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Let n ≥ 2 be a positive integer, R
n be an n-dimensional Euclidean space, 0 < a < +∞,

0 < b < +∞,

Ω = [0, a]× [0, b],

f : Ω × R
n → R

n and c2 : [0, b] → R
n be continuous, and c1 : [0, a] → R

n be a
continuously differentiable vector function. In the rectangle Ω consider the nonlinear
hyperbolic equation

uxy = f
(

x, y, u
)

(1)

with the initial conditions

u(x, 0) = c1(x) for 0 ≤ x ≤ a, uy(0, y) = c2(y) for 0 ≤ y ≤ b. (2)

Global solvability of the problem (1),(2) was studied rather thoroughly (see, e.g., [1–
9] and the literature quoted therein). In the present paper new sufficient conditions of
existence and nonexistence of so called blow-up solutions to the problem (1),(2) are given.

To formulate the main results, we need to introduce the following notation and defi-
nitions.

z = (zi)
n
i=1 ∈ R

n is a vector with components z1, . . . , zn, and ‖z‖ is its Euclidean
norm.

v ·w is the scalar product of the vectors v and w ∈ R
n.

Ω0(a1, b1) = {(x, y) : 0 ≤ x < a1, 0 ≤ y ≤ b} ∪ {(x, y) : 0 ≤ x ≤ a, 0 ≤ y < b1} .

Ω0(a1, b1) is the closure of the set Ω0(a1 , b1), i.e.,

Ω0(a1 , b1) =
(

[0, a1]× [0, b]
)

∪
(

[0, a]× [0, b1]
)

.∗

Definition 1. A vector function u : Ω0(a1 , b1) → R
n

(

u : ω0(a1 , b1) → R
n
)

is called

a solution of the system (1) defined on Ω0(a1, b1) → R
n (defined on Ω0(a1 , b1) → R

n),
if it has continuous partial derivatives ux, uy , uxy and satisfies the system (1) at every
point of the mentioned set. A solution of the system (1) satisfying the initial conditions
(2) will be called a solution of the problem (1),(2).

Definition 2. A solution u of the problem (1),(2) is called continuable, if it is defined
on Ω0(a1 , b1) and either of the following three conditions hold:
(i) a1 = a, b1 ≤ b and the problem (1),(2) has a solution u defined on Ω such that

u(x, y) = u(x, y) for (x, y) ∈ Ω0(a1 , b1); (3)

(ii) a1 < a, b1 = b and the problem (1),(2) has a solution u defined on Ω and satisfying
the equality (3);
(iii) a1 < a, b1 < b and there exist numbers a0 ∈ [a1, a], b0 ∈ [b1, b] such that a0 + b0 >
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a1 + b1 and the problem (1),(2) has a solution u defined on Ω0(a0 , b0) and satisfying the
equality (3).

Definition 3. A solution u of the problem (1),(2) is called non-continuable, if either
it is defined on Ω, or it is defined on Ω0(a1 , b1), where 0 < a1 ≤ a, 0 < b1 ≤ b and all of
the three conditions (i), (ii) and (iii) of Definition 2 are violated.

Definition 4. A solution u of the problem (1),(2) defined on Ω0(a1, b1) is called a
blow-up solution, if

max{‖u(x, y)‖ : 0 ≤ y ≤ b} → +∞ for x → a1−

and

max{‖u(x, y)‖ : 0 ≤ x ≤ a} → +∞ for y → b1 − .

Let a0 > 0, b0 > 0, g : [0, a0] × [0, b0] → R+ be a Lebesgue integrable function, and
h : [0,+∞) → (0, +∞) be a continuous nondecreasing function.

Lemma 1. Let there exist a nonnegative number r0 such that

lim
t→+∞

h0(t) >

a0
∫

0

b0
∫

0

g(x, y) dx dy,

where

h0(t) =

t
∫

r0

ds

h(s)
.

Then an arbitrary continuous function v : [0, a0) × [0, b0) → R+ satisfying the integral

inequality

v(x, y) ≤ r0 +

x
∫

0

y
∫

0

g(s, t)h(v(s, t)) ds dt for (x, y) ∈ [0, a0)× [0, b0)

admits the estimate

v(x, y) ≤ h−1
0

(

x
∫

0

y
∫

0

g(s, t) ds dt
)

for (x, y) ∈ [0, a0)× [0, b0),

where h−1
0 is the function inverse to h0.

Along with the system (1) consider the hyperbolic system depending on a parameter

λ ∈ [0, 1]

uxy = λf
(

x, y, u
)

. (4)

Theorem 1. Let there exist numbers a1 ∈ (0, a], b1 ∈ (0, b] and r > 0 such that for

any λ ∈ [0, 1] an arbitrary solution u of the problem (4), (2) defined on Ω0(a1, b1) admits

the estimate

‖u(x, y)‖ ≤ r for (x, y) ∈ Ω0(a1 , b1).

Then the problem (1), (2) has at least one solution defined on Ω0(a1, b1).

Set

c(x) = c1(x) +

y
∫

0

c2(t) dt.

According to Lemma 1, Theorem 1 yields
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Corollary 1. Let there exist numbers a1 ∈ (0, a], b1 ∈ (0, b], r1 ≤ 0, r2 ≥ 0,
an integrable function g : Ω0(a1 , b1) → R+ and a continuous nondecreasing function

h : R+ → (0, +∞) such that

‖f(x, y, z)‖ ≤ g(x, y)h(‖z‖) for (x, y) ∈ Ω0(a1, b1), z ∈ R
n;

‖c(x, y)‖ ≤ r1 for (x, y) ∈ [0, a1]× [0, b]; ‖c(x, y)‖ ≤ r2 for (x, y) ∈ [0, a]× [0, b1]

and
+∞
∫

r1

ds

h(s)
>

a1
∫

0

b
∫

0

g(x, y) dx dy,

+∞
∫

r2

ds

h(s)
>

a
∫

0

b1
∫

0

g(x, y) dx dy.

Then the problem (1), (2) has at least one solution defined on Ω0(a1 , b1), and has no

blow-up solutions defined on Ω0(a1 , b1).

On the basis of Corollary 1 one can prove

Theorem 2. The problem (1), (2) has at least one non-continuable solution. Besides,

an arbitrary non-continuable solution of this problem is either defined on Ω, or is a blow-

up solution.

Theorem 2′. If f(x, y, z) is locally Lipschitz continuous in z, then the problem

(1), (2) has a unique non-continuable solution which is either defined on Ω or is a blow-

up solution.

Theorem 3. Let there exist a positive number r0, a nonzero vector l and a nonde-

creasing continuous function ϕ : [0,+∞) → (0, +∞) such that

l · f(x, y, z) ≥ ϕ(|l · z|) for (x, y) ∈ Ω, z ∈ R
n, |l · z| ≥ r0

and
+∞
∫

t

ds

Φ(s)
< +∞ for t > r0,

where

Φ(t) =
(

t
∫

r0

ϕ(s) ds
) 1

2
for t ≥ r0.

Then there exists a number r ≥ r0 such that every non-continuable solution of the

problem (1), (2) is a blow-up solution provided that

l · c(x, y) > r for (x, y) ∈ Ω.

As an example consider the problem

uixy =
n

∑

k=1

pik(x, y)|uk |
µik(x,y) + qi(x, y) (i = 1, . . . , n), (5)

ui(x, 0) = c1i(x) for 0 ≤ x ≤ a, uiy(0, y) = c2i(y) for 0 ≤ y ≤ b (i = 1, . . . , n), (6)

where µik : Ω → R, pik : Ω → R, qi : Ω → R, c2i : [0, b] → R (i, k = 1, . . . , n) are
continuous, and c1i : [0, a] → R (i = 1, . . . , n) are continuously differentiable functions.

Theorems 2′ and 3 imply

Corollary 2. Let the inequalities

µ11(x, y) > 1, µik(x, y) ≥ 1 (i, k = 1, . . . , n),

p11(x, y) > 0, p1k(x, y) ≥ 0 (k = 2, . . . , n)
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hold on the rectangle Ω. Then there exists a positive number r such that the problem

(5), (6) has a unique non-continuable solution which is a blow-up solution provided that

c11(x) +

y
∫

0

c21(t) dt ≥ r for (x, y) ∈ Ω.
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