M. Basheleishvili

[^0]
Abstract

In the paper we consider the boundary value problem for homogeneous equations of statics of the theory of elastic mixtures in a circular domain, and in an infinite domain with a circular hole, when projections of the displacement vector on the normal and of the stress vector on the tangent are prescribed on the boundary of the domain. The arbitrary analytic vector φ appearing in the general representation of the displacement vector is sought as a double layer potential whose density is a linear combination of the normal and tangent unit vectors. Having chosen the displacement vector in a special form, we define the projection of the density on the normal by the function given on the boundary. To find the projection of the stress vector on the tangent, we obtain a singular integral equation with the Hilbert kernel. Using the formula of transposition of singular integrals with the Hilbert kernel, we obtain expressions for the projection on the tangent of the above-mentioned density. Assuming that the function is Hölder continuous, the projection of the displacement vector on the normal and its derivative are likewise Hölder continuous. Under these conditions the obtained expressions for the displacement and stress vectors are continuous up to the boundary. The theorem on the uniqueness of solution is proved, when the boundary is a circumference. The projections of the displacement vector on the normal and tangent are written explicitly. Using these projections, the displacement vector is written in the form of the integral Poisson type formula.

2000 Mathematics Subject Classification. 74B05. Key words and phrases. Potentials, singular equation with a Hilbert kernel, formula of interchange of of singular integrals, general representation of the displacement and stress vectors, analogues of the general Kolosov-Muskhelishvili's representations. юмддм

1. Statement of the Third Boundary Value Problem and the Uniqueness Theorem

The basic homogeneous equations of statics of the theory of elastic mixture in the two dimensional case have the form [1]

$$
\begin{align*}
& a_{1} \Delta u^{\prime}+b_{1} \operatorname{grad} \operatorname{div} u^{\prime}+c \Delta u^{\prime \prime}+d \text { grad div } u^{\prime \prime}=0 \\
& c \Delta u^{\prime}+d \operatorname{grad} \operatorname{div} u^{\prime}+a_{2} \Delta u^{\prime \prime}+b_{2} \operatorname{grad} \operatorname{div} u^{\prime \prime}=0, \tag{1.1}
\end{align*}
$$

where

$$
\begin{gather*}
a_{1}=\mu_{1}-\lambda_{5}, \quad b_{1}=\mu_{1}+\lambda_{1}-\lambda_{5}-\rho^{-1} \alpha_{2} \rho_{2}, \quad a_{2}=\mu_{2}-\lambda_{5}, \\
c=\mu_{3}+\lambda_{5}, \quad b_{2}=\mu_{2}+\lambda_{1}+\lambda_{5}+\rho^{-1} \alpha_{2} \rho_{2}, \\
d=\mu_{3}+\lambda_{3}-\lambda_{5}-\rho^{-1} \alpha_{2} \rho_{2} \equiv \mu_{3}+\lambda_{4}-\lambda_{5}+\rho^{-1} \alpha_{2} \rho_{2}, \tag{1.2}\\
\rho=\rho_{1}+\rho_{2}, \quad \alpha_{3}=\lambda_{3}-\lambda_{4} .
\end{gather*}
$$

Here ρ_{1} and ρ_{2} are partial densities, and $\mu_{1}, \mu_{2}, \mu_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}$ are constants characterizing physical properties of the elastic mixture and satisfying certain inequalities [2], $u^{\prime}=\left(u_{1}, u_{2}\right)$ and $u^{\prime \prime}=\left(u_{3}, u_{4}\right)$ are partial displacements.

If we introduce the variables

$$
z=x_{1}+i x_{2}, \quad \bar{z}=x_{1}-i x_{2}
$$

i.e.

$$
x_{1}=\frac{z+\bar{z}}{2}, \quad x_{2}=\frac{z-\bar{z}}{2 i},
$$

then after simple transformations (1.1) can be rewritten as [3]

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial z \partial \bar{z}}+K \frac{\partial^{2} \bar{U}}{\partial \bar{z}^{2}}=0 \tag{1.3}
\end{equation*}
$$

where

$$
\begin{gather*}
U=\binom{u_{1}+i u_{2}}{u_{3}+i u_{4}}=m \varphi(z)-K m z \overline{\varphi^{\prime}(z)}+\overline{\psi(z)}, \tag{1.4}\\
m=\left[\begin{array}{cc}
m_{1}, & m_{2} \\
m_{2}, & m_{3}
\end{array}\right], \quad m_{1}=e_{1}+\frac{e_{4}}{2}, \quad m_{2}=e_{2}+\frac{e_{5}}{2}, \quad m_{3}=e_{3}+\frac{e_{6}}{2}, \\
e_{1}=\frac{a_{2}}{d_{2}}, \quad e_{2}=-\frac{c}{d_{2}}, \quad e_{3}=\frac{a_{1}}{d_{2}}, \quad e_{1}+e_{4}=\frac{a_{2}+b_{2}}{d_{1}}, \\
e_{2}+e_{5}=-\frac{c+d}{d_{1}}, \quad e_{3}+e_{6}=\frac{a_{1}+b_{1}}{d_{1}}, \\
K=\left[\begin{array}{cc}
K_{1}, & K_{3} \\
K_{2}, & K_{4}
\end{array}\right], \quad K m=-\frac{e}{2}, \quad e=\left[\begin{array}{ll}
e_{4}, & e_{5} \\
e_{5}, & e_{6}
\end{array}\right] \\
m^{-1}=\frac{1}{\Delta_{0}}\left[\begin{array}{cc}
m_{3}, & -m_{2} \\
-m_{2}, & m_{1}
\end{array}\right], \quad \Delta_{0}=m_{1} m_{3}-m_{2}^{2}>0, \tag{1.5}\\
\delta_{0} K_{1}=2\left(a_{2} b_{1}-c d\right)+b_{1} b_{2}-d^{2}, \quad \delta_{0} K_{2}=2\left(d a_{1}-c b_{1}\right), \\
\delta_{0} K_{3}=2\left(d a_{2}-c b_{2}\right), \quad \delta_{0} K_{4}=2\left(a_{1} b_{2}-c d\right)+b_{1} b_{2}-d^{2},
\end{gather*}
$$

$$
\begin{gathered}
\delta_{0}=\left(2 a_{1}+b_{1}\right)\left(2 a_{2}+b_{2}\right)-(2 c+d)^{2}=4 \Delta_{0} d_{1} d_{2} \\
d_{1}=\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)-(c+d)^{2}>0, \quad d_{2}=a_{1} a_{2}-c^{2}>0
\end{gathered}
$$

and the stress vector is

$$
\begin{equation*}
T U=\binom{(T U)_{2}-i(T U)_{1}}{(T U)_{4}-i(T U)_{3}}=\frac{\partial}{\partial s(x)}(-2 \varphi(z)+2 \mu U) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial}{\partial s(x)}=n_{1} \frac{\partial}{\partial x_{2}}-n_{2} \frac{\partial}{\partial x_{1}}, \tag{1.7}
\end{equation*}
$$

n_{1} and n_{2} are the projections of the unit vector of the normal onto the axes x_{1} and x_{2}. From this definition, the unit vector of the tangent $s(x)=$ $\left(-n_{2}, n_{1}\right),(T U)_{k}$ is the projection of the stress vector on the axis $x_{k}, k=$ $\overline{1,4}$,

$$
\mu=\left[\begin{array}{ll}
\mu_{1}, & \mu_{3} \tag{1.8}\\
\mu_{3}, & \mu_{2}
\end{array}\right], \quad \operatorname{det} \mu=\Delta_{1}=\mu_{1} \mu_{2}-\mu_{3}^{2}>0
$$

We formulate the third boundary value problem as follows: find a regular solution [4] of the equation (1.3) in a circular domain which on the boundary of the circular domain (i.e., the circumference of radius R) satisfies the following conditions:

$$
\begin{equation*}
(n U)^{+}=f(t), \quad(s T U)^{+}=F(t) \tag{1.9}
\end{equation*}
$$

where f and F are given complex functions on the circumference satisfying certain conditions. The sign " + " in (1.9) stands for the limit value from inside. If D is an infinite domain, i.e. we have an infinite domain with a circular hole, then instead of (1.9) we have the conditions

$$
\begin{equation*}
(n U)^{-}=f(t), \quad(s T U)^{-}=F(t) \tag{1.10}
\end{equation*}
$$

where the sign "-" denotes the limit value from outside. In the case of an infinite domain, in addition to the conditions of regularity it is necessary to impose the requirements at infinity:

$$
\begin{equation*}
U=O(1), \quad \frac{\partial U}{\partial x_{k}}=O\left(\rho^{-2}\right), \quad k=1,2, \quad \rho=\sqrt{x_{1}^{2}+x_{2}^{2}} \tag{1.11}
\end{equation*}
$$

If the point x lies on the circumference, then $x=(R, \varphi)$, while if the point z is on the circumference, then $z=R e^{i t}$, and $\zeta=R e^{i \tau}$.

The following formulas are valid [3]:

$$
\begin{align*}
\int_{D^{+}} E(U, U) d y_{1} d y_{2} & =\int_{S} U T U d s \equiv \operatorname{Im} \int_{S} U T \bar{U} d s \tag{1.12}\\
\int_{D^{-}} E(U, U) d y_{1} d y_{2} & =-\int_{S} U T U d s \equiv-\operatorname{Im} \int_{S} U T \bar{U} d s \tag{1.13}
\end{align*}
$$

where D^{+}is a circular domain of radius R, and D^{-}is an infinite domain with a circular hole,
$\operatorname{Im} U T \bar{U}=\sum_{k=1}^{4} u_{k}(T u)_{k}=n U_{n}+s(T \bar{U})_{s}, \quad U_{n}=(n U), \quad(T U)_{s}=(s T U)$.
For the third boundary value problem we prove the following
Theorem. A regular solution of the equation (1.3) in the domains D^{+} and D^{-}satisfying the homogeneous conditions of the third boundary value problem is identically equal to zero if S is not a centerless parabolic line or a pair of straight lines.

Proof. We use the formula (1.12). If in (1.12) $f=F=0$, then since $E(U, U)$ is the doubled potential energy (which is positively defined), we have

$$
u_{1}=c_{1}-\varepsilon x_{2}, \quad u_{2}=c_{2}+\varepsilon x_{1}, \quad u_{3}=c_{3}-\varepsilon x_{2}, \quad u_{4}=c_{4}+\varepsilon x_{1},
$$

where $c_{k}(k=\overline{1,4})$ are arbitrary real constants, ε is also an arbitrary, real, different from zero constant. Compose $n U$. Then on the boundary we have

$$
\begin{equation*}
\left(u_{1}+i u_{2}\right) n_{1}+\left(u_{3}+i u_{4}\right) n_{2}=0 \tag{1.14}
\end{equation*}
$$

where $n_{1}=\frac{d x_{2}}{d s}, n_{2}=-\frac{d x_{1}}{d s}$. Further, we insert these expressions in (1.14) and equate to zero the real and imaginary parts. We obtain

$$
\begin{aligned}
& \left(c_{1}-\varepsilon x_{2}\right) \frac{d x_{2}}{d s}-\left(c_{3}-\varepsilon x_{2}\right) \frac{d x_{1}}{d s}=0 \\
& \left(c_{2}+\varepsilon x_{1}\right) \frac{d x_{2}}{d s}-\left(c_{4}+\varepsilon x_{1}\right) \frac{d x_{1}}{d s}=0
\end{aligned}
$$

Adding these expressions, we find that

$$
\begin{equation*}
\frac{d}{d s}\left[-\frac{\varepsilon}{2}\left(x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}\right)+\left(c_{1}+c_{2}\right) x_{2}-\left(c_{3}+c_{4}\right) x_{1}\right]=0 \tag{1.15}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{\varepsilon}{2}\left(x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}\right)-\left(c_{1}+c_{2}\right) x_{2}+\left(c_{3}+c_{4}\right) x_{1}-c=0 \tag{1.16}
\end{equation*}
$$

where c is a new real constant.
Next, compose from (1.16) the discriminant D_{1} of the equation (1.16) and the discriminant D_{2} of higher terms. In our case, using the well-known formulas from the analytic geometry, we have

$$
D_{1}=\varepsilon\left|\begin{array}{cc}
1, & -1 \\
-1, & 1
\end{array}\right|=0, \quad D_{2}=\left|\begin{array}{ccc}
1, & -1, & A \\
-1, & 1, & B \\
A, & B, & -\frac{2 c}{\varepsilon}
\end{array}\right|
$$

Here, $A=\frac{1}{\varepsilon}\left(c_{3}+c_{4}\right), B=\frac{1}{\varepsilon}\left(c_{1}+c_{2}\right)$.
Since $D_{1}=0$, the line will be centerless, of parabolic type. If $D_{2}=0$, we have $D_{2}=-(A+B)^{2}=0$, i.e. $c_{1}+c_{2}+c_{3}+c_{4}=0$. In this case the line is a pair of straight lines. Thus the theorem is proved.

In our case, i.e. when D^{+}is a circular domain, or D^{-}is an infinite domain with a circular hole, there takes place the uniqueness of the solution.

2. Solution of the Third Boundary Value Problem in a
 Circular Domain

The analytic vector φ, appearing in (1.4) is sought in the form

$$
\begin{equation*}
\varphi(z)=\frac{m^{-1}}{2 \pi i} \int_{S} \frac{\partial \ln \sigma}{\partial s(y)}(n g+s h) d s \tag{2.1}
\end{equation*}
$$

where g and h are scalar complex periodic functions with the period 2π; $\sigma=z-\zeta, z$ and ζ are the affixes of the points x and y, n and s are the unit vectors of the normal and of the tangent, respectively, m^{-1} is the matrix inverse to m, and $\Delta_{0}>0$.

From (2.1) we have

$$
\begin{equation*}
\overline{\varphi^{\prime}(z)}=-\frac{m^{-1}}{2 \pi i} \int_{S} \frac{\partial}{\partial s(y)} \frac{1}{\bar{\sigma}}(n \bar{g}+s \bar{h}) d s \tag{2.2}
\end{equation*}
$$

Inserting (2.1) and (2.2) into (1.4), we obtain

$$
\begin{equation*}
U(x)=\frac{1}{2 \pi i} \int_{S} \frac{\partial \ln \sigma}{\partial s(y)}(n g+s h) d s+\frac{K}{2 \pi i} \int_{S} \frac{z}{\bar{\sigma}}(n \bar{g}+s \bar{h}) d s+\overline{\psi(z)} . \tag{2.3}
\end{equation*}
$$

If we take $\overline{\psi(z)}$ in the form

$$
\overline{\psi(z)}=-\frac{1}{2 \pi i} \int_{S} \frac{\partial \ln \bar{\sigma}}{\partial s(y)}(n g+s h) d s-\frac{K}{2 \pi i} \int_{S} \frac{\zeta}{\bar{\sigma}}(n \bar{g}+s \bar{h}) d s,
$$

then we can write $U(x)$ as follows:

$$
\begin{equation*}
U(x)=\frac{1}{\pi} \int_{S} \frac{\partial \theta}{\partial s(y)}(n g+s h) d s+\frac{K}{2 \pi i} \int_{S} \frac{\partial}{\partial s(y)} \frac{\sigma}{\bar{\sigma}}(n \bar{g}+s \bar{h}) d s \tag{2.4}
\end{equation*}
$$

where $\theta=\operatorname{arctg} \frac{x_{2}-y_{2}}{x_{1}-y_{1}}$. The other values appearing in (2.4) have been defined above.

Instead of $U(x)$ we consider the expression

$$
\begin{align*}
U(x)= & \frac{1}{\pi} \int_{S}\left(\frac{\partial \theta}{\partial s(y)}-\frac{1}{2 R}\right)(n g+s h) d s+ \\
& +\frac{K}{2 \pi i} \int_{S}\left(\frac{\partial}{\partial s(y)} e^{2 i \theta}+\frac{i z}{\bar{\zeta} R}\right) . \tag{2.5}
\end{align*}
$$

It is evident that if $U(x)$ from (2.4) is a solution of the equation (1.3), then $U(x)$ defined from (2.5) is likewise a solution of (1.3), since the difference between these vectors is a linear function.

If $x \in S$, then $z=R e^{i t}$, while $\zeta=R e^{i \tau}, 2 \theta=\pi+t+\tau$ and $e^{2 i \theta}=$ $-e^{-i(t+\tau)}$. We now pass to the limit in (2.5) as x tends to the boundary point. We have

$$
\begin{equation*}
U^{+}(t)=n g+s h \tag{2.6}
\end{equation*}
$$

whence $n U^{+}=g=f(t)$.
Here f is the given complex function with the period 2π and having certain smoothness. Thus the function h remains unknown; it will be defined below.

For the projection on the tangent of the stress vector we have

$$
\begin{equation*}
(T U s(t))^{+}=\frac{\partial}{\partial s(x)}\left(-2 \varphi^{+}(t)+2 \mu U^{+}(t)\right) s(t) \tag{2.7}
\end{equation*}
$$

It follows from (2.1) that

$$
\begin{align*}
\varphi^{+}(t)= & \frac{m^{-1}}{2}(n g+s h)+\frac{m^{-1}}{4 \pi} \int_{0}^{2 \pi}(n g+s h) d \tau+ \\
& +\frac{m^{-1} i}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{\tau-t}{2}(n g+s h) d \tau \tag{2.8}
\end{align*}
$$

Noticing that $\frac{\partial}{\partial s(x)}=\frac{1}{R} \frac{\partial}{\partial \varphi}$, we have

$$
\frac{\partial}{\partial t} \operatorname{ctg} \frac{\tau-t}{2}(n g+s h) d \tau=-\frac{\partial}{\partial \tau} \operatorname{ctg} \frac{\tau-t}{2}(n g+s h) \frac{1}{2}
$$

and
$-2 \frac{\partial \varphi^{+}}{\partial \varphi}=-m^{-1} \frac{d}{d \varphi}(n g+s h)+\frac{m^{-1} i}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2} \frac{d}{d \tau}(n g+s h) d \tau s(\varphi) d t$.
If we take into account (2.8) and the fact that $U^{+}=(n g+s h)$, we will get

$$
\begin{align*}
\left(2 \mu-m^{-1}\right) & \frac{d}{d \varphi}(n g+s h) s(\varphi)+ \\
& +\frac{m^{-1} i}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2} \frac{d}{d t}(n g+s h) d t \cdot s(\varphi)=F(\varphi) \cdot R \tag{2.9}
\end{align*}
$$

Multiplying (2.9) by the matrix m, we obtain

$$
\begin{align*}
& \left(A^{\prime}-E\right) \frac{d}{d \varphi}(n g+s h) s(\varphi)+ \\
& \quad+\frac{i}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2} \frac{d}{d t}(n g+s h) s(\varphi) d t=m F(\varphi) \cdot R \tag{2.10}
\end{align*}
$$

where A^{\prime} is the transposed matrix of A, i.e. $A^{\prime}=2 m \mu$.

Note that

$$
[s(\varphi)-s(t)] \operatorname{ctg} \frac{t-\varphi}{2}=n(\varphi)+n(t)
$$

Using this formula, we tr4ansform the expression (2.10) to the form

$$
\begin{align*}
\left(A^{\prime}-E\right)(g+h) & +\frac{i}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2}(g+h) d t+ \\
& +\frac{i}{2 \pi} \int_{0}^{2 \pi} \frac{d}{d t}(n g+s h)(n(\varphi)+n(t)) d t=m R F(\varphi) \tag{2.11}
\end{align*}
$$

Taking into account that

$$
\begin{aligned}
& \int_{0}^{2 \pi} \frac{d}{d t}(n g+s h) d t=0 \\
& \frac{i}{2 \pi} \int_{0}^{2 \pi} \frac{d}{d t}(n g+s h) n(t) d t=-\frac{i}{2 \pi} \int_{0}^{2 \pi}(n g+s h) s(t) d t=-\frac{-i}{2 \pi} \int_{0}^{2 \pi} h d t
\end{aligned}
$$

we obtain

$$
\begin{align*}
\left(A^{\prime}-E\right)(g+h)+\frac{i}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2}(g+h) d t & = \\
& =m R F(\varphi)+\frac{i}{2 \pi} \int_{0}^{2 \pi} h d t \tag{2.12}
\end{align*}
$$

whence

$$
\begin{gather*}
\frac{A^{\prime}-E}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{\tau-t}{2}(g+h) d t-\frac{i}{4 \pi^{2}} \int_{0}^{2 \pi} \operatorname{ctg} \frac{\tau-t}{2} d \tau \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2}(g+h) d t= \\
=\frac{m R}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{\tau-t}{2} F(t) d t \tag{2.13}
\end{gather*}
$$

We now apply the formula of transposition of singular integrals with the Hilbert kernel (see [5, p. 144]):

$$
\begin{equation*}
\frac{1}{(2 \pi)^{2}} \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2} d t \int_{0}^{2 \pi} \operatorname{ctg} \frac{\tau-t}{2}(g+h) d \tau=-u(\varphi)+\frac{1}{2 \pi} \int_{0}^{2 \pi} u(\tau) d \tau \tag{2.14}
\end{equation*}
$$

where $u=g+h=f(\varphi)+h$.
The equalities (2.13) and (2.14) result in

$$
\begin{align*}
& i \frac{A^{\prime}-E}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{\tau-\varphi}{2}(g+h) d \tau-(g+h)= \\
& \quad=-\frac{i m R}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2} F(t) d t-\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) d t-\frac{1}{2 \pi} \int_{0}^{2 \pi} h d t \tag{2.15}
\end{align*}
$$

and from the equalities (2.13) and (2.15) we easily get

$$
\begin{align*}
& {\left[\left(A^{\prime}-E\right)^{2}-E\right][h+f(t)]=} \\
& \quad=-\frac{i m R}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2} F(t) d t-\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) d t-\frac{1}{2 \pi} \int_{0}^{2 \pi} h d t . \tag{2.16}
\end{align*}
$$

Since $\operatorname{det}\left[\left(A^{\prime}-E\right)^{2}-E\right] \neq 0$, it follows that $\int_{0}^{2 \pi} h d t$ is defined uniquely, and from (2.16) we find that

$$
\begin{align*}
h=-f(t)-\left(A^{\prime}-2 E\right)\left(A^{\prime}\right)^{-1}\left[\frac{i m R}{2 \pi} \int_{0}^{2 \pi}\right. & \operatorname{ctg} \frac{t-\varphi}{2} F(t) d t+ \\
& \left.+\int_{0}^{2 \pi} f(t) d t-\frac{1}{2 \pi} \int_{0}^{2 \pi} h d t\right] \tag{2.17}
\end{align*}
$$

where

$$
A^{\prime}=2 m \mu=\left[\begin{array}{ll}
A_{1}, & A_{3} \\
A_{2}, & A_{4}
\end{array}\right], \quad \operatorname{det} A^{\prime}>0, \quad \Delta_{2}=\operatorname{det}\left(A^{\prime}-2 E\right)>0
$$

and

$$
\begin{align*}
& A_{1}=\frac{d_{1}+d_{2}+a_{1} b_{2}-c d}{d_{1}}+\lambda_{5}\left(\frac{a_{2}+c}{d_{2}}+\frac{a_{2}+b_{2}+c+d}{d_{1}}\right), \\
& A_{2}=\frac{c b_{1}-d a_{1}}{d_{1}}-\lambda_{5}\left(\frac{a_{1}+c}{d_{2}}+\frac{a_{1}+b_{1}+c+d}{d_{1}}\right), \tag{2.18}\\
& A_{3}=\frac{c b_{2}-d a_{2}}{d_{1}}-\lambda_{5}\left(\frac{a_{2}+c}{d_{2}}+\frac{a_{2}+b_{2}+c+d}{d_{1}}\right), \\
& A_{4}=\frac{d_{1}+d_{2}+a_{2} b_{1}-c d}{d_{1}}+\lambda_{5}\left(\frac{a_{1}+c}{d_{2}}+\frac{a_{1}+b_{1}+c+d}{d_{1}}\right) ;
\end{align*}
$$

here d_{1} and d_{2} are given by the formula (1.5),

$$
\begin{align*}
\Delta_{2} d_{1} d_{2}= & {\left[\Delta_{1}-2 \lambda_{5}\left(a_{1}+a_{2}+2 c\right)\right]\left(b_{1} b_{2}-d^{2}\right)-2 \lambda_{5} d_{2}\left(b_{1}+b_{2}+2 d\right) \equiv } \\
\equiv & {\left[\Delta_{1}-2 \lambda_{5}\left(a_{1}+a_{2}+2 c\right)\right]\left[\left(b_{1}-\lambda_{5}\right)\left(b_{2}-\lambda_{5}\right)-\left(d+\lambda_{5}\right)^{2}\right]-} \\
& -\lambda_{5}\left(b_{1}+b_{2}+2 d\right) \Delta_{1}>0 . \tag{2.19}
\end{align*}
$$

Since $g=f(t)=(n U)^{+}, h=(s U)^{+}$is defined from (2.17). Obviously, the function h appearing in (2.17) is Hölder continuous just as f^{\prime} and F.

Thus we have found the projections on the normal of the displacement vector and on the tangent of the displacement. Using the expressions of the above-mentioned functions and substituting them into the expression for the displacement vector, we obtain the expression for the displacement vector in the form of a Poisson type formula. This formula allows one to find formulas for the stress vector which will likewise be of the Poisson type.

Thus the solution of the third boundary value problem in a circular domain will be finally found by a Poisson type formula.

3. Solution of the Third Boundary Value Problem for an Infinite Domain with a Circular Hole

We seek for a solution in the form

$$
\begin{equation*}
\varphi(z)=\frac{m^{-1}}{2 \pi i} \int_{S} \frac{\partial \ln \sigma}{\partial s(y)}(n g+s h) d s \tag{3.1}
\end{equation*}
$$

where the values appearing in this expression have been determined in Section 2. The functions g and h will be defined below.

From (3.1) we have

$$
\begin{equation*}
\overline{\varphi^{\prime}(z)}=-\frac{m^{-1}}{2 \pi i} \int_{S} \frac{\partial}{\partial s(y)} \frac{1}{\bar{\sigma}}(n \bar{g}+s \bar{h}) d s \tag{3.2}
\end{equation*}
$$

Inserting (3.1) and (3.2) in (1.4), we obtain

$$
\begin{equation*}
U(x)=\frac{1}{2 \pi i} \int_{S} \frac{\partial \ln \sigma}{\partial s(y)}(n g+s h) d s+\frac{K}{2 \pi i} \int_{S} \frac{z}{\bar{\sigma}}(n \bar{g}+s \bar{h}) d s+\overline{\psi(z)} . \tag{3.3}
\end{equation*}
$$

Choose $\overline{\psi(z)}$ as follows:

$$
\overline{\psi(z)}=-\frac{1}{2 \pi i} \int_{S} \frac{\partial \ln \bar{\sigma}}{\partial s(y)}(n g+s h) d s-\frac{K}{2 \pi i} \int_{S} \frac{\zeta}{\bar{\sigma}}(n \bar{g}+s \bar{h}) d s
$$

Then the displacement vector $U(x)$ from (3.3) takes the form

$$
\begin{equation*}
U(x)=\frac{1}{\pi} \int_{S} \frac{\partial \theta}{\partial s}(n g+s h) d s+\frac{K}{2 \pi i} \int_{S} \frac{\partial}{\partial s(y)} \frac{\sigma}{\bar{\sigma}}(n \bar{g}+s \bar{h}) d s \tag{3.4}
\end{equation*}
$$

where K is defined by virtue of (2.4).
Instead of (3.4) we consider $U(x)$:

$$
\begin{align*}
U(x)= & \frac{1}{\pi} \int_{S}\left(\frac{\partial \theta}{\partial s(y)}-\frac{1}{2 R}\right)(n g+s h) d s+ \\
& +\frac{K}{2 \pi i} \int_{S}\left(\frac{\partial}{\partial s(y)} e^{2 i \theta}+\frac{i \zeta}{\bar{z}}\right) . \tag{3.5}
\end{align*}
$$

Obviously, if $U(x)$ defined by (3.4) is a solution of the equation (1.3), then (3.5) will likewise be a solution of (1.3).

Assume that to $x \in S$ there corresponds an angle φ which in no way is connected with the analytic vector φ. Let $z=R e^{i t}$ and $\zeta=R e^{i \tau}$. Then $2 \theta=\pi+t+\tau$. Passing to the limit as x tends to the point of the boundary S, we obtain

$$
\begin{equation*}
U^{+}(t)=-(n g+s h), \tag{3.6}
\end{equation*}
$$

where $n U^{+}=-g=f(t)$, and $f(t)$ is a complex function with the period 2π possesing certain smoothness. Thus h remains still unknown and will be defined later on.

Using the formula (1.6) for the projection on the tangent of the stress vector, we have

$$
\begin{equation*}
T U s(t)=\frac{\partial}{\partial s(t)}(-2 \varphi(t)+2 \mu U(t)) s(t) \tag{3.7}
\end{equation*}
$$

whence

$$
\begin{equation*}
(T U s(t))^{+}=\frac{\partial}{\partial s(t)}\left(-2 \varphi^{+}(t)-2(n g+s h)\right) s(t)=F(t) \tag{3.8}
\end{equation*}
$$

Since $\frac{\partial}{\partial s(t)}=\frac{1}{R} \frac{d}{d t}$, we can rewrite (3.8) as follows:

$$
\begin{equation*}
\left[-2 \frac{d \varphi+}{d t}-2 \mu \frac{d(n g+s h)}{d t}\right] s(t)=F(t) R . \tag{3.9}
\end{equation*}
$$

Taking into account our calculations performed in Section 2, we obtain

$$
\begin{align*}
\varphi^{+}(t)= & -\frac{m^{-1}}{2}(n g+s h)+\frac{m^{-1}}{4} \int_{0}^{2 \pi}(n g+s h) d \varphi- \\
& -\frac{m^{-1} i}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{\tau-t}{2} \frac{d}{d \tau}(n g+s h) d t s(t) \tag{3.10}
\end{align*}
$$

and (3.9) takes the form

$$
\begin{align*}
m^{-1}\left(-A^{\prime}+\right. & E) \frac{d}{d t}(n g+s h) s(t)- \\
& -\frac{m^{-1} i}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2} \frac{d}{d t}(n g+s h) d t \cdot s(t)=F(t) \cdot R \tag{3.11}
\end{align*}
$$

If we multiply the left-hand side of (3.11) by the matrix $m, \operatorname{det} m=\Delta_{0}>$ 0 , we will find that

$$
\begin{align*}
-\left(A^{\prime}-E\right) \frac{d}{d t} & (n g+s h) s(t)- \\
& -\frac{i}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2} \frac{d}{d \tau}(n g+s h) d \tau \cdot s(t)=m R F(t) \tag{3.12}
\end{align*}
$$

It follows from (3.11) that

$$
[s(\varphi)-s(t)] \operatorname{ctg} \frac{t-\varphi}{2}=-n(\varphi)+n(t) .
$$

Taking also into account the formulas

$$
\frac{d}{\partial \varphi}(n g+s h) s(\varphi)=g+h \quad \text { and } \quad \int_{0}^{2 \pi} n(\varphi) s(\varphi) d t=0
$$

from (3.12) we obtain

$$
\begin{array}{r}
-\left(A^{\prime}-E\right)(n g+s h)+\frac{i}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{t-\varphi}{2} \frac{d}{d t}(n g+s h) s(t) d t= \\
=m R F(t)-\frac{i}{2 \pi} \int_{0}^{2 \pi} f(t) d t \tag{3.13}
\end{array}
$$

whence

$$
\begin{array}{r}
\frac{-\left(A^{\prime}-E\right)}{2 \pi} \int_{0}^{2 \pi} \operatorname{ctg} \frac{\tau-t}{2}(g+h) d \tau-i(g+h)+\frac{i}{2 \pi} \int_{0}^{2 \pi}(g+h) d \tau= \\
=\frac{m R}{2 \pi} \int_{0}^{2 \pi} F(\tau) \operatorname{ctg} \frac{\tau-t}{2} d t . \tag{3.14}
\end{array}
$$

Multiplying (3.13) by $-\left(A^{\prime}-E\right)$ and (3.14) by $-i$, after summation we have

$$
\begin{array}{r}
{\left[\left(A^{\prime}-E\right)^{2}-E\right](g+h)-\frac{i}{2 \pi} \int_{0}^{2 \pi}(g+h) d t=-\frac{i m R}{2 \pi} \int_{0}^{2 \pi} F(\tau) \operatorname{ctg} \frac{\tau-t}{2} d \tau-} \\
-\frac{\left(A^{\prime}-E\right) R m F(x)}{2 \pi}-\frac{i\left(A^{\prime}-E\right)}{2 \pi} \int_{0}^{2 \pi} f(t) d t, \tag{3.15}
\end{array}
$$

whence

$$
\begin{array}{r}
h=f(t)-\left(A^{\prime}-2 E\right)\left(A^{\prime}\right)^{-1}\left[\frac{i}{2 \pi} \int_{0}^{2 \pi}(-f+h) d t-\frac{i m R}{2 \pi} \int_{0}^{2 \pi} F(\tau) \operatorname{ctg} \frac{\tau-t}{2} d \tau-\right. \\
\left.-\frac{i\left(A^{\prime}-E\right) R m F(t)}{2 \pi}+\frac{i\left(A^{\prime}-E\right)}{2 \pi} \int_{0}^{2 \pi} f(t) d t\right] . \tag{3.16}
\end{array}
$$

The formula (3.16) allows one to determine $h_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} h d t$.

Consequently, $h=(s U)^{+}$is determined from the formula (3.16). Having found g and h, we can obtain from (3.5) Poisson type formulas for the displacement vector. It can be easily seen that for the validity of the formula (3.16), the functions f and F must be Hölder continuous.

Thus the solution of the third boundary value problem for an infinite domain with a circular hole is found in its final form.

References

1. M. O. Basheleishvili, Analogues of the Kolosov-Muskhelishvili general representation formulas and Cauchy-Riemann conditions in the theory of elastic mixtures. Georgian Math. J. 4(1997), No. 3, 223-242.
2. M. O. Basheleishvili, Two-dimensional boundary-value problems of statics of the theory of elastic mixtures. Mem. Differential Equations Math. Phys. 6 (1995), 59105.
3. M. O. Basheleishvili and K. Svanadze, A new method of solving the basic plane boundary value problems of statics of the elastic mixtures theory. Georgian Math. J. 8(2001), No. 3, 427-446.
4. V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burchuladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. Translated from the second Russian edition. Edited by V. D. Kupradze. North-Holland Series in Applied Mathematics and Mechanics, 25. North-Holland Publishing Co., Amsterdam-New York, 1979; Russian original: Nauka, Moscow, 1976.
5. S. G. Mikhlin, Integral Equations and their Applications to some Problems of Mechanics, Mathematical Physics and Engineering. 2d ed. (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1949.
(Received 9.01.2006)
Author's address:
I. Vekua Institute of Applied Mathematics

Tbilisi State University
2, University St., Tbilisi 0143
Georgia

[^0]: EFFECTIVE SOLUTION OF THE BASIC BOUNDARY VALUE PROBLEM FOR
 HOMOGENEOUS EQUATIONS OF STATICS
 OF THE THEORY OF ELASTIC MIXTURE
 IN A CIRCULAR DOMAIN AND
 IN AN INFINITE DOMAIN
 WITH A CIRCULAR HOLE

