Haishen Lü, Donal O'Regan and Ravi P. Agarwal

Abstract. In this paper, general existence theorems are presented for the singular equation

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right), \quad 0<t<1 \\
u(0)=u(1)=0
\end{array}\right.
$$

Throughout, our nonlinearity is allowed to change sign. The singularity may occur at $u=0, t=0, t=1$ and f may be nonuniform nonresonant at the first eigenvalue.

2000 Mathematics Subject Classification. 34B15, 34B16.
Key words and phrases. one dimensional singular p-Laplacian, positive solution, nonuniform nonresonance condition.

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right), \quad 0<t<1 \\
u(0)=u(1)=0
\end{array}\right.
$$

 әлб

1. Introduction

In this paper, we study the singular boundary value problem

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right), \quad 0<t<1 \tag{1.1}\\
u(0)=u(1)=0
\end{array}\right.
$$

where $\varphi_{p}(s)=|s|^{p-2} s, p>1$. The singularity may occur at $u=0, t=0$ and $t=1$, and the function f is allowed to change sign and is nonuniform nonresonant at the first eigenvalue. Note that f may not be a Carathéodory function because of the singular behavior of the u variable. In the literature $[8,9,12],(1.1)$ has been discussed extensively when $f(t, u, v) \equiv f(t, u)$ and f is positive, i.e., $f:(0,1) \times(0, \infty) \rightarrow(0, \infty)$. Recently [1], [13] (1.1) was discussed when $f(t, u, v) \equiv f(t, u)$ and $f:(0,1) \times(0, \infty) \rightarrow R$. The case when f depends on the u^{\prime} variable has received very little attention in the literature, see [2], [3], [7] and references therein. In [14], the author studied nonuniform nonresonance at the first eigenvalue of the p-Laplacian when the function f is not singular. This paper presents a new and very general result for (1.1) when $f:(0,1) \times(0, \infty) \times R \rightarrow R$ and f is nonuniform nonresonant at the first eigenvalue.

The nonlinear eigenvalue problem associated with the problem (1.1) is

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=\lambda \varphi_{p}(u), \quad 0<t<1 \tag{1.2}\\
u(0)=u(1)=0
\end{array}\right.
$$

It is well-known (see [14]) that (1.2) has eigenvalues

$$
0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\cdots \quad \text { as } \quad n \rightarrow \infty
$$

In what follows, we will use $\|\cdot\|_{p}$ to denote the L^{p}-norm defined by

$$
\|u\|_{p}=\left(\int_{0}^{1}|u(t)|^{p} d t\right)^{\frac{1}{p}}
$$

The $C[0,1]$-norm is

$$
\|u\|_{\infty}=\sup _{0 \leq t \leq 1}|u(t)|
$$

We present some results from literature which will be needed in Section 2. Let $W=W_{0}^{1, p}([0,1], R)$ be the Sobolev space. The following lemma is a result of embedding inequalities.

Lemma 1.1 ([14]). (1) We have

$$
\begin{equation*}
\|u\|_{p} \leq \lambda_{1}^{-\frac{1}{p}}\left\|u^{\prime}\right\|_{p} \quad \text { for } \quad \forall u \in W \tag{1.3}
\end{equation*}
$$

Moreover, the equality in (1.3) holds if and only if u is an eigenfunction corresponding to the eigenvalue λ_{1}.
(2)

$$
\begin{equation*}
\|u\|_{\infty} \leq\left(\frac{1}{2}\right)^{1 / q}\left\|u^{\prime}\right\|_{p} \quad \text { for } \quad \forall u \in W \tag{1.4}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Lemma 1.2 ([14]). Suppose that $a \in C[0,1]$ satisfies the condition:

$$
a(t)<\|a\|_{\infty}
$$

on a subset of $[0,1]$ of positive measure. Then there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\int_{0}^{1} a(t)|u(t)|^{p} d t \leq\left(\|a\|_{\infty} \lambda_{1}^{-1}-\varepsilon\right)\left\|u^{\prime}\right\|_{p}^{p} \quad \text { for all } \quad u \in W . \tag{1.5}
\end{equation*}
$$

Lemma 1.3 ([7]). Let $e_{n}=\left[\frac{1}{2^{n+1}}, 1\right](n \geq 1), e_{0}=\varnothing$. If there exists a sequence $\left\{\varepsilon_{n}\right\} \downarrow 0$ and $\varepsilon_{n}>0$ for $n \geq 1$, then there exists a function $\lambda \in C^{1}[0,1]$ such that
(1) $\varphi_{p}\left(\lambda^{\prime}\right) \in C^{1}[0,1]$ and $\max _{0 \leq t \leq 1}\left|\left(\varphi_{p}\left(\lambda^{\prime}(t)\right)\right)^{\prime}\right|>0$, and
(2) $\lambda(0)=\lambda(1)=0$ and $0<\lambda(t) \leq \varepsilon_{n}, t \in e_{n} \backslash e_{n-1}, n \geq 1$.

2. Main Existence Theorem

We present a general existence theorem for the BVP (1.1).
Theorem 2.1. Let $n_{0} \in\{1,2, \ldots\}$ be fixed and suppose the following conditions are satisfied:

$$
\begin{equation*}
f:(0,1) \times(0, \infty) \times R \rightarrow R \text { is continuous } \tag{2.1}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\text { let } n \in\left\{n_{0}, n_{0}+1, \cdots\right\} \equiv N_{0} \text { and associated with each } n \in N_{0} \tag{2.2}\\
\text { we have a constant } \rho_{n} \text { such that }\left\{\rho_{n}\right\} \text { is a nondecreasing } \\
\text { sequence with } \lim _{n \rightarrow \infty} \rho_{n}=0 \text { and } \\
\text { for } \frac{1}{2^{n+1}} \leq t \leq 1 \text { we have } f\left(t, \rho_{n}, 0\right) \geq 0,
\end{array}\right.
$$

$\left\{\begin{array}{l}\text { there exists } \alpha \in C[0,1], \alpha(0)=0=\alpha(1), \alpha>0 \text { on }(0,1), \\ \text { such that if } h:(0,1) \times(0, \infty) \times R \rightarrow R \\ \text { is any continuous function with } \\ h(t, u, v) \geq f(t, u, v), \forall(t, u, v) \in(0,1] \times(0, \infty) \times R \\ \text { and if } u \in C^{1}[0,1], \varphi\left(u^{\prime}\right) \in C^{1}(0,1), u(t)>0 \text { for } t \in[0,1], \\ \text { is any solution of } \\ -\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=h\left(t, u, u^{\prime}\right), \text { then } u(t) \geq \alpha(t) \text { for } t \in[0,1],\end{array}\right.$

$$
\left\{\begin{array}{l}
\text { for any } \varepsilon>0 \text { there exist } \gamma, \tau \text { with } 1 \leq \gamma<p, 0 \leq \tau<p-1, \\
\text { functions } a, b \in C[0,1] \text { with } a \geq 0, b \geq 0, \text { on }[0,1], \\
\text { functions } c \in L^{1}[0,1], d \in L^{p} p[0,1], h_{\varepsilon} \in L^{1}[0,1] \\
\text { with } c \geq 0, d \geq 0, h_{\varepsilon} \geq 0 \text { a.e. on }[0,1] \text {, such that } \\
u f(t, u, v) \leq a(t) u^{p}+b(t) u|v|^{p-1}+c(t) u^{\gamma}+ \\
+d(t) u|v|^{\tau}+u h_{\varepsilon}(t) \text { for } t \in(0,1), u \geq \varepsilon \text { and } v \in R,
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\text { either } \\
\text { (i) } a(t)<|a|_{\infty} \text { on a subset of }[0,1] \text { of positive measure } \\
\text { and } a\left(\frac{1}{2^{n_{0}+1}}\right)^{<}<\|a\|_{\infty} \tag{2.5}\\
\text { or } \\
\text { (ii) } b(t)<|b|_{\infty} \text { on a subset of }[0,1] \text { of positive measure } \\
\text { and } b\left(\frac{1}{2^{n_{0}+1}}\right)<\|b\|_{\infty},
\end{array}\right.
$$

$$
\begin{equation*}
\lambda_{1}^{-1}\|a\|_{\infty}+\lambda_{1}^{-\frac{1}{p}}\|b\|_{\infty} \leq 1 \tag{2.6}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\text { for any } \varepsilon>0, \text { there exist } \delta, \beta \text {, with } 1 \leq \delta<p, 0 \leq \beta<p, \\
\text { functions } a_{0} \in L^{1}[0,1], b_{0} \in L^{\frac{p}{p-\beta}} \text { and } \eta_{\varepsilon} \in L^{1}[0,1] \text { with } \\
a_{0} \geq 0, b_{0} \geq 0, \eta_{\varepsilon} \geq 0 \text { a.e. on }[0,1] \text {, such that } \tag{2.7}\\
|f(t, u, v)| \leq a_{0}(t) u^{\delta}+b_{0}(t)|v|^{\beta}+\eta_{\varepsilon}(t) \\
\text { for } t \in(0,1), u \geq \varepsilon \text { and } v \in R .
\end{array}\right.
$$

Then (1.1) has a solution $u \in C[0,1]$ with $u(t) \geq \alpha(t)$ for $t \in[0,1]$ (here α is given in (2.3)).
Proof. For $n=n_{0}, n_{0}+1, \ldots$ let

$$
e_{n}=\left[\frac{1}{2^{n+1}}, 1\right] \quad \text { and } \quad \theta_{n}(t)=\max \left\{\frac{1}{2^{n+1}}, t\right\}, \quad 0 \leq t \leq 1
$$

and

$$
f_{n}(t, x, y)=\max \left\{f\left(\theta_{n}(t), x, y\right), f(t, x, y)\right\} .
$$

Next we define inductively

$$
g_{n_{0}}(t, x, y)=f_{n_{0}}(t, x, y)
$$

and

$$
g_{n}(t, x, y)=\min \left\{f_{n_{0}}(t, x, y), \ldots, f_{n}(t, x, y)\right\}, \quad n=n_{0}+1, n_{0}+2, \ldots
$$

Notice

$$
f(t, x, y) \leq \cdots \leq g_{n+1}(t, x, y) \leq g_{n}(t, x, y) \leq \cdots \leq g_{n_{0}}(t, x, y)
$$

for $(t, x, y) \in(0,1] \times(0, \infty) \times R$ and

$$
g_{n}(t, x, y)=f(t, x, y) \quad \text { for } \quad(t, x, y) \in e_{n} \times(0, \infty) \times R
$$

We begin with the boundary value problem

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=g_{n_{0}}^{*}\left(t, u, u^{\prime}\right), \quad 0<t<1 \tag{2.8}\\
u(0)=u(1)=\rho_{n_{0}}
\end{array}\right.
$$

where

$$
g_{n_{0}}^{*}(t, u, v)=\left\{\begin{array}{l}
g_{n_{0}}\left(t, \rho_{n_{0}}, v\right)+r\left(\rho_{n_{0}}-u\right), u \leq \rho_{n_{0}} \\
g_{n_{0}}(t, u, v), \quad \rho_{n_{0}} \leq u
\end{array}\right.
$$

with $r: R \rightarrow[-1,1]$ the radial retraction defined by

$$
r(u)= \begin{cases}u, & |u| \leq 1 \\ \frac{u}{|u|}, & |u|>1\end{cases}
$$

To show that (2.8) has a solution, we consider [7, 11] the family of problems

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=\lambda g_{n_{0}}^{*}\left(t, u, u^{\prime}\right), \quad 0<t<1, \tag{2.9}\\
u(0)=u(1)=\rho_{n_{0}}
\end{array}\right.
$$

where $0<\lambda<1$. Let u be any solution of $(2.9)_{\lambda}$ for some $0<\lambda \leq 1$. We first show

$$
\begin{equation*}
u(t) \geq \rho_{n_{0}}, \quad t \in[0,1] \tag{2.10}
\end{equation*}
$$

Suppose (2.10) is not true. Then there exists a $t_{0} \in(0,1)$ with $u\left(t_{0}\right)<\rho_{n_{0}}$, $u^{\prime}\left(t_{0}\right)=0$ and

$$
\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}\left(t_{0}\right) \geq 0 .
$$

However note

$$
\begin{aligned}
\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}\left(t_{0}\right) & =-\lambda\left[g_{n_{0}}\left(t_{0}, \rho_{n_{0}}, u^{\prime}\left(t_{0}\right)\right)+r\left(\rho_{n_{0}}-u\left(t_{0}\right)\right)\right]= \\
& =-\lambda\left[g_{n_{0}}\left(t_{0}, \rho_{n_{0}}, 0\right)+r\left(\rho_{n_{0}}-u\left(t_{0}\right)\right)\right] .
\end{aligned}
$$

We need to discuss two cases, namely $t_{0} \in\left[\frac{1}{2^{n_{0}+1}}, 1\right)$ and $t_{0} \in\left(0, \frac{1}{2^{n_{0}+1}}\right)$.
Case 1. $t_{0} \in\left[\frac{1}{2^{n_{0}+1}}, 1\right)$.
Then since $g_{n_{0}}\left(t_{0}, u, v\right)=f\left(t_{0}, u, v\right)$ for $(u, v) \in(0, \infty) \times R$ (note $t_{0} \in$ $e_{n_{0}}$), we have

$$
\left(\varphi_{p}\left(u_{n_{0}}^{\prime}\right)\right)^{\prime}\left(t_{0}\right)=-\lambda f\left(t_{0}, \rho_{n_{0}}, 0\right)-r\left(\rho_{n_{0}}-u\left(t_{0}\right)\right)<0
$$

a contradiction.
Case 2. $t_{0} \in\left(0, \frac{1}{2^{n_{0}+1}}\right)$.
Then since

$$
g_{n_{0}}\left(t_{0}, u, v\right)=\max \left\{f\left(\frac{1}{2^{n_{0}+1}}, u, v\right), f\left(t_{0}, u, v\right)\right\}
$$

we have

$$
g_{n_{0}}\left(t_{0}, u, v\right) \geq f\left(t_{0}, u, v\right) \text { and } g_{n_{0}}\left(t_{0}, u, v\right) \geq f\left(\frac{1}{2^{n_{0}+1}}, u, v\right)
$$

for $(u, v) \in(0, \infty) \times R$. Thus

$$
\begin{aligned}
\left(\varphi_{p}\left(u_{n_{0}}^{\prime}\right)\right)^{\prime}\left(t_{0}\right) & =-\lambda\left[g_{n_{0}}\left(t_{0}, \rho_{n_{0}}, 0\right)+r\left(\rho_{n_{0}}-u\left(t_{0}\right)\right)\right] \leq \\
& \leq-\lambda\left[f\left(\frac{1}{2^{n_{0}+1}}, \rho_{n_{0}}, 0\right)+r\left(\rho_{n_{0}}-u\left(t_{0}\right)\right)\right]<0
\end{aligned}
$$

a contradiction.
Consequently (2.10) is true. Next we show

$$
\begin{equation*}
u_{n_{0}}(t) \leq M_{n_{0}} \text { for } t \in[0,1] \tag{2.11}
\end{equation*}
$$

where $M_{n_{0}}\left(\geq \rho_{n_{0}}\right)$ is a predetermined constant (see (2.15)). Notice that (2.7) (with $\varepsilon=\rho_{n_{0}}$) guarantees the existence of $a_{0}, b_{0}, \eta_{\varepsilon}, \delta$ and β (as described in (2.7)) with

$$
\begin{equation*}
\left|g_{n_{0}}^{*}\left(t, u(t), u^{\prime}(t)\right)\right| \leq \phi_{1}(t)|u(t)|^{\delta}+\phi_{2}(t)\left|u^{\prime}(t)\right|^{\beta}+\phi_{3}(t) \tag{2.12}
\end{equation*}
$$

for $t \in(0,1)$; here

$$
\phi_{1}(t)=\max \left\{a_{0}(t), a_{0}\left(\theta_{n_{0}}(t)\right)\right\}, \quad \phi_{2}(t)=\max \left\{b_{0}(t), b_{0}\left(\theta_{n_{0}}(t)\right)\right\}
$$

and

$$
\phi_{3}(t)=\max \left\{\eta_{\varepsilon}(t), \eta_{\varepsilon}\left(\theta_{n_{0}}(t)\right)\right\} ;
$$

notice that (2.12) is immediate since for $t \in(0,1)$ we have

$$
g_{n_{0}}\left(t, u(t), u^{\prime}(t)\right)=\max \left\{f\left(\theta_{n_{0}}(t)\right), u(t), u^{\prime}(t), f\left(t, u(t), u^{\prime}(t)\right)\right\} .
$$

Next notice that (2.4) (with $\varepsilon=\rho_{n_{0}}$) guarantees the existence of a, b, c, d, h_{ε}, γ and τ (as described in (2.4)) with

$$
\begin{aligned}
u(t) g_{n_{0}}^{*}\left(t, u(t), u^{\prime}(t)\right) \leq & \phi_{4}(t)|u(t)|^{p}+\phi_{5}(t)|u(t)|\left|u^{\prime}(t)\right|+ \\
& +\phi_{6}(t)|u|^{\gamma}+\phi_{7}(t)|u|\left|u^{\prime}\right|^{\tau}+u \phi_{8}(t)
\end{aligned}
$$

for $t \in(0,1)$; here

$$
\begin{aligned}
& \phi_{4}(t)=\max \left\{a(t), a\left(\theta_{n_{0}}(t)\right)\right\}, \phi_{5}(t)=\max \left\{b(t), b\left(\theta_{n_{0}}(t)\right)\right\}, \\
& \phi_{6}(t)=\max \left\{c(t), c\left(\theta_{n_{0}}(t)\right)\right\}, \phi_{7}(t)=\max \left\{d(t), d\left(\theta_{n_{0}}(t)\right)\right\}
\end{aligned}
$$

and

$$
\phi_{8}(t)=\max \left\{h_{\varepsilon}(t), h_{\varepsilon}\left(\theta_{n_{0}}(t)\right)\right\} .
$$

Let $v=u-\rho_{n_{0}}$, so $v(0)=v(1)=0$ and

$$
-v\left(\left|v^{\prime}\right|^{p-2} v^{\prime}\right)^{\prime}=\lambda u g_{n_{0}}^{*}\left(t, u, u^{\prime}\right)-\lambda \rho_{n_{0}} g_{n_{0}}^{*}\left(t, u, u^{\prime}\right) \quad \text { for } \quad t \in(0,1)
$$

As a result, we have

$$
\begin{aligned}
\left\|v^{\prime}\right\|_{p}^{p} \leq & \int_{0}^{1} \phi_{4}(t)\left[v(t)+\rho_{n_{0}}\right]^{p} d t+\int_{0}^{1} \phi_{5}(t)\left[v(t)+\rho_{n_{0}}\right]\left|v^{\prime}(t)\right|^{p-1} d t+ \\
& +\int_{0}^{1} \phi_{6}(t)\left[v(t)+\rho_{n_{0}}\right]^{\gamma} d t+\int_{0}^{1} \phi_{7}(t)\left[v(t)+\rho_{n_{0}}\right]\left|v^{\prime}(t)\right|^{\tau} d t+ \\
& +\int_{0}^{1} \phi_{8}(t)\left[v(t)+\rho_{n_{0}}\right] d t+\rho_{n_{0}} \int_{0}^{1} \phi_{1}(t)\left[v(t)+\rho_{n_{0}}\right]^{\delta} d t+ \\
& +\rho_{n_{0}} \int_{0}^{1} \phi_{2}(t)\left|v^{\prime}(t)\right|^{\beta} d t+\rho_{n_{0}} \int_{0}^{1} \phi_{3}(t) d t \leq \\
\leq & \int_{0}^{1} \phi_{4}(t)\left[v(t)+\rho_{n_{0}}\right]^{p} d t+\int_{0}^{1} \phi_{5}(t)|v(t)|\left|v^{\prime}(t)\right|^{p-1} d t .
\end{aligned}
$$

$$
+ \text { lower order terms. }
$$

Note that

$$
\int_{0}^{1} \phi_{4}(t)\left[v(t)+\rho_{n_{0}}\right]^{p} d t \leq \int_{0}^{1} \phi_{4}(t)(v(t))^{p} d t+\text { lower order terms }
$$

and so (note also (1.4) and Hölder inequality)

$$
\begin{align*}
\left\|v^{\prime}\right\|_{p}^{p} \leq & \int_{0}^{1} \phi_{4}(t)(v(t))^{p} d t+\int_{0}^{1} \phi_{5}(t)|v(t)|\left|v^{\prime}(t)\right|^{p-1} d t+ \\
& + \text { lower order terms. } \tag{2.13}
\end{align*}
$$

Case A. Suppose $a(t)<|a|_{\infty}$ on a subset of $[0,1]$ of positive measure and $a\left(\frac{1}{2^{n_{0}+1}}\right)<|a|_{\infty}$.

This of course implies $\phi_{4}(t)<\left\|\phi_{4}\right\|_{\infty}=\|a\|_{\infty}$ on a subset of $[0,1]$ of positive measure. From (1.5), there exists $\varepsilon>0$ with

$$
\int_{0}^{1} \phi_{4}(t)(v(t))^{p} d t \leq\left(\lambda_{1}^{-1}\left\|\phi_{4}\right\|_{\infty}-\varepsilon\right)\left\|v^{\prime}\right\|_{p}^{p}=\left(\lambda_{1}^{-1}\|a\|_{\infty}-\varepsilon\right)\left\|v^{\prime}\right\|_{p}^{p}
$$

where λ_{1} is defined as in Lemma 1.1. Also

$$
\int_{0}^{1} \phi_{5}(t)|v(t)|\left|v^{\prime}(t)\right|^{p-1} d t \leq\left\|\phi_{5}\right\|_{\infty}\|v\|_{p}\left\|v^{\prime}\right\|_{p}^{p-1} \leq \lambda_{1}^{-\frac{1}{p}}\|b\|_{\infty}\left\|v^{\prime}\right\|_{p}^{p}
$$

Thus, we have

$$
\begin{aligned}
\left\|v^{\prime}\right\|_{p}^{p} \leq & \left(\lambda_{1}^{-1}\|a\|_{\infty}-\varepsilon\right)\left\|v^{\prime}\right\|_{p}^{p}+\lambda_{1}^{-\frac{1}{p}}\|b\|_{\infty}\left\|v^{\prime}\right\|_{p}^{p}+ \\
& + \text { lower order terms }
\end{aligned}
$$

So

$$
\left(1-\lambda_{1}^{-1}\|a\|_{\infty}-\lambda_{1}^{-\frac{1}{p}}\|b\|_{\infty}\right)\left\|v^{\prime}\right\|_{p}^{p}+\varepsilon\left\|v^{\prime}\right\|_{p}^{p} \leq \text { lower order terms. }
$$

As a result (see (2.6)),

$$
\varepsilon\left\|v^{\prime}\right\|_{p}^{p} \leq \text { lower order terms. }
$$

Thus there exists $K_{n_{0}}$ (independent of λ) such that $K_{n_{0}} \geq \rho_{n_{0}}$ and

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{p}=\left\|v^{\prime}\right\|_{p} \leq K_{n_{0}} \tag{2.14}
\end{equation*}
$$

Case B. Suppose that $b(t)<|b|_{\infty}$ on a subset of $[0,1]$ of positive measure and $b\left(\frac{1}{2^{n_{0}+1}}\right)<|b|_{\infty}$.

This of course implies $\phi_{5}(t)<\left\|\phi_{5}\right\|_{\infty}=\|b\|_{\infty}$ on a subset of $[0,1]$ of positive measure. From (1.5), there exists $\varepsilon>0$ with

$$
\int_{0}^{1}\left[\phi_{5}(t)\right]^{p} v^{p}(t) d t \leq\left(\lambda_{1}^{-1}\left\|\phi_{5}\right\|_{\infty}^{p}-\varepsilon\right)\left\|v^{\prime}\right\|_{p}^{p}=\left(\lambda_{1}^{-1}\|b\|_{\infty}^{p}-\varepsilon\right)\left\|v^{\prime}\right\|_{p}^{p}
$$

Also there exists a $\delta>0$ with

$$
\left(\lambda^{-1}\|b\|_{\infty}^{p}-\varepsilon\right)^{\frac{1}{p}} \leq \lambda^{-\frac{1}{p}}\|b\|_{\infty}-\delta
$$

so

$$
\begin{aligned}
\int_{0}^{1} \phi_{5}(t)|v(t)|\left|v^{\prime}(t)\right|^{p-1} d t & \leq\left(\lambda_{1}^{-1}\|b\|_{\infty}^{p}-\varepsilon\right)^{\frac{1}{p}}\left\|v^{\prime}\right\|_{p}^{p} \leq \\
& \leq\left(\lambda^{-\frac{1}{p}}\|b\|_{\infty}-\delta\right)\left\|v^{\prime}\right\|_{p}^{p}
\end{aligned}
$$

Also

$$
\int_{0}^{1} \phi_{4}(t)(v(t))^{p} d t \leq\left\|\phi_{4}\right\|_{\infty}\|v\|_{p}^{p} \leq \lambda_{1}^{-1}\|a\|_{\infty}\left\|v^{\prime}\right\|_{p}^{p}
$$

Now (2.13) yields

$$
\left(1-\lambda_{1}^{-\frac{1}{p}}\|b\|_{\infty}-\lambda_{1}^{-1}\|a\|_{\infty}\right)\left\|v^{\prime}\right\|_{p}^{p}+\delta\left\|v^{\prime}\right\|_{p}^{p} \leq \text { lower order terms. }
$$

As a result (see (2.6)),

$$
\delta\left\|v^{\prime}\right\|_{p}^{p} \leq \text { lower order terms. }
$$

Thus there exists $K_{n_{0}}$ (independent of λ) such that $K_{n_{0}} \geq \rho_{n_{0}}$ and

$$
\left\|u^{\prime}\right\|_{p}=\left\|v^{\prime}\right\|_{p} \leq K_{n_{0}}
$$

In both cases (2.14) holds, and now since $\|v\|_{\infty} \leq \frac{1}{2^{1 / q}}\left\|v^{\prime}\right\|_{p}$, we have $\|v\|_{\infty} \leq \frac{1}{2^{1 / q}} K_{n_{0}}$ and as a result we have

$$
\begin{equation*}
\|u\|_{\infty} \leq \frac{1}{2^{1 / q}} K_{n_{0}}+\rho_{n_{0}} \equiv M_{n_{0}} \text { and }\left\|u^{\prime}\right\|_{p} \leq K_{n_{0}} \tag{2.15}
\end{equation*}
$$

for any solution u to $(2.9)_{\lambda}$. Also (2.7) (with $\varepsilon=\rho_{n_{0}}$) implies

$$
\begin{aligned}
& \int_{0}^{1}\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime} d t \leq \\
& \quad \leq M_{n_{0}}^{\delta} \int_{0}^{1} \phi_{1}(t) d t+\left[\int_{0}^{1} \phi_{2}^{\frac{p}{p-\beta}}(t)\right]^{\frac{p-\beta}{p}}\left\|u^{\prime}\right\|_{p}^{\beta}+\int_{0}^{1} \phi_{3}(t) d t \leq \\
& \leq M_{n_{0}}^{\delta} \int_{0}^{1} \phi_{1}(t) d t+\left[\int_{0}^{1} \phi_{2}^{\frac{p}{p-\beta}}(t)\right]^{\frac{p-\beta}{p}} K_{n_{0}}^{\beta}+\int_{0}^{1} \phi_{3}(t) d t \equiv L_{n_{0}},
\end{aligned}
$$

and so since $u(0)=u(1)=\rho_{n_{0}}$, we have

$$
\left\|u^{\prime}\right\|_{\infty} \leq \varphi_{p}^{-1}\left(\int_{0}^{1}\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime} d t\right) \leq \varphi_{p}^{-1}\left(L_{n_{0}}\right) \equiv R_{n_{0}}
$$

Now a standard existence principle from the literature [7,11] guarantees that $(2.9)_{1}$ has a solution $u_{n_{0}}$ with $\rho_{n_{0}} \leq u_{n_{0}}(t) \leq M_{n_{0}}$ for $t \in[0,1]$ and $\left\|u_{n_{0}}^{\prime}\right\|_{\infty} \leq R_{n_{0}}$.

Remark 2.1. In [11] we assumed that φ_{p}^{-1} is continuously differentiable on $(-\infty, \infty)$, so $1<p \leq 2$. However, this assumption is only needed in [11] to show that $N_{\lambda} \Omega$ is equicontinuous on $[0,1]$ (here N_{λ} and Ω are defined in [11]). It is well known that this assumption can be removed once one notices that $\varphi_{p} N_{\lambda} \Omega$ is equicontinuous on $[0,1]$ and uses also the fact that φ_{p}^{-1} is continuous.

Also notice that if we take $h(t, u, v)=g_{n_{0}}(t, u, v)$ in (2.3), then since $g_{n_{0}} \geq f$ and $u_{n_{0}}$ satisfies $-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=g_{n_{0}}\left(t, u, u^{\prime}\right)$ on $(0,1)$ with $u_{n_{0}}(t) \geq$ $\rho_{n_{0}}$ for $t \in[0,1]$, we have

$$
u_{n_{0}}(t) \geq \alpha(t) \quad \text { for } \quad t \in[0,1] .
$$

Next we consider the boundary value problem

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=g_{n_{0}+1}^{*}\left(t, u, u^{\prime}\right), \quad 0<t<1 \tag{2.16}\\
u(0)=u(1)=\rho_{n_{0}+1}
\end{array}\right.
$$

where

$$
g_{n_{0}+1}^{*}(t, u, v)=\left\{\begin{array}{l}
g_{n_{0}+1}\left(t, \rho_{n_{0}+1}, v^{*}\right)+r\left(\alpha_{n_{0}+1}(t)-u\right), \quad u \leq \rho_{n_{0}+1} \\
g_{n_{0}+1}\left(t, u, v^{*}\right), \quad \rho_{n_{0}+1} \leq u \leq u_{n_{0}}(t), \\
g_{n_{0}+1}\left(t, u_{n_{0}}(t), v^{*}\right)+r\left(u_{n_{0}}(t)-u\right), \quad u \geq u_{n_{0}}(t)
\end{array}\right.
$$

with

$$
v^{*}=\left\{\begin{array}{l}
R_{n_{0}+1}, \quad v>R_{n_{0}+1} \\
v, \quad-R_{n_{0}+1} \leq v \leq R_{n_{0}+1} \\
-R_{n_{0}+1}, \quad v<-R_{n_{0}+1}
\end{array}\right.
$$

here $R_{n_{0}+1} \geq R_{n_{0}}$ is a predetermined constant (see (2.20)). Now Schauder's fixed point theorem guarantees that there exists a solution $u_{n_{0}+1} \in C^{1}[0,1]$ with $\varphi_{p}\left(u_{n_{0}+1}^{\prime}\right) \in C^{1}(0,1)$ to (2.16). We first show

$$
\begin{equation*}
u_{n_{0}+1}(t) \geq \rho_{n_{0}+1}, \quad t \in[0,1] . \tag{2.17}
\end{equation*}
$$

Suppose (2.17) is not true. Then there exists a $t_{1} \in(0,1)$ with $u_{n_{0}+1}\left(t_{1}\right)<$ $\rho_{n_{0}+1}, u_{n_{0}+1}^{\prime}\left(t_{1}\right)=0$ and

$$
\left(\varphi_{p}\left(u_{n_{0}+1}^{\prime}\right)\right)^{\prime}\left(t_{1}\right) \geq 0
$$

We need to discuss two cases, namely $t_{1} \in\left[\frac{1}{2^{n_{0}+2}}, 1\right)$ and $t_{1} \in\left(0, \frac{1}{2^{n_{0}+2}}\right)$.
Case (1). $t_{1} \in\left[\frac{1}{2^{n_{0}+2}}, 1\right)$.

Then since $g_{n_{0}+1}\left(t_{1}, u, v\right)=f\left(t_{1}, u, v\right)$ for $(u, v) \in(0, \infty) \times R$ (note $\left.t_{1} \in e_{n_{0}+1}\right)$, we have

$$
\begin{gathered}
\left(\varphi_{p}\left(u_{n_{0}+1}^{\prime}\right)\right)^{\prime}\left(t_{1}\right)= \\
=-\left[g_{n_{0}+1}\left(t_{1}, \rho_{n_{0}+1},\left(u_{n_{0}+1}^{\prime}\left(t_{1}\right)\right)^{*}\right)+r\left(\rho_{n_{0}+1}-u_{n_{0}+1}\left(t_{1}\right)\right)\right] \\
=-\left[f\left(t_{1}, \rho_{n_{0}+1}, 0\right)+r\left(\rho_{n_{0}+1}-u_{n_{0}+1}\left(t_{1}\right)\right)\right]<0
\end{gathered}
$$

from (2.2), a contradiction.
Case (2). $t_{1} \in\left(0, \frac{1}{2^{n_{0}+2}}\right)$.
Then since $g_{n_{0}+1}\left(t_{1}, u, v\right)$ equals

$$
\begin{aligned}
& \min \left\{\max \left\{f\left(\frac{1}{2^{n_{0}+1}}, u, v\right), f\left(t_{1}, u, v\right)\right\}\right. \\
&\left.\max \left\{f\left(\frac{1}{2^{n_{0}+2}}, u, v\right), f\left(t_{1}, u, v\right)\right\}\right\}
\end{aligned}
$$

we have

$$
g_{n_{0}+1}\left(t_{1}, u, v\right) \geq f\left(t_{1}, u, v\right)
$$

and

$$
g_{n_{0}+1}\left(t_{1}, u, v\right) \geq \min \left\{f\left(\frac{1}{2^{n_{0}+1}}, u, v\right), f\left(\frac{1}{2^{n_{0}+2}}, u, v\right)\right\}
$$

for $(u, v) \in(0, \infty) \times R$. Thus we have

$$
\begin{aligned}
& \left(\varphi_{p}\left(u_{n_{0}+1}^{\prime}\right)\right)^{\prime}\left(t_{1}\right)= \\
& =-\left[g_{n_{0}+1}\left(t_{1}, \rho_{n_{0}+1},\left(u_{n_{0}+1}^{\prime}\left(t_{1}\right)\right)^{*}\right)+r\left(\rho_{n_{0}+1}-u_{n_{0}+1}\left(t_{1}\right)\right)\right] \leq \\
& \leq-\left\{\min \left\{f\left(\frac{1}{2^{n_{0}+1}}, \rho_{n_{0}+1}, 0\right), f\left(\frac{1}{2^{n_{0}+2}}, \rho_{n_{0}+1}, 0\right)\right\}+\right. \\
& \left.\quad+r\left(\rho_{n_{0}+1}-u_{n_{0}+1}\left(t_{1}\right)\right)\right\}<0,
\end{aligned}
$$

since

$$
f\left(\frac{1}{2^{n_{0}+1}}, \rho_{n_{0}+1}, 0\right) \geq 0 \quad \text { and } f\left(\frac{1}{2^{n_{0}+2}}, \rho_{n_{0}+1}, 0\right) \geq 0
$$

because

$$
f\left(t, \rho_{n_{0}+1}, 0\right) \geq 0 \quad \text { for } \quad t \in\left[\frac{1}{2^{n_{0}+2}}, 1\right]
$$

and $\frac{1}{2^{n_{0}+1}} \in\left[\frac{1}{2^{n_{0}+2}}, 1\right]$.
Consequently (2.18) is true. Next we show

$$
\begin{equation*}
u_{n_{0}+1}(t) \leq u_{n_{0}}(t) \quad \text { for } \quad t \in[0,1] \tag{2.18}
\end{equation*}
$$

If (2.18) is not true, then $u_{n_{0}+1}-u_{n_{0}}$ would have a positive absolute maximum at say $\tau_{0} \in(0,1)$, in which case $\left(u_{n_{0}+1}-u_{n_{0}}\right)^{\prime}\left(\tau_{0}\right)=0$ and

$$
\begin{equation*}
\left(\varphi_{p}\left(u_{n_{0}+1}^{\prime}\right)\right)^{\prime}\left(\tau_{0}\right)-\left(\varphi_{p}\left(u_{n_{0}}^{\prime}\right)\right)^{\prime}\left(\tau_{0}\right) \leq 0 \tag{2.19}
\end{equation*}
$$

the proof is contained in [7].

Then $u_{n_{0}+1}\left(\tau_{0}\right)>u_{n_{0}}\left(\tau_{0}\right)$ together with $g_{n_{0}}\left(\tau_{0}, u, v\right) \geq g_{n_{0}+1}\left(\tau_{0}, u, v\right)$ for $(u, v) \in(0, \infty) \times R$ gives (note $\left(u_{n_{0}+1}^{\prime}\left(\tau_{0}\right)\right)^{*}=\left(u_{n_{0}}^{\prime}\left(\tau_{0}\right)\right)^{*}=u_{n_{0}}^{\prime}\left(\tau_{0}\right)$ since $R_{n_{0}+1} \geq R_{n_{0}}$ and $\left.\left\|u_{n_{0}}^{\prime}\right\|_{\infty} \leq R_{n_{0}}\right)$

$$
\begin{aligned}
& \left(\varphi_{p}\left(u_{n_{0}+1}^{\prime}\right)\right)^{\prime}\left(\tau_{0}\right)-\left(\varphi_{p}\left(u_{n_{0}}^{\prime}\right)\right)^{\prime}\left(\tau_{0}\right)= \\
& =-\left[g_{n_{0}+1}\left(\tau_{0}, u_{n_{0}}\left(\tau_{0}\right),\left(u_{n_{0}+1}^{\prime}\left(\tau_{0}\right)\right)^{*}\right)+r\left(u_{n_{0}}\left(\tau_{0}\right)-u_{n_{0}+1}\left(\tau_{0}\right)\right)\right]- \\
& \quad-\left(\varphi_{p}\left(u_{n_{0}}^{\prime}\right)\right)^{\prime}\left(\tau_{0}\right) \geq-\left[\left(\varphi_{p}\left(u_{n_{0}}^{\prime}\right)\right)^{\prime}\left(\tau_{0}\right)+g_{n_{0}}\left(\tau_{0}, u_{n_{0}}\left(\tau_{0}\right), u_{n_{0}}^{\prime}\left(\tau_{0}\right)\right)\right]- \\
& \quad-r\left(u_{n_{0}}\left(\tau_{0}\right)-u_{n_{0}+1}\left(\tau_{0}\right)\right) \\
& =-r\left(u_{n_{0}}\left(\tau_{0}\right)-u_{n_{0}+1}\left(\tau_{0}\right)\right)>0,
\end{aligned}
$$

a contradiction. Thus (2.18) holds. In addition, since $\left\|u_{n_{0}+1}\right\|_{\infty} \leq\left\|u_{n_{0}}\right\|_{\infty} \leq$ $M_{n_{0}}$, then (2.7) (with $\left.\varepsilon=\rho_{n_{0}+1}\right)$ guarantees the existence of $a_{0}, b_{0}, \eta_{\varepsilon}, \delta$ and β (as described in (2.7)) with (we only need to note that $g_{n_{0}+1}^{*}\left(t, u_{n_{0}+1}(t)\right.$, $\left.u_{n_{0}+1}^{\prime}(t)\right)=g_{n_{0}+1}\left(t, u_{n_{0}+1}(t),\left(u_{n_{0}+1}^{\prime}(t)\right)^{*}\right)$

$$
\left|g_{n_{0}+1}^{*}\left(t, u_{n_{0}+1}, u_{n_{0}+1}^{\prime}\right)\right| \leq \phi_{9}(t)\left[u_{n_{0}+1}(t)\right]^{\delta}+
$$

$$
+\phi_{10}(t)\left|\left(u_{n_{0}+1}^{\prime}(t)\right)^{*}\right|^{\beta}+\phi_{11}(t) \leq
$$

$$
\leq \phi_{9}(t) M_{n_{0}}^{\delta}+\phi_{10}(t)\left|u_{n_{0}+1}^{\prime}(t)\right|^{\beta}+\phi_{11}(t)
$$

for $t \in(0,1)$ (note that $\left|v^{*}\right| \leq|v|$); here

$$
\begin{gathered}
\phi_{9}(t)=\max \left\{a_{0}(t), a_{0}\left(\theta_{n_{0}}(t)\right), a_{0}\left(\theta_{n_{0}+1}(t)\right)\right\} \\
\phi_{10}(t)=\max \left\{b_{0}(t), b_{0}\left(\theta_{n_{0}}(t)\right), b_{0}\left(\theta_{n_{0}+1}(t)\right)\right\}
\end{gathered}
$$

and

$$
\phi_{11}(t)=\max \left\{\eta_{\varepsilon}(t), \eta_{\varepsilon}\left(\theta_{n_{0}}(t)\right), \eta_{\varepsilon}\left(\theta_{n_{0}+1}(t)\right)\right\}
$$

As a result,

$$
\begin{aligned}
\left\|u_{n_{0}+1}^{\prime}\right\|_{p}^{p}= & \left|\int_{0}^{1}\left(u_{n_{0}+1}(t)-\rho_{n_{0}+1}\right)\left(\left|u_{n_{0}+1}^{\prime}(t)\right|^{p-2} u_{n_{0}+1}^{\prime}(t)\right)^{\prime}\right| \leq \\
\leq & M_{n_{0}}^{\delta}\left(M_{n_{0}}+\rho_{n_{0}+1}\right) \int_{0}^{1} \phi_{9}(t) d t+ \\
& +\left(M_{n_{0}}+\rho_{n_{0}+1}\right)\left\|u_{n_{0}+1}^{\prime}\right\|_{p}^{\beta}\left(\int_{0}^{1} \phi_{10}^{\frac{p-\beta}{p}}(t) d t\right)^{\frac{p}{p-\beta}}+ \\
& +\left(M_{n_{0}}+\rho_{n_{0}+1}\right) \int_{0}^{1} \phi_{11} d t
\end{aligned}
$$

so there exists a constant $K_{n_{0}+1} \geq \rho_{n_{0}+1}$ with

$$
\left\|u_{n_{0}+1}^{\prime}\right\|_{p} \leq K_{n_{0}+1}
$$

Also since $u_{n_{0}+1}(0)=u_{n_{0}+1}(1)=\rho_{n_{0}+1}$, we have

$$
\begin{aligned}
\left\|u_{n_{0}+1}^{\prime}\right\|_{\infty} \leq & \varphi_{p}^{-1}\left(\int_{0}^{1}\left(\left|u_{n_{0}+1}^{\prime}(t)\right|^{p-2} u_{n_{0}+1}^{\prime}(t)\right)^{\prime} d t\right) \leq \\
\leq & M_{n_{0}}^{\delta} \int_{0}^{1} \phi_{9}(t) d t+K_{n_{0}+1}^{\beta}\left(\int_{0}^{1}\left[\phi_{10}(t)\right]^{\frac{p}{p-\beta}} d t\right)^{\frac{p-\beta}{p}}+ \\
& +\int_{0}^{1} \phi_{11}(t) d t
\end{aligned}
$$

so there exists a constant $R_{n_{0}+1} \geq R_{n_{0}}$ with

$$
\begin{equation*}
\left\|u_{n_{0}+1}^{\prime}\right\|_{\infty} \leq R_{n_{0}+1} \tag{2.20}
\end{equation*}
$$

As a result, if we take $h(t, u, v)=g_{n_{0}+1}(t, u, v)$ in (2.3), then since $g_{n_{0}+1} \geq$ f and $u_{n_{0}+1}$ satisfies $-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=g_{n_{0}+1}\left(t, u, u^{\prime}\right)$ on $(0,1)$ with $u_{n_{0}+1}(t) \geq$ $\rho_{n_{0}+1}$ for $t \in[0,1]$, we have

$$
u_{n_{0}}(t) \geq \alpha(t) \quad \text { for } \quad t \in[0,1]
$$

Now proceed inductively to construct $u_{n_{0}+2}, u_{n_{0}+3}, \ldots$ as follows. Suppose we have u_{k} for some $k \in\left\{n_{0}+1, n_{0}+2,\right\}$ with $\alpha(t) \leq u_{k}(t) \leq u_{k-1}(t)$ for $t \in[0,1]$.

Then consider the boundary value problem

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=g_{k+1}^{*}\left(t, u, u^{\prime}\right), \quad 0<t<1 \tag{2.21}\\
u(0)=u(1)=\rho_{k+1}
\end{array}\right.
$$

where

$$
g_{k+1}^{*}(t, u, v)=\left\{\begin{array}{l}
g_{k+1}\left(t, \rho_{k+1}, v^{*}\right)+r\left(\rho_{k+1}-u\right), \quad u \leq \rho_{k+1} \\
g_{k+1}\left(t, u, v^{*}\right), \quad \rho_{k+1} \leq u \leq u_{k}, \\
g_{k+1}\left(t, u_{k}, v^{*}\right)+r\left(u_{k}-u\right), \quad u \geq u_{k}
\end{array}\right.
$$

with

$$
v^{*}= \begin{cases}M_{k+1}, & v>M_{k+1} \\ v, & -M_{k+1} \leq v \leq M_{k+1} \\ -M_{k+1}, & v<-M_{k+1}\end{cases}
$$

here $M_{k+1} \geq M_{k}$ is a predetermined constant. Now Schauder's fixed point theorem guarantees that (2.21) has a solution $u_{k+1} \in C^{1}[0,1]$ with $\varphi_{p}\left(u_{k}^{\prime}\right) \in C^{1}(0,1)$ and essentially the same reasoning as above yields

$$
\begin{equation*}
\rho_{k+1} \leq u_{k+1}(t) \leq u_{k}(t), \quad\left|u_{k+1}^{\prime}(t)\right| \leq M_{k+1} \quad \text { for } \quad t \in[0,1] \tag{2.22}
\end{equation*}
$$

with

$$
u_{k+1}(t) \geq \alpha(t) \quad \text { for } \quad t \in[0,1]
$$

and

$$
-\left(\varphi_{p}\left(u_{k+1}^{\prime}\right)\right)^{\prime}=g_{k+1}\left(t, u_{k+1}, u_{k+1}^{\prime}\right) \quad \text { for } \quad 0<t<1 .
$$

Now let us look at the interval $\left[\frac{1}{2^{n_{0}+1}}, 1-\frac{1}{2^{n_{0}+1}}\right]$. We claim

$$
\left\{\begin{array}{l}
\left\{u_{n}^{(j)}\right\}_{n=n_{0}+1}^{\infty}, j=0,1, \text { is a bounded, equicontinuous } \tag{2.23}\\
\text { family on }\left[\frac{1}{2^{n_{0}+1}}, 1-\frac{1}{2^{n_{0}+1}}\right]
\end{array}\right.
$$

Firstly note

$$
\begin{equation*}
\left\|u_{n}\right\|_{\infty} \leq\left\|u_{n_{0}}\right\|_{\infty} \leq M_{n_{0}} \text { for } t \in[0,1] \text { and } n \geq n_{0}+1 \tag{2.24}
\end{equation*}
$$

Let

$$
\varepsilon=\min _{t \in\left[\frac{1}{2^{n}+1}, 1-\frac{1}{2^{n_{0}+1}}\right]} \alpha(t) .
$$

Then (2.7) guarantees the existence of $a_{0}, b_{0}, \eta_{\varepsilon}, \delta$ and β (as described in (2.7)) with

$$
\begin{aligned}
\left|g_{n}\left(t, u_{n}(t), u_{n}^{\prime}(t)\right)\right| & =\left|f\left(t, u_{n}(t), u_{n}^{\prime}(t)\right)\right| \leq \\
& \leq a_{0}(t) M_{n_{0}}^{\delta}+b_{0}(t)\left|u_{n}^{\prime}(t)\right|^{\beta}+\eta_{\varepsilon}(t)
\end{aligned}
$$

for $t \in[a, b] \equiv\left[\frac{1}{2^{n_{0}+1}}, 1-\frac{1}{2^{n_{0}+1}}\right] \subseteq e_{n_{0}}$ and $n \geq n_{0}+1$. Let

$$
r_{n}(t)=u_{n}(t)-\left\{u_{n}(a)+\frac{\left[u_{n}(b)-u_{n}(a)\right]}{b-a}(t-a)\right\}
$$

so for $n \geq n_{0}+1$ we have

$$
\left|\int_{a}^{b} r_{n}(t)\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime} d t\right|=-\int_{a}^{b}\left|u_{n}^{\prime}\right|^{p} d t+\frac{u_{n}(b)-u_{n}(a)}{b-a} \int_{a}^{b} \varphi_{p}\left(u_{n}^{\prime}\right) d t
$$

Now since $r_{n}(t) \leq 2 M_{n_{0}}$ for $t \in[a, b]$, we have for any $n \geq n_{0}+1$ that

$$
\begin{aligned}
\int_{a}^{b}\left|u_{n}^{\prime}(t)\right|^{p} d t \leq & \frac{2 M_{n_{0}}}{b-a} \int_{a}^{b}\left|u_{n}\right|^{p-1} d t+2 M_{n_{0}} \int_{a}^{b}\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime} d t \leq \\
\leq & \frac{2 M_{n_{0}}}{(b-a)^{\frac{p+1}{p}}}\left\|u_{n}\right\|_{p}^{p-1}+2 M_{n_{0}}\left[M_{n_{0}}^{\delta} \int_{a}^{b} a_{0}(t) d t+\right. \\
& \left.+\left(\int_{a}^{b}\left|b_{0}(t)\right|^{\frac{p}{p-\beta}} d t\right)^{\frac{p-\beta}{p}}\left\|u_{n}^{\prime}\right\|_{p}^{\beta}+\int_{a}^{b} \eta_{\varepsilon}(t) d t\right]
\end{aligned}
$$

so there exists $Q_{n_{0}}$ with

$$
\begin{equation*}
\left\|u_{n}^{\prime}\right\|_{p}^{p} \leq Q_{n_{0}} \quad \text { for } \quad n \geq n_{0}+1 \tag{2.25}
\end{equation*}
$$

Also there exists $t_{n} \in(a, b)$ with $u_{n}^{\prime}\left(t_{n}\right)=\frac{u_{n}(b)-u_{n}(a)}{b-a}$, so for $n \geq n_{0}+1$ we have (using (2.25))

$$
\begin{aligned}
\sup _{t \in[a, b]}\left|u_{n}^{\prime}(t)\right|^{p-1} \leq & \left|\varphi_{p}\left(u_{n}^{\prime}\right)\left(t_{n}\right)\right|+\int_{a}^{b}\left(\varphi_{p}\left(u_{n}^{\prime}\right)\right)^{\prime} d t \leq \\
\leq & {\left[\frac{2 M_{n_{0}}}{b-a}\right]^{p-1}+M_{n_{0}}^{\delta} \int_{a}^{b} a_{0}(t) d t+} \\
& +Q_{n_{0}}^{\frac{\beta}{p}}\left(\int_{a}^{b}\left[b_{0}(t)\right]^{\frac{p}{p-\beta}}\right)^{\frac{p-\beta}{p}}+\int_{a}^{b} \eta_{\varepsilon}(t) d t \equiv L_{n_{0}}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\sup _{t \in[a, b]}\left|u_{n}^{\prime}(t)\right| \leq L_{n_{0}}^{\frac{1}{p-1}} \quad \text { for } \quad n \geq n_{0}+1 \tag{2.26}
\end{equation*}
$$

Now (2.24), (2.25) and (2.26) guarantee that (2.23) holds. The ArzelaAscoli theorem guarantees the existence of a subsequence $N_{n_{0}}$ of integers and a function $z_{n_{0}} \in C^{1}\left[\frac{1}{2^{n_{0}+1}}, 1-\frac{1}{2^{n_{0}+1}}\right]$ with $u_{n}^{(j)}, j=0,1$, converging uniformly to $z_{n_{0}}^{(j)}$ on $\left[\frac{1}{2^{n_{0}+1}}, 1-\frac{1}{2^{n_{0}+1}}\right]$ as $n \rightarrow \infty$ through $N_{n_{0}}$. Similarly

$$
\left\{\begin{array}{l}
\left\{u_{n}^{(j)}\right\}_{n=n_{0}+2}^{\infty}, j=0,1, \text { is a bounded, equicontinuous } \\
\text { family on }\left[\frac{1}{2^{n_{0}+2}}, 1-\frac{1}{2^{n_{0}+2}}\right]
\end{array}\right.
$$

so there is a subsequence $N_{n_{0}+1}$ of $N_{n_{0}}$ and a function

$$
z_{n_{0}+1} \in C^{1}\left[\frac{1}{2^{n_{0}+2}}, 1-\frac{1}{2^{n_{0}+2}}\right]
$$

with $u_{n}^{(j)}, j=0,1$, converging uniformly to $z_{n_{0}+1}^{(j)}$ on $\left[\frac{1}{2^{n_{0}+2}}, 1-\frac{1}{2^{n_{0}+2}}\right]$ as $n \rightarrow \infty$ through $N_{n_{0}+1}$. Note $z_{n_{0}+1}=z_{n_{0}}$ on $\left[\frac{1}{2^{n_{0}+1}}, 1-\frac{1}{2^{n_{0}+1}}\right]$ since $N_{n_{0}+1} \subseteq N_{n_{0}}$. Proceed inductively to obtain subsequences of integers

$$
N_{n_{0}} \supseteq N_{n_{0}+1} \supseteq \cdots \supseteq N_{k} \supseteq \cdots
$$

and the function

$$
z_{k} \in C^{1}\left[\frac{1}{2^{k+1}}, 1-\frac{1}{2^{k+1}}\right]
$$

with

$$
u_{n}^{(j)}, j=0,1, \text { converging uniformly to } z_{k}^{(j)} \text { on }\left[\frac{1}{2^{k+1}}, 1-\frac{1}{2^{k+1}}\right]
$$

as $n \rightarrow \infty$ through N_{k}, and

$$
z_{k}=z_{k-1} \quad \text { on } \quad\left[\frac{1}{2^{k}}, 1-\frac{1}{2^{k}}\right] .
$$

Define a function $u:[0,1] \rightarrow[0, \infty)$ by $u(t)=z_{k}(t)$ on $\left[\frac{1}{2^{k+1}}, 1-\frac{1}{2^{k+1}}\right]$ and $u(0)=u(1)=0$. Notice that u is well defined and

$$
\alpha(t) \leq u(t) \leq u_{n_{0}}(t) \quad \text { for } \quad t \in(0,1)
$$

Now let $[a, b] \subset(0,1)$ be a compact interval. There is an index n^{*} such that $[a, b] \subset\left[\frac{1}{2^{n+1}}, 1-\frac{1}{2^{n+1}}\right]$ for all $n>n^{*}$ and therefore, for all $n>n^{*}$

$$
-\left(\varphi_{p}\left(u_{n}^{\prime}\right)\right)^{\prime}=f\left(t, u_{n}, u_{n}^{\prime}\right) \quad \text { for } \quad a \leq t \leq b
$$

A standard argument [7, 11] guarantees that

$$
-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right) \quad \text { for } \quad a \leq t \leq b
$$

Since $[a, b] \subset(0,1)$ is arbitrary, we find that

$$
\left(\varphi\left(u^{\prime}\right)^{\prime} \in C(0,1) \quad \text { and } \quad-\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right) \quad \text { for } \quad 0<t<1\right.
$$

It remains to show that u is continuous at 0 and 1 . Let $\varepsilon>0$ be given. Now since $\lim _{n \rightarrow \infty} u_{n}(0)=0$, there exists $n_{1} \in\left\{n_{0}, n_{0}+1, \ldots\right\}$ with $u_{n_{1}}(0)<\frac{\varepsilon}{2}$. Next since $u_{n_{1}} \in C[0,1]$, there exists $\delta_{n_{1}}>0$ with

$$
u_{n_{1}}(t)<\frac{\varepsilon}{2} \quad \text { for } \quad t \in\left[0, \delta_{n_{1}}\right]
$$

Now for $n \geq n_{1}$ we have, since $\left\{u_{n}(t)\right\}_{n \in N_{0}}$ is nonincreasing for each $t \in$ $[0,1]$,

$$
\alpha(t) \leq u_{n}(t) \leq u_{n_{1}}(t)<\frac{\varepsilon}{2} \quad \text { for } \quad t \in\left[0, \delta_{n_{1}}\right] .
$$

Consequently,

$$
\alpha(t) \leq u(t) \leq \frac{\varepsilon}{2}<\varepsilon \quad \text { for } \quad t \in\left(0, \delta_{n_{1}}\right]
$$

and so u is continuous at 0 . Similarly u is continuous at 1 . As a result, $u \in C[0,1]$.

Remark 2.2. In (2.2) it is possible to replace $\frac{1}{2^{n+1}} \leq t \leq 1$ with either (i) $0 \leq t \leq 1-\frac{1}{2^{n+1}}$, (ii) $\frac{1}{2^{n+1}} \leq t \leq 1-\frac{1}{2^{n+1}}$, or (iii) $0 \leq t \leq 1$. This is clear once one changes the definition of e_{n} and θ_{n}. For example, in case (ii) take $e_{n}=\left[\frac{1}{2^{n+1}}, 1-\frac{1}{2^{n+1}}\right]$ and $\theta_{n}(t)=\max \left\{\frac{1}{2^{n+1}}, \min \left\{t, 1-\frac{1}{2^{n+1}}\right\}\right\}$.

Finally we discuss the condition (2.3). Suppose the following condition is satisfied:

$$
\left\{\begin{array}{l}
\text { let } n \in\left\{n_{0}, n_{0}+1, \ldots\right\} \text { and associated with each } n \text { we } \\
\text { have a constant } \rho_{n} \text { such that }\left\{\rho_{n}\right\} \text { is a decreasing } \\
\text { sequence with } \lim _{n \rightarrow \infty} \rho_{n}=0 \text { and for any } r>0 \tag{2.27}\\
\text { there exists a constant } k_{r}>0 \text { such that for } \frac{1}{2^{n+1}} \leq t \leq 1, \\
0<u \leq \rho_{n} \text { and } v \in[-r, r] \text { we have } f(t, u, v)^{>}>k_{r} .
\end{array}\right.
$$

A slight modification of the argument in [7, Proposition 4] guarantees that (2.3) is true.

Remark 2.3. In (2.27) if $\frac{1}{2^{n+1}} \leq t \leq 1$ is replaced by (i), (ii), or (iii) in Remark 2.2, then (2.3) is also true.

Theorem 2.2. Let $n_{0} \in\{1,2, \ldots\}$ be fixed and suppose (2.1), (2.4)-(2.7) and (2.27) hold. Then (1.1) has a solution $u \in C[0,1]$ with $u(t)>0$ for $t \in(0,1)$.

References

1. R. Agarwal, H. Lü, and D. O'Regan, Existence theorems for the one-dimensional singular p-Laplacian equation with sign changing nonlinearities. Appl. Math. Comput. 143 (2003), No. 1, 15-38.
2. R. Agarwal, D. O'Regan, and V. Lakshmikantham, Nonuniform nonresonance at the first eigenvalue for singular boundary value problems with sign changing nonlinearities. J. Math. Anal. Appl. 274 (2002), No. 1, 404-423.
3. R. P. Agarwal, D. O'Regan and R. Precup, A note on nonuniform nonresonance for nonlinear boundary value problems with y^{\prime} dependence. Dynam. Systems Appl. (to appear).
4. P. Drábek and R. Manásevich, On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian. Differential Integral Equations 12 (1999), No. 6, 773-788.
5. P. Habets and F. Zanolin, Upper and lower solutions for a generalized EmdenFowler equation. J. Math. Anal. Appl. 181 (1994), No. 3, 684-700.
6. D. D. Hai, R. Shivaji, and C. Maya, An existence result for a class of superlinear p-Laplacian semipositone systems. Differential Integral Equations 14 (2001), No. 2, 231-240.
7. H. Lü, D. O'REgan, and C. Zhong, Existence of positive solutions for the singular equation $\left(\phi_{p}\left(y^{\prime}\right)\right)^{\prime}+g\left(t, y, y^{\prime}\right)=0$. Nelı̄n $\bar{\imath} n \bar{\imath}$ Koliv. 6 (2003), No. 1, 117-132
8. H. LÜ and C. Zhong, A note on singular nonlinear boundary value problems for the one-dimensional p-Laplacian. Appl. Math. Lett. 14 (2001), No. 2, 189-194.
9. H. Lü, D. O'Regan, and C. Zhong, Multiple positive solutions for the onedimensional singular p-Laplacian. Appl. Math. Comput. 133 (2002), No. 2-3, 407-422.
10. R. F. Manásevich and F. Zanolin, Time-mappings and multiplicity of solutions for the one-dimensional p-Laplacian. Nonlinear Anal. 21 (1993), No. 4, 269-291.
11. D. O'Regan, Some general existence principles and results for $\left(\phi\left(y^{\prime}\right)\right)^{\prime}=q f\left(t, y, y^{\prime}\right)$, $0<t<1$. SIAM J. Math. Anal. 24 (1993), No. 3, 648-668.
12. J. Wang and W. Gao, A singular boundary value problem for the one-dimensional p-Laplacian. J. Math. Anal. Appl. 201 (1996), No. 3, 851-866.
13. Q. L. Yao and H. C. Lü, Positive solutions of one-dimensional singular p-Laplace equations. (Chinese) Acta Math. Sinica 41 (1998), No. 6, 1255-1264.
14. M. Zhang, Nonuniform nonresonance at the first eigenvalue of the p-Laplacian. Nonlinear Anal. 29 (1997), No. 1, 41-51.
(Received 17.12.2004)
Authors' addresses:
Haishen Lü
Department of Applied Mathematics
Hohai University
Nanjing, 210098
China
E-mail: Haishen2001@yahoo.com.cn

Donal O'Regan
Department of Mathematics
University of Ireland, Galway
Ireland
E-mail: donal.oregan@nuigalway.ie
R. P. Agarwal

Department Mathematical Sciences
Florida Institute of Technology
Florida 32901-6975
USA
E-mail: agarwal@fit.edu

