M. Ashordia and G. Ekhvaia

CRITERIA OF CORRECTNESS OF LINEAR BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF IMPULSIVE EQUATIONS WITH FINITE AND FIXED POINTS OF IMPULSES ACTIONS

(Reported on October 3, 2005)
Let $P \in L\left([a, b] ; \mathbb{R}^{n \times n}\right), p \in L\left([a, b] ; \mathbb{R}^{n}\right), Q_{j} \in \mathbb{R}^{n \times n}(j=1, \ldots, m), q_{j} \in \mathbb{R}^{n}(j=$ $1, \ldots, m), a=\tau_{0}<\tau_{1}<\cdots<\tau_{m} \leq \tau_{m+1}=b, c_{0} \in \mathbb{R}^{n}$, and $\ell: \operatorname{BVC}\left([a, b] ; \tau_{1}, \ldots, \tau_{m} ; \mathbb{R}^{n}\right) \rightarrow$ \mathbb{R}^{n} be a linear bounded operator such that the impulsive system

$$
\begin{align*}
\frac{d x}{d t} & =P(t) x+p(t) \tag{1}\\
x\left(\tau_{j}+\right)-x\left(\tau_{j}-\right) & =Q_{j} x\left(\tau_{j}\right)+q_{j} \quad(j=1, \ldots, m) \tag{2}
\end{align*}
$$

has a unique solution x_{0} satisfying the boundary condition $\ell(x)=c_{0}$.
Consider sequences of matrix- and vector-functions $P_{k} \in L\left([a, b] ; \mathbb{R}^{n \times n}\right)(k=1,2, \ldots)$ and $p_{k} \in L\left([a, b] ; \mathbb{R}^{n}\right)(k=1,2, \ldots)$, sequences of constant matrices $Q_{k j} \in \mathbb{R}^{n \times n}$ $(j=1, \ldots, m ; k=1,2, \ldots)$ and constant vectors $q_{k j} \in \mathbb{R}^{n}(j=1, \ldots, m ; k=$ $1,2, \ldots)$ and $c_{0 k} \in \mathbb{R}^{n}(k=1,2, \ldots)$ and a sequence of linear bounded operators $\ell_{k}: \operatorname{BVC}\left([a, b] ; \tau_{1}, \ldots, \tau_{m} ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}(k=1,2, \ldots)$.

In this paper necessary and sufficient conditions as well as effective sufficient conditions are established for a sequence of boundary value problems

$$
\begin{align*}
\frac{d x}{d t} & =P_{k}(t) x+p_{k}(t) \tag{3}\\
x\left(\tau_{j}+\right)-x\left(\tau_{j}-\right) & =Q_{k j} x\left(\tau_{j}\right)+q_{k j} \quad(j=1, \ldots, m) \tag{4}\\
\ell_{k}(x) & =c_{0 k} \tag{5}
\end{align*}
$$

$(k=1,2, \ldots)$ to have a unique solution x_{k} for sufficiently large k and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} x_{k}(t)=x_{0}(t) \tag{6}
\end{equation*}
$$

uniformly on $[a, b]$.
Analogous questions are investigated e.g. in [1], [2], [5], [6] (see the references therein, too) for systems of ordinary differential equations and in [3], [4] for systems of generalized ordinary differential equations.

Throughout the paper, the following notation and definitions will be used.
$\mathbb{R}=]-\infty, \infty\left[. \mathbb{R}^{n \times l}\right.$ is the space of all real $n \times l$-matrices $X=\left(x_{i j}\right)_{i, j=1}^{n, l}$ with the norm $\|X\|=\max _{j=1, \ldots, l} \sum_{i=1}^{n}\left|x_{i j}\right| . O_{n \times l}$ is the zero $n \times l$-matrix.
$\operatorname{det}(X)$ is the determinant of a matrix $X \in \mathbb{R}^{n \times n}$. I_{n} is the identity $n \times n$-matrix. $\delta_{i j}$ is the Kronecker symbol, i.e. $\delta_{i i}=1$ and $\delta_{i j}=0$ for $i \neq j$.
$\mathbb{R}^{n}=\mathbb{R}^{n \times 1}$ is the space of all real column n-vectors $x=\left(x_{i}\right)_{i=1}^{n}$.
$\operatorname{BVC}\left([a, b] ; \tau_{1}, \ldots, \tau_{m} ; \mathbb{R}^{n \times l}\right)$ is the Banach space of all continuous on the intervals $\left.\left.\left[a, \tau_{1}\right],\right] \tau_{k}, \tau_{k+1}\right](k=1, \ldots, m)$ matrix-functions of bounded variation $X:[a, b] \rightarrow \mathbb{R}^{n \times l}$ with the norm $\|X\|_{S}=\sup \{\|X(t)\|: t \in[a, b]\}$.

[^0]$L\left([a, b] ; \mathbb{R}^{n \times l}\right)$ is the set of all measurable and Lebesgue integrable on $[a, b]$ matrixfunctions.
$\underset{\sim}{C}\left([a, b] ; \mathbb{R}^{n \times l}\right)$ is the set of all continuous on $[a, b]$ matrix-functions.
$\widetilde{C}\left([a, b] ; \mathbb{R}^{n \times l}\right)$ is the set of all absolutely continuous on $[a, b]$ matrix-functions.
$\widetilde{C}\left([a, b] \backslash\left\{\tau_{j}\right\}_{j=1}^{m} ; \mathbb{R}^{n \times l}\right)$ is the set of all matrix-functions restrictions of which on every closed interval $[c, d]$ from $[a, b] \backslash\left\{\tau_{j}\right\}_{j=1}^{m}$ belong to $\widetilde{C}\left([c, d] ; \mathbb{R}^{n \times l}\right)$.

On the set $C\left([a, b] ; \mathbb{R}^{n \times l}\right) \times \underbrace{\mathbb{R}^{n \times l} \times \cdots \times \mathbb{R}^{n \times l}}_{m} \times L\left([a, b] ; \mathbb{R}^{l \times k}\right)$ we introduce the operator

$$
\mathcal{B}_{0}\left(\Phi, G_{1}, \ldots, G_{m}, X\right)(t) \equiv \int_{a}^{t} \Phi(s) X(s) d s+\sum_{j=0, \tau_{j} \in[a, t[}^{m} G_{j} \int_{t_{j}}^{t} X(s) d s
$$

where $G_{0}=O_{n \times n}$.
Under a solution of the system (1), (2) we understand a continuous from the left vector-function $x \in \widetilde{C}\left([a, b] \backslash\left\{\tau_{j}\right\}_{j=1}^{m} ; \mathbb{R}^{n \times l}\right) \cap \operatorname{BVC}\left([a, b] ; \tau_{1}, \ldots, \tau_{m} ; \mathbb{R}^{n}\right)$ satisfying the system (1) for a.e. $t \in[a, b]$ and the equality (2) for every $j \in\{1, \ldots, n\}$.

We assume everywhere that $\operatorname{det}\left(I_{n}+Q_{j}\right) \neq 0(j=1, \ldots, m)$.
Note that this condition guarantees the unique solvability of the system (1), (2) under the Cauchy condition $x\left(t_{0}\right)=c_{0}$.

Definition 1. We say that a sequence $\left(P_{k}, p_{k},\left\{Q_{k j}\right\}_{j=1}^{m},\left\{q_{k j}\right\}_{j=1}^{m}, \ell_{k}\right)(k=1,2, \ldots)$ belongs to the set $S\left(P, p,\left\{Q_{j}\right\}_{j=1}^{m},\left\{q_{j}\right\}_{j=1}^{m}, \ell\right)$ if for every $c_{0} \in \mathbb{R}^{n}$ and $c_{k} \in \mathbb{R}^{n}(k=$ $1,2, \ldots$) satisfying the condition $\lim _{k \rightarrow \infty} c_{k}=c_{0}$ the problem (3)-(5) has a unique solution x_{k} for any sufficiently large k and the condition (6) holds uniformly on [a, b].

Theorem 1. Let

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \ell_{k}(y)=\ell(y) \text { for } y \in \operatorname{BVC}\left([a, b] ; \tau_{1}, \ldots, \tau_{m} ; \mathbb{R}^{n}\right) \tag{7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\left(P_{k}, p_{k},\left\{Q_{k j}\right\}_{j=1}^{m},\left\{q_{k j}\right\}_{j=1}^{m}, \ell_{k}\right)\right)_{k=1}^{\infty} \in S\left(P, p,\left\{Q_{j}\right\}_{j=1}^{m},\left\{q_{j}\right\}_{j=1}^{m}, \ell\right) \tag{8}
\end{equation*}
$$

if and only if there exist sequences of matrix-functions $\Phi, \Phi_{k} \in \widetilde{C}\left([a, b] ; \mathbb{R}^{n \times n}\right)(k=$ $1,2, \ldots)$ and constant matrices $G_{j}, G_{k j} \in \mathbb{R}^{n \times n}, G_{0}=G_{k 0}=O_{n \times n}(j=0, \ldots, m$; $k=1,2, \ldots$) such that

$$
\begin{gather*}
\lim _{k \rightarrow \infty} \sup \sum_{j=0}^{m} \int_{\tau_{j}}^{\tau_{j+1}}\left\|\Phi_{k}^{\prime}(t)+\left(\Phi_{k}(t)+\sum_{i=0}^{j} Q_{k j}\right) P_{k}(t)\right\| d t<\infty \tag{9}\\
\left.\left.\inf \left\{\left|\operatorname{det}\left(\Phi(t)+\sum_{i=0}^{j} G_{i}\right)\right|: t \in\right] \tau_{j}, \tau_{j+1}\right]\right\}>0(j=0, \ldots, m) \tag{10}\\
\lim _{k \rightarrow \infty} G_{k j}=G_{j}(j=1, \ldots, m) \tag{11}\\
\lim _{k \rightarrow \infty} Q_{k j}=Q_{j}, \quad \lim _{k \rightarrow \infty} q_{k j}=q_{j} \quad(j=1, \ldots, m) \tag{12}
\end{gather*}
$$

and the conditions

$$
\begin{align*}
\lim _{k \rightarrow \infty} \Phi_{k}(t) & =\Phi(t) \tag{13}\\
\lim _{k \rightarrow \infty} \mathcal{B}_{0}\left(\Phi_{k}, G_{k 1}, \ldots, G_{k m}, P_{k}\right)(t) & =\mathcal{B}_{0}\left(\Phi, G_{1}, \ldots, G_{m}, P\right)(t) \tag{14}\\
\lim _{k \rightarrow \infty} \mathcal{B}_{0}\left(\Phi_{k}, G_{k 1}, \ldots, G_{k m}, p_{k}\right)(t) & =\mathcal{B}_{0}\left(\Phi, G_{1}, \ldots, G_{m}, p\right)(t) \tag{15}
\end{align*}
$$

are fulfilled uniformly on $[a, b]$.

Remark 1. The conditions (14) and (15) are fulfilled uniformly on $[a, b]$ if and only if the conditions

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(\Phi_{k}(s)+\sum_{i=0}^{j} G_{k i}\right) P_{k}(s) d s & =\int_{\tau_{j}}^{t}\left(\Phi(s)+\sum_{i=0}^{j} G_{i}\right) P(s) d s, \\
\lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(\Phi_{k}(s)+\sum_{i=0}^{j} G_{k i}\right) p_{k}(s) d s & =\int_{\tau_{j}}^{t}\left(\Phi(s)+\sum_{i=0}^{j} G_{i}\right) p(s) d s,
\end{aligned}
$$

respectively, are fulfilled uniformly on $\left[\tau_{j}, \tau_{j+1}\right]$ for every $j \in\{0, \ldots, m\}$.
Corollary 1. Let the conditions (7) and (12) hold. Let, moreover, there exist matrixfunctions $\Phi, \Phi_{k} \in \widetilde{C}\left([a, b] ; \mathbb{R}^{n \times n}\right)(k=1,2, \ldots)$ such that the conditions (9) and

$$
\left.\left.\inf \left\{\left|\operatorname{det}\left(\Phi(t)+\left(1-\delta_{0 j}\right) j I_{n}\right)\right|: t \in\right] \tau_{j}, \tau_{j+1}\right]\right\}>0(j=0, \ldots, m)
$$

hold and the conditions (13),

$$
\lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(\Phi_{k}(s)+\left(1-\delta_{0 j}\right) j I_{n}\right) P_{k}(s) d s=\int_{\tau_{j}}^{t}\left(\Phi(s)+\left(1-\delta_{0 j}\right) j I_{n}\right) P(s) d s
$$

and

$$
\lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(\Phi_{k}(s)+\left(1-\delta_{0 j}\right) j I_{n}\right) p_{k}(s) d s=\int_{\tau_{j}}^{t}\left(\Phi(s)+\left(1-\delta_{0 j}\right) j I_{n}\right) p(s) d s
$$

be fulfilled uniformly on $\left[\tau_{j}, \tau_{j+1}\right]$ for every $j \in\{0, \ldots, m\}$. Then the condition (8) holds.
Corollary 2. Let the conditions (7) and (12) hold. Let, moreover, there exist matrixfunctions $\Phi, \Phi_{k} \in \widetilde{C}\left([a, b] ; \mathbb{R}^{n \times n}\right)(k=1,2, \ldots)$ such that

$$
\lim _{k \rightarrow \infty} \sup \int_{a}^{b}\left\|\Phi_{k}^{\prime}(t)+\Phi_{k}(t) P_{k}(t)\right\| d t<\infty, \quad \inf \{|\operatorname{det}(\Phi(t))|: t \in[a, b]\}>0
$$

and the conditions (13) and

$$
\lim _{k \rightarrow \infty} \int_{a}^{t} \Phi_{k}(s) P_{k}(s) d s=\int_{a}^{t} \Phi(s) P(s) d s, \quad \lim _{k \rightarrow \infty} \int_{a}^{t} \Phi_{k}(s) p_{k}(s) d s=\int_{a}^{t} \Phi(s) p(s) d s
$$

are fulfilled uniformly on $[a, b]$. Then the condition (8) holds.
Corollary 3. Let the conditions (7), (11) and (12) hold. Let, moreover, there exist constant matrices $G_{j}, G_{k j} \in \mathbb{R}^{n \times n}, G_{0}=G_{k 0}=O_{n \times n}(j=0, \ldots, m ; k=1,2, \ldots)$ such that

$$
\begin{gather*}
\lim _{k \rightarrow \infty} \sup \sum_{j=0}^{m} \int_{\tau_{j}}^{\tau_{j+1}}\left\|\left(I_{n}+\sum_{i=0}^{j} Q_{k i}\right) P_{k}(t)\right\| d t<\infty \tag{16}\\
\operatorname{det}\left(I_{n}+\sum_{i=1}^{j} G_{i}\right) \neq 0(j=1, \ldots, m)
\end{gather*}
$$

and the conditions

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(I_{n}+\sum_{i=0}^{j} G_{k i}\right) P_{k}(s) d s & =\int_{\tau_{j}}^{t}\left(I_{n}+\sum_{i=0}^{j} G_{i}\right) P(s) d s \\
\lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(I_{n}+\sum_{i=0}^{j} G_{k i}\right) p_{k}(s) d s & =\int_{\tau_{j}}^{t}\left(I_{n}+\sum_{i=0}^{j} G_{i}\right) p(s) d s
\end{aligned}
$$

are fulfilled uniformly on $\left[\tau_{j}, \tau_{j+1}\right]$ for every $j \in\{0, \ldots, m\}$. Then the condition (8) holds.

Corollary 4. Let the conditions (7), (12) and (16) hold and the conditions

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{a}^{t} P_{k}(s) d s=\int_{a}^{t} P(s) d s, \quad \lim _{k \rightarrow \infty} \int_{a}^{t} p_{k}(s) d s=\int_{a}^{t} p(s) d s \tag{17}
\end{equation*}
$$

be fulfilled uniformly on $[a, b]$. Then the condition (8) holds.
Corollary 5. Let the conditions (7), (12), and (16) hold and the condition (17) be fulfilled uniformly on $[a, b]$. Then the condition (8) holds.

Remark 2. In Theorem 1 and Corollaries 1-5 we can assume without loss of generality that $\Phi(t) \equiv I_{n}$ and $G_{j}=O_{n \times n}(j=1, \ldots, m)$ everywhere they appear. So that the condition (10) in Theorem 1 as well as the analogous conditions in the corollaries are valid automatically.

These results follow from analogous results for a system of so-called generalized ordinary differential equations contained in [4] because the system (1), (2) is its particular case.

References

1. M. Ashordia, On the stability of solutions of linear boundary value problems for a system of ordinary differential equations. Georgian Math. J. 1(1994), No. 2, 115-126.
2. M. Ashordia, Criteria of correctness of linear boundary value problems for systems of ordinary differential equations. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. $15(2000)$, No. 1-3, 40-43.
3. M. Ashordia, On the correctness of linear boundary value problems for systems of generalized ordinary differential equations. Georgian Math. J. 1(1994), No. 4, 343351.
4. M. Ashordia, Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czechoslovak Math. J. 46(121)(1996), No. 3, 385-404.
5. I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Russian), 3-103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987; English transl.: J. Soviet Math. 43(1988), No. 2, 2259-2339.
6. I. Kiguradzze, The initial value problem and boundary value problems for systems of ordinary differential equations, Vol. I. Linear theory. (Russian) Metsniereba, Tbilisi, 1997.

Authors' Addresses:

M. Ashordia

I. Vekua Institute of Applied Mathematics
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0143
Georgia
E-mail: ashord@rmi.acnet.ge
M. Ashordia and G. Ekhvaia

Sukhumi Branch of I. Javakhishvili Tbilisi State University
12, Jikia St., Tbilisi 0186
Georgia

[^0]: 2000 Mathematics Subject Classification. 34B37.
 Key words and phrases. Linear impulsive systems, linear boundary value problems, criteria of correctness.

