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NONUNIFORM NONRESONANCE

AT THE FIRST EIGENVALUE OF THE

ONE-DIMENSIONAL SINGULAR p-LAPLACIAN



Abstract. In this paper, general existence theorems are presented for
the singular equation

{

− (ϕp (u′))
′
= f (t, u, u′) , 0 < t < 1,

u (0) = u (1) = 0.

Throughout, our nonlinearity is allowed to change sign. The singularity
may occur at u = 0, t = 0, t = 1 and f may be nonuniform nonresonant at
the first eigenvalue.
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1. Introduction

In this paper, we study the singular boundary value problem
{

− (ϕp (u′))
′
= f (t, u, u′) , 0 < t < 1,

u (0) = u (1) = 0,
(1.1)

where ϕp (s) = |s|p−2
s, p > 1. The singularity may occur at u = 0, t = 0

and t = 1, and the function f is allowed to change sign and is nonuniform
nonresonant at the first eigenvalue. Note that f may not be a Carathéodory
function because of the singular behavior of the u variable. In the literature
[8, 9, 12] , (1.1) has been discussed extensively when f (t, u, v) ≡ f (t, u) and
f is positive, i.e., f : (0, 1)× (0,∞) → (0,∞) . Recently [1], [13] (1.1) was
discussed when f (t, u, v) ≡ f (t, u) and f : (0, 1) × (0,∞) → R. The case
when f depends on the u′ variable has received very little attention in the
literature, see [2], [3], [7] and references therein. In [14], the author studied
nonuniform nonresonance at the first eigenvalue of the p−Laplacian when
the function f is not singular. This paper presents a new and very general
result for (1.1) when f : (0, 1) × (0,∞) × R → R and f is nonuniform
nonresonant at the first eigenvalue.

The nonlinear eigenvalue problem associated with the problem (1.1) is
{

− (ϕp (u′))
′
= λϕp (u) , 0 < t < 1,

u (0) = u (1) = 0.
(1.2)

It is well-known (see [14]) that (1.2) has eigenvalues

0 < λ1 < λ2 < · · · < λn < · · · as n →∞.

In what follows, we will use ‖·‖p to denote the Lp-norm defined by

‖u‖p =

(

1
∫

0

|u (t)|
p
dt

)
1
p

.

The C [0, 1]-norm is
‖u‖∞ = sup

0≤t≤1
|u (t)| .

We present some results from literature which will be needed in Section
2. Let W = W

1,p
0 ([0, 1] , R) be the Sobolev space. The following lemma is

a result of embedding inequalities.

Lemma 1.1 ([14]). (1) We have

‖u‖p ≤ λ
− 1

p

1 ‖u′‖p for ∀u ∈ W. (1.3)

Moreover, the equality in (1.3) holds if and only if u is an eigenfunction

corresponding to the eigenvalue λ1.

(2)

‖u‖∞ ≤

(

1

2

)1/q

‖u′‖p for ∀u ∈ W, (1.4)
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where 1
p + 1

q = 1.

Lemma 1.2 ([14]). Suppose that a ∈ C [0, 1] satisfies the condition:

a (t) < ‖a‖∞

on a subset of [0, 1] of positive measure. Then there exists ε > 0 such that

1
∫

0

a (t) |u (t)|
p
dt ≤

(

‖a‖∞ λ−1
1 − ε

)

‖u′‖
p
p for all u ∈ W. (1.5)

Lemma 1.3 ([7]). Let en =
[

1
2n+1 , 1

]

(n ≥ 1) , e0 = ∅. If there exists

a sequence {εn} ↓ 0 and εn > 0 for n ≥ 1, then there exists a function

λ ∈ C1 [0, 1] such that

(1) ϕp (λ′) ∈ C1 [0, 1] and max
0≤t≤1

∣

∣(ϕp (λ′ (t)))
′∣
∣ > 0, and

(2) λ (0) = λ (1) = 0 and 0 < λ (t) ≤ εn, t ∈ en\en−1, n ≥ 1.

2. Main Existence Theorem

We present a general existence theorem for the BVP (1.1) .

Theorem 2.1. Let n0 ∈ {1, 2, . . . } be fixed and suppose the following

conditions are satisfied:

f : (0, 1)× (0,∞)×R → R is continuous, (2.1)















let n ∈ {n0, n0 + 1, · · · } ≡ N0 and associated with each n ∈ N0

we have a constant ρn such that {ρn} is a nondecreasing

sequence with limn→∞ ρn = 0 and

for 1
2n+1 ≤ t ≤ 1 we have f (t, ρn, 0) ≥ 0,

(2.2)







































there exists α ∈ C [0, 1] , α (0) = 0 = α (1) , α > 0 on (0, 1) ,

such that if h : (0, 1)× (0,∞)×R → R

is any continuous function with

h (t, u, v) ≥ f (t, u, v) , ∀ (t, u, v) ∈ (0, 1]× (0,∞)×R

and if u ∈ C1[0, 1], ϕ(u′) ∈ C1(0, 1), u (t) > 0 for t ∈ [0, 1] ,
is any solution of

− (ϕp (u′))′ = h (t, u, u′) , then u (t) ≥ α (t) for t ∈ [0, 1] ,

(2.3)































for any ε > 0 there exist γ, τ with 1 ≤ γ < p, 0 ≤ τ < p− 1,

functions a, b ∈ C [0, 1] with a ≥ 0, b ≥ 0, on [0, 1] ,

functions c ∈ L1 [0, 1] , d ∈ L
p

p−τ [0, 1] , hε ∈ L1 [0, 1]
with c ≥ 0, d ≥ 0, hε ≥ 0 a.e. on [0, 1] , such that

uf (t, u, v) ≤ a (t) up + b (t) u |v|
p−1

+ c (t) uγ+
+d (t) u |v|

τ
+ uhε (t) for t ∈ (0, 1) , u ≥ ε and v ∈ R,

(2.4)
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either

(i) a (t) < |a|∞ on a subset of [0, 1] of positive measure

and a
(

1
2n0+1

)

< ‖a‖∞
or

(ii) b (t) < |b|∞ on a subset of [0, 1] of positive measure

and b
(

1
2n0+1

)

< ‖b‖∞ ,

(2.5)

λ−1
1 ‖a‖∞ + λ

− 1
p

1 ‖b‖∞ ≤ 1 (2.6)

and






















for any ε > 0, there exist δ, β, with 1 ≤ δ < p, 0 ≤ β < p,

functions a0 ∈ L1 [0, 1] , b0 ∈ L
p

p−β and ηε ∈ L1[0, 1] with

a0 ≥ 0, b0 ≥ 0, ηε ≥ 0 a.e. on [0, 1] , such that

|f (t, u, v)| ≤ a0 (t) uδ + b0 (t) |v|
β

+ ηε (t)
for t ∈ (0, 1) , u ≥ ε and v ∈ R.

(2.7)

Then (1.1) has a solution u ∈ C [0, 1] with u (t) ≥ α (t) for t ∈ [0, 1] (here
α is given in (2.3)).

Proof. For n = n0, n0 + 1, . . . let

en =

[

1

2n+1
, 1

]

and θn (t) = max

{

1

2n+1
, t

}

, 0 ≤ t ≤ 1,

and

fn (t, x, y) = max {f (θn (t) , x, y) , f (t, x, y)} .

Next we define inductively

gn0
(t, x, y) = fn0

(t, x, y)

and

gn (t, x, y) = min {fn0
(t, x, y) , . . . , fn (t, x, y)} , n = n0 + 1, n0 + 2, . . . .

Notice

f (t, x, y) ≤ · · · ≤ gn+1 (t, x, y) ≤ gn (t, x, y) ≤ · · · ≤ gn0
(t, x, y)

for (t, x, y) ∈ (0, 1]× (0,∞)×R and

gn (t, x, y) = f (t, x, y) for (t, x, y) ∈ en × (0,∞)×R.

We begin with the boundary value problem
{

− (ϕp (u′))
′
= g∗n0

(t, u, u′) , 0 < t < 1,

u (0) = u (1) = ρn0
,

(2.8)

where

g∗n0
(t, u, v) =

{

gn0
(t, ρn0

, v) + r (ρn0
− u) , u ≤ ρn0

,

gn0
(t, u, v) , ρn0

≤ u,
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with r : R → [−1, 1] the radial retraction defined by

r (u) =

{

u, |u| ≤ 1,
u
|u| , |u| > 1.

To show that (2.8) has a solution, we consider [7, 11] the family of problems
{

− (ϕp (u′))
′
= λg∗n0

(t, u, u′) , 0 < t < 1,

u (0) = u (1) = ρn0
,

(2.9)λ

where 0 < λ < 1. Let u be any solution of (2.9)λ for some 0 < λ ≤ 1. We
first show

u (t) ≥ ρn0
, t ∈ [0, 1] . (2.10)

Suppose (2.10) is not true. Then there exists a t0 ∈ (0, 1) with u (t0) < ρn0
,

u′ (t0) = 0 and

(ϕp (u′))
′
(t0) ≥ 0.

However note

(ϕp (u′))
′
(t0) = −λ [gn0

(t0, ρn0
, u′ (t0)) + r (ρn0

− u (t0))] =

= −λ [gn0
(t0, ρn0

, 0) + r (ρn0
− u (t0))] .

We need to discuss two cases, namely t0 ∈ [ 1
2n0+1 , 1) and t0 ∈

(

0, 1
2n0+1

)

.

Case 1. t0 ∈
[

1
2n0+1 , 1

)

.

Then since gn0
(t0, u, v) = f (t0, u, v) for (u, v) ∈ (0,∞) × R (note t0 ∈

en0
), we have

(

ϕp

(

u′n0

))′
(t0) = −λf (t0, ρn0

, 0)− r (ρn0
− u (t0)) < 0,

a contradiction.

Case 2. t0 ∈
(

0, 1
2n0+1

)

.

Then since

gn0
(t0, u, v) = max

{

f

(

1

2n0+1
, u, v

)

, f (t0, u, v)

}

,

we have

gn0
(t0, u, v) ≥ f (t0, u, v) and gn0

(t0, u, v) ≥ f

(

1

2n0+1
, u, v

)

for (u, v) ∈ (0,∞)×R. Thus
(

ϕp

(

u′n0

))′
(t0) = −λ [gn0

(t0, ρn0
, 0) + r (ρn0

− u (t0))] ≤

≤ −λ

[

f

(

1

2n0+1
, ρn0

, 0

)

+ r (ρn0
− u (t0))

]

< 0,

a contradiction.
Consequently (2.10) is true. Next we show

un0
(t) ≤ Mn0

for t ∈ [0, 1] , (2.11)
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where Mn0
(≥ ρn0

) is a predetermined constant (see (2.15)). Notice that
(2.7) (with ε = ρn0

) guarantees the existence of a0, b0, ηε, δ and β (as
described in (2.7)) with

∣

∣g∗n0
(t, u (t) , u′ (t))

∣

∣ ≤ φ1 (t) |u (t)|
δ
+ φ2 (t) |u′ (t)|

β
+ φ3 (t) (2.12)

for t ∈ (0, 1) ; here

φ1 (t) = max {a0 (t) , a0 (θn0
(t))} , φ2 (t) = max {b0 (t) , b0 (θn0

(t))}

and
φ3 (t) = max {ηε (t) , ηε (θn0

(t))} ;

notice that (2.12) is immediate since for t ∈ (0, 1) we have

gn0
(t, u (t) , u′ (t)) = max {f (θn0

(t)) , u (t) , u′ (t) , f (t, u (t) , u′ (t))} .

Next notice that (2.4) (with ε = ρn0
) guarantees the existence of a, b, c, d,

hε, γ and τ (as described in (2.4)) with

u (t) g∗n0
(t, u (t) , u′ (t)) ≤ φ4 (t) |u (t)|

p
+ φ5 (t) |u (t)| |u′ (t)|+

+ φ6 (t) |u|
γ

+ φ7 (t) |u| |u′|
τ

+ uφ8 (t)

for t ∈ (0, 1) ; here

φ4 (t) = max {a (t) , a (θn0
(t))} , φ5 (t) = max {b (t) , b (θn0

(t))} ,

φ6 (t) = max {c (t) , c (θn0
(t))} , φ7 (t) = max {d (t) , d (θn0

(t))}

and
φ8 (t) = max {hε (t) , hε (θn0

(t))} .

Let v = u− ρn0
, so v (0) = v (1) = 0 and

−v
(

|v′|
p−2

v′
)′

= λug∗n0
(t, u, u′)− λρn0

g∗n0
(t, u, u′) for t ∈ (0, 1) .

As a result, we have

‖v′‖
p
p ≤

1
∫

0

φ4 (t) [v (t) + ρn0
]
p
dt +

1
∫

0

φ5 (t) [v (t) + ρn0
] |v′ (t)|

p−1
dt+

+

1
∫

0

φ6 (t) [v (t) + ρn0
]γ dt +

1
∫

0

φ7 (t) [v (t) + ρn0
] |v′ (t)|

τ
dt+

+

1
∫

0

φ8 (t) [v (t) + ρn0
] dt + ρn0

1
∫

0

φ1 (t) [v (t) + ρn0
]
δ
dt+

+ ρn0

1
∫

0

φ2 (t) |v′ (t)|
β

dt + ρn0

1
∫

0

φ3 (t) dt ≤

≤

1
∫

0

φ4 (t) [v (t) + ρn0
]p dt +

1
∫

0

φ5 (t) |v (t)| |v′ (t)|
p−1

dt.
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+ lower order terms.

Note that

1
∫

0

φ4 (t) [v (t) + ρn0
]p dt ≤

1
∫

0

φ4 (t) (v (t))p
dt + lower order terms,

and so (note also (1.4) and Hölder inequality)

‖v′‖
p
p ≤

1
∫

0

φ4 (t) (v (t))
p
dt +

1
∫

0

φ5 (t) |v (t)| |v′ (t)|
p−1

dt+

+ lower order terms. (2.13)

Case A. Suppose a (t) < |a|∞ on a subset of [0, 1] of positive measure

and a
(

1
2n0+1

)

< |a|∞ .

This of course implies φ4 (t) < ‖φ4‖∞ = ‖a‖∞ on a subset of [0, 1] of
positive measure. From (1.5) , there exists ε > 0 with

1
∫

0

φ4 (t) (v (t))p
dt ≤

(

λ−1
1 ‖φ4‖∞ − ε

)

‖v′‖
p
p =

(

λ−1
1 ‖a‖∞ − ε

)

‖v′‖
p
p ,

where λ1 is defined as in Lemma 1.1. Also

1
∫

0

φ5 (t) |v (t)| |v′ (t)|
p−1

dt ≤ ‖φ5‖∞ ‖v‖p ‖v
′‖

p−1
p ≤ λ

− 1
p

1 ‖b‖∞ ‖v′‖
p
p .

Thus, we have

‖v′‖
p
p ≤

(

λ−1
1 ‖a‖∞ − ε

)

‖v′‖
p
p + λ

− 1
p

1 ‖b‖∞ ‖v′‖
p
p +

+ lower order terms,

so
(

1− λ−1
1 ‖a‖∞ − λ

− 1
p

1 ‖b‖∞

)

‖v′‖
p
p + ε ‖v′‖

p
p ≤ lower order terms.

As a result (see (2.6)),

ε ‖v′‖
p
p ≤ lower order terms.

Thus there exists Kn0
(independent of λ) such that Kn0

≥ ρn0
and

‖u′‖p = ‖v′‖p ≤ Kn0
. (2.14)

Case B. Suppose that b (t) < |b|∞ on a subset of [0, 1] of positive measure

and b
(

1
2n0+1

)

< |b|∞ .
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This of course implies φ5 (t) < ‖φ5‖∞ = ‖b‖∞ on a subset of [0, 1] of
positive measure. From (1.5), there exists ε > 0 with

1
∫

0

[φ5 (t)]
p
vp (t) dt ≤

(

λ−1
1 ‖φ5‖

p
∞ − ε

)

‖v′‖
p
p =

(

λ−1
1 ‖b‖

p
∞ − ε

)

‖v′‖
p
p .

Also there exists a δ > 0 with
(

λ−1 ‖b‖p
∞ − ε

)
1
p ≤ λ−

1
p ‖b‖∞ − δ,

so
1

∫

0

φ5 (t) |v (t)| |v′ (t)|
p−1

dt ≤
(

λ−1
1 ‖b‖

p
∞ − ε

)
1
p ‖v′‖

p
p ≤

≤
(

λ−
1
p ‖b‖∞ − δ

)

‖v′‖
p
p .

Also
1

∫

0

φ4 (t) (v (t))
p
dt ≤ ‖φ4‖∞ ‖v‖

p
p ≤ λ−1

1 ‖a‖∞ ‖v′‖
p
p .

Now (2.13) yields
(

1− λ
− 1

p

1 ‖b‖∞ − λ−1
1 ‖a‖∞

)

‖v′‖
p
p + δ ‖v′‖

p
p ≤ lower order terms.

As a result (see (2.6)),

δ ‖v′‖
p
p ≤ lower order terms.

Thus there exists Kn0
(independent of λ) such that Kn0

≥ ρn0
and

‖u′‖p = ‖v′‖p ≤ Kn0
.

In both cases (2.14) holds, and now since ‖v‖∞ ≤ 1
21/q ‖v

′‖p, we have

‖v‖∞ ≤ 1
21/q Kn0

and as a result we have

‖u‖∞ ≤
1

21/q
Kn0

+ ρn0
≡ Mn0

and ‖u′‖p ≤ Kn0
(2.15)

for any solution u to (2.9)λ . Also (2.7) (with ε = ρn0
) implies

1
∫

0

(

|u′|
p−2

u′
)′

dt ≤

≤ M δ
n0

1
∫

0

φ1 (t) dt +





1
∫

0

φ
p

p−β

2 (t)





p−β
p

‖u′‖
β
p +

1
∫

0

φ3 (t) dt ≤

≤ M δ
n0

1
∫

0

φ1 (t) dt +





1
∫

0

φ
p

p−β

2 (t)





p−β
p

Kβ
n0

+

1
∫

0

φ3 (t) dt ≡ Ln0
,
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and so since u (0) = u (1) = ρn0
, we have

‖u′‖∞ ≤ ϕ−1
p





1
∫

0

(

|u′|
p−2

u′
)′

dt



 ≤ ϕ−1
p (Ln0

) ≡ Rn0
.

Now a standard existence principle from the literature [7, 11] guarantees
that (2.9)1 has a solution un0

with ρn0
≤ un0

(t) ≤ Mn0
for t ∈ [0, 1] and

∥

∥u′n0

∥

∥

∞
≤ Rn0

. �

Remark 2.1. In [11] we assumed that ϕ−1
p is continuously differentiable

on (−∞,∞), so 1 < p ≤ 2. However, this assumption is only needed in [11]
to show that Nλ Ω is equicontinuous on [0, 1] (here Nλ and Ω are defined
in [11]). It is well known that this assumption can be removed once one
notices that ϕp Nλ Ω is equicontinuous on [0, 1] and uses also the fact that
ϕ−1

p is continuous.

Also notice that if we take h (t, u, v) = gn0
(t, u, v) in (2.3), then since

gn0
≥ f and un0

satisfies − (ϕp (u′))
′
= gn0

(t, u, u′) on (0, 1) with un0
(t) ≥

ρn0
for t ∈ [0, 1] , we have

un0
(t) ≥ α (t) for t ∈ [0, 1] .

Next we consider the boundary value problem
{

− (ϕp (u′))
′
= g∗n0+1 (t, u, u′) , 0 < t < 1,

u (0) = u (1) = ρn0+1,
(2.16)

where

g∗n0+1 (t, u, v) =











gn0+1 (t, ρn0+1, v
∗) + r (αn0+1 (t)− u) , u ≤ ρn0+1,

gn0+1 (t, u, v∗) , ρn0+1 ≤ u ≤ un0
(t) ,

gn0+1 (t, un0
(t) , v∗) + r (un0

(t)− u) , u ≥ un0
(t) ,

with

v∗ =











Rn0+1, v > Rn0+1,

v, −Rn0+1 ≤ v ≤ Rn0+1,

−Rn0+1, v < −Rn0+1;

here Rn0+1 ≥ Rn0
is a predetermined constant (see (2.20)). Now Schauder’s

fixed point theorem guarantees that there exists a solution un0+1 ∈ C1 [0, 1]
with ϕp

(

u′n0+1

)

∈ C1 (0, 1) to (2.16) . We first show

un0+1 (t) ≥ ρn0+1, t ∈ [0, 1] . (2.17)

Suppose (2.17) is not true. Then there exists a t1 ∈ (0, 1) with un0+1 (t1) <

ρn0+1, u′n0+1 (t1) = 0 and
(

ϕp

(

u′n0+1

))′
(t1) ≥ 0.

We need to discuss two cases, namely t1 ∈
[

1
2n0+2 , 1

)

and t1 ∈
(

0, 1
2n0+2

)

.

Case (1). t1 ∈
[

1
2n0+2 , 1

)

.
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Then since gn0+1 (t1, u, v) = f (t1, u, v) for (u, v) ∈ (0,∞) × R (note
t1 ∈ en0+1), we have

(

ϕp

(

u′n0+1

))′
(t1) =

= −
[

gn0+1

(

t1, ρn0+1,
(

u′n0+1 (t1)
)∗

)

+ r (ρn0+1 − un0+1 (t1))
]

= − [f (t1, ρn0+1, 0) + r (ρn0+1 − un0+1 (t1))] < 0

from (2.2) , a contradiction.
Case (2). t1 ∈

(

0, 1
2n0+2

)

.

Then since gn0+1 (t1, u, v) equals

min

{

max

{

f

(

1

2n0+1
, u, v

)

, f (t1, u, v)

}

,

max

{

f

(

1

2n0+2
, u, v

)

, f (t1, u, v)

} }

,

we have
gn0+1 (t1, u, v) ≥ f (t1, u, v)

and

gn0+1 (t1, u, v) ≥ min

{

f

(

1

2n0+1
, u, v

)

, f

(

1

2n0+2
, u, v

)}

for (u, v) ∈ (0,∞)×R. Thus we have
(

ϕp

(

u′n0+1

))′
(t1) =

= −
[

gn0+1

(

t1, ρn0+1,
(

u′n0+1 (t1)
)∗

)

+ r (ρn0+1 − un0+1 (t1))
]

≤

≤ −

{

min

{

f

(

1

2n0+1
, ρn0+1, 0

)

, f

(

1

2n0+2
, ρn0+1, 0

)}

+

+ r (ρn0+1 − un0+1 (t1))

}

< 0,

since

f

(

1

2n0+1
, ρn0+1, 0

)

≥ 0 and f

(

1

2n0+2
, ρn0+1, 0

)

≥ 0

because

f (t, ρn0+1, 0) ≥ 0 for t ∈

[

1

2n0+2
, 1

]

and 1
2n0+1 ∈

[

1
2n0+2 , 1

]

.

Consequently (2.18) is true. Next we show

un0+1 (t) ≤ un0
(t) for t ∈ [0, 1] . (2.18)

If (2.18) is not true, then un0+1 − un0
would have a positive absolute max-

imum at say τ0 ∈ (0, 1) , in which case (un0+1 − un0
)′ (τ0) = 0 and

(

ϕp

(

u′n0+1

))′
(τ0)−

(

ϕp

(

u′n0

))′
(τ0) ≤ 0; (2.19)

the proof is contained in [7] .
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Then un0+1 (τ0) > un0
(τ0) together with gn0

(τ0, u, v) ≥ gn0+1 (τ0, u, v)

for (u, v) ∈ (0,∞) × R gives (note
(

u′n0+1 (τ0)
)∗

=
(

u′n0
(τ0)

)∗
= u′n0

(τ0)

since Rn0+1 ≥ Rn0
and

∥

∥u′n0

∥

∥

∞
≤ Rn0

)
(

ϕp

(

u′n0+1

))′
(τ0)−

(

ϕp

(

u′n0

))′
(τ0) =

= −
[

gn0+1

(

τ0, un0
(τ0) ,

(

u′n0+1 (τ0)
)∗

)

+ r (un0
(τ0)− un0+1 (τ0))

]

−

−
(

ϕp

(

u′n0

))′
(τ0) ≥ −

[

(

ϕp

(

u′n0

))′
(τ0) + gn0

(

τ0, un0
(τ0) , u′n0

(τ0)
)

]

−

− r (un0
(τ0)− un0+1 (τ0))

= −r (un0
(τ0)− un0+1 (τ0)) > 0,

a contradiction. Thus (2.18) holds. In addition, since ‖un0+1‖∞≤‖un0
‖∞≤

Mn0
, then (2.7) (with ε = ρn0+1) guarantees the existence of a0, b0, ηε, δ and

β (as described in (2.7)) with (we only need to note that g∗n0+1(t, un0+1(t),
u′n0+1(t)) = gn0+1(t, un0+1(t), (u′n0+1(t))

∗)
∣

∣g∗n0+1

(

t, un0+1, u
′
n0+1

)∣

∣ ≤ φ9 (t) [un0+1 (t)]
δ
+

+ φ10 (t)
∣

∣

∣

(

u′n0+1 (t)
)∗

∣

∣

∣

β

+ φ11 (t) ≤

≤ φ9 (t) M δ
n0

+ φ10 (t)
∣

∣u′n0+1 (t)
∣

∣

β
+ φ11 (t)

for t ∈ (0, 1) (note that |v∗| ≤ |v|); here

φ9 (t) = max {a0 (t) , a0 (θn0
(t)) , a0 (θn0+1 (t))} ,

φ10 (t) = max {b0 (t) , b0 (θn0
(t)) , b0 (θn0+1 (t))}

and
φ11 (t) = max {ηε (t) , ηε (θn0

(t)) , ηε (θn0+1 (t))} .

As a result,

∥

∥u′n0+1

∥

∥

p

p
=

∣

∣

∣

∣

∣

∣

1
∫

0

(un0+1 (t)− ρn0+1)
(

∣

∣u′n0+1 (t)
∣

∣

p−2
u′n0+1 (t)

)′

∣

∣

∣

∣

∣

∣

≤

≤ M δ
n0

(Mn0
+ ρn0+1)

1
∫

0

φ9 (t) dt+

+ (Mn0
+ ρn0+1)

∥

∥u′n0+1

∥

∥

β

p





1
∫

0

φ
p−β

p

10 (t)dt





p
p−β

+

+ (Mn0
+ ρn0+1)

1
∫

0

φ11dt,

so there exists a constant Kn0+1 ≥ ρn0+1 with
∥

∥u′n0+1

∥

∥

p
≤ Kn0+1.



Nonuniform Nonresonance at the First Eigenvalue 109

Also since un0+1 (0) = un0+1 (1) = ρn0+1, we have

∥

∥u′n0+1

∥

∥

∞
≤ ϕ−1

p





1
∫

0

(

∣

∣u′n0+1 (t)
∣

∣

p−2
u′n0+1 (t)

)′

dt



 ≤

≤ M δ
n0

1
∫

0

φ9 (t) dt + K
β
n0+1





1
∫

0

[φ10(t)]
p

p−β dt





p−β
p

+

+

1
∫

0

φ11 (t) dt,

so there exists a constant Rn0+1 ≥ Rn0
with

∥

∥u′n0+1

∥

∥

∞
≤ Rn0+1. (2.20)

As a result, if we take h (t, u, v) = gn0+1 (t, u, v) in (2.3), then since gn0+1 ≥
f and un0+1 satisfies − (ϕp (u′))

′
= gn0+1 (t, u, u′) on (0, 1) with un0+1 (t) ≥

ρn0+1 for t ∈ [0, 1] , we have

un0
(t) ≥ α (t) for t ∈ [0, 1] .

Now proceed inductively to construct un0+2, un0+3, . . . as follows. Suppose
we have uk for some k ∈ {n0 + 1, n0 + 2, } with α (t) ≤ uk (t) ≤ uk−1 (t) for
t ∈ [0, 1] .

Then consider the boundary value problem
{

− (ϕp (u′))
′
= g∗k+1 (t, u, u′) , 0 < t < 1,

u (0) = u (1) = ρk+1,
(2.21)

where

g∗k+1 (t, u, v) =











gk+1 (t, ρk+1, v
∗) + r (ρk+1 − u) , u ≤ ρk+1,

gk+1 (t, u, v∗) , ρk+1 ≤ u ≤ uk,

gk+1 (t, uk, v∗) + r (uk − u) , u ≥ uk,

with

v∗ =











Mk+1, v > Mk+1,

v, −Mk+1 ≤ v ≤ Mk+1,

−Mk+1, v < −Mk+1;

here Mk+1 ≥ Mk is a predetermined constant. Now Schauder’s fixed
point theorem guarantees that (2.21) has a solution uk+1 ∈ C1 [0, 1] with
ϕp (u′k) ∈ C1 (0, 1) and essentially the same reasoning as above yields

ρk+1 ≤ uk+1 (t) ≤ uk(t),
∣

∣u′k+1 (t)
∣

∣ ≤ Mk+1 for t ∈ [0, 1] (2.22)

with

uk+1 (t) ≥ α (t) for t ∈ [0, 1]
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and

−
(

ϕp

(

u′k+1

))′
= gk+1

(

t, uk+1, u
′
k+1

)

for 0 < t < 1.

Now let us look at the interval
[

1
2n0+1 , 1− 1

2n0+1

]

. We claim






{

u
(j)
n

}∞

n=n0+1
, j = 0, 1, is a bounded, equicontinuous

family on
[

1
2n0+1 , 1− 1

2n0+1

]

.
(2.23)

Firstly note

‖un‖∞ ≤ ‖un0
‖∞ ≤ Mn0

for t ∈ [0, 1] and n ≥ n0 + 1. (2.24)

Let

ε = min
t∈

[

1

2n0+1
,1− 1

2n0+1

]

α (t) .

Then (2.7) guarantees the existence of a0, b0, ηε, δ and β (as described in
(2.7)) with

|gn (t, un (t) , u′n (t))| = |f (t, un (t) , u′n (t))| ≤

≤ a0 (t) M δ
n0

+ b0 (t) |u′n (t)|
β

+ ηε (t)

for t ∈ [a, b] ≡
[

1
2n0+1 , 1− 1

2n0+1

]

⊆ en0
and n ≥ n0 + 1. Let

rn (t) = un (t)−

{

un (a) +
[un (b)− un (a)]

b− a
(t− a)

}

,

so for n ≥ n0 + 1 we have
∣

∣

∣

∣

∣

∣

b
∫

a

rn (t) (ϕp (u′))
′
dt

∣

∣

∣

∣

∣

∣

= −

b
∫

a

|u′n|
p
dt +

un (b)− un (a)

b− a

b
∫

a

ϕp (u′n) dt.

Now since rn (t) ≤ 2Mn0
for t ∈ [a, b], we have for any n ≥ n0 + 1 that

b
∫

a

|u′n (t)|
p
dt ≤

2Mn0

b− a

b
∫

a

|un|
p−1

dt + 2Mn0

b
∫

a

(ϕp (u′))
′
dt ≤

≤
2Mn0

(b− a)
p+1

p

‖un‖
p−1
p + 2Mn0

[

M δ
n0

b
∫

a

a0 (t) dt+

+

(

b
∫

a

|b0(t)|
p

p−β dt

)
p−β

p

‖u′n‖
β
p +

b
∫

a

ηε (t) dt

]

,

so there exists Qn0
with

‖u′n‖
p
p ≤ Qn0

for n ≥ n0 + 1. (2.25)
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Also there exists tn ∈ (a, b) with u′n (tn) = un(b)−un(a)
b−a , so for n ≥ n0 +1 we

have (using (2.25))

sup
t∈[a,b]

|u′n(t)|
p−1

≤ |ϕp (u′n) (tn)|+

b
∫

a

(ϕp (u′n))
′
dt ≤

≤

[

2Mn0

b− a

]p−1

+ M δ
n0

b
∫

a

a0 (t) dt+

+ Q
β
p
n0





b
∫

a

[b0(t)]
p

p−β





p−β
p

+

b
∫

a

ηε (t) dt ≡ Ln0
,

i.e.,

sup
t∈[a,b]

|u′n(t)| ≤ L
1

p−1

n0
for n ≥ n0 + 1. (2.26)

Now (2.24) , (2.25) and (2.26) guarantee that (2.23) holds. The Arzela–
Ascoli theorem guarantees the existence of a subsequence Nn0

of integers

and a function zn0
∈ C1

[

1
2n0+1 , 1− 1

2n0+1

]

with u
(j)
n , j = 0, 1, converging

uniformly to z
(j)
n0

on
[

1
2n0+1 , 1− 1

2n0+1

]

as n →∞ through Nn0
. Similarly







{

u
(j)
n

}∞

n=n0+2
, j = 0, 1, is a bounded, equicontinuous

family on
[

1
2n0+2 , 1− 1

2n0+2

]

,

so there is a subsequence Nn0+1 of Nn0
and a function

zn0+1 ∈ C1

[

1

2n0+2
, 1−

1

2n0+2

]

with u
(j)
n , j = 0, 1, converging uniformly to z

(j)
n0+1 on

[

1
2n0+2 , 1− 1

2n0+2

]

as n → ∞ through Nn0+1. Note zn0+1 = zn0
on

[

1
2n0+1 , 1− 1

2n0+1

]

since
Nn0+1 ⊆ Nn0

. Proceed inductively to obtain subsequences of integers

Nn0
⊇ Nn0+1 ⊇ · · · ⊇ Nk ⊇ · · ·

and the function

zk ∈ C1

[

1

2k+1
, 1−

1

2k+1

]

with

u(j)
n , j = 0, 1, converging uniformly to z

(j)
k on

[

1

2k+1
, 1−

1

2k+1

]

as n →∞ through Nk, and

zk = zk−1 on

[

1

2k
, 1−

1

2k

]

.
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Define a function u : [0, 1] → [0,∞) by u (t) = zk (t) on
[

1
2k+1 , 1− 1

2k+1

]

and
u (0) = u (1) = 0. Notice that u is well defined and

α (t) ≤ u (t) ≤ un0
(t) for t ∈ (0, 1) .

Now let [a, b] ⊂ (0, 1) be a compact interval. There is an index n∗ such that
[a, b] ⊂

[

1
2n+1 , 1− 1

2n+1

]

for all n > n∗ and therefore, for all n > n∗

− (ϕp (u′n))
′
= f (t, un, u′n) for a ≤ t ≤ b.

A standard argument [7, 11] guarantees that

− (ϕp (u′))
′
= f (t, u, u′) for a ≤ t ≤ b.

Since [a, b] ⊂ (0, 1) is arbitrary, we find that

(ϕ(u′)′ ∈ C (0, 1) and − (ϕp (u′))
′
= f (t, u, u′) for 0 < t < 1.

It remains to show that u is continuous at 0 and 1. Let ε > 0 be
given. Now since limn→∞ un (0) = 0, there exists n1 ∈ {n0, n0 + 1, . . .}
with un1

(0) < ε
2 . Next since un1

∈ C [0, 1], there exists δn1
> 0 with

un1
(t) <

ε

2
for t ∈ [0, δn1

] .

Now for n ≥ n1 we have, since {un (t)}n∈N0
is nonincreasing for each t ∈

[0, 1] ,

α (t) ≤ un (t) ≤ un1
(t) <

ε

2
for t ∈ [0, δn1

] .

Consequently,

α (t) ≤ u (t) ≤
ε

2
< ε for t ∈ (0, δn1

]

and so u is continuous at 0. Similarly u is continuous at 1. As a result,
u ∈ C [0, 1] .

Remark 2.2. In (2.2) it is possible to replace 1
2n+1 ≤ t ≤ 1 with either

(i) 0 ≤ t ≤ 1− 1
2n+1 , (ii) 1

2n+1 ≤ t ≤ 1− 1
2n+1 , or (iii) 0 ≤ t ≤ 1. This is clear

once one changes the definition of en and θn. For example, in case (ii) take

en =

[

1

2n+1
, 1−

1

2n+1

]

and θn (t) = max

{

1

2n+1
, min

{

t, 1−
1

2n+1

}}

.

Finally we discuss the condition (2.3) . Suppose the following condition
is satisfied:























let n ∈ {n0, n0 + 1, . . .} and associated with each n we
have a constant ρn such that {ρn} is a decreasing
sequence with limn→∞ ρn = 0 and for any r > 0
there exists a constant kr > 0 such that for 1

2n+1 ≤ t ≤ 1,

0 < u ≤ ρn and v ∈ [−r, r] we have f (t, u, v) > kr.

(2.27)

A slight modification of the argument in [7, Proposition 4] guarantees that
(2.3) is true.

Remark 2.3. In (2.27) if 1
2n+1 ≤ t ≤ 1 is replaced by (i), (ii), or (iii) in

Remark 2.2, then (2.3) is also true.
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Theorem 2.2. Let n0 ∈ {1, 2, . . .} be fixed and suppose (2.1), (2.4)−(2.7)
and (2.27) hold. Then (1.1) has a solution u ∈ C [0, 1] with u (t) > 0 for

t ∈ (0, 1).
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8. H. Lü and C. Zhong, A note on singular nonlinear boundary value problems for the
one-dimensional p-Laplacian. Appl. Math. Lett. 14 (2001), No. 2, 189–194.
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