), 0<y<ds, i=n+1,...,2n.

Since a > 0, it is obvious that ¢;(0) = w;(0,0) =0,i=1,...,2n.

Integrating the i-th equation of the system (3.18) along the i-th charac-
teristic L;(x,y) from P(z,y) € D; to the point of intersection of L;(z,y)
with the curve 7, for i < n and with the curve 7, for i > n, while the equa-
tion (3.19) along the first characteristic, and taking into account (3.21), we
obtain

wi(z,y) = @i(wi(z,y)) +

Y 2n n
1
+ / ;(jlemjwj +j21t02ij1j,j) (Zi(.’lf,y;t),t)dt+Fi2(:l?,y), (327)
wi(z,y) o n

i=1,...,2n,
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u(@,y) = fi(wi(z,y)) +

+ / (“\ K+ K)o (@3 ), 1) dt, (3.28)
o)
where F?(z,y) = fji(x7y) Fl(zi(z,y;t), t)dt.

We rewrite the system of equations (3.27) in the form of one equation

w(z,y) = p(z,y) +

2n v
1
+> / 7 (Buiw + Csiu) (zi(z, y; ), 1) dt + F2(z,y),  (3.29)
i=1
wi(z,y)

where By; and C3; are well-defined matrices of orders 2n x 2n and 2n x n,

respectively, and g(z,y) = (p1(wi(2,9)), - - Pan(wan (2, 9)))-
Substituting the expression for the value w(z,y) from (3.29) into the
boundary condition (3.20) and using the equalities (3.25), we get

2n—1

Goe' (v) + Y Gie’(riy) + Ti(w,u)(y) = f(y),
i=n+1

G3*(y) + Y G2 () + Ta(w,u)(y) = faly),
=
0 S Yy S d27

where ¢'(y) = (L1(¥),- -, (®), V> W) = (Pnt1(y);- - p2n()); Gi, G3
are well-defined constant n X n-matrices; T;(w,u), i = 1,2, are linear integral

operators; f3 and fy are given in terms of the known functions fi, fa, F.
Because of (3.17), (3.20) we can easily see that

G(l) = ((/\1 — )\gn)lll, ceey ()\n - /\2n)’/n)7
G(Q) = ((/\n-H =AMVt (Aon — /\1)V2n)'

Therefore, when the condition (3.3) is fulfilled, the matrices G§ and G3 are
invertible, and we can rewrite equations (3.30) equivalently as

2n—1 n
o'y — Y S G (nimy) + Ta(w,u)(y) = f5(y),

i=n+1 j=2

N OSySdla (331)
W) — Y. D G (mimiy) + Ta(w,u)(y) = fs(y),

i=n+1 j=2

OSy§d27
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where Gzlj = (Gé)_lG%(Gg)_ng, G?j = (G%)_ng(G}))_lel, and T3 and
T, are linear integral operators.
It is easily seen that the operators T3 and Ty are given by
2n Yy
1
) = 3. [ 5w+ Con) (s0n0),i0). )t +
i=n+1"
TiY
2n n iy 1
+ > > / 7 Boijw + Coiju) (2 (2(miy), 7iys ), ) di,
i=n-+1 jzln‘rjy
(3.32)

Tiw,)y) =Y [ 5 (Brjw+ Coyu) (210a(),:0) )t +

2n n iy

+ Y / %(Bsijw + Csiju) (2i(n (159), jy5 1), 1) dt.

i=n+1 j:lTiij
Here x = 7;(y) is the equation of the curve ~;, i = 1,2, and Bs;, Cs;, Bgij,
Cﬁij, B7]', 07]', Bgij, Cgi]' are well-defined matrices.

By (3.23) and the requirements imposed on fi, fo, and F, one can easily
verify that the values F?, f5, f¢ from (3.29), (3.31) satisfy for a > 1 the
following conditions:

F?e Cé+%,%+1,1: favi € Cl(OPi):

— m — m _ 1 .
sup ”y (et )f4+l|| < 00, sup ”y (a+3 1)f4§+)z|| <00, 1= 172'
OP:\O OP\O

Remark. Obviously, the problem (3.1), (3.2) in the class (3.4) is equiva-
lent to the system of equations (3.28), (3.29), (3.31) with respect to unknown
functions u, w, ¢! and ?, where

1 1
u € Ca+%,%,0’ (CAS Ca+%,%+1,1’
i Cl _ i Cl 0.d.] : —(at3) i
QY€ otz 1 =¥ € [ s z] . sup ||Z/ ¥ || < 00,
0<y<d;

m d ;
sup ly~(*+# 70 2ol < oo, i=1,2.
0<y<d; Y

Indeed, w € C’é+%’%+l’1 implies that v = (v1,v2) belongs to the class
(3.15), and since u, = v, and u, = vy, the function u belonging to Cé%—%% 0
will also belong to C’fﬁ%ﬂ’%“’l, i.e., to the class (3.4).



79

Introduce into consideration the functional equations

2n—1 n
A" )W) =" (W) — Y D Gl (rimy) = gu(y),  (3.33)
i=n+1 j=2
Ogygdpa p:1727

where G?

ii» Ti» T are defined in (3.31).

2n—1 n
Assume hy(p) = Z:H 22(Ti7'j)p||ij||, p=1,2. By (3.3), (3.17), (3.20)
i=n j=
and (3.26) we have 0 < 775 < 1, |GL|| #0, i =n+1,....2n —1; j =
2,...,n; p = 1,2. Therefore the functions hy(p) and h2(p) are continuous
and strictly monotonically decreasing on (—o0o, 00); moreover, lim h;(p) =
p——00

+oo and lim h;(p) =0, i = 1,2. Hence there exist the unique real num-
p—++o00

bers p; and py such that hi(p1) = 1 and ha(p2) = 1. Let pg = max(p1, p2)-
According to Lemma 2.2 of Chapter II, equations (3.33) are uniquely

solvable in the spaces Cy[0,dp], p = 1,2, for @ > pp, and we have the
estimates

1A, )W)l = lle? ()] < &pay”llgnlle, 0ay P02 (3.34)
where £, = (1 = hp(@)) 1 >0, lim & =1,p=1,2.
a——+o00,
a>po

Equations (3.31) in terms of (3.33) take the form

(Me") (y) + Ts(w,u)(y) = f5(y), 0<y<di,
(A20*)(y) + Ta(w,u)(y) = fo(y), 0<y<ds.

We shall solve the system of equations (3.28), (3.29), (3.35) with respect
to unknown functions u, w, @', ¢©? by the method of successive approxima-
tions.

(3.35)

Assume
uo(z,y) =0, wo(z,y) =0, @j(y) =0, i=1,2,
y
Uk(af,y) = fl (wl(xay)) + / (_/\1K1 +K2)wk71 (zl(xay;t)at)dta
wi(z,y)

wk(xay) = &k(xay) +

2n Y
1
+ Z / E(B4iwk71 + Caiup—1)(2i(z,y;t),t)dt + F*(z,y),

=1
’ wi(z,y)
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where @ (x,y) = (p1,6(w1(2,Y)), ..., Yan k(w2 (x,y))), and the values @k(y)

= (Pre®)s - onk(y) and @i(y) = (Pnt1,k(Y),- -, P20k (y)) are to be
determined from the equations

(A1) (W) + Ts(wi-1, ur-1)(y) = f5(y),
(A29i) (y) + Tu(wp—1, up—1)(y) = fo(y)-
Remark. By virtue of (3.22), the coefficients at the unknown functions

u and w appearing in the equalities (3.29) and (3.30) along with their first
derivatives with respect to z are bounded uniformly in the norm in D;\O.

Owing to the estimates (3.34), equality (3.32) and the above remark, we
have the following

There exists a real number oy > 1 depending only on the
coefficients of the system (3.1) such that for « > ay the estimates

g1 (z,y) — up(z,y)|| < Miay®T2ql,,
wpr1 (2, ) — wi(z,y)]| < Miay®TE gk,
kit (@) — ph @) < Mgyt ®ql,, i=1,2,

are valid, where positive numbers My, and g1, do not depend on k, qi1o as

a function of a strictly monotonically decreases for a > aq, and q1o < 1,
lim ¢, =0.

a——+00

On the basis of Lemma 1 we prove

There exists a positive number as, as > a1, depending only
on the coefficients of the system (3.1) such that for a > as the estimates

) ) 3
%uqul (33,3/) - %uk(ajay)‘ S M2ay qgom
a—yukﬂ(l‘,?/) - 8_yuk(x’y)‘ < Maqy® 72 q3,,

0 0 o
%wk+l (xay) - %wk(xay)H S MZozy 1q§a7

0 0 m
a—ywkﬂ(ﬂfay) - 8_ywk(x’y) | < Mooy®t21gk, |

9 12 9 i atm .
3y k+1(y)—6—y<ﬁk(y)H < Maoy®t % 7', i=1,2,

are valid. Here positive numbers Ms,, and gz do not depend on k, g2 as

a function of a strictly monotonically decreases for a > asa, and qaq < 1,
lim g2 = 0.

a—+00

The lemma below holds.
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The homogeneous system of equations corresponding to
(3.28), (3.29), (3.31) has only the trivial solution in the class of functions

u,w € Caym o0, ©' € C[0,d;], S ly~ (e8| < 00, i =1,2,
yaq

where a > as.
From Lemmas 3.1-3.3 we have

For a > ay the system of equations (3.28), (3.29), (3.31)
has the unique solution in the class of functions

1 1 i 1 ;o
UECQ+%7%7O, w60a+%7%+171, "2 EC(H_%’I, 1—1,2.

From the remark at the end of §3 and Lemma 3.4 it follows that when
the conditions (3.3) are fulfilled and a > a2, the problem (3.1), (3.2) is
uniquely solvable in the class (3.4); moreover, we can choose the number as
to depend only on the coefficients A, B, C' and a of the system (3.1). N

§

Let us consider the system of the form
Aty +2y= Bugy + y"Cuyy + aug + buy + cu = F, (3.36)

where A, B, C, a, b, ¢ are given real n X n-matrices, F' is a given and u is
an unknown n-dimensional real vector, 0 < m = const < 2, n > 1.

Below A, B, C are assumed to be constant matrices, det A # 0, and
the polynomial py(p) = det(Ap? + 2Bu + C) of degree 2n is assumed to
have simple real roots p1,-..,u2,- Under these assumptions the system
(3.36) for y > 0 is strictly hyperbolic, and the line of parabolic degeneration
y = 0 is a characteristic of the system (3.36). It is easily seen that the
numbers Y= fi1,...,y2 fi2, are the roots of the characteristic polynomial
p(y; ) = det(Ap® + 2y= Bu + y™C) of the system (3.36), while the curves
defined by the equations

2—m

2 2om 2
Li(P)3Hi$+mZ/ 2 :Mi$0+my02 o t=1,...,2n, yo >0,

and passing through P(zg, ) are characteristics of the system (3.36).

Denote by D the domain lying in the half-plane y > 0 and bounded by
the two adjoint characteristics

2 2—m 2 2—m
" :Ni1$+my 2 =0, 7 :pi2x+my = =0,
Miy < iy < 0,

of the system (3.36), coming out of the origin O(0,0). Let us take arbitrar-
ily on v; a point P; different from zero and choose the numbering of the
characteristic curves L;(Py), i = 1,...,2n, coming out of P; into the angle
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D, such that starting from L (P;) they follow each other counter-clockwise.
Let us fix on the curve v, a point P> lying strictly between the two points
of intersection of the characteristics L, (P;) and L,4+1(P;) with the curve
v2. Let Dy C D be the characterisitc quadrangle with a vertex at the point
O, bounded by the characteristics 71, Y2, L, (Py) and Ly4+1(P).

Consider the characteristic problem formulated as follows [40]: find in
the domain Dy a regular solution u(z,y) of the system (3.36) satisfying on
the segments OP; of characterisitcs -y; the following conditions

U|OPi =fi, i=12, (337)

where f1, fo are given n-dimensional real vectors, f1(0) = f2(0).

Note that owing to the character of degeneration of the system (3.36) the
condition m < 2 whose fulfilment is not needed when considering problem
(3.1), (3.2), is of great importance. In contrast to the problem (3.1), (3.2)
where a condition of Gellerstedt type is imposed on the lowest coefficient a
at u,, in considering the problem (3.36), (3.37) a condition of similar type
is to be imposed on the coeflicient b at u,.

Below we assume that a, b, ¢, F € C'(Dy), fi € C?(OP;), i = 1,2, and
moreover, in the domain Dy

sup lly'=™b|| < 00 for m > 1,

Do\O
sup ||z~ @T=m"VF| < 00, sup |z~ @2 F,|| < 00, a = const >0,
Do\O Do\O
[0 =0, sup [lo~ =) V) < oo,
OP\O
sup ||a:7(a+ﬁ71)fi(2)|| <oo, i=1,2.
OP\O

Since the system (3.36) is strictly hyperbolic, we have dim Ker(Au? +
2Bpi+C) =1,i=1,...,2n. Let v; € Ker(Au? + 2Bu; + C), ||vi]| # 0,
i=1,...,2n.

Under the assumption that p, < p2, < pnt1, the following theorem is
valid.

If
rank {vi,...,vn} = rank {vpi1,..., 00, } =, (3.38)

then there exists a positive number oy depending only on the coefficients A,
B, C, b of the system (3.36) such that for all @ > «ag the problem (3.36),
(3.37) is uniquely solvable in the class of functions

{u € 02(Dy) : 8%7u(0,0) = 0,

sup [la~ (T T TR ghiu)| < 00,0 <i+j < 2},
Do\O
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"
gi= 27
oz OyI
As examples show, when either the condition (3.38) or the inequality
a > ap is violated, the homogeneous problem corresponding to (3.36), (3.37)
may have an infinite number of linearly independent solutions.

The proof of Theorem 3.2 goes by the same scheme as that of Theorem
3.1. For details the reader may refer to [40].
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CHAPTER IV

In the space of variables z1, x2, t let us consider the wave equation

Pu  9*u  O%u
Q=% "2 e D (41)
where F' is a given real function and v is an unknown real function.
Denote by D : kit < 9 < kot, 0 < t < tg, —1 < k; = const < 1,
i = 1,2, ky < ko, the domain lying in a half-space t > 0 bounded by the
plane surfaces S; : kit —z2 = 0,0 <t <ty,7 = 1,2, and by the plane t = ¢.
For equation (4.1) let us consider the boundary value problem formulated
as follows [44, 45]: find in the domain D a solution u(xy,z2,t) of equation
(4.1) satisfying the boundary conditions

ulg =fi, i=1,2, (4.2)

where f;, i = 1,2, are given real functions on S; with (fi — f2)|s,ns, = 0.

Note that when |k;| = 1, the surface S; is a characteristic surface for
the equation (4.1), while when |k;| < 1, this surface is time-type. In the
case where |k;| = 1, i = 1,2, the problem (4.1), (4.2) represents a multidi-
mensional analogue of the formulated in the introduction Goursat problem
for the equation of string oscillation. For |k;| < 1 and |kz| = 1 the prob-
lem (4.1), (4.2) represents a multidimensional analogue of the first Darboux
problem and for |k;| < 1, i = 1,2, it represents a multidimensional analogue
of the second Darboux problem.

For the equation (4.1) one can also consider the boundary value prob-
lem formulated as follows: find in the domain D a solution u(xy,z2,t) of
equation (4.1) satisfying the boundary conditions

ou
n 5 = f1, (4.3)

ul s, = fo» (4.4)

where f;, i = 1,2, are given real functions and % is the derivative along
the outer normal to S;.

Below we shall prove existence and uniqueness theorems both for regular
and for strong solutions of the problems (4.1), (4.2) and (4.1), (4.3), (4.4)
in the class Wy .
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Denote by C>(D) the space of functions of the class C*(D), having
bounded supports, i.e.

C>(D) = {u € C°(D) : diamsuppu < oo}.

The spaces C2°(S;), i = 1,2, are defined in a similar way.

Denote by Wi (D), W2(D) and W3 (S;), i = 1,2, the well-known Sobolev
spaces. Note that C2°(D) is an everywhere dense subspace of the spaces
W3(D) and W2(D), while C2°(S;) is an everywhere dense subspace of the
space Wi (S;), i =1,2.

Let f; € W3(S;),i =1,2, F € Ly(D). A function u € W3 (D)
is said to be a strong solution of the problem (4.1), (4.2) of the class Wy
if there exists a sequence u, € C®(D) such that u, — u, Ou, — F and
upls, — fi i = 1,2, in the spaces Wi (D), Ly(D) and W} (S;), i = 1,2,
respectively, i.e., for n — oo

ln = ullwipy =0, [[Bun = Fllz,m) =0,

S; — fi||w21(sl.) —+0, 1=1,2.

l|n

Below we shall also introduce the notion of the strong solution of the
problem (4.1), (4.3), (4.4) in the class W3.

§

The following lemma holds.

When —1 < ky <0 and 0 < ko <1, the estimate

2
lllwg o) < (S Mfillwscsy + 1Fllzaco ) (45)
i=1

is valid for any u € W}(D), where f; = u|s;,, i = 1,2, F = Ou, and a
positive constant C' does not depend on u.

Proof. Since the space C°(D) (C°(S;)) is a dense subspace of the spaces
W4(D) and W2(D) (W4(S;)), due to the known theorems of embedding of
W2(D) in W} (D) and WZ(D) in W3 (S;) it suffices to prove the validity of
the estimate (4.5) for the functions u of the class C°(D).

Introduce the notation:

DT:{(QZ',t)ED:t<T}, Do, =0D, Nn{t =7}, 0<71 <Hto,
Si =dD,NS;, i=1,2,

S, =81, USs,, ai=cos(in,z1), az=cos(n,z3), as=cos(n,t).
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Here n = (a1, as,a3) is the unit vector of the outer normal to 9D, ; more-
over, as is easily seen,

-1 k1 ) ( 1 —ko )
n - 0, 5 , N = 07 ’ )
5. ( VI+E 14k . VI+EE 1+ k2
n|p,, = (0,0,1).
Therefore for —1 < k; < 0 and 0 < k2 < 1 we have

aglg <0, i=1,2, a;'(af—af-aj)lg >0, i=1,2. (4.6)

Multiplying both parts of (4.1) by 2u;, where u € C®(D), F = Ou,
integrating the obtained expression over D, and taking into account (4.6),
we get

ou

2
2 / Fuidxdt = / (8—; + 2Ug Uty + 2uz2um2)dzdt -

D. D.
—2/ (umutoq + umutog)ds = / (u% + uil + uiZ)dz +

Sr Do~

+/ [(u% + uil + $32)a3 - 2(uz1uto¢1 + UxQUtQQ)]dS =
3.

= / (uf +U§1 -{—ui”daz-{—/ozgl[(ogugg1 —alut)Q +
Dor S,

+(agtie, — a2ut)2 + (o — f — a3)uj]ds >

> [t )+ [op (s, - )’ +

or S,

+(a3u12 — Oé2Ut)2]dS. (4.7)
Putting
w(r) = / (uf +u§1 +ui2)da:, U = aguy, — a;ug, =1,2,

Do~
/ 7/ 2
C’lzmax< L+ &y 1+k2>,

kil 7 [kl

from (4.5) we have

w(r) 301/(ﬂf+ﬂ§)ds+/(F2+uf)da:dt§
S, D,
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< 01/(ﬂ§+a§)ds+/d§ / ufda:+/F2dzdt§
0 Doe

S, D,
< 01/(af+a§)ds+/w(§)d§+/F2da:dt. (4.8)
S, 0 D,

Let (z,7,) be the point of intersection of the surface S; U Sy and the
straight line, parallel to the axis ¢ and passing through (z,0). We have

T

u(z,7) = u(z,72) + /ut(z,t)dt,

Tz

which implies

/ uw?(z,7)dr <

Do~

§2/u2($,7x)da:+2|7'—7'm|/dz/u%(x,t)dt:
Do-,— T

Do~

:2/a§1u2ds+2|7'—7'm| /ufdzdt <
S, D,

< 02(/u2ds+ /ufda:dt), (4.9)
S, D,
where Cy = 2max(C1, to).
Introducing the notation
wo(T) = / (v® +uf +u2, +ul))de
Do~

and adding inequalities (4.8) and (4.9), we obtain

T

wo (1) < 02[/ (v +u3 +a§)ds+/wo(g)dg+/F2da:dt],

S 0 D,

from which by Gronwall’s lemma we find that

wo(r) < Cs [/ (u? + B2 + 72) ds + /F2da:dt], (4.10)
S D-

where C3 = const > 0.
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We can easily see that the operator as % — ai% is an interior differential
operator on the surface S;. Therefore by virtue of (4.2) the inequality

2
/ (v® +ui +u3)ds < C4 Z “fi”?/vzl(sif)’ Cy =const >0, (4.11)
S. i=1
is valid.
It follows from (4.10) and (4.11) that

2
wo(r) < 05(2 il 5.0y + ||F||2L2(DT)), Cs = const > 0. (4.12)
i=1

Integrating both parts of (4.12) with respect to 7, we get (4.5). H

Remark 1. Tt should be noted that the constant C' in (4.5) tends to in-
finity for k; — 0 or k2 — 0 and in the limiting case where k; = 0 or ks = 0,
ie, for Sy :23 =0,0<t<tygorSs:xs =0,0<t <ty this estimate
becomes, generally speaking, invalid. At the same time, following the proof
of Lemma 4.1, we can easily see that (4.5) is also valid for k; = 0 or for
kg :Oiffl :u|51 :001“]‘.2:1J,|52 =0.

Remark 2. Below along with (4.1) we consider the equation
Lu = Ou + aug, + buy, + cur + du = F, (4.13)

where the coefficients a, b, ¢ and d are given bounded measurable func-
tions in the domain D. Moreover, it will be shown that the solvability of
the problem (4.13), (4.2) follows from the solvability of the problem (4.1),
(4.2) and the fact that in specifically chosen equivalent norms of the spaces
Ly (D), Wi(D), W(S;), i = 1,2, the lower terms in equation (4.13) cause
arbitrarily small perturbations.

In the space Wi (D) we consider the following equivalent norm depending
on a parameter -y

”“”%,Lv = /e‘”t (v +uf +ul +ul )dzdt, v>0.
D

In the same way we introduce the norms ||F||p,o,~, || fills;,1,y in the spaces

Using the energetic estimate (4.12), we obtain an a priori estimate for u €
C> (D) with respect to the norms ||| p.1.+, ||*|ls:.1.4, ||| p,0,v- Multiplying
both parts of (4.12) by e~7" and integrating the obtained inequality with
respect to 7 from 0 to gy, we get

to
Il = / e w0 (r)dr <
0
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< 05 2/ N il ”)dT+/ N o ydr). (414)

i=1 0
We have
to to T
/6_77||F||%2(DT)dT:/6_77[/( / FQd.’E)dG’]dT:
0 0 0 Do
to to to
[ 2 -7 1 —vo —t 2
:/ /Fda:/e 7dT]da:—/(e 7 _e W)[/Fda:]dag
0 Dor o v Doo

< / / Fda]dr = Z|| P, (4.15)

where Do, = 0D, N{t =71}, 0 < 7 < tp.
Analogously we obtain

to

vy C
e N1 fillfvy 5.0y T < 7“||fi 2

0

i=1,2, (4.16)

i1,

where (Y is a positive constant independent of f; and ~.
Under conditions of Lemma 4.1 from (4.14)—(4.16) we obtain the follow-
ing a priori estimate for u € W2 (D)

Z 1fillsi1 + IFlD.0 ) (4.17)

lllp . < f(
where C7 = const > 0 does not depend on u and 7.
Consider now the problem (4.1), (4.3), (4.4) in the case where k1 = 0,

ie, S;:x0=0,0<t<ty,0<ky <1, and in the boundary condition
(4.3) the function f; = 0, that is,

@
onls;

= 0. (4.18)

For any uw € WZ(D) satisfying the homogeneous boundary
condition (4.18), the estimate

lullwz(p) < C(||f2||W21(51) + |1 Fllpop)) (4.19)

is valid, where fy = u|s,, F = Ou and a positive constant C does not depend
on u.
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Proof. Denote by D_ : —kot < 2 < 0, 0 < t < tp the domain which is
symmetric to D with respect to the plane x5 = 0 and by Dy : —kat <
Ty < kot, 0 < t < tg the domain which is the union of domains D and D_
together with a piece of a plane surface z2 =0, 0 < t < #.

It can be easily verified that if we extend evenly the function u € W2(D)
satisfying the homogeneous boundary condition (4.18) to the domain D_,
then the obtained function ug

U(wl,.’EQ,t), T2 207

ug(w1,72,t) = { (4.20)

u(xla —$2,t), T2 < 07

will belong to the class W3 (Dy). By (4.5) the function ug € W3 (Dy) satisfies
the estimate

luollw (pe) < C(If1llwa sy + 1 ellwi(s,) + 1FollLains)s  (4:21)

where Sy 1 kot + 22 = 0,0 <t <to, f1 = U|5;7 f2 = uls,, Fo = Oug.
Now it remains only to note that in (4.21)

lluollwy (o) = V2lullwy oy fillwy sy ) = Ifellwics.):

1Fol LoDy = \/§||F||L2(D)
because of (4.20). W

Remark 3. Arguments similar to those given in proving the estimate
(4.17) enable us to prove that for any u € W3(D) satisfying the homo-
geneous boundary condition (4.18) the estimate

<
V7

is valid, where fo = ulg,, F' = Ou, and C is a positive constant independent
of u and ~.

lullpay < —=(I1f2lls0, + [1FlID0,7) (4.22)

Remark 4. It follows from (4.5) and (4.19) that when conditions of Lem-
mas 4.1 and 4.2 are fulfilled, the problems (4.1), (4.2) and (4.1), (4.3), (4.4),
respectively, cannot have more than one strong solution of the class W, .

We can also show that for the problem (4.1), (4.2) the uniqueness theorem
is likewise valid for the weak solution of the class W .

Let k‘l =0and k'2 = l,i.e., Sl 1 T2 :0,0StSto,Whﬂe SQ t— o :0,
0 < t < tp is a characteristic surface. Suppose S; = 9D N {t = to},
V ={ve WHD) :v|s,us, =0}.
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Let f; € Wi (S:), i =1,2, F € Ly(D). A function u € W} (D)
is called a weak solution of the problem (4.1), (4.2) of the class W3 if it
satisfies both the boundary conditions (4.2) and the identity

/(utvt — Uy, V) — Ugy Vg, )dxdt +
D

0fs _
+ [ Frvds + / Fodzdt = 0 (4.23)

Sa D

for any v € V, where BLN is a derivative with respect to a conormal to Ss,
N is the unit conormal vector at the point (z,t) € 0D with the direction
cosines

cos Nz; = cosnr;, cosNzy=cosnzs, cosNt= —cosnt,

and n is the unit vector of the outward normal to 8D. Since on the charac-
teristic surface Ss the direction of the conormal N coincides with that of a
of2

bicharacteristic lying on S», the value 5% is determined correctly.

For ky = 0, ks = 1 the problem (4.1), (4.2) cannot have
more than one weak solution of the class W..

Proof. Let a function u € Wy (D) satisfy the identity (4.23) with u

s, =
fi=0,i=1,2, F = 0. In this identity we take as v the function
0 for t> T,
v(T1,T2,) = o=t (4.24)
[ u(zy,x2,0)do for |z <t <7,
where 0 < 7 < ty.
Obviously, v € V' and
t
=u, r; — i ) ; d ) i = 1727
Vi =u, Uy, /u (z1,29,0)do, i (4.25)

T

Vtg; = Ug;, Uit = Ut
By virtue of (4.24) and (4.25) the identity (4.23) for f» =0, F' = 0 will
take the form
(Utt'Ut — Utg Uz, — vt@v“)da:dt =0,
D,

ie.,

| »

(v —v2, —v2,)dzdt =0, (4.26)

QD

t

/

where D, = DN {t < 7}.
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Applying Gauss-Ostrogradsky’s formula to the left-hand side of (4.26),
we obtain

/ (vf —v2 = vi) cosntds = 0. (4.27)
oD,

Since BDT = Slr U 527- U 537-, for Si‘r = aDT N Si, 1= ].,2, 537- =
0D, N{t =7} and

~ ~ 1 ~
cosnt|5h =0, cosnt|SQT =7 cosnt|53T =1,

U =0, 1=1,2, v =u,

SiT:fizoa i:1727 Vg;

S3r
it follows from (4.27) that

1
/ uldrides + Es/ (v, +v2,)ds = 0.

S3r
Hence, u|g,. = 0 for any 7 from (0, tg]. Therefore, u=0in D. W
It should be noted that Lemma 4.3 is also valid for k; = —1, ks = 1.

Remark 5. Since the strong solution of the problem (4.1), (4.2) of the
class W} is at the same time a weak solution of the class Wy, it follows
from Lemma 4.3 that if the strong solution of that problem of the class Wy
exists, then the same solution will be the unique weak solution of the class
Wy

§

For a point Py(z,25,t°) € D the domain of dependence of
the solution u(zyi,xs,t) of the problem (4.1), (4.2) of the class C*(D) or
W3(D) is contained inside the characteristic cone of the past

BKPO :t:to—\/(xl —17(1))24'(23'2 —17(2))2

with the vertex at Py.

Proof. Suppose
QPO = DQKPO, SiPO =5; ﬁaﬂpo, 1=1,2,

where Kp, 1 t < t° — /(21 — 29)2 + (z2 — 29)? is the interior of K p,.
To prove the above lemma it suffices to show that if

fi

then ulg, =0.

=0, i=1,2, F|QP0 = Du|QP0 =0, (4.28)

Sipy — T 1Sip,
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Consider first the case u € C?(D). Denote by S3p, the remainder part
of the boundary of Qp,, i.e., Ssp, = 0p,\(S1p, U S2p,). According to our
construction, the surface Ssp, is a part of 0K p,. Therefore

alg, =const >0, (ai-ai-ad)ly, =0, (429

where n = (a1, @z, a3) is the unit vector of outward normal to 9 p, .

Multiplying both parts of (4.1) by 2u; and integrating the obtained ex-
pression over Qp,, taking into account (4.6), (4.28), (4.29) and the argu-
ments we used in obtaining inequality (4.7), we get

0=2 / Fuidxdt =

on

= / [(uf +u§1 +u32)a3 — 2(uz1uto¢1 +uz2uta2)]ds =
aQp,

= / agl [(04371951 — alut)Q + (04314352 — a2ut)2 +

992p,
+(a3 —af —a3)uj]ds >
> / a;l [(aguzl — alut)Q + (oz;»,um2 — ClgUt)Q]dS. (4.30)
Ssp

When deducing inequality (4.30), we have used the fact that the operator
a38%i - ai% is an inner differential operator on the surface 0Qp, and, in
particular, by virtue of (4.28) the equalities

(o2t a2t
“or; ot
hold on Sip, U S2p,.

Since az > 0 on S3p,, inequality (4.30) implies

S1pyUS2p,

(aztq; — ajuy i=1,2. (4.31)

)|53PO =0,

Taking into account that u € C?(D) and the inner differential operators
a38%i — ai%, 1 = 1,2, are linearly independent on the two-dimensional
connected surface Ssp,, (4.31) immediately yields

u|53p0 = const . (4.32)

But because of (4.28)
0,

u|53P00(51P0U52P0) =
from which due to (4.32) we conclude that

(4.33)

u, =
S3py
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In particular, (4.33) implies u(FPp) = 0.

If now we take an arbitrary point ) € 2p,, then (4.28) implies the validity
of the same equalities after substitution of the point Py by . Therefore,
repeating the above arguments for the domain Qg, we obtain u(Q) = 0.
Hence, in the case u € C*(D) we have u|g, = 0.

Let now u € W(D) and equalities (4.28) be valid. It can be easily
verified that for any point @@ € Qp, the inequality (4.30) is also valid after
substitution of the point Py by @, that is

/ a;l [(Oésugg1 — a1ut)2 + (04314352 - OéQU,t)Q]dS <0.
SgQ

whence, due to the fact that as|s,, = const > 0, we get

/ [(aguml — alut)2 + (ozgugg2 — agut)2]ds =0. (4.34)
Sag

Denote by I'g a piecewise smooth curve which at the same time is the
boundary of a two-dimensional connected surface S3gp. Obviously,

Fg =530 U (S1QU 52q)- (4.35)

Using the fact that on S3¢ inner differential operators ag % —ai%, 1=1,2,
are independent, it is not difficult to obtain for any v € Wi (S3q) the

following estimate
/ vids < C(/U2d5+

Sz o

2 2
+ / [(Oég’l}ml — alvt) + (agvm2 — awt) ]ds), (4.36)
SgQ
where C' = const > 0 does not depend on v, and the trace v|r, € L2(T'q)
is correctly determined in virtue of the corresponding embedding theorem.
Since u € W3 (D), the traces uls,, € W3 (Ssq) and ulp, € Ly(T'g) are

correctly determined in virtue of the embedding theorems. Therefore, due
to (4.25) and (4.35) we have
u|FQ =0. (4.37)

From (4.34), (4.36) and (4.37) we obtain

/ uds <
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from which it immediately follows that

/ u?ds = 0, u|53Q =0, VQ€Qp,. (4.38)

S3q

Since u € W2(D), in virtue of (4.38) and applying Fubini’s theorem we
can conclude that

ulg, =0.

Remark 1. The assertion of Lemma 4.4 is also valid for the problem (4.1),
(4.3), (4.4). Moreover, the above arguments should be modified only on the
part Sip, of the boundary Qp,. In this case for k; = 0 and due to (4.18)
we have

/ [(u% + uil + U§2)Oé3 - 2(uz1uto¢1 + UxQUtQQ)]dS =0.

S1p,

Remark 2. Tt follows from Lemma 4.4 that the wave process described by
the problem (4.1), (4.2) or (4.1), (4.3), (4.4) propagates with a finite speed.
Therefore, if u € C*°(D) is a solution of the problem (4.1), (4.2) or (4.1),
(4.3), (4.4) for f; € C=(S;),i=1,2, F € C*(D), then u € C*(D).

In this section we intend to concern ourselves with the question of solv-
ability of the problem (4.1), (4.2) in the case where

by=—1, ky=1, (4.39)

that is, a multidimensional analogue of the Goursat problem, and in the
case where

—-1<k <0, ky=1, (4.40)

that is, a multidimensional analogue of the first Darboux problem.

First we shall prove the existence of regular solutions of these problems
of the class C2°(D) and then the existence of strong solutions of the class
Wi,

Below we shall get an integral representation of regular solutions of the
problem (4.1), (4.2) by using the method suggested in [6].

Let us denote by D.s the part of the domain D which is bounded by the
surfaces S, So, a circular cone K. : 72 = (t —9)2(1 — ¢) with the vertex at
(2°,t%) € D and by a cylinder Hys : r? = 62, where 72 = (z; — 29) + (22 —

79)?, and ¢ and § are sufficiently small positive numbers.
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For any two twice continuously differentiable functions v and v we have
the obvious identity

2
0 Ou Ov 0/ Ou ov
Ov —vOu = — — = |lv=—u=-). (441
wee ; o (”azi “axi) 5 (v ~ugr): (44D
Integrating (4.41) over the domain D.s, where u € C*(D) N C?(D) is a
regular solution of (4.1), and

1T t—t9—/(t—10)2—12
v:E(r,t,tO):2—log ( P ,
s

r
we shall have
ou  OE(r,t,t%)
o= _ 2=\ T
/ [E(r,t,t )BN N u]ds+
BDEJ
+ / FE(r,t,t%)dzdt = 0, (4.42)
DEJ

where N is the unit conormal vector at the point (z,t) = (1, x2,t) € D5
with direction cosines

cos Nz = cosnz;, cosNzy =cosnzs, cosNt= —cosnt,

and n is the unit vector of the outer normal to dD.s.
Passing in equality (4.42) to the limit for e — 0, § — 0, we obtain
tO

[ utat. a8t =

0
2

0
_ / [Mu_E(r,t,tO)@]dg_/FE(r,t,tO)dzdt,

T

ON ON
SrUS; D+
where D* is the domain D.s for e =0 =0, and S} = S;NIdD*, i =1,2. By
differentiation we find that

d OE(r,t,t° ou
u(z?,29,1°) = w{ / [%U—E(r,t,to)a—]\[]ds—
S7USE

— | FE(r,t,t°)dzdt|. (4.43)
| |

Remark 1. Since in the case (4.39) the direction of the conormal N on
the characteristic surface S} coincides with that of a bicharacteristic lying
on S}, 4 =1,2, we can, alongside with the value u|5i* = f;, calculate g—]\‘, over

the surface S;. Therefore in the case (4.39) equality (4.43) gives the integral
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representation of a regular solution of the multidimensional analogue (4.1),
(4.2) of the Goursat problem.

Remark 2. In the case (4.40) the surface S} is not characteristic. There-
fore to obtain an integral representation of a regular solution of the multi-
dimensional analogue (4.1), (4.2) of the first Darboux problem one should
eliminate the value g—;{, |s: in the right-hand side of the representation (4.43).

In the case (4.40) without loss of generality we can assume that for the
domain D the value k; =0,ie., D:0< 2y <t,0 <t <tp, since the case
where k; # 0 is reduced to the case k; = 0 by a suitable Lorentz transform
under which the wave operator [ is invariant. Let us introduce the point
P'(29, —29,1%) which is symmetric to P(z9, 29, t°) with respect to the plane
o = 0. For this aim we denote by D. a part of the domain D bounded by
the cone K? : (z1 — 29)% + (z2 + 29)% = (t — t°)?(1 — €) with the vertex at
P'" and the boundary @D. Obviously, dD. NSy C S} and 0Dy N Sy = S}.
Assume ODg N Sy = S, 7 = V(z1 — 29)2 + (22 + 29)2. Integrating now
(4.41) over D., where u € C*(D)NC?(D) is a regular solution of (4.1), and

- 1 t—10—\/(t —19)2 — 72
v=E(,t,t°) = 2—log ( ki
™

~ )

r

and taking into account that the function E(7,t,t%) has no singularities in
the domain Dy, we obtain, after passing to the limit for e — 0, the equality

d OE(7,t,t%) . o Ou
w[ / [78]\[ U—E(T,t,t )a—N]dS—
SruS;
- / FE(?,t,tO)da:dt} =0. (4.44)
Dg
Since r = 7 for m3 = 0, we have E(7,t,t°) = E(r,t,t°) on S}. Therefore
eliminating 2% s¢ from (4.43) and (4.44), we finally obtain the integral

representation of a regular solution of a multidimensional analogue of the
first Darboux problem (4.1), (4.2) for ky =0, k2 =1

d OE(r,t,t%  OE(r,t,t°)
0o .0 4,0 _ ) Uy _ s Uy
u(zy, Ty, t0) = 710 {/[ aN N ]uds-i-
S7
OE(r,t,t°) o\ Ou
+/ [T _E(T',t,t )a—N]dS —
S3
~ 0
- / [LE(g}\i’t )u - E(?,t,t“)%]ds +
Ss
+ /FE(?,t,tO)da:dt— /FE(r,t,tO)da:dt]. (4.45)
Dy D*
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Remark 3. According to the above remarks, the formulas (4.43) and
(4.45) determine uniquely regular solutions of multidimensional analogues
of the Goursat and the first Darboux problems, respectively. Moreover, us-
ing the arguments of paper [25], we can show that for any F € C°(D),
fi € C°(S;), i = 1,2, these solutions belong to the class C(D).

Below, using a somewhat different method, we shall show that for any
F € C®(D), f; € C=(S;), i = 1,2, the solution of the multidimensional
analogue of the Goursat problem (4.1), (4.2) will belong to the class C>(D)
in the case (4.39). This method consists in reducing the spatial-type prob-
lem (4.1), (4.2) to the plane Goursat problem with a parameter. For the
solution of the problem the necessary estimates depending on the parameter
will be obtained.

If u is a solution of the problem (4.1), (4.2) of the class C>°(D) in the
case (4.39), then after the Fourier transform with respect to the variable
equation (4.1) and the boundary conditions (4.2) take the form

8%v  0%v

— - =+ X0 =93 4.46
o2 o TNV T® (4.46)
|, =g, i=12, (4.47)

where
v(\, z2,t) = L /u(a:l Ty, t)e " A
) ) /2 ) )
Tr—OO

is the Fourier transform of the function u(z1,z2,t) and ®, g1, g» are the
Fourier transforms respectively of the functions F, f;, f» with respect to
the variable 1. Here l; :t — 22 = 0,0 <t <tg,la:t+25=0,0<1t <ty
are the segments of beams lying in the plane of variables x5, ¢ and coming
out of the origin O(0, 0).

Thus, after the Fourier transform with respect to z1, the spatial-type
problem (4.1), (4.2) is reduced to the plane Goursat problem (4.46), (4.47)
with a parameter A in the domain Dy : —t < 25 < t, 0 < t < tg of the plane
of variables z-, t.

Remark 4. If u(zq,22,t) is a solution of the problem (4.1), (4.2) of the
class C2°(D), then v(\, z»,t) will be a solution of the problem (4.46), (4.47)
of the class C°°(Dg) which at the same time, according to the Paley-Wiener
theorem, is an entire analytic function with respect to A, satisfying the
following growth condition: for any integer N > 0 there exists a constant
Ky such that [26, 73]

o\, 23, £°)] < Ky (14 A7) N edlm A (4.48)
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where

d = d(23,1°) = max |15
(zl,zg,to)Gsuppu

moreover, as the constant Ky we can take the value [73]

K—K(Oto—i 1—8—2N 2,19 |d
N = AN (T2, )_ \/ﬁ ax% u($1,$2, ) L1

lz1|<d

According to the same theorem, if v(\,z»,t) belongs to the class C°°(Dg)
with respect to the variables z, ¢ for fixed A\, and with respect to A it is an
entire analytic function satisfying the estimates (4.48) for some d = const >
0, then the function u(x;,x2,t), being the inverse Fourier transform of the
function v(\, x9,t), belongs to the class C> (D).

According to our assumptions, the estimates similar to (4.48) are valid
for the functions ®, g;, g» which belong respectively to the classes C°(Dy),
C*(l1), C*(l3) and are entire analytic functions with respect to A.

In new variables

E=5(t+m), n=3-m) (149)

retaining the same notations for the functions v, ®, g; the problem (4.46),
(4.47) will take the form

0%v
Ny =30 4.
Bean + A , (4.50)
vl =g, 1=1,2. (4.51)

Here a solution v = v(\, £,n) of equation (4.50) is considered in the domain
Qo of the plane of variables &, n which is the image of the domain (g
under the linear transform (4.49), 7; being the image of I; under the same
transform. Obviously, the domain Qg is the triangle OP; P, with vertices
0(0,0), Pl(to,O), PQ(O,t()), and Y1 i n = 0, 0 S f S to and Y2 f = 0,
0 < n < tp are the sides OP; and OP; of the triangle.

As is well known, under the assumptions with respect to the functions @,
g: the problem (4.50), (4.51) has a unique solution v of the class C*° ()
which can be represented in the form [6]

U()‘a fa 77) = R(fa 0; fa 77)91 (/\7 f) + R(07 3 fa 77)92 (/\7 77) -

£
OR(0,0;
- RO.0:E )0 (0,0) — [ FEEED (3 515
0
n
OR ;
_ / (07877_—) 57 77) 92(/\, T)d’r +

0
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n
/dU/R (o,7;&,m)®(\, 0,7)dT, (4.52)

where gl(Aag) = ’U(A,f,O), 0 < £ < to, 92(/\777) = v(/\voan)a 0 <n < to, are
the Goursat data for v, and R(&,m;&,n) is the Riemann function for the
equation (4.50).

As is known, the Riemann function R(&1,n1;&,n) for the equation (4.50)
can be expressed by the Bessel function of zero order as [17]

R(&mi&m) = Jo (22— &0t —m))- (4.53)

Remark 5. Since the Bessel function Jp(z) of a complex argument z is
an entire analytic function, the formula (4.52) in virtue of (4.53) gives a
solution of (4.50) satisfying the Goursat data

U()\,f,()):gl(f), nggt(h
U(AaO,U)ZQZ(n)a OSUSto
The solution is the entire analytic function with respect to the complex
parameter \.
From the well-known representation of the Bessel function [63]

(4.54)

™

Jo(z) = % /exp(iz sin ©)dO (4.55)

-7

we can easily get that
Ji(2) = —21 / cos® © exp(iz sin ©)dO,
™

whence

dJo(2Av/vz) _ Ny

dx o

-7

cos2 O exp(i2A/vz sin ©)dO. (4.56)

Now (4.53), (4.55) and (4.56) yield the following equalities and estimates

R(¢,0;€,m) = R(0,m;¢,m) = 1,
|R(0,0;¢,m)| < exp (2\/_| Im \|) < exp (2to|Im A|),
‘3 (0,0;€,m)
do
‘3(0775’7‘ < 2|AP€exp (2¢/€n| Tm A|) < 2|\|*tg exp (29| TIm A]),

|R(o,7;€,m)| < exp (2/n|Im A|) < exp (2to| Im A]).

‘ < 2\Prexp (2v/€n] Tm A|) < 2|A%tg exp (2to] Im A|),
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From this, assuming without restriction of generality that for the functions
®, g1, g2 the estimates (4.48) are, owing to our assumptions, valid with
respect to A with the same constants Ky and d, we obtain for a solution
v(A, &, n) of the problem (4.50) representable in the form (4.52), the following
estimates

[ & < g1 (X €)] + 192 (X, m)| + |g1(, 0)] exp (2to| Tm A]) +

+2IA [Pt exp (2t0] Tm A)) /|gl(/\,a)|da+
n

+2|A|*to exp (2to| Im A[) /|92 A, T)|dT +
0

3 n
+ exp (2to] Im A[) /da/|(l> Ao, 7)|dr <
0 0

<2KN(L+|AP) "N exp (d|Im A|) +
+exp (2to| Im A|) Kn (1 + [A]?) N exp (d| Im A|) +
+2[Atg exp (2to| Im A|) KN (L + |A]?) "N exp (d| Im A|) +
+2[A\tg exp (2to| Im M) nE N (1 + [A?) N exp (d| Im \|) +
+exp (2to| Im A|)énK n (L + |[A]?) N exp (d|Im A|) <
< Kn_1(1+ APV exp (d] Tm A]). (4.57)
Here
Kn 1= @B+52)Ky, d=2t +d,
d= max |z1|, I =suppF Usupp fi Usupp fa,

(z1,22,t)ET
1
Ky =— max max |<pl 171,172, |d271,
2w 0<i<2 (9, t)eDo
|z1]|<d

0o = (1—88—;%)NF, i = (1— %)Nfi, i=1,2.

Owing to (4.57) and the Paley-Wiener theorem, the function v(\,&,7n),
after returning to the initial variables zo, t will, by the formulas (4.49), be
the Fourier transform of a function u(zy,xs,t) of the class C2°(D). More-
over, due to (4.50) and (4.51) the function u(zy,z2,t) € C2°(D) will be the
unique solution of the problem (4.1), (4.2) of the above-mentioned class. B

Now, using the fact that the problem (4.1), (4.2) is solvable in the class
C> (D), we shall prove the existence of a strong solution of the class Wy of
that problem.
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It is well-known that the spaces C°(D), C>(S;), i = 1,2, are everywhere
dense in the spaces L2(D),_W21(Si), i = 1,2, respectively. Therefore there
exist sequences F,, € C°(D) and f;,, € C°(S;), i = 1,2, such that

Jim [[F = FallLoo) = lim |[fi = finllwis) =0, i=1,2. (4.58)

Moreover, since by the condition (fi — f2)|s,ns, = 0, one can take the
sequences fi, and fo, such that (fi, — fon)|s;ns, =0, n=1,2,....

As it was shown above, under the conditions (4.39) or (4.40) there exists
a sequence u, € C2°(D) of solutions of the problem (4.1), (4.2) for F = F,,,
fi=fin, 1 =12

By virtue of (4.5) we have

llun — “m||W21(D) <

2
<C( Y Wfin = Fimllwy sy + 1Fa = Fulliamy).  (4.59)

i=1

It follows from (4.58) and (4.59) that the sequence of functions u, is
fundamental in the space Wi (D). Therefore, due to the completeness of
the space Wy (D) there exists a function u € W) (D) such that u, — u,
Oup, — F and upl|s;, — fi, i = 1,2, in Wi (D), La(D) and W4 (S;), i = 1,2,
respectively, for n — oco. Consequently, the function w is the strong solution
of the problem (4.1), (4.2) of the class W.}. The uniqueness of the strong
solution of the problem (4.1), (4.2) of the class Wj follows from inequality
(4.5).

Thus the following theorem is valid.

Let the condition (4.39) or (4.40) be fulfilled. Then for any
fi € W(S;), i = 1,2, F € Ly(D) there exists a unique strong solution u
of the problem (4.1), (4.2) of the class W3 for which the estimate (4.5) is
valid.

Consider now the question of solvability of multi-dimensional analogues
of the Goursat and the first Darboux problem for the hyperbolic equation
(4.13) with the wave operator O in the principal part. To prove the solv-
ability of the problem (4.13), (4.2) under the conditions (4.39) or (4.40),
we shall use the solvability of the problem (4.1), (4.2) and the a priori esti-
mate (4.17) in specifically chosen norms of spaces Ly(D), W3(D), W3(S;),
i = 1,2, from which it follows that the lowest terms in the equation (4.13)
give arbitrarily small perturbations.

Consider the space

Vo = La(D) x W5 (S1) x Wy (S2).
To the problem (4.13), (4.2) there corresponds the unbounded operator
T : W3 (D) = Vo
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with the domain of definition Q7 = C°(D) C W3 (D), acting by the formula

Tu= (Lu,u|51,u|52), u € Qp.

It can be easily proved that the operator T' admits a closure T. In fact,
let up € Qr, up — 0in Wi (D) and let Tu, — (F, fi, f2) in Vo. First we
shall show that F = 0. For ¢ € C§°(D) we have

(Ltin, ) = (un, Op) + (Kuy, @), (4.60)

where Ku = auy, +bug, +cus+du. Since in Wi (D), u,, — 0, from (4.60) we
have that (Luy,,¢) — 0. On the other hand, by the assumption, Lu,, — F'
in Ly(D). Therefore (F,¢) = 0 for any ¢ € C§°(D), and hence, F = 0.
The equalities f; = fo = 0 follow from the facts that u, — 0 in W} (D),
and the contraction operator u — (uls,,u|s,) acts boundedly from W} (D)
to L2(Sl) X L2(S2) [ |

To the problem (4.1), (4.2) there corresponds an unbounded operator
Ty : W(D) — Vi obtained from the operator T for a =b =c=d = 0. As
it was shown above, the operator T, also admits a closure Ty. Obviously,
the operator Ky : W3 (D) — Vp acting by the formula Kou = (Ku,0,0) is
bounded, and

T =Ty + Ko. (4.61)

Note that the domains of definition Q2= and QTO of the closed operators
T and T coincide by virtue of (4.61) and the fact that Ky is bounded.

It is easily seen that from the existence of the bounded operator 7!
right inverse to T, defined on the whole space Vj follow the existence and
uniqueness of the strong solution of the problem (4.13), (4.2) of the class
W, as well as the estimate (4.5) for this solution.

The fact that under the conditions (4.39) or (4.40) the operator T has
its bounded right inverse T, b Vo — W}(D), follows from the Theorem
4.1 and the estimate (4.5) which, as it is shown above, can be rewritten in
equivalent norms in terms of (4.17). It is easy to see that the operator

K()Til Vo= W
is bounded, and in virtue of (4.17) its norm admits the estimate
C7C5s
VT
where Cy is a positive constant depending only on the coefficients a, b, ¢
and d of equation (4.13). _
By virtue of (4.62), the operator (I + KoT,') : Vo — Vj has a bounded

inverse (I + KoT, 1= for sufficiently large , where I is the unit operator.
Now it remains for us only to note that the operator

1EoT5 [l <

(4.62)

Ty (I + KoTy ') ™
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is a bounded operator right inverse to T’ and defined on the whole space Vj.
Thus the following theorem is proved.

Let the condition (4.39) or (4.40) be fulfilled. Then for any
fi e WH(S;), i =1,2, and F € Ly(D) there exists a unique strong solution
u of the problem (4.13), (4.2) of the class W, for which the estimate (4.5)
is valid.

§

Discussion of this paragraph will be concerned with the question of solv-
ability of the problem (4.1), (2) in the case

—1<k <0, 0<ky<1, (4.63)

that is, with a multidimensional analogue of the second Darboux problem.

Unlike the cases (4.39) and (4.40) considered in the previous section, the
fact that for (4.63) none of the surfaces S; and S, is characteristic, means
that for regular solutions of the problem (4.1), (4.2) there is no integral
representation. To a certain extent this circumstance makes investigation
of this problem difficult. Below we shall prove the existence of regular and
strong solutions of the problem (4.1), (4.2) of the class W, in the case (4.63)
by reducing the problem to a mixed type problem for a hyperbolic equation
of second order in a cylinder.

To this end we shall need the following

Let G be a bounded subdomain of D with a piecewise smooth
boundary, bounded from above by the plane t = ty and at the sides by the
planes S1, Sa, as well as by piecewise smooth time-type surfaces Ss, Sy on
which the following inequalities are valid:

aslg, <0, aslg <O, (4.64)

where n = (a1, a2, a3) is the unit vector of the outer normal to OG; more-
over, SsN Sy = @. Let Kf :t > t° +\/(z1 —20)% + (z2 — 29) be the
domain bounded by the characteristic cone of the future with the vertex at
Po(29,29,1%). Let ug € C®(G) and g; = uologns;, i = 1,2, Fy = Ouy,
X = suppg; Usuppgs Usupp Fp, ¥ = UPoGXK}to' Denote by S5, S§ the
e-neighbourhoods of surfaces Ss, Sy, where € is a fized sufficiently small
positive number. Then, if

U0|53U54 = 0, (465)
Yn(S5uUSi) =2, (4.66)

then the function

. U,()(P), Pe@q,
u(P) {0, PeD\G
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is a solution of the problem (4.1), (4.2) of the class C>°(D) with

9i(P), Pe€oGNS;,

filP) = {o, PesS\OGNS), L2
F(P):{FO(P), Peg,
0, P e D\G.

Proof. To prove the lemma it suffices to show that the function uy € C*(G)
vanishes on the set G N (S5 U S3).

Let Py € GN (S5 USS) be an arbitrary point of this set. We shall show
that Uo(P[)) =0.

The use will be made of the notation of Lemma 4.4 and of §3:

Op, =GNKp,, Sip,=5:N0p, i=1,2,3,4,
Ssp, = 8KPO ﬁaﬂpo.

Obviously, 0Qp, = U2_, Sip, .
According to the assumptions of Lemma 4.5, we have

a3|SiP0 <0, i=1,2,3,4,

4.67
a5t (0f —af —a3)[g, >0, i=1,234, (4.67)
a3|55P0 >0, (af —of —aj) |55p0 =0, (4.68)

where n = (a1, a2, a3) is the unit vector of the outer normal to 9Qp,.
On account of (4.65) and (4.66) and the fact that Py € GN(S5US5), we
have

Uo

Sy =05 1=1,2,3,4, Du0|QP0 = F0|QP0 =0. (4.69)

Multiplying both parts of the equation Cug = Fy by 2%, integrating
the obtained expression over 2p,, taking into account (4.67)—(4.69) and the
arguments used when obtaining inequalities (4.7) and (4.30), we get

BUO
=2 Fo——dzdt =
0 / Oat X
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whence on account of as|s;, > 0, we find

(o2 o 22
Yox; ot
The remaining reasonings repeat word by word the proof of Lemma 4.4.
Consequently, u(Py) = 0 and Lemma 4.5 is proved completely. B

=0, i=1,2.

Ssp,

Remark 1. Tt is easy to see that Lemma 4.5 remains also valid in the
case when conditions (4.64) are violated on a set w C 53 U Sy of zero two-

dimensional measure, i.e., az|, = 0. In particular, if w = U i is a union of a

finite number of smooth curves ; C S3USy and azl, = 0 03|(53u54)\w <0,
then Lemma 4.5 remains correct.
We shall need this circumstance below in proving Theorem 4.3.

Remark 2. Tt should be also noted that Lemmas 4.4 and 4.5, in fact,
suggest us a way of constructing the solution of the problem (4.1), (4.2) in
the case (4.63) which is given below and consists in reduction of the initial
problem (4.1), (4.2) to a mixed-type problem for a second order hyperbolic
equation in a cylinder.

Below the functions f; and f> in the boundary conditions (4.2) are as-
sumed to vanish on the straight line I' = S; N Ss, i.e.,

filp=0, i=1,2. (4.70)
The set of functions of the class W} (S;) satisfying (4.70) is denoted by
W3(S;,T), that is,

Wy(Si,T) = {f e Wy(Ss): f|l.=0}, i=1,2.
We have the following

Let the condition (4.63) be fulfilled. Then for any f; €

W1i(S;,T),i=1,2, and F € L2(D) there exists a unique strong solution u
of the problem (4.1), (4.2) of the class W3 for which the estimate (4.5) is
valid.

Proof. Denote by S? : kit — 22 = 0,0 < t < +00, i = 1,2, the half-plane
containing the carrier S; in the boundary conditions (4.2) and by Dy the
dihedral angle contained between the half-planes SY and S9. It is well-
known that the function f; € W1(S;,T) can be extended to the half-plane

S as a function f; of the class W1(S;), i.e., (fi — f;) , fi € WL(S9),
i =1,2. Assume

F(p) = F(P), PeD,
o, P € Do\D.

Obviously, F € Ly(Dy).
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If C5°(Dy), C5°(SY), i = 1,2, are the spaces of finite infinitely differen-
tiable functions, then, as we know, they are everywhere dense respectively

in Ly(Dy), V(E/'é (8?), i = 1,2. Therefore there exist sequences F,, € C5°(Dy)
and fi,, € C5°(SY), i = 1,2, such that

Jim ||F = Fullrapg) = lim [Ifi = finllwy(so) =0, i=1,2. (471)

In the plane of variables x», t let us introduce the polar coordinates r,
o taking the axis ¢t as the polar axis. We count the polar angle ¢ from the
polar axis assuming it to be positive clockwise. Denote by ¢; the size of a
bihedral angle contained between the half-planes S? and zo = 0, 0 <t <
+00, i = 1,2. Since the half-planes SY are of time-type (—1 < k; < 0,
0<ky<1),wehave 0 <¢; < %,i=1,2.

In passing from the rectangular coordinates z, x2, t to the system of
coordinates x1, 7 = logr, ¢, the bihedral angle D, transforms to an infinite
layer

H={-00<z <00, —00<T<00, —¢p1 <<},

and the equation (4.1), written in terms of the former notation for the
functions v and F, will take the form

e *"L(t,,0)u = F, (4.72)
where § = (8%1, %, %), L(7, ¢, d) is a second order differential operator of
hyperbolic type with respect to 7 with infinitely differentiable coefficients
depending on 7 and ¢.

In the plane z1, ¢ let us consider a convex domain  of the class C*°,
bounded by the segments of straight lines l; : ¢ = —1, l2 : ¢ = @2 and by
the curves 1 : 21 = g(), —p1 <P <2, 12 122 = —g(p), —p1 < < pa.
Here g(p) € C®(—p1,p2) N C[—p1,92], g(p) > 0 for —p1 < ¢ < o,
gV () > 0 for —p; < <0, g (0) =0, gV (p) <0 for 0 < ¢ < @ and
9@ (p) < 0 for —p; < ¢ < p2; moreover,

min (g(—gol),g(cpg)) >1+1ty+d, (4.73)
where d = max(dy,ds,ds),

d; = sup |z1], i=1,2,
(z1,22,t)Esupp f;
ds = sup |1 .
(z1,22,t)Esupp F

Denote by Hy C H a cylindrical domain § X (—00,00) of the class C,
where (—o00,00) is the 7-axis, and denote by 0Hj its lateral surface 99 x
(—00,00). Upon the inverse transform (z1, 7, ¢) — (z1,x2,t), the cylindrical
domain Hjp transforms to an unbounded domain Gy C Dy bounded by
surfaces S; = SY N0Gy, i = 1,2, S3 and Sj.
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Below we shall show that the surfaces §3 and §4 are of time-type on
which the following conditions

<0, as| =0, (4.74)

a3 |(§3U§4)\w w

are fulfilled, where w is the union of two smooth curves w; and ws lying on
S5 U Sy. N N

Indeed, it can be easily seen that S; and S are the images of cylindricgl
surfaces S| = I; X (—00,00) C OHp and Sy = I3 x (—00,00) C 0Hy, while S3
and Sy are the images of the surfaces S = v, x (=00, 00) C OHp and S9 =
Y2 X (—00,00) C 0Hp when the inverse transform (z1,7, ) = (21, 22,t) is
applied. Dividing the surface S§ into two parts S§ = S§, U S§_, where

Sg—i— =71+ X (_00700)7 Sg— =7- X (_00700)7
Nt 2 =9(0), 0<@ <2, M-z =9(p), -1 <¢ <0,
we can see that the image §3+ C Ss of S§+ admits upon the inverse trans-
form (z1,7,) = (x1,x2,t) the following parametric representation
Sap ta1 =glp), @ =osing,
t=o0cosp, 0<p<ps,, 0<o< 400,

from which for the unit vector n = (a1, as, as) of the outer normal to Gy
we obtain the following on the part Ss

ale — o —gl(p)cosp _glp)sing \ -, .
5. <\/02+g’2(s0)’\/02+g'2(s0)’\/02+g'2(s0)> ()

Taking into account the structure of the domain 2, we can conclude
from (4.75) that Ss4 is a time-type surface on which a3|§3+ < 0. Assertion

similar to this one is proved for the remaining parts Ss_, Ssy and Sa_ of
the surfaces S3 and Sy. To prove finally the validity of (4.74), it suffices to
note that on the curves

w1 = 8§3+ n 8§3_, Wy = 8§4+ n 8§4_,

which are the images of the straight lines @, : 1 = ¢(0), ¢ =0, —c0 < 7 <
oo and Wy : w1 = —g(0), p =7, —00 < T < 00, the third component a3 of
the unit vector of the normal n vanishes.

Let us determine on the boundary dGy of the domain Gy the function
v, of the class C* as follows

l/n|§i:fin, 1=1,2, I/n|§3:1/n|§4:0, n=1,2....

The fact that v, € C§(0Gy) follows from the structure of the domain
Go and inequality (4.73), as well as from the smoothness and location of
supports of the functions fi, € C§°(SY), i = 1,2.
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When passing to the variables x1, 7, ¢ the functions v,, and F}, will trans-
form to some functions for which we retain the same notation. Obviously,

Vn € CX(8Hy), F, € C(Hy). (4.76)

For hyperbolic equation (4.72) with F' = F, let us consider in the cylinder
Hj the following mixed-type problem with ”zero Cauchy data” for 7 = —oo:

e 2Ly (1, 0,0)v = Fy, (4.77)

V| o, = Vo (4.78)

Taking into account (4.76), the mixed problem (4.77), (4.78), due to the
results of [4], [74], has a unique solution v = v, of the class C>°(Hj) which
turns into identical zero for 7 < —M, where M = const is a sufficiently
large positive number.

Returning to the initial variables z1, 2, t and retaining former notation
for the functions v,, and F,,, we get that:

1) the function u2 = v,|sg,np belongs to the class C°(Go N D) and
satisfies the equation

Ou® = Fy;

2) u0 on the lateral part U, S? of the boundary domain G N D satisfies

the conditions

un|§(3)U§2 =0, un|§l = fin, 1=1,2,
where, as is easily seen, the surface 5? is a part of S; for i = 1,2 and is a
part of S; fori = 3,4 appearing in conditions (4.74).

Therefore, on account of (4.73), (4.74) as well as of Lemma 4.5 and
Remark 1, the function

(P = {un(P), P € G,

0, P e D\Go

belongs to the class C2°(D) and is a solution of the problem (4.1), (4.2) for
fi = fin: 1= 1,2, and F' = Fn.
By virtue of (4.5) we have

llun — Um||W21(D) <

2
<C( Y Win = Fimllwy sy + 1Fa = Falliamy).  (479)

i=1
From (4.71) and (4.79) it follows that the sequence of the functions wu,, is
fundamental in the space W} (D). Therefore, since the space Wy (D) is
complete, there exists a function u € Wy (D) such that u, — u, Ou, — F
and up|s;, — fi, i = 1,2, in the spaces W3 (D), L2(D) and W} (S;), i = 1,2,
respectively, as n — oo. Consequently, u is a strong solution of problem
(4.1), (4.2) of the class W,. The uniqueness of the strong solution of the
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problem (4.1), (4.2) of the class W.} follows from the inequality (4.5). Thus
Theorem 4.3 is proved completely. W

Repeating word by word the same arguments connected with equivalent
norms which led us to Theorem 4.2, we get that the following theorem is
valid.

Let the condition (4.63) be fulfilled. Then for any f; €
W3i(S;,T), i = 1,2, and F € Ly(D) there exists a unique strong solution
u of the problem (4.13), (4.2) of the class W3 for which estimate (4.5) is
valid.

§
Consider the problem (4.1), (4.3), (4.4) in the case where

by =0, ky=1, (4.80)

that is, S1 : x5 = 0, 0 < ¢ < tg is a time-type surface, Sy : t — x5 = 0,
0 <t < tg is a characteristic surface, and let in the boundary condition
(4.3) the function f; = 0, that is,

ou
ol = 0. (4.81)

We have the following

Let the condition (4.80) be fulfilled. Then for any f» €
C(S2) and F € C° (D) satisfying

orF
onk |s,

the problem (4.1), (4.81), (4.4) is uniquely solvable in the class C°(D).

=0, k=1,3,5,..., (4.82)

Proof. Denote by D_ : —t < 22 < 0, 0 < t < tp the domain which is
symmetric to the domain D : 0 < 3 < t, 0 < t < tg, with respect to the
plane zo = 0 and by Dy : —t < z2 < t, 0 < t < to the domain being the
union of the domains D and D_ and the piece of the plane surface x> = 0,
0<t<ty.

If we extend evenly the function F € C2°(D) to the domain D_, then
because of (4.82) the function Fy obtained in the domain Dy,

F(xlax%t)a T2 2 07
F(:I’,‘l,—QTQ,t), o < 0,

Fo(zq,za,t) :{

will belong to the class C2°(Dg). Denote by f;  the function defined on
Sl_ Zt+$2:0,03tst0 by

f1_|51— = [ (@1,22,~22) = fo(z1, —22, —22) = fo|g . (4.83)
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Obviously, fi” € C(S7).
In the domain Dg let us now consider the problem of determination of a
solution ug(x1,x2,t) of the equation

DU,O = F() (484)
belonging to the class C>°(Dy) and satisfying the boundary conditions
U0|S; = ff, U()|S2 = f2. (485)

It is shown in §4 of the present chapter that a multidimensional analogue
of the Goursat problem (4.84), (4.85) for Fy € CX(Dy), fi € CX(Sy),
f2 € C2(S3) has a unique solution ug of the class C°(Dy). Let us show
now that the restriction of this function to the domain D, i.e., u = ug|p, is
a solution of the problem (4.1), (4.81), (4.4) of the class C2°(D). To this
end it suffices to show that the function ug(x1,z2,t) is even with respect to
the variable z>. Because the function Fj is even with respect to the variable
x2, and the functions f; and f, are connected by equality (4.83), we can
easily verify that the function @(zq,z2,t) = uo(x1, —x2,t) is also a solution
of the same problem (4.84), (4.85) of the class C°(Dy). But due to a
priori estimate (4.5), the problem (4.84), (4.85) cannot have more than one
solution of the above-mentioned class. Therefore, u(x1,x2,t) = uo(z1, 2, 1),
i.e., the solution wug(x1,x2,t) of equation (4.84) is an even function with
respect to x5. This implies %hz:o = 0, i.e., the boundary condition
(4.81) is fulfilled for u = ug|p. Thus, the function u = ug|p € CX(D) is a
solution of the problem (4.1), (4.81), (4.4). The uniqueness of this solution
of the problem (4.1), (4.81), (4.4) follows from a priori estimate (4.19). W

Let fo € W}(Ss), F € Ly(D). The function u € Wy (D) is
said to be a strong solution of the problem (4.1), (4.81), (4.4) of the class
W3 if there exists a sequence u,, € C2°(D) such that 88“7; ls, =0, up — u,
Ou, — F and uy|s, — fo in the spaces Wi (D), La(D) and W3(Ss),

respectively.

The following theorem holds.

Let the condition (4.80) be fulfilled. Then for any fo €
W1(Ss) and F € Ly(D) there exists a unique strong solution u of the prob-
lem (4.1), (4.81), (4.4) of the class W for which the estimate (4.19) is
valid.

Proof. Tt is known that the space C§°(D) C C(D) of infinitely differen-
tiable finite functions in the domain D is everywhere dense in L»(D), while
the space C2°(S2) is everywhere dense in W} (Ss). Therefore there exist the
sequences F,, € C§°(D) and fo, € C°(S3) such that

1F' = Fullpop) = Jim lf2 = fonllwa(s,) =0 (4.86)

lim
n—oo
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Since the functions F,, € C§°(D) satisfy the conditions (4.82), according
to Lemma 4.6 there exists a sequence u, € C>(D) of solutions of the
problem (4.1), (4.81), (4.4) with F' = F,,, fa = fan.

On account of (4.19) we have

llun — “m||W21(D) <
< C(lfon = Fomllwi(sy) + 1Fn = Fnllza(m))- (4.87)

It follows from (4.86), (4.87) that the sequence of functions u,, is fundamen-
tal in the space W3 (D). Therefore, since the space W4 (D) is complete, there
exists a function u € W3 (D) such that u, — u, Ou,, = F and u,|s, — f2
respectively in the spaces Wi (D), Ly(D) and W3(S2) as n — oo. Conse-
quently, u is a strong solution of the problem (4.1), (4.81), (4.4) of the class
W.. The uniqueness of this solution follows from (4.19). M

Using equivalent norms depending on a parameter and arguing as while
proving Theorem 4.2 of §4, we can prove

Let the condition (4.80) be fulfilled. Then for any fo €
W4(S2), and F € Lo(D) there exists a unique strong solution u of the
problem (4.13), (4.81), (4.4) of the class W for which the estimate (4.19)
15 valid.

§

Consider in the space R™, n > 2, a strictly hyperbolic equation of the
type

p(z,0)u(z) = f(z), (4.88)
where 0 = (01,...,0,), 0 = %, p(x,€) is a real polynomial of order 2m,
m > 1, with respect to & = (&1,...,&,), f is a given function, and v is an

unknown real function. It is assumed that in (4.88) the coefficients at higher
derivatives are constant and the other coefficients are finite and infinitely
differentiable in R™.

Let D be a conic domain in R™, i.e., D together with a point ¢ € D
contains the entire beam tx, 0 < t < co. Denote by I' the cone dD. D is
assumed to be homeomorphic to the conic domain 22 +---+z2_; —z2 <0,
z, > 0, and I" = T'\O is assumed to be a connected (n — 1)-dimensional
manifold of the class C*°, where O is the vertex of T'.

Consider the boundary value problem [43]: find in the domain D a solu-
tion u(z) of the equation (4.88) satisfying the boundary conditions

ol

ovt I
where v = v(x) is the outer normal to IV at the point z € T, and g;,
i=0,...,m —1, are given real functions.

=g, i=0,....m—1, (4.89)
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In this section we investigate the question whether the problem (4.88),
(4.89) can be correctly formulated in special weighted spaces W¥(D) when
the cone I' is assumed not to be characteristic and to have a quite definite
orientation.

Denote by po(§) the characteristic polynomial of (4.88), i.e., the higher
homogeneous part of the polynomial p(z,£). The strict hyperbolicity of
the equation (4.88) implies the existence of a vector ( € R™ such that the
straight line £ = A( + n, where n € R™ is an arbitrarily chosen vector
not parallel to ¢ and X is a real parameter, intersects the cone of normals
K : pp(§) = 0 of the equation (4.88) at 2m real different points. In other
words, the equation po(A{ +n) = 0 has 2m real different roots with respect
to A. The vector ( is called a spatial-type normal. As is known, the set
of all spatial-type normals form two connected centrally symmetric convex
conic domains whose boundaries K7 and K, give the internal cavity of the
cone of normals K [17]. The surface S C R™ is called characteristic at a
point x € S if the normal to S at = belongs to K.

Let the vector  be a spatial-type normal and the vector n # 0 vary
in the plane orthogonal to (. Then the roots of the characteristic polyno-
mial po(A{ + 1) with respect to A can be renumbered so that As.n,(n) <
Aom—1(n) < -+ < Ai(n). It is obvious that the vectors A\;(n)¢ + n cover the
cavities K; of K, when the n varies on the plane orthogonal to {. Since
Am—j (M) = =Am+j+1(—n), 0 < j <m—1, the cones Ky,—; and K441 are
centrally symmetric with respect to the point (0,...,0). It is well-known
that the straight beams whose orthogonal planes are tangential planes to one
of the cavities K; at a point different from the vertex, are bicharacteristics
of equation (4.88).

Assume that there exists a plane m such that 7o N K,,, = {(0,...,0)}.
This means that the cones K, ..., K,, are located on one side of mg and the
cones Kpy11,..., Kopm on the other. Put K} = Nper,{{ € R™ : {-n < 0},
where £ - n is the scalar product of the vectors ¢ and 7. Since mg N K,;, =
{(0,...,0)}, K} is a conic domain and

K,CK, ,C...CK{, K, CK ,C...CK;,.
It is easy to verify that O(K}) is a convex cone whose generatrices are bichar-
acteristics; note that in this case none of the bicharacteristics of equation
(4.88) comes from the point (0, ...,0) into the cone d(K,) or (K, 1) [17].
Let us consider

The surface I is characteristic at none of its points and
each generatrix of the cone I' has the direction of a spatial-type normal;
moreover, ' C K, UOorI' C K}, UO.

Denote by W¥(D), k > 2m, —0co < a < 00, the function space with the
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norm [48]
k .
lullZe () :; / a2k gxu e
— D
where
r=(af - +23)2, A U

Ozt dzh ... Oz

The space W¥(T) is defined in a similar manner.
Consider the space

m—1
V=Wt TmD) x [T whiti @),
i=0

Assume that to the problem (4.88), (4.89) there corresponds an un-
bounded operator

T:WHD) -V
with the domain of definition Q7 = WXt (D) c W} (D), acting as

o™ty

O'u

Tu= (p(a:,@)u,ur,,...,w

), u € Qp.
F’

It is obvious that the operator T' admits the closure T.

The function u is called a strong solution of the problem (4.88), (4.89) of
the class W* (D) if u € O, Tu = (f,go,.-,9m_1) € V, which is equivalent
to the existence of a sequence u; € Qp = Wﬁf% (D) such that u; — w in
Wk(D) and

am—lui
rroto W

(p(a:,a)ui,ui ) — (f,gg,...,gm,l)

in the space V. Below, by a solution of the problem (4.88), (4.89) of the
class WF(D) will be meant a strong solution of this problem in the sense
indicated above.

We shall prove

T

Let condition 1 be fulfilled. Then there exists a real number
ag = ag(k) > 0 such that for a > ag problem (4.88), (4.89) is uniquely
solvable in the class WE(D) for any f € W172™(D), g; € Wclj:’l (1),

2

1=0,...,m—1, and for the solution u we have the estimate
m—1
lullwe oy < e loile-s ) + 1flwsei=em ) (4.90)
i=0

where ¢ is a positive constant not depending on f, g;, i =0,...,m — 1.
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First we shall show that Condition 1 implies the following conditions:
Take any point P € T' and choose a Cartesian system of coordinates
29,...,2% having the vertex at P and such that the z{-axis is directed
along the generatrix of I passing through P, while the z0 _, -axis is directed
along the inner normal to I' at that point.

The surface I is characteristic at none of its point. Each
generatrix of the cone I' has the direction of a spatial-type normal, and
exactly m characteristic planes of the equation (4.88) pass through the (n —
2)-dimensional plane 20 = 2% | = 0 connected with an arbitrary point

P € T into the angle 2% >0, 22, > 0.

Denote by pp(§) the characteristic polynomial of (4.88) written in terms
of the coordinate system x9,...,2% connected with an arbitrarily chosen

point P € I'".

The surface I'" is characteristic at none of its point. Each
generatrix of I' has the direction of a spatial-type normal and for Res > 0
the number of roots A;(&1,...,&n—2,s) of the polynomial po(i&1, ..., i€ —2,
A, s) with Re \; < 0, taking into account their multiplicities, is equal to m,
i=+/—1
When condition 3 is fulfilled, the polynomial po(i&1,...,i&.—2, A, s) can
be written as A_(A)Ay()\), where for Res > 0 the roots of the polyno-
mials A_(\) and A, ()\) lie, respectively, to the left and to the right of
the imaginary axis, while the coefficients are continuous for s, Res > 0,
(E1,...,6n2) € R2, & + -+ & _, + |s]> = 1 [4. On the left side
of the boundary conditions (4.89), to the differential operator b;(z,0),
0 < j < m — 1, written in terms of the coordinate system 29,...,2%
connected with P € I, there corresponds the characteristic polynomial
bj(§) = & _,. Therefore, since the degree of A_()) is equal to m, the
following condition will be fulfilled.

For any point P € T' and any s, Res > 0, and (&1, ...,&—2)
€ R"2 such that &2+ -+¢&2_,+]|s|? = 1, the polynomials b; (i1, . . ., i&n—2,
\,8) =M, j=0,...,m — 1, are linearly independent, as polynomials of \,
modulo A_(A).

We shall now show that condition 1 implies condition 2, while the latter
implies condition 3. Let us consider the case I' C K, ,; U O. The second
case [' C K}, U O is treated analogously. Let P € I'" and z9,...,22 be
the coordinate system connected with this point. Since the generatrix v
of I passing through P is a spatial-type normal, the plane 2% = 0 passing
through P is a spatial-type plane.

Denote by K the boundary of the convex shell of K; and by K f the set
which is the union of all bicharacteristics corresponding to K; and coming
out of O along the outer normal to K;, 1 < j < 2m. Obviously, (K;)* = K7,
O(KY) = (K™
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Let us now show that the plane 7y, parallel to the plane 22 = 0 and
passing through the point (0,...,0), is the plane of support to the cone
K, at the point (0,...,0). Indeed, it is evident that the plane N - £ = 0,
N € R"\(0,...,0), £ € R™, is the plane of support to K,,at the point
(0,...,0) if and only if the normal vector N to this plane taken with the
sign + or — belongs to the closure of the conic domain (K)* = K,. Now it
remains for us to note that the conic domains K, and K, | are centrally
symmetric with respect to (0,...,0), and the generatrix I" passing through
P is perpendicular to 7; and, by the condition, belongs to K}, ,; UO.

Since 2 = 0 is a spatial-type plane, the two-dimensional plane o : 29 =

- =129 , = 0 which passes through the generatrix v directed along the
spatial-type normal, intersects the cone of normals K p of the equation (4.88)
with the vertex at the point P by 2m different real straight lines [17]. The
planes orthogonal to these straight lines and passing through the (n — 2)-
dimensional plane 29 = 2% _| = 0, give all 2m characteristic planes passing
through this plane.

The straight lines 2 = 0 and 22 _, = 0 divide the two-dimensional plane
o into four right angles oy : 2% _; > 0, 29 > 0; 02 : 2%_; < 0, 22 > 0;
o3 x| < 0,20 <0504 2%, >0, 2% <0. It is easily seen that
exactly m characteristic planes of equation (4.88) pass through the (n —2)-
dimensional plane z% = z%_, = 0 into the angle ¥ > 0, 2%_, > 0, if and
only if exactly m straight lines from the intersection of Kp with the two-
dimensional plane ¢ pass into the angle o,. The latter fact really occurs,
since: 1) the plane 22 = 0 is the plane of support to K,and therefore to all
Ki,...,Kay; 2) the planes 2 = 0, 22 _, = 0 are not characteristic because
the generatrices of I' have a spatial-type direction and T is not characteristic
at the point P.

Now it will be shown that condition 2 implies condition 3. By virtue
of Condition 2 the plane z%_, = 0 is not characteristic and therefore the
polynomial po(i&,...,i€—2, A, s) for A has exactly 2m roots. In this case,
if Re s > 0, the number of roots A;(&,...,&—2,s), with the multiplicity of
the polynomial py(i&i,...,i,—2, A, s) taken into account, will be equal to
m provided that Re \; < 0.

Indeed, recalling that equation (4.88) is hyperbolic, for Res > 0 the
equation pg(i&1,...,i€—2,A,s) = 0 has no purely imaginary roots with
respect to A. Since the roots A; are the continuous functions of s, we can
determine the number of roots A; with ReA\; < 0 by passing to the limit as
Res = +o0.

Since the equality

~ . . _ 29m~ é .é-n—2 é
po(i&r, ... i€p—2,),8) = s po(zs,...,z . ’s’)

holds, it is clear that the ratios %, where A; are the roots of the
equation po(i&1,...,1€n—2,A,8) = 0, tend to the roots p; of the equation
Dpo(0,...,0,u,1) =0 as Res — 4+00. The latter roots are real and different
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because equation (4.88) is hyperbolic. If s is taken positive and sufficiently
large, then for pu;j # 0 we have \; = su; + o(s). But p; # 0, since the
plane z¥) = 0 is not characteristic. Therefore the number of roots A; with
Re); < 0 coincides with the number of roots p; with p1; < 0. Since the char-
acteristic planes of equation (4.88) passing through the (n — 2)-dimensional
plane 29 = 20 | = 0, are determined by the equalities p;2%_; +2% =0, j =
1,...,2m, condition 2 implies that the number of roots A; with Re); < 0
is equal to m.

We give another equivalent description of the space WF(D). On the
unit sphere S~ : 27 + .-+ 4+ 22 = 1 let us choose a coordinate system
(Wi, ...,wn—1) such that in the domain D the transformation

I't=logr, wj=wj(z1,...,2,), j=1,...,n—1,

is one-to-one, nondegenerate and infinitely differentiable. Since the coneI' =
0D is strictly convex at the point O(0,...,0), such coordinates evidently
exist. Under the above transformation the domain D turns to an infinite
cylinder G bounded by an infinitely differentiable surface G = I(T").
Introduce the functional space HZY“(G), —00 < v < 00, with the norm

8“+]’U
—2yT
v dwdTr
olisior = 3 [t P
i1+j= OG
where
§irtiy Hirtiy

Ot owl  Prigudt . duwint I=n Jn—1

As it is shown in [48], the function u(z) € WF(D) if and only if @ =
u(I~(r,w)) € H(QH) » (@), and the estimates

elltllm )y @ < llullweo) < eallullm (@)

atk)— 3
hold, where I~! is the transformation inverse to I and the positive constants
c1 and ¢y do not depend on u.

It is easy to see that the condition v € Hﬂ’j (G) is equivalent to the con-
dition e™""v € W¥(G), where W*(G) is the Sobolev space. Denote by
H!(DG) the set of all ¢ such that e 77y € W¥(8G), and by WC’j_%(F) the

set of all ¢ for which ¢ = p(I71(1,w)) € H(a+k) 2 (0G). Assume that
el = W2l o0
Spaces W¥(D) possess the following simple properties:

1) if u € WE(D), then 3% € WE(D), 0 < i < k;

2) Wati (D) c Wi (D);
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3) if u € WF_| (D), then by the well-known embedding theorems we have

d'u ;

k k—i

| € Wa—l(l—‘)’ a,/i r afé

4) f = p(z,0)u € W2 (D) if w € WEHH(D).

In what follows we will need in spaces W% (D), W* , (T') other norms
2

depending on the parameter v = (a + k) — & and equivalent to the original
norms.

Put

RZ,T:{—OO<T<OO, —oo<wi<oo,i:1,...,n—1},
RZT+:{( T)ER] ¢ wne 1>0} W= (wi,.. -, wWn_2a),
R"1 {—00<T<00, —00 <w; <00, i=1,...,n—2}.

Denote by v(&1, .-+, &n—2,&n—1,&n—i7) the Fourier transform of the function
e "u(w, 1), ie.,

V(€1 bnty b — i) = (2m) 73 / v(w, 7)e T T
i=v-1, &= (&,...,601),

and by 0(&1, ..., &p—2,wn—1,&, — i) the partial Fourier transform of the
function e""v(w, T) with respect to w’', 7 .

In the above-considered spaces H®(R? ) and HY(R" ) we can intro-
duce the following equivalent norms:

[T / (7 4 1) 56 Enmr En — i) [P,

R’n.
x k
ol = [ [ 3 67 +1€T)
0 gn—1 J=0
o7 ENCE
‘6 J (517--'7€n—27wn—la€n_17) dfdwn_l.

Let ¢1, ... ,cpN be the partitioning of unity in G' = G N {r = 0}, where
G =1(D),ie Z pjw)=1in G, p; € C"X’(G) the supports of the func-
=]

tions ¢1,...,n—_1 lie in boundary half-neighborhoods, while the support
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of the function ¢ lies inside G'. Then for v = (a4 k) — 7 the equalities

N—-1
lalli gy = 3 lpsullB oy + Mon o s
=1

(4.91)

N—-1
el = D Mesullifn-s
j=1 T

define equivalent norms in the spaces W%(D) and W* ,(T), where the
norms on the right side of these equalities are taken in terms of local coor-
dinates [4].

Assume first that the equation (4.88) contains only higher terms, i.e.,
p(z, &) = po(§). Equation (4.88) and the boundary conditions (4.89) written
in terms of the coordinates w, 7 will take the form

e A(w, 8)u = f,
e_iTBi(w,B)u|8G =g;y 1=0,...,m—1,
ie.,

A(w,0)u = f, (4.92)
Bi(w,0)ul,, =g, i=0,...,m—1, (4.93)

where A(w, d) and B;(w, @) are, respectively, differential operators of orders
2m and 4 with infinitely differentiable coefficients depending only on w, while
f=e™fand §;=¢€"g;,i=0,1,...,m— L.

Thus under the transformation I : D — @, the unbounded operator T’
of the problem (4.88), (4.89) transforms to the unbounded operator

m—1
T:HEG) » HEP (@) x [ HE(06G)

i=0

with the domain of definition HA1(G), acting as

Tu= (A(w,B)u,BO(w,B)u|8G, o, Bm_l(w,a)u|aG),

where v = (a+ k) — 5. Note that written in terms of the coordinates w, T,

the functions f(w, ) € ij%;zm(G), gi(w,T) € Hsjf(BG), i=0,...,m—1,

if f(x) € WH172™(D), gi(z) € Wj:i(I‘), i =20,1,...,m — 1. Therefore

the functions f = e2™7f € HIHL2m(@), i = e'"g; € HF/(0G), i =
0,...,m—1.

Since by Condition 1 each generatrix of the cone I' has the direction
of a spatial-type normal, due to the convexity of K, each beam coming
out of the vertex O into the conic domain D also has the direction of a
spatial-type normal. Therefore equation (4.92) is strictly hyperbolic with
respect to the 7-axis. It was shown above that the fulfillment of Condition
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1 implies that of Condition 4. Therefore, according to the results of [4],
for v > ~9, where 7 is a sufficiently large positive number, the operator T
has a bounded right inverse operator T—1. Thus for any fE Hﬁ*lﬁm(G),
gi € Hﬂ’j*i(BG), i=0,1,...,m —1, 7 > 7o the problem (4.92), (4.93) is
uniquely solvable in the class H¥(G) and for the solution u we have the
estimate

m—1
- 1.~
Ml ., < C( > lgillloc s—iq + ;|||f|||G7k+1—2m7v) (4.94)
=0
with a positive constant ¢ not depending on -, fand gi,1=0,1,....m—1.

Hence it immediately follows that the theorem and the estimate (4.90) are
valid in the case p(z, &) = po(&).

Remark. Estimate (4.94) with the coefficient % at |||f~'|||G7k+1,2mm ob-
tained in the appropriately chosen norms (4.91), enables one to prove The-
orem 4.7 also when equation (4.88) contains lower terms, since the latter
give arbitrarily small perturbations for sufficiently large ~.
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