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Let P ∈ L([a, b]; R
n×n), p ∈ L([a, b]; R

n), Qj ∈ R
n×n (j = 1, . . . ,m), qj ∈ R

n (j =
1, . . . , m), a=τ0 <τ1 < · · ·<τm≤τm+1 =b, c0∈R

n, and ` : BVC([a, b]; τ1, . . . , τm; R
n) →

R
n be a linear bounded operator such that the impulsive system

dx

dt
= P (t)x + p(t), (1)

x(τj+)− x(τj−) = Qjx(τj ) + qj (j = 1, . . . ,m) (2)

has a unique solution x0 satisfying the boundary condition `(x) = c0.
Consider sequences of matrix- and vector-functions Pk ∈ L([a, b]; R

n×n) (k = 1, 2, . . .)
and pk ∈ L([a, b]; R

n) (k = 1, 2, . . .), sequences of constant matrices Qkj ∈ R
n×n

(j = 1, . . . ,m; k = 1, 2, . . .) and constant vectors qkj ∈ R
n (j = 1, . . . , m; k =

1, 2, . . .) and c0k ∈ R
n (k = 1, 2, . . .) and a sequence of linear bounded operators

`k : BVC([a, b]; τ1, . . . , τm; R
n) → R

n (k = 1, 2, . . .).
In this paper necessary and sufficient conditions as well as effective sufficient conditions

are established for a sequence of boundary value problems

dx

dt
= Pk(t)x + pk(t), (3)

x(τj+)− x(τj−) = Qkjx(τj) + qkj (j = 1, . . . , m), (4)

`k(x) = c0k (5)

(k = 1, 2, . . .) to have a unique solution xk for sufficiently large k and

lim
k→∞

xk(t) = x0(t) (6)

uniformly on [a, b].

Analogous questions are investigated e.g. in [1], [2], [5], [6] (see the references therein,
too) for systems of ordinary differential equations and in [3], [4] for systems of generalized
ordinary differential equations.

Throughout the paper, the following notation and definitions will be used.

R =] −∞,∞[ . R
n×l is the space of all real n × l-matrices X = (xij)

n,l
i,j=1 with the

norm ‖X‖ = max
j=1,...,l

n∑
i=1

|xij |. On×l is the zero n× l-matrix.

det(X) is the determinant of a matrix X ∈ R
n×n. In is the identity n × n-matrix.

δij is the Kronecker symbol, i.e. δii = 1 and δij = 0 for i 6= j.

R
n = R

n×1 is the space of all real column n-vectors x = (xi)n
i=1.

BVC([a, b]; τ1, . . . , τm; R
n×l) is the Banach space of all continuous on the intervals

[a, τ1], ]τk, τk+1] (k = 1, . . . ,m) matrix-functions of bounded variation X : [a, b] → R
n×l

with the norm ‖X‖
S

= sup
{
‖X(t)‖ : t ∈ [a, b]

}
.
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L([a, b]; R
n×l) is the set of all measurable and Lebesgue integrable on [a, b] matrix-

functions.
C([a, b]; R

n×l) is the set of all continuous on [a, b] matrix-functions.

C̃([a, b]; R
n×l) is the set of all absolutely continuous on [a, b] matrix-functions.

C̃([a, b]\{τj}m
j=1; R

n×l) is the set of all matrix-functions restrictions of which on every

closed interval [c, d] from [a, b] \ {τj}
m
j=1 belong to C̃([c, d]; R

n×l).

On the set C([a, b]; R
n×l)×R

n×l × · · · × R
n×l

︸ ︷︷ ︸
m

×L([a, b]; R
l×k) we introduce the ope-

rator

B0(Φ, G1, . . . ,Gm,X)(t) ≡

∫ t

a

Φ(s)X(s) ds +
m∑

j=0, τj∈[a,t[

Gj

∫ t

tj

X(s) ds,

where G0 = On×n.
Under a solution of the system (1), (2) we understand a continuous from the left

vector-function x ∈ C̃([a, b] \ {τj}m
j=1; R

n×l) ∩ BVC([a, b]; τ1, . . . , τm; R
n) satisfying the

system (1) for a.e. t ∈ [a, b] and the equality (2) for every j ∈ {1, . . . , n}.
We assume everywhere that det(In + Qj) 6= 0 (j = 1, . . . ,m).
Note that this condition guarantees the unique solvability of the system (1), (2) under

the Cauchy condition x(t0) = c0.

Definition 1. We say that a sequence (Pk, pk, {Qkj}
m
j=1, {qkj}

m
j=1, `k) (k = 1, 2, . . .)

belongs to the set S(P, p, {Qj}m
j=1, {qj}m

j=1, `) if for every c0 ∈ R
n and ck ∈ R

n (k =

1, 2, . . .) satisfying the condition lim
k→∞

ck = c0 the problem (3)–(5) has a unique solution

xk for any sufficiently large k and the condition (6) holds uniformly on [a, b].

Theorem 1. Let

lim
k→∞

`k(y) = `(y) for y ∈ BVC([a, b]; τ1, . . . , τm; R
n). (7)

Then
(
(Pk, pk, {Qkj}

m
j=1, {qkj}

m
j=1, `k)

)
∞

k=1
∈ S(P, p, {Qj}

m
j=1, {qj}

m
j=1, `) (8)

if and only if there exist sequences of matrix-functions Φ, Φk ∈ C̃([a, b]; R
n×n) (k =

1, 2, . . .) and constant matrices Gj , Gkj ∈ R
n×n, G0 = Gk0 = On×n (j = 0, . . . , m;

k = 1, 2, . . .) such that

lim
k→∞

sup
m∑

j=0

∫ τj+1

τj

∥∥∥Φ′k(t) +
(
Φk(t) +

j∑

i=0

Qkj

)
Pk(t)

∥∥∥ dt < ∞, (9)

inf
{∣∣∣det

(
Φ(t) +

j∑

i=0

Gi

)∣∣∣ : t ∈ ]τj , τj+1]
}

> 0 (j = 0, . . . , m), (10)

lim
k→∞

Gkj = Gj (j = 1, . . . ,m), (11)

lim
k→∞

Qkj = Qj , lim
k→∞

qkj = qj (j = 1, . . . ,m), (12)

and the conditions

lim
k→∞

Φk(t) = Φ(t), (13)

lim
k→∞

B0(Φk ,Gk1, . . . ,Gkm, Pk)(t) = B0(Φ, G1, . . . ,Gm, P )(t), (14)

lim
k→∞

B0(Φk ,Gk1, . . . ,Gkm, pk)(t) = B0(Φ, G1, . . . , Gm, p)(t) (15)

are fulfilled uniformly on [a, b].
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Remark 1. The conditions (14) and (15) are fulfilled uniformly on [a, b] if and only if
the conditions

lim
k→∞

∫ t

τj

(
Φk(s) +

j∑

i=0

Gki

)
Pk(s) ds =

∫ t

τj

(
Φ(s) +

j∑

i=0

Gi

)
P (s) ds,

lim
k→∞

∫ t

τj

(
Φk(s) +

j∑

i=0

Gki

)
pk(s) ds =

∫ t

τj

(
Φ(s) +

j∑

i=0

Gi

)
p(s) ds,

respectively, are fulfilled uniformly on [τj , τj+1] for every j ∈ {0, . . . ,m}.

Corollary 1. Let the conditions (7) and (12) hold. Let, moreover, there exist matrix-

functions Φ, Φk ∈ C̃([a, b]; R
n×n) (k = 1, 2, . . .) such that the conditions (9) and

inf
{∣∣det

(
Φ(t) + (1− δ0j)jIn

)∣∣ : t ∈ ]τj , τj+1]
}

> 0 (j = 0, . . . ,m)

hold and the conditions (13),

lim
k→∞

∫ t

τj

(
Φk(s) + (1 − δ0j)jIn

)
Pk(s) ds =

∫ t

τj

(
Φ(s) + (1− δ0j)jIn

)
P (s) ds

and

lim
k→∞

∫ t

τj

(
Φk(s) + (1− δ0j )jIn

)
pk(s) ds =

∫ t

τj

(
Φ(s) + (1− δ0j)jIn

)
p(s) ds

be fulfilled uniformly on [τj , τj+1] for every j ∈ {0, . . . ,m}. Then the condition (8) holds.

Corollary 2. Let the conditions (7) and (12) hold. Let, moreover, there exist matrix-

functions Φ, Φk ∈ C̃([a, b]; R
n×n) (k = 1, 2, . . .) such that

lim
k→∞

sup

∫ b

a

∥∥Φ′k(t) + Φk(t)Pk(t)
∥∥ dt < ∞, inf

{∣∣ det(Φ(t))
∣∣ : t ∈ [a, b]

}
> 0

and the conditions (13) and

lim
k→∞

∫ t

a

Φk(s)Pk(s) ds =

∫ t

a

Φ(s)P (s) ds, lim
k→∞

∫ t

a

Φk(s)pk(s) ds =

∫ t

a

Φ(s)p(s) ds

are fulfilled uniformly on [a, b]. Then the condition (8) holds.

Corollary 3. Let the conditions (7), (11) and (12) hold. Let, moreover, there exist

constant matrices Gj , Gkj ∈ R
n×n, G0 = Gk0 = On×n (j = 0, . . . , m; k = 1, 2, . . .) such

that

lim
k→∞

sup
m∑

j=0

∫ τj+1

τj

∥∥∥
(
In +

j∑

i=0

Qki

)
Pk(t)

∥∥∥ dt < ∞, (16)

det
(
In +

j∑

i=1

Gi

)
6= 0 (j = 1, . . . ,m)

and the conditions

lim
k→∞

∫ t

τj

(
In +

j∑

i=0

Gki

)
Pk(s) ds =

∫ t

τj

(
In +

j∑

i=0

Gi

)
P (s) ds,

lim
k→∞

∫ t

τj

(
In +

j∑

i=0

Gki

)
pk(s) ds =

∫ t

τj

(
In +

j∑

i=0

Gi

)
p(s) ds

are fulfilled uniformly on [τj , τj+1] for every j ∈ {0, . . . , m}. Then the condition (8)
holds.
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Corollary 4. Let the conditions (7), (12) and (16) hold and the conditions

lim
k→∞

∫ t

a

Pk(s) ds =

∫ t

a

P (s) ds, lim
k→∞

∫ t

a

pk(s) ds =

∫ t

a

p(s) ds (17)

be fulfilled uniformly on [a, b]. Then the condition (8) holds.

Corollary 5. Let the conditions (7), (12), and (16) hold and the condition (17) be

fulfilled uniformly on [a, b]. Then the condition (8) holds.

Remark 2. In Theorem 1 and Corollaries 1–5 we can assume without loss of generality
that Φ(t) ≡ In and Gj = On×n (j = 1, . . . ,m) everywhere they appear. So that the
condition (10) in Theorem 1 as well as the analogous conditions in the corollaries are
valid automatically.

These results follow from analogous results for a system of so-called generalized or-
dinary differential equations contained in [4] because the system (1), (2) is its particular
case.
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