Memoirs on Differential Equations and Mathematical Physics

Volume 34, 2005, 1-76
A. Dzhishkariani

APPROXIMATE SOLUTION OF ONE CLASS OF SINGULAR INTEGRAL EQUATIONS BY MEANS OF PROJECTIVE AND PROJECTIVE-ITERATIVE METHODS

Abstract

We consider singular integral equations when the line of integration is the segment $[-1,1]$. Equations are considered in the weight spaces.

For the indices $\varkappa=1$ and $\varkappa=-1$ there are additional conditions which are approximated additionally by other authors. For the index $\varkappa=1$ we narrow the domain of definition of the singular operator, while for the index $\varkappa=-1$ we narrow the range of values of the singular operator. Such a procedure allows one to justify approximate schemes without any difficulty.

Projective-iterative schemes are considered, their convergence is proved and the convergence order is determined. Stability of the projective-iterative schemes is defined and proved.

2000 Mathematics Subject Classification. 65R20. Key words and phrases. Singular integral equation, projective and projective-iterative methods, convergence and order of convergence of approximate methods, stability.

1. Introduction

We consider the following singular integral equation [1]:

$$
\begin{equation*}
a \varphi(x)+\frac{b}{\pi} \int_{-1}^{1} \frac{\varphi(t) d t}{t-x}+\frac{1}{\pi} \int_{-1}^{1} K(x, t) \varphi(t) d t=f(x), \quad-1<x<1 \tag{1.1}
\end{equation*}
$$

where a and b are real numbers, $K(x, t)$ and $f(x)$ are real functions, $x, t \in$ $[-1,1], a^{2}+b^{2}=1$. The equation (1.1) is called the equation of the first kind for $a=0$ and the equation of the second kind for $a \neq 0$. Singular integral equations of the first and the second kind are theoretically identical; the only difference is in the choice of weight spaces and coordinate (basis) functions in the projective method. We consider the singular integral equation (1.1) in weight spaces [2]. The index of the equation (1.1), $\varkappa=-(\alpha+\beta)$, where

$$
\alpha=\frac{1}{2 \pi i} \ln \left(\frac{a-i b}{a+i b}\right)+N, \quad \beta=-\frac{1}{2 \pi i} \ln \left(\frac{a-i b}{a+i b}\right)+M
$$

here N and M are integers which we choose as follows:

1) $\varkappa=1, \quad-1<\alpha, \beta<0$;
2) $\varkappa=-1, \quad 0<\alpha, \beta<1$;
3) $\varkappa=0, \quad \alpha=-\beta, 0<|\alpha|<1$.

These cases cover the well-known problems of mechanics.
The use will be made of the following short notation for the equations of the first and the second kind, respectively,

$$
S \varphi+K \varphi=f, \quad(a+b S) \varphi+K \varphi=f
$$

which will be considered in the weight space $L_{2, \rho}(-1,1)$. The notation $\varphi \in L_{2, \rho}(-1,1)$ means that

$$
\int_{-1}^{1} \varphi^{2} \rho d x<+\infty
$$

The problems of approximate solution of singular integral equations go back to the work of M. A. Lavrent'ev [3]. Subsequently, these problems were studied by H. Multop, V. Ivanov, M. Schleif, S. Mikhlin, Z. Prössdorf, B. Gabdulkhaev, J. Sanikidze, B. Musayev, A. Kalandiya, M. Gagua, I. Lifanov, F. Erdogan, G. Gupta, S. Krenk, M. Sheshko, G. Thamasphyros, P. Theocaris and other authors.

My first works dealing with the projective and collocation methods for approximate solution of the singular integral equation (1.1) were published in the Journal of Computational Mathematics and Mathematical Physics in 1979 and 1981. These works suggest approximate schemes which somewhat differ from the earlier known ones for the indices $\varkappa=1$ and $\varkappa=-1$. Justification of these schemes is also given.

In 1993 there appeared the work of D. Porter and D.S.G. Stirling in which the authors suggested the cyclic projective-iterative scheme for the
equation of the first kind $(I+T) u=f$ in the Banach space. This scheme has been used in our joint work with G. Khvedelidze for the singular integral equation (1.1).

The present paper combines the results obtained by the author in the recent years. Moreover, it concerns the problem of stability of the projectiveiterative scheme.

The work is not a survey. In References we indicate the works which are used in the proof of theorems.
2. Projective Method for the Singular Integral Equation of the First Kind

We consider the equation

$$
\begin{equation*}
S \varphi+K \varphi=f \tag{2.1}
\end{equation*}
$$

where $S \varphi \equiv \frac{1}{\pi} \int_{-1}^{1} \frac{\varphi(t) d t}{t-x},-1<x<1$,

$$
K \varphi \equiv \frac{1}{\pi} \int_{-1}^{1} K(x, t) \varphi(t) d t, \quad x, t \in[-1,1]
$$

For the above equation there may take place three cases: 1) $\varkappa=1$, $\alpha=\beta=-\frac{1}{2}$; 2) $\varkappa=-1, \alpha=\beta=-\frac{1}{2}$; 3) $\varkappa=0, \alpha=-\frac{1}{2}, \beta=\frac{1}{2}$, or $\alpha=\frac{1}{2}$, $\beta=-\frac{1}{2}$.

All these cases will be considered separately.

1) $\varkappa=1, \alpha=\beta=-\frac{1}{2}$. Let us introduce the weight space $L_{2, \rho_{1}}[-1,1]$, where the weight $\rho_{1}=\left(1-x^{2}\right)^{1 / 2}$, and the scalar product

$$
[u, v]=\left(\left(1-x^{2}\right)^{1 / 2} u, v\right)=\int_{-1}^{1}\left(1-x^{2}\right)^{1 / 2} u(x) v(x) d x
$$

Any function of the type $\varphi(x)=\left(1-x^{2}\right)^{-\frac{1}{2}} \varphi_{0}$, where $\varphi_{0}(x)$ is a bounded measurable function, belongs to the space $L_{2, \rho_{1}}$.

Let the function $K(x, t)$ satisfy the condition

$$
\int_{-1}^{1} \int_{-1}^{1} K^{2}(x, t)\left(1-x^{2}\right)^{\frac{1}{2}}\left(1-t^{2}\right)^{-\frac{1}{2}} d t d x<+\infty
$$

Then the operator K is completely continuous in $L_{2, \rho_{1}}$. It is known that the singular operator S is bounded in $L_{2, \rho_{1}}$ [4].

The equation (2.1) will be considered in the weight space $L_{2, \rho_{1}} ; f, \varphi \in$ $L_{2, \rho_{1}}$.

Let us take the Chebyshev polynomials [5]

$$
T_{k}(x)=\cos (k \arccos x), \quad k=0,1, \ldots, \quad|x| \leq 1
$$

The system of functions

$$
\widehat{T}_{0}(x)=\pi^{-\frac{1}{2}} T_{0}, \quad \widehat{T}_{k}(x)=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} T_{k}(x), \quad k=1,2, \ldots,
$$

is complete and orthonormal with the weight $\left(1-x^{2}\right)^{-\frac{1}{2}}$ in the space $L_{2}[-1,1]$. Therefore the system of functions

$$
\varphi_{k} \equiv\left(1-x^{2}\right)^{-\frac{1}{2}} \widehat{T}_{k}(x), \quad k=0,1, \ldots
$$

is complete and orthonormal in the space $L_{2, \rho_{1}}$. Moreover, the system of functions
$\psi_{k+1} \equiv\left(\frac{2}{\pi}\right)^{\frac{1}{2}} U_{k}(x)=\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\left(1-x^{2}\right)^{-\frac{1}{2}} \sin ((k+1) \arccos x), k=0,1, \ldots$, where $U_{k}, k=0,1, \ldots$, are the Chebyshev polynomials of the second kind, is also complete and orthonormal in the space $L_{2, \rho_{1}}$.

The following formulas are well-known [6]:

$$
\left.\begin{array}{ll}
S\left[T_{k}(t)\left(1-t^{2}\right)^{-\frac{1}{2}}\right]=U_{k-1}(x), & k=1,2, \ldots, \tag{2.2}\\
S\left[U_{k-1}(t)\left(1-t^{2}\right)^{\frac{1}{2}}\right]=-T_{k}(x), & k=1,2, \ldots, \\
S\left(1-t^{2}\right)^{-\frac{1}{2}}=0
\end{array}\right\}
$$

The first and the third relations from (2.2) provide us with

$$
\left.\begin{array}{rl}
S \varphi_{0} & =0 \tag{2.3}\\
S \varphi_{k} & =\psi_{k}, \quad k=1,2, \ldots
\end{array}\right\}
$$

We decompose the space $L_{2, \rho_{1}}$ as the orthogonal sum $L_{2, \rho_{1}}=L_{2, \rho_{1}}^{(1)} \oplus$ $L_{2, \rho_{1}}^{(2)}$, where $L_{2, \rho_{1}}^{(1)}$ is the linear span of the function $\varphi_{0}=\left(\pi\left(1-x^{2}\right)\right)^{-\frac{1}{2}}$. The null-space of the operator S is one-dimensional. The conjugate operator $S^{*}=-\left(1-t^{2}\right)^{-\frac{1}{2}} S\left(1-x^{2}\right)^{\frac{1}{2}}$. The equation $S^{*} \varphi=0$ in the space $L_{2, \rho_{1}}$ has only zero solution which corresponds to the index $\varkappa=1$. Now we restrict the domain of definition of the operator S and consider it not in $L_{2, \rho_{1}}^{(2)}$ but only in $L_{2, \rho_{1}}^{(2)}$. We denote the restricted operator by S. Then the operator S transforms the orthonormal basis $\varphi_{1}, \varphi_{2}, \ldots$ of the space $L_{2, \rho_{1}}^{(2)}$ into the orthonormal basis $\psi_{1}, \psi_{2}, \ldots$ of the space $L_{2, \rho_{1}}$. Therefore the operator S is isometric, $S\left(L_{2, \rho_{1}}^{(2)}\right)=L_{2, \rho_{1}}$. There exists an inverse operator $S^{-1}\left(L_{2, \rho_{1}}\right)=L_{2, \rho_{1}}^{(2)}$.

To single out a unique solution of the equation (2.1), in applied problems for $\varkappa=1$ the additional condition

$$
\begin{equation*}
\int_{-1}^{1} \varphi(t) d t=p \tag{2.4}
\end{equation*}
$$

is imposed, where p is a given number.

Let us introduce a new unknown function

$$
\phi(t) \equiv \varphi(t)-p \pi^{-1}\left(1-t^{2}\right)^{-\frac{1}{2}}
$$

Then the equation (2.1) with the condition (2.4) can be written in the form

$$
\begin{equation*}
S \phi+K \phi=f_{1}, \tag{2.5}
\end{equation*}
$$

where $f_{1} \equiv f-p \pi^{-1} K\left(1-t^{2}\right)^{-\frac{1}{2}}$,

$$
\begin{equation*}
\int_{-1}^{1} \phi(t) d t=0 . \tag{2.6}
\end{equation*}
$$

The condition (2.6) is obtained from (2.4) if we take into account that $\int_{-1}^{1}\left(1-t^{2}\right)^{-\frac{1}{2}} d t=\pi$. The condition (2.6) implies that

$$
\left[\phi, \varphi_{0}\right]=0
$$

i.e., $\phi \in L_{2, \rho_{1}}^{(2)}$. Therefore the operator $S+K$ can be considered from $L_{2, \rho_{1}}^{(2)}$ into $L_{2, \rho_{1}}$. Thus we have

$$
\begin{equation*}
S \phi+K \phi=f_{1}, \quad \phi \subset L_{2, \rho_{1}}^{(2)}, \quad f_{1} \in L_{2, \rho_{1}} \tag{2.7}
\end{equation*}
$$

The term f_{1} involves the integral $K\left(1-t^{2}\right)^{-\frac{1}{2}}$ with a weak singularity. The corresponding approximate formulas are known [7].

Let there exist the inverse operator $(S+K)^{-1}$ mapping $L_{2, \rho_{1}}$ onto $L_{2, \rho_{1}}^{(2)}$; this is equivalent to the existence of the inverse operator $\left(I+K S^{-1}\right)^{-1}$ transforming $L_{2, \rho_{1}}$ onto itself.

An approximate solution of the equation (2.7) is sought in the form

$$
\phi^{(n)}=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

The residual $(S+K) \phi^{(n)}-f_{1}$ is required to be orthogonal to the functions $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$,

$$
\begin{equation*}
\left[S \phi^{(n)}+K \phi^{(n)}-f_{1}, \psi_{i}\right]=0, \quad i=1,2, \ldots, n \tag{2.8}
\end{equation*}
$$

Taking into account (2.3) and the fact that the system $\psi_{1}, \psi_{2}, \ldots$ is orthonormal, we obtain the following algebraic system

$$
\begin{equation*}
a_{i}+\sum_{k=1}^{n} a_{k}\left[K \varphi_{k}, \psi_{i}\right]=\left[f_{1}, \psi_{i}\right], \quad i=1,2, \ldots, n \tag{2.9}
\end{equation*}
$$

To compose this system, we have to calculate the integrals

$$
\left[K \varphi_{k}, \psi_{i}\right]=\frac{2}{\pi^{2}} \int_{-1}^{1} \int_{-1}^{1} K(x, t)\left(\frac{1-x^{2}}{1-t^{2}}\right)^{\frac{1}{2}} \cos (k \arccos t) \sin (\arccos x) d t d x
$$

and

$$
\left[f_{1}, \psi_{i}\right]=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_{-1}^{1} f_{1}(x) \sin (i \arccos x) d x, \quad k, i=1,2, \ldots, n
$$

Theorem 2.1. If there exists the inverse operator $\left(I+K S^{-1}\right)^{-1}$ mapping $L_{2, \rho_{1}}$ onto itself, then the algebraic system (2.9) for sufficiently large n has a unique solution $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, and the sequence of approximate solutions $\left\{\varphi^{(n)}\right\}$ converges to the exact solution of the initial problem in the space $L_{2, \rho_{1}}$.

Proof. The inverse operator $S^{-1}\left(L_{2, \rho_{1}}\right)=L_{2, \rho_{1}}^{(2)}$ exists and therefore the equation (2.7) can formally be rewritten in the form

$$
\left(I+K S^{-1}\right) S \phi=f
$$

Denote $w \equiv S \phi$. Then we have the equation

$$
\begin{equation*}
\left(I+K S^{-1}\right) w=f_{1}, \quad w, f_{1} \in L_{2, \rho_{1}} \tag{2.10}
\end{equation*}
$$

Let us seek an approximate solution of the equation (2.10) in the form

$$
w^{(n)}=\sum_{k=1}^{n} b_{k} \psi_{k}
$$

by the Bubnov-Galerkin method

$$
\begin{equation*}
\left[\left(I+K S^{-1}\right) w^{(n)}-f_{1}, \psi_{i}\right]=0, \quad i=1,2, \ldots, n \tag{2.11}
\end{equation*}
$$

Using the orthoprojector

$$
p_{n} v=\sum_{k=1}^{n}\left[v, \psi_{k}\right] \psi_{k}, \quad v \in L_{2, \rho_{1}},
$$

we write the equation (2.11) as follows:

$$
\begin{equation*}
w^{(n)}+P_{n} K S^{-1} w^{(n)}=P_{n} f_{1}, \quad w^{(n)} \in \bar{L}_{2, \rho_{1}}^{(n)} \tag{2.12}
\end{equation*}
$$

where $\bar{L}_{2, \rho_{1}}^{(n)}$ is the linear span of the functions $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$.
The operator $K S^{-1}$ is completely continuous in $L_{2, \rho_{1}}$, the inverse operator $\left(I+K S^{-1}\right)^{-1}$ exists, and the system $\psi_{1}, \psi_{2}, \ldots$ is a basis in $L_{2, \rho_{1}}$. Thus, since as is known ([8], [9]) \|P $P^{(n)} K S^{-1} \| \rightarrow 0$ as $n \rightarrow \infty\left(P^{(n)} \equiv I-P_{n}\right)$, for sufficiently large n the equation (2.12) has a unique solution $w^{(n)}$, and the sequence of approximate solutions of the equation (2.10) converges to the exact solution:

$$
\begin{equation*}
\left\|w^{(n)}-w\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{2.13}
\end{equation*}
$$

Then the algebraic system (2.11) has a unique solution $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, since $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$ are linearly independent. It remains to note that the algebraic systems (2.11) and (2.9) coincide.

Next,

$$
\phi^{(n)}-\phi=S^{-1} S\left(\phi^{(n)}-\phi\right)=S^{-1}\left(w^{(n)}-w\right),
$$

and hence taking into account (2.13), we have

$$
\begin{equation*}
\left\|\phi^{(n)}-\phi\right\|_{L_{2, \rho_{1}}^{(2)}}=\left\|w^{(n)}-w\right\|_{L_{2, \rho_{1}}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{2.14}
\end{equation*}
$$

An approximate solution of the initial problem will be

$$
\varphi^{(n)}=\phi^{(n)}+\pi^{-1} P\left(1-t^{2}\right)^{-\frac{1}{2}}
$$

We have

$$
\varphi^{(n)}-\varphi=\phi^{(n)}-\phi
$$

As a result, we obtain the convergence in the weight space

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}}\left(\varphi^{(n)}-\varphi\right)^{2} d x \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

The theorem is proved.
If the operator $K=0$, i.e., if we have a purely characteristic singular equation

$$
\begin{equation*}
S \varphi=f \tag{2.15}
\end{equation*}
$$

with the condition

$$
\int_{-1}^{1} \varphi(x) d x=P
$$

then $f_{1}=f, \phi=\varphi-\pi^{-1} P\left(1-t^{2}\right)^{-\frac{1}{2}}$ and hence we have the equation

$$
\begin{equation*}
S \phi=f, \quad \phi \in L_{2, \rho_{1}}^{(2)}, \quad f \in L_{2, \rho_{1}} \tag{2.16}
\end{equation*}
$$

The algebraic system (2.9) takes the form

$$
\begin{equation*}
a_{i}=\left[f, \psi_{i}\right], \quad i=1,2, \ldots, n \tag{2.17}
\end{equation*}
$$

it remains to calculate the Fourier coefficients

$$
\left[f, \psi_{i}\right]=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_{-1}^{1} f(x)\left(1-x^{2}\right)^{\frac{1}{2}} U_{i-1}(x) d x, \quad i=1,2, \ldots
$$

2) $\varkappa=-1, \alpha=\beta=\frac{1}{2}$. Introduce the space $L_{2, \rho_{2}}[-1,1]$ with the weight $\rho_{2}=\left(1-x^{2}\right)^{-\frac{1}{2}}$. Any function of the type $\varphi(x)=\left(1-x^{2}\right)^{\frac{1}{2}} \varphi_{0}(x)$, where $\varphi_{0}(x)$ is a bounded measurable function, belongs to the space $L_{2, \rho_{2}}$. Let

$$
\int_{-1}^{1} \int_{-1}^{1} K^{2}(x, t)\left(1-t^{2}\right)^{\frac{1}{2}}\left(1-x^{2}\right)^{-\frac{1}{2}} d t d x<+\infty
$$

Then the operator K is completely continuous in $L_{2, \rho_{2}}$ and the operator S is bounded. The equation $S \varphi=0$ in the space $L_{2, \rho_{2}}$ has only zero solution, because $\left(1-x^{2}\right)^{-\frac{1}{2}} \bar{\in} L_{2, \rho_{2}}$. The conjugate operator has the form

$$
S^{*}=-\left(1-t^{2}\right)^{\frac{1}{2}} S\left(1-x^{2}\right)^{-\frac{1}{2}}
$$

The equation $S^{*} \varphi=0$ in the space $L_{2, \rho_{2}}$ has the nonzero solution $\varphi=1$, $1 \in L_{2, \rho_{2}}$. If the equation

$$
\begin{equation*}
S \varphi+K \varphi=f \tag{2.18}
\end{equation*}
$$

has a solution φ, then

$$
\begin{equation*}
[K \varphi-f, 1]=0 \tag{2.19}
\end{equation*}
$$

This condition will be fulfilled if $K\left(L_{2, \rho_{2}}\right) \perp 1$ and $[f, 1]=0$. The condition $K\left(L_{2, \rho_{2}}\right) \perp 1$ means that

$$
\begin{equation*}
\int_{-1}^{1} K(x, t)\left(1-x^{2}\right)^{-\frac{1}{2}} d x=0 \tag{2.20}
\end{equation*}
$$

Here we assume that the above-given conditions are fulfilled. Later on, these restrictions will be removed.

In the space $L_{2, \rho_{2}}$ the system of functions

$$
\varphi_{k+1} \equiv\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\left(1-x^{2}\right)^{\frac{1}{2}} U_{k}(x)=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \sin [(k+1) \arccos x], \quad k=0,1, \ldots
$$

is complete and orthonormal [10].
Denote

$$
\psi_{k+1} \equiv-\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \cos [(k+1) \arccos x]=-\left(\frac{2}{\pi}\right)^{\frac{1}{2}} T_{k+1}(x), \quad k=0,1, \ldots
$$

The second relation from (2.2) provides us with

$$
\begin{equation*}
S \varphi_{k}=\psi_{k}, \quad k=1,2, \ldots \tag{2.21}
\end{equation*}
$$

We now decompose the space $L_{2, \rho_{2}}$ into the orthogonal sum $L_{2, \rho_{2}}=$ $L_{2, \rho_{2}}^{(1)} \oplus L_{2, \rho_{2}}^{(2)}$, where $L_{2, \rho_{2}}^{(1)}$ is the linear span of the function $\psi_{0}=-\pi^{-\frac{1}{2}}$ and $L_{2, \rho_{2}}^{(2)}$ is the orthogonal complement of the space $L_{2, \rho_{2}}^{(1)}$. The systems of functions $\varphi_{1}, \varphi_{2}, \ldots$ and $\psi_{1}, \psi_{2}, \ldots$ are orthonormal and complete in the spaces $L_{2, \rho_{2}}$ and $L_{2, \rho_{2}}^{(2)}$, respectively. As the relation (2.21) shows, the operator S transforms an orthonormal basis of the space $L_{2, \rho_{2}}$ onto an orthonormal basis of the space $L_{2, \rho_{2}}^{(2)}$. Therefore the operator S is isometric and there exists S^{-1} which maps $L_{2, \rho_{2}}^{(2)}$ onto $L_{2, \rho_{2}}$. The function $f \in L_{2, \rho}^{(2)}$, and therefore the equation (2.18) will be considered from $L_{2, \rho_{2}}$ to $L_{2, \rho_{2}}^{(2)}$,

$$
\begin{equation*}
S \varphi+K \varphi=f, \quad \varphi \in L_{2, \rho_{2}}, \quad f \in L_{2, \rho_{2}}^{(2)} . \tag{2.22}
\end{equation*}
$$

Assume that there exists $(S+K)^{-1}$ mapping $L_{2, \rho_{2}}^{(2)}$ onto $L_{2, \rho_{2}}$, which is equivalent to the existence of the inverse operator $\left(I+K S^{-1}\right)^{-1}$ mapping $L_{2, \rho_{2}}^{(2)}$ onto itself.

We seek an approximate solution of the equation (2.22) in the form

$$
\varphi^{(n)}=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

and compose the algebraic system from the following conditions:

$$
\left[(S+K) \varphi^{(n)}-f, \psi_{i}\right]=0, \quad i=1,2, \ldots, n
$$

This, with regard to (2.21) and the fact that the functions $\psi_{1}, \psi_{2}, \ldots$, are orthonormal in $L_{2, \rho_{2}}^{(2)}$, provides us with

$$
\begin{equation*}
a_{i}+\sum_{k=1}^{n} a_{k}\left[K \varphi_{k}, \psi_{i}\right]=\left[f, \psi_{i}\right], \quad i=1,2, \ldots, n . \tag{2.23}
\end{equation*}
$$

To compose the above system, we have to calculate the integrals

$$
\begin{gathered}
{\left[K \varphi_{k}, \psi_{i}\right]=-\frac{2}{\pi^{2}} \int_{-1}^{1} \int_{-1}^{1} K(x, t)\left(1-x^{2}\right)^{-\frac{1}{2}} \sin (k \arccos t) \cos (i \arccos x) d t d x} \\
{\left[f, \psi_{i}\right]=-\left(\frac{2}{\pi^{2}}\right)^{\frac{1}{2}} \int_{-1}^{1} f(x)\left(1-x^{2}\right)^{-\frac{1}{2}} \cos (i \arccos x) d x, \quad k, i=1,2, \ldots, n}
\end{gathered}
$$

Theorem 2.2. If there exists the inverse operator $\left(I+K S^{-1}\right)^{-1}$ mapping $L_{2, \rho_{2}}^{(2)}$ onto itself, then the algebraic system (2.23) for sufficiently large n has a unique solution $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, and the sequence of approximate solutions $\left\{\varphi^{(n)}\right\}$ converges to the exact solution in the space $L_{2, \rho_{2}}$, i.e.,

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{-\frac{1}{2}}\left(\varphi^{(n)}-\varphi\right)^{2} d x \rightarrow 0, \quad n \rightarrow \infty
$$

This theorem can be proved just in the similar way as Theorem 2.1. If the operator $K=0$, then the algebraic system (2.23) takes the form

$$
a_{i}=\left[f, \psi_{i}\right], \quad i=1,2, \ldots, n
$$

where

$$
\left[f, \psi_{i}\right]=-\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_{-1}^{1} f(x)\left(1-x^{2}\right)^{-\frac{1}{2}} T_{i}(x) d x, \quad i=1,2, \ldots, n
$$

3) $\varkappa=0, \alpha=-\beta,|\alpha|=|\beta|=\frac{1}{2}$. Here we may have two cases (a) $\alpha=-\frac{1}{2}, \beta=\frac{1}{2}$ and (b) $\alpha=\frac{1}{2}, \beta=-\frac{1}{2}$. Let us introduce the space $L_{2, \rho_{3}}[-1,1]$ with the weight $\rho_{3}=(1-x)^{\frac{1}{2}}(1+x)^{-\frac{1}{2}}$. Any function of the type $\varphi(x)=(1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}} \varphi_{0}(x)$, where $\varphi_{0}(x)$ is bounded and measurable, belongs to the space $L_{2, \rho_{3}}$.

Let

$$
\int_{-1}^{1} \int_{-1}^{1} K^{2}(x, t)\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}}\left(\frac{1+t}{1-t}\right)^{\frac{1}{2}} d t d x<+\infty
$$

Then the integral operator K is completely continuous in $L_{2, \rho_{3}}$ and the operator S is bounded in $L_{2, \rho_{3}}$ [4]. The equation

$$
\begin{equation*}
S \varphi+K \varphi=f, \quad \varphi, f \in L_{2, \rho_{3}} \tag{2.24}
\end{equation*}
$$

is considered in the space $L_{2, \rho_{3}}$. The function $\left(1-x^{2}\right)^{-\frac{1}{2}} \bar{\in} L_{2, \rho_{3}}$, thus the equation $S \varphi=0$ in the space $L_{2, \rho_{3}}$ has only zero solution. The conjugate operator has the form

$$
S^{*}=-\left(\frac{1+t}{1-t}\right)^{\frac{1}{2}} S\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}}
$$

The equation $S^{*} \varphi=0$ has only zero solution in $L_{2, \rho_{3}}$. Consider the system of functions [11]

$$
\varphi_{k} \equiv c_{k}(1-x)^{-\frac{1}{2}}(1+x)^{\frac{1}{2}} P_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x), \quad k=0,1, \ldots
$$

where $P_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x)$ are Jacobi polynomials,

$$
\begin{gathered}
c_{k} \equiv\left(h_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}\right)^{-\frac{1}{2}}=\left[\frac{2 \Gamma\left(k+\frac{1}{2}\right) \Gamma\left(k+\frac{3}{2}\right)}{(2 k+1)(k!)^{2}}\right]^{-\frac{1}{2}}, \quad k=0,1, \ldots, \\
P_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x)=e_{k} \frac{\cos \left(\frac{2 k+1}{2} \arccos x\right)}{\cos \left(\frac{1}{2} \arccos x\right)}, \quad k=0,1, \ldots, \\
e_{0}=1, \quad e_{k}=\frac{1 \cdot 3 \cdots(2 k-1)}{2 \cdot 4 \cdots 2 k}, \quad k=1,2, \ldots
\end{gathered}
$$

Thus the system of functions $\varphi_{0}, \varphi_{1}, \ldots$ is orthonormal and complete in the space $L_{2, \rho_{3}}$.

Take the Jacobi polynomials [11]:

$$
P_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x)=e_{k} \frac{\sin \left(\frac{2 k+1}{2} \arccos x\right)}{\sin \left(\frac{1}{2} \arccos x\right)}, \quad k=0,1, \ldots
$$

and denote

$$
\psi_{k} \equiv c_{k} P_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x), \quad k=0,1, \ldots
$$

The system of functions $\psi_{0}, \psi_{1}, \ldots$ is complete and orthonormal in the space $L_{2, \rho_{3}}$,

$$
\left(c_{k}^{-\frac{1}{2}}=h_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}=h_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}\right) .
$$

Let us show that

$$
\begin{equation*}
S \varphi_{k}=\psi_{k}, \quad k=0,1, \ldots \tag{2.25}
\end{equation*}
$$

We have

$$
\begin{aligned}
& S \varphi_{k}=c_{k} e_{k} \pi^{-1} \int_{-1}^{1} \frac{(1-t)^{-\frac{1}{2}}(1+t)^{\frac{1}{2}} \cos \left(\frac{2 k+1}{2} \arccos t\right)}{(t-x) \cos \left(\frac{1}{2} \arccos t\right)} d t= \\
& =c_{k} e_{k} \pi^{-1} \int_{0}^{\pi} \frac{(1-\cos \tau)^{-\frac{1}{2}}(1+\cos \tau)^{\frac{1}{2}} \cos \frac{2 k+1}{2} \tau \sin \tau d \tau}{\cos \frac{\tau}{2}(\cos \tau-\cos \xi)}=
\end{aligned}
$$

$$
\begin{gathered}
=c_{k} e_{k} \pi^{-1} \int_{0}^{\pi} \frac{(1-\cos \tau)^{-\frac{1}{2}}(1+\cos \tau)^{\frac{1}{2}}(1-\cos x)^{\frac{1}{2}} \cos \frac{2 k+1}{2} \tau d \tau}{\cos \frac{\tau}{2}(\cos \tau-\cos \xi)}= \\
=c_{k} e_{k} \pi^{-1} \int_{0}^{\pi} \frac{(1+\cos \tau) \cos \frac{2 k+1}{2} \tau}{\cos \frac{\tau}{2}(\cos \tau-\cos \xi)} d \tau=c_{k} e_{k} \pi^{-1} \int_{0}^{\pi} \frac{2 \cos \frac{2 k+1}{2} \tau \cos \frac{\tau}{2}}{\cos \tau-\cos \xi} d \tau= \\
=c_{k} e_{k} \pi^{-1} \int_{0}^{\pi} \frac{\cos (k+1) \tau+\cos k \tau}{\cos \tau-\cos \xi} d \tau
\end{gathered}
$$

Taking into account the known relation

$$
\pi^{-1} \int_{0}^{\pi} \frac{\cos k \tau}{\cos \tau-\cos \xi} d \tau=\frac{\sin k \xi}{\sin \xi}, \quad k=0,1, \ldots
$$

which is obtained from (2.2), we have

$$
\begin{aligned}
S \varphi_{k} & =c_{k} e_{k}\left(\frac{\sin (k+1) \xi}{\sin \xi}+\frac{\sin k \xi}{\sin \xi}\right)=c_{k} e_{k} \frac{2 \sin \frac{2 k+1}{2} \xi \cos \frac{\xi}{2}}{2 \sin \frac{\xi}{2} \cos \frac{\xi}{2}}= \\
& =c_{k} e_{k} \frac{\sin \frac{2 k+1}{2} \xi}{\sin \frac{\xi}{2}}=c_{k} P_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x), \quad k=0,1, \ldots, \quad x=\cos \xi
\end{aligned}
$$

Thus the operator S transforms an orthonormal complete system of functions $\varphi_{0}, \varphi_{1}, \ldots$ of the space $L_{2, \rho_{3}}$ onto another orthonormal complete system $\psi_{0}, \psi_{1}, \ldots$ of the same space. Hence the operator S is unitary; $S\left(L_{2, \rho_{3}}\right)=L_{2, \rho_{3}}, S^{-1}\left(L_{2, \rho_{3}}\right)=L_{2, \rho_{3}}$.

An approximate solution of the equation (2.24) is sought in the form

$$
\varphi^{(n)}=\sum_{k=0}^{n} a_{k} \varphi_{k}
$$

and the algebraic system is composed by means of the following conditions:

$$
\left[(S+K) \varphi^{(n)}-f, \psi_{i}\right]=0, \quad i=0,1, \ldots, n
$$

which, taking into account (2.25) and the fact that the functions $\psi_{0}, \psi_{1}, \ldots$ are orthonormal, provides us with

$$
\begin{equation*}
a_{i}+\sum_{k=0}^{n} a_{k}\left[K \varphi_{k}, \psi_{i}\right]=\left[f, \psi_{i}\right], \quad i=0,1, \ldots, n \tag{2.26}
\end{equation*}
$$

To compose this system, we have to calculate the integrals

$$
\begin{aligned}
& {\left[K \varphi_{k}, \psi_{i}\right]=\frac{\left(h_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)} h_{i}^{\left(\frac{1}{2},-\frac{1}{2}\right)}\right)^{-\frac{1}{2}} 1 \cdot 3 \cdots(2 k-1) \cdot 1 \cdot 3 \cdots(2 i-1)}{\pi(2 \cdot 4 \cdots 2 k)(2 \cdot 4 \cdots 2 i)} \times} \\
& \quad \times \int_{-1}^{1} \int_{-1}^{1} K(x, t)\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}}\left(\frac{1+t}{1-t}\right)^{\frac{1}{2}} \cos \left(\frac{2 k+1}{2} \arccos t\right) \times
\end{aligned}
$$

$$
\begin{gathered}
\times \sin \left(\frac{2 i+1}{2} \arccos x\right)\left[\cos \left(\frac{1}{2} \arccos t\right) \sin \left(\frac{1}{2} \arccos x\right)\right]^{-1} d t d x \\
{\left[f, \psi_{i}\right]=\left(h_{i}^{\left(\frac{1}{2},-\frac{1}{2}\right)}\right)^{-\frac{1}{2}} \frac{1 \cdot 3 \cdot(2 i-1)}{2 \cdot 4 \cdots 2 i} \times} \\
\times \int_{-1}^{1}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}} f(x) \sin \left(\frac{2 i+1}{2} \arccos x\right)\left[\sin \left(\frac{1}{2} \arccos x\right)\right]^{-1} d x
\end{gathered}
$$

$k, i=0,1, \ldots, n$ (for $k=0$, instead of $\frac{1 \cdot 3 \cdots(2 k-1)}{2 \cdot 4 \cdots 2 k}$ we take unity).
Theorem 2.3. If there exists the inverse operator $\left(I+K S^{-1}\right)^{-1}$ mapping $L_{2, \rho_{3}}$ onto itself, then the algebraic system (2.26) for sufficiently large n has a unique solution $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$, and the sequence of approximate solutions $\left\{\varphi^{(n)}\right\}$ converges to the exact solution φ in the space $L_{2, \rho}$.

This theorem can be proved by repeating word by word the arguments of Theorem 2.1; the subspace is the linear span of the functions $\psi_{0}, \psi_{1}, \ldots, \psi_{n}$.

Consider now the case $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$. The reasoning is the same, so we give only the formulas needed for practical application. $\rho_{3}=(1-$ $x)^{-\frac{1}{2}}(1+x)^{\frac{1}{2}}$ is the weight. The kernel $k(x, t)$ must satisfy the condition

$$
\int_{-1}^{1} \int_{-1}^{1} k^{2}(x, t)\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}\left(\frac{1-t}{1+t}\right)^{\frac{1}{2}} d t d x<+\infty
$$

We take the following systems of functions:

1) $\varphi_{k} \equiv c_{k}(1-x)^{\frac{1}{2}}(1+x)^{-\frac{1}{2}} P_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x), k=0,1, \ldots ; c_{k} \equiv\left(h_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}\right)^{-\frac{1}{2}}=$ $\left(h_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}\right)^{-\frac{1}{2}}=\left[\frac{2 \Gamma\left(k+\frac{1}{2}\right) \Gamma\left(k+\frac{3}{2}\right)}{(2 k+1)(k!)^{2}}\right]^{-\frac{1}{2}}, k=0,1, \ldots, P_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x)=e_{k} \times$ $\frac{\sin \left(\frac{2 k+1}{2} \arccos x\right)}{\sin \left(\frac{1}{2} \arccos x\right)}, k=0,1, \ldots, e_{0}=1, e_{k}=\frac{1 \cdot 3 \cdots(2 k-1)}{2 \cdot 4 \cdots 2 k}, k=1,2, \ldots$.
2) $\psi_{k}=-c_{k} P_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x), k=0,1, \ldots$

The formula

$$
S \varphi_{k}=\psi_{k}, \quad k=0,1, \ldots
$$

is valid. The weight $\rho_{3}=(1-x)^{-\frac{1}{2}}(1+x)^{\frac{1}{2}}$, and the equation

$$
S \varphi+K \varphi=f, \quad \varphi, f \in L_{2, \rho_{3}}
$$

An approximate solution is sought in the form

$$
\varphi^{(n)}=\sum_{k=0}^{n} a_{k} \varphi_{k}
$$

and we obtain the algebraic system

$$
\begin{equation*}
a_{i}+\sum_{k=0}^{n} a_{k}\left[K \varphi_{k}, \psi_{i}\right]=\left[f, \psi_{i}\right], \quad i=0,1, \ldots, n \tag{2.27}
\end{equation*}
$$

where

$$
\begin{gathered}
{\left[K \varphi_{k}, \psi_{i}\right]=\frac{-\left(h_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)} h_{i}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}\right)^{-\frac{1}{2}} 1 \cdot 3 \cdots(2 k-1) \cdot 1 \cdot 3 \cdots(2 i-1)}{\pi(2 \cdot 4 \cdots 2 k)(2 \cdot 4 \cdots 2 i)} \times} \\
\times \int_{-1}^{1} \int_{-1}^{1} K(x, t)\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}\left(\frac{1-t}{1+t}\right)^{\frac{1}{2}} \sin \left(\frac{2 k+1}{2} \arccos t\right) \times \\
\times \cos \left(\frac{2 i+1}{2} \arccos x\right)\left[\sin \left(\frac{1}{2} \arccos t\right) \cos \left(\frac{1}{2} \arccos x\right)\right]^{-1} d t d x \\
{\left[f, \psi_{i}\right]=-\left(h_{i}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}\right)^{-\frac{1}{2}} \frac{1 \cdot 3 \cdot(2 i-1)}{2 \cdot 4 \cdots 2 i} \times} \\
\times \int_{-1}^{1}\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}} f(x) \cos \left(\frac{2 i+1}{2} \arccos x\right)\left[\cos \left(\frac{1}{2} \arccos x\right)\right]^{-1} d x
\end{gathered}
$$

$k, i=0,1, \ldots, n$ (for $k=0$ instead of $\frac{1 \cdot 3 \cdots(2 k-1)}{2 \cdot 4 \cdots 2 k}$ we take unity).

3. Projective Method for the Singular Integral Equation of SEcond Kind

We take the equation

$$
a \varphi(x)+\frac{b}{\pi} \int_{-1}^{1} \frac{\varphi(t) d t}{t-x}+\frac{1}{\pi} \int_{-1}^{1} K(x, t) \varphi(t) d t=f(x)
$$

which in the notation of Section 1 is written as

$$
\begin{equation*}
(a+b S+K) \varphi=f \tag{3.1}
\end{equation*}
$$

For that equation we consider three values of the index:

1) $\varkappa=1, \varkappa=-(\alpha+\beta),-1<\alpha, \beta<0, \beta=-1-\alpha,|\alpha| \neq \frac{1}{2}$,
2) $\varkappa=-1, \varkappa=-(\alpha+\beta), 0<\alpha, \beta<1, \beta=1-\alpha,|\alpha| \neq \frac{1}{2}$,
3) $\varkappa=0, \varkappa=-(\alpha+\beta), 0<|\alpha|,|\beta|<1, \beta=-\alpha,|\alpha| \neq \frac{1}{2}$.

Here we present the needed formulas from [1], [6], [11] and [12]. The
Jacobi polynomials $P_{k}^{(\alpha, \beta)}(x), \alpha>-1, \beta>-1, k=0,1, \ldots$, are defined by means of the condition
$(1-x)^{\alpha}(1+x)^{\beta} P_{k}^{(\alpha, \beta)}(x)=\frac{(-1)^{k}}{2^{k} k!} \frac{d^{k}}{d x^{k}}\left[(1-x)^{k+\alpha}(1+x)^{k+\beta}\right], \quad-1 \leq x \leq 1$.
The polynomials

$$
\widehat{P}_{k}^{(\alpha, \beta)}(x)=\left(h_{k}^{(\alpha, \beta)}\right)^{-\frac{1}{2}} P_{k}^{(\alpha, \beta)}(x), \quad k=0,1, \ldots,
$$

where

$$
h_{k}^{(\alpha, \beta)}=\frac{2^{\alpha+\beta+1} \Gamma(k+\alpha+1) \Gamma(k+\beta+1)}{(2 k+\alpha+\beta+1) \Gamma(k+1) \Gamma(k+\alpha+\beta+1)}
$$

(for $k=0$, we replace the product $(2 k+\alpha+\beta+1) \Gamma(k+\alpha+\beta+1)$ by $\Gamma(\alpha+\beta+2)), \widehat{P}_{k}^{(\alpha, \beta)}(x)$ are orthonormal with the weight $(1-x)^{\alpha}(1+x)^{\beta}$. For all values of the index \varkappa the formula [12]

$$
\begin{gather*}
a(1-x)^{\alpha}(1+x)^{\beta} P_{i}^{(\alpha, \beta)}(x)+b S\left[(1-t)^{\alpha}(1+t)^{\beta} P_{i}^{(\alpha, \beta)}(t)\right]= \\
=-2^{-\varkappa} \pi^{-1} \Gamma(\alpha) \Gamma(1-\alpha) P_{i-\varkappa}^{(-\alpha,-\beta)}(x), \quad i=0,1, \ldots,-1<x<1, \tag{3.2}
\end{gather*}
$$

is valid; for $\varkappa=1$ and $i=0$ we assume that $P_{-1}^{(-\alpha,-\beta)}(x) \equiv 0$.
We consider every value of the above-mentioned index separately.

1. $\varkappa=1, \varkappa=-(\alpha+\beta)$ and α, β are defined from the conditions $a+b \operatorname{ctg} \alpha \pi=0,-1<\alpha<0, \beta=-1-\alpha$. Introduce here a space with the weight $L_{2, \rho_{1}}[-1,1]$, where $\rho_{1}=(1-x)^{-\alpha}(a+x)^{-\beta}$. A solution of the equation (3.1) of the type $\varphi(x)=(1-x)^{\alpha}(1+x)^{\beta} \varphi_{0}(x),-1<\alpha, \beta<0$, where $\varphi_{0}(x)$ is a bounded measurable function, belongs to the space $L_{2, \rho_{1}}$.

Let the function $K(x, t)$ satisfy the condition

$$
\int_{-1}^{1} \int_{-1}^{1} K^{2}(x, t)(1-x)^{-\alpha}(1+x)^{-\beta}(1-t)^{\alpha}(1+t)^{\beta} d t d x<+\infty
$$

Then the integral operator K is completely continuous in $L_{2, \rho_{1}}$. The singular integral operator S is bounded in $L_{2, \rho_{1}}$ [4]. The homogeneous equation $(a+b S) \varphi=0$ has the nonzero solution $(1-x)^{\alpha}(1+x)^{\beta} \in L_{2, \rho_{1}}$, and the conjugate operator has the form

$$
(a+b S)^{*}=a-b(1-t)^{\alpha}(1+t)^{\beta} S(1-x)^{-\alpha}(1+x)^{-\beta}
$$

The conjugate homogeneous equation $(a+b S)^{*} \varphi=0$ has in the space $L_{2, \rho_{1}}$ only zero solution. For $\varkappa=1$, to have a unique solution, we have to prescribe the additional condition

$$
\begin{equation*}
\int_{-1}^{1} \varphi(t) d t=P \tag{3.3}
\end{equation*}
$$

where P is a given number.
Introduce the new unknown function

$$
\phi \equiv \varphi-\pi^{-1} P \sin (|\alpha| \pi)(1-x)^{\alpha}(1+x)^{\beta} .
$$

Then

$$
\int_{-1}^{1} \phi(t) d t=0
$$

Indeed, from the conditions [11]

$$
\int_{-1}^{1}(1-x)^{\alpha}(a+x)^{\beta}\left[\widehat{P}_{0}^{(\alpha, \beta)}(x)\right]^{2} d x=\int_{-1}^{1}\left(h_{0}^{(\alpha, \beta)}\right)^{-1}(1-x)^{\alpha}(1+x)^{\beta} d x=1
$$

we have

$$
\begin{gathered}
\int_{-1}^{1}(1-x)^{\alpha}(a+x)^{\beta} d x=h_{0}^{(\alpha, \beta)}, \\
h_{0}^{(\alpha, \beta)}=\Gamma(1+\alpha) \Gamma^{1+\beta}(\alpha)=\Gamma(1-|\alpha|) \Gamma(|\alpha|)=\frac{\pi}{\sin (|\alpha| \pi)},
\end{gathered}
$$

i.e.,

$$
\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} d x=\frac{\pi}{\sin (|\alpha| \pi)}
$$

The equation (3.1) for the new unknown function can be written in the form

$$
\begin{equation*}
(a+b S+K) \phi=f_{1}, \tag{3.4}
\end{equation*}
$$

where

$$
f_{1} \equiv f-\pi^{-1} P \sin (|\alpha| \pi) K\left[(1-t)^{\alpha}(1+t)^{\beta}\right]
$$

with the condition

$$
\begin{equation*}
\left[\phi,(1-x)^{\alpha}(1+x)^{\beta}\right]=\int_{-1}^{1} \phi(t) d t=0 \tag{3.5}
\end{equation*}
$$

We decompose the space $L_{2, \rho_{1}}$ into an orthogonal sum $L_{2, \rho_{1}}=L_{2, \rho_{1}}^{(1)} \oplus$ $L_{2, \rho_{1}}^{(2)}$, where $L_{2, \rho_{1}}^{(1)}$ is the linear span of the function $\varphi_{0}=(1-x)^{\alpha}(1+x)^{\beta}$. Then the solution ϕ of the equation (3.4) with the condition (3.5) belongs to $L_{2, \rho_{1}}^{(2)}$. Therefore the problem (3.4)-(3.5) is replaced by the equation

$$
\begin{equation*}
(a+b S+K) \phi=f_{1}, \quad \phi \in L_{2, \rho_{1}}^{(2)}, \quad f_{1} \in L_{2, \rho_{1}} . \tag{3.6}
\end{equation*}
$$

Take now two systems of functions

$$
\varphi_{k} \equiv 2 b^{-1} \sin (|\alpha| \pi)\left(h_{k-1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}}(1-x)^{\alpha}(1+x)^{\beta} P_{k}^{(\alpha, \beta)}(x), \quad k=1,2, \ldots,
$$ and

$$
\psi_{k} \equiv\left(h_{k-1}^{-\alpha,-\beta}\right)^{-\frac{1}{2}} P_{k-1}^{(-\alpha,-\beta)}(x), \quad k=1,2, \ldots
$$

The formula

$$
\begin{equation*}
(a+b S) \varphi_{k}=\psi_{k}, \quad k=1,2, \ldots, \quad-1<x<1 \tag{3.7}
\end{equation*}
$$

is valid.
Indeed, on the basis of (3.2) we have

$$
\begin{gathered}
(a+b S) \varphi_{k}=2 b^{-1} \sin (|\alpha| \pi)\left(h_{k-1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} \times \\
\times\left[a(1-x)^{\alpha}(1+x)^{\beta} P_{k}^{(\alpha, \beta)}(x)+b S(1-t)^{\alpha}(1+t)^{\beta} P_{k}^{(\alpha, \beta)}(t)\right]= \\
=2 b^{-1} \sin (|\alpha| \pi)\left(h_{k-1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}}\left(-2^{-1} \pi^{-1} \Gamma(\alpha) \Gamma(1-\alpha) b P_{k-1}^{(-\alpha,-\beta)(x)}\right)= \\
=2 b^{-1} \sin (|\alpha| \pi)\left(h_{k-1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}}\left(-\frac{1}{2}\right) \frac{\pi}{\pi \sin (|\alpha| \pi)} b P_{k-1}^{(-\alpha,-\beta)(x)}=
\end{gathered}
$$

$$
\left.=h_{k-1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} p_{K-1}^{(-\alpha,-\beta)}(x), \quad-1<x<1 .
$$

The system of functions $\psi_{1}, \psi_{2}, \ldots$ is orthonormal and complete in $L_{2, \rho_{1}}$, and the system of functions $\varphi_{1}, \varphi_{2}, \ldots$ is orthonormal and complete in $L_{2, \rho_{1}}^{(2)}$ [11].

The inverse operator $(a+b S)^{-1}$ mapping $L_{2, \rho_{1}}$ onto $L_{2, \rho_{1}}^{(2)}$ exists. We will require the inverse operator $(a+b S+K)^{-1}$ mapping $L_{2, \rho_{1}}$ onto $L_{2, \rho_{1}}^{(2)}$ to exist as well. This is equivalent to the existence of the inverse operator $\left[I+K(a+b S)^{-1}\right]^{-1}$ mapping $L_{2, \rho_{1}}$ onto itself.

An approximate solution of the equation (3.6) is sought in the form

$$
\phi^{(n)}=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

We compose an algebraic system using the condition

$$
\left[(a+b S) \phi^{(n)}+K \phi^{(n)}-f_{1}, \psi_{1}\right]=0, \quad i=1,2, \ldots, n .
$$

Taking into account (3.7) and the fact that the system $\psi_{1}, \psi_{2}, \ldots$, is orthonormal, we obtain

$$
\begin{equation*}
a_{i}+\sum_{k=1}^{n} a_{k}\left[K \varphi_{k}, \psi_{i}\right]=\left[f_{1}, \psi_{i}\right], \quad i=1,2, \ldots, n \tag{3.8}
\end{equation*}
$$

To compose this algebraic system, we have to calculate the integrals

$$
\begin{gathered}
{\left[K \varphi_{k}, \psi_{i}\right]=2(n b)^{-1} \sin (|\alpha| \pi)\left(h_{k-1}^{\left(-\alpha_{1}-\beta\right)} h_{i-1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} \times} \\
\times \int_{-1}^{1} \int_{-1}^{1} K(x, t)(1-t)^{\alpha}(1+t)^{\beta}(1-x)^{-\alpha}(1+x)^{-\beta} P_{k}^{(\alpha, \beta)}(t) P_{i-1}^{(-\alpha,-\beta)}(x) d t d x, \\
{\left[f, \psi_{i}\right]=\left(h_{i-1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} \int_{-1}^{1}(1-x)^{-\alpha}(1+x)^{-\beta} f_{1}(x) P_{i-1}^{(-\alpha,-\beta)}(x) d x,} \\
k, i=1,2, \ldots, n .
\end{gathered}
$$

Theorem 3.1. If there exists the inverse operator $\left[I+K(a+b S)^{-1}\right]$ mapping $L_{2, \rho_{1}}$ onto itself, then the algebraic system (3.8) for sufficiently large n has a unique solution $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, and the sequence of approximate solutions $\left\{\varphi^{(n)}\right\}$ converges to the exact solution φ of the equation (3.1) in the space $L_{2, \rho_{1}}$.

This theorem is proved analogously to Theorem 2.1.
If the operator $K \equiv 0$, i.e., we have the characteristic equation

$$
\begin{equation*}
(a+b S) \varphi=f \tag{3.9}
\end{equation*}
$$

with the condition

$$
\int_{-1}^{1} \varphi(t) d t=P
$$

then assuming

$$
f_{1} \equiv f, \quad \phi=\varphi-P \pi^{-1} \sin (|\alpha| \pi)(1-x)^{\alpha}(1+x)^{\beta}
$$

we arrive at the equation

$$
\begin{equation*}
(a+b S) \phi=f, \quad \phi \in L_{2, \rho_{1}}^{(2)}, \quad f \in L_{2, \rho_{1}} . \tag{3.10}
\end{equation*}
$$

The algebraic system (3.8) takes the form

$$
\begin{equation*}
a_{i}=\left[f, \psi_{i}\right], \quad i=1,2, \ldots, n \tag{3.11}
\end{equation*}
$$

and the matter is now reduced to the calculation of the Fourier coefficients

$$
\begin{gathered}
{\left[f, \psi_{i}\right]=\left(h_{i-1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} \int_{-1}^{1}(1-x)^{-\alpha}(1+x)^{-\beta} f(x) P_{i-1}^{(-\alpha,-\beta)}(x) d x} \\
i=1,2, \ldots, n
\end{gathered}
$$

2) $\varkappa=-1,0<\alpha<1, \beta=1-\alpha, \alpha \neq \beta$. We introduce the weight space $L_{2, \rho_{2}}[-1,1]$, where $\rho_{2}=(1-x)^{-\alpha}(1+x)^{-\beta}$. The solution of the equation (3.1) of the type $\varphi=(1-x)^{\alpha}(1+x)^{\beta} \varphi_{0}(x), 0<\alpha, \beta<1$, where $\varphi_{0}(x)$ is a bounded measurable function, belongs to the space $L_{2, p_{2}}$.

Let the function $K(x, t)$ satisfy the condition

$$
\int_{-1}^{1} \int_{-1}^{1} K^{2}(x, t)(1-x)^{-\alpha}(1+x)^{-\beta}(1-t)^{\alpha}(1+t)^{\beta} d t d x<+\infty
$$

Then the integral operator K is completely continuous in $L_{2, \rho_{2}}$, and the singular integral operator S is bounded in $L_{2, \rho_{2}}$ [4]. The homogeneous equation $(a+b S) \varphi=0$ in the space $L_{2, \rho_{2}}$ has only zero solution, and the conjugate operator has the form

$$
(a+b S)^{*}=a-b(1-t)^{\alpha}(1+t)^{\beta} S(1-x)^{-\alpha}(1+x)^{-\beta} .
$$

The equation $(a-b S) \varphi=0$ has the nonzero solution $\varphi=(1-x)^{-\alpha}(1+$ $x)^{-\beta}$, therefore the conjugate equation $(a+b S)^{*} \varphi=0$ has the non-trivial solution $1 \in L_{2, \rho_{2}}$.

If the equation (3.1) has a solution, then [1]

$$
\begin{equation*}
[K \varphi-f, 1]=0 \tag{3.12}
\end{equation*}
$$

The condition (3.12) is fulfilled if $[f, 1]=0$ and $K\left(L_{2, \rho_{2}}\right) \perp 1$; the latter condition is fulfilled if

$$
\int_{-1}^{1} K(x, t)(1-x)^{-\alpha}(1+x)^{-\beta} d x=0
$$

Assume that these conditions are fulfilled. We decompose the space $L_{2, \rho_{2}}$ into the orthogonal sum $L_{2, \rho_{2}}=L_{2, \rho_{2}}^{(1)} \oplus L_{2, \rho_{2}}^{(2)}$, where $L_{2, \rho_{2}}^{(1)}$ is the subspace corresponding to $\varphi=1$. Then we have the equation

$$
\begin{equation*}
(a+b S+K) \varphi=f, \quad \varphi \in L_{2, \rho_{2}}, \quad f \in L_{2, \rho_{2}}^{(2)} \tag{3.13}
\end{equation*}
$$

The bounded inverse operator $(a+b S)^{-1}$ mapping $L_{2, \rho_{2}}^{(2)}$ onto $L_{2, \rho_{2}}$ exists [4]. The inverse operator $\left[I+K(a+b S)^{-1}\right]^{-1}$ mapping $L_{2, \rho_{2}}^{(2)}$ into itself is required to exist.

Take two systems of functions:

1) $\varphi_{k+1} \equiv(2 b)^{-1} \sin (\alpha \pi)\left(h_{k+1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}}(1-x)^{\alpha}(1+x)^{\beta} P_{k}^{(\alpha, \beta)}(x), k=$ $0,1, \ldots, \quad$ and
2) $\psi_{k+1} \equiv-\left(h_{k+1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} P_{k+1}^{(-\alpha,-\beta)}(x), k=0,1, \ldots, \quad\left(\psi_{0} \equiv\left(\pi^{-1} \times\right.\right.$ $\left.\sin (\alpha \pi))^{\frac{1}{2}}\right)$.

The system $\varphi_{1}, \varphi_{2}, \ldots$ is orthogonal and complete in $L_{2, \rho_{2}}$, and the system $\psi_{1}, \psi_{2}, \ldots$ is orthogonal and complete in $L_{2, \rho_{2}}^{(2)}$.

The formula

$$
\begin{equation*}
(a+b S) \varphi_{k}=\psi_{k}, \quad k=1,2, \ldots \tag{3.14}
\end{equation*}
$$

is valid.
Indeed, on the basis of (3.2) we have

$$
\begin{gathered}
(a+b S) \varphi_{k+1}=(2 b)^{-1} \sin (\alpha \pi)\left(h_{k+1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}}\left[a(1-x)^{\alpha}(1+x)^{\beta} P_{k}^{(\alpha, \beta)}(x)+\right. \\
\left.\quad+b S(1-t)^{\alpha}(1+t)^{\beta} P_{k}^{(\alpha, \beta)}(t)\right]= \\
=(2 b)^{-1} \sin (\alpha \pi)\left(h_{k+1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}}\left(-2 \pi^{-1} \Gamma(\alpha) \Gamma(1-\alpha) b P_{k+1}^{(-\alpha,-\beta)}\right)(x)= \\
=(2 b)^{-1} \sin (\alpha \pi)\left(h_{k+1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}}\left(-\frac{2 b}{\sin (\alpha \pi)}\right) P_{k+1}^{(-\alpha,-\beta)}(x)= \\
=-\left(h_{k+1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} P_{k+1}^{(-\alpha,-\beta)}(x)=\psi_{k+1}, \quad k=0,1, \ldots
\end{gathered}
$$

An approximate solution of the equation (3.13) is sought in the form

$$
\varphi(n)=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

We compose an algebraic system by using the conditions

$$
\left[(a+b S+K) \varphi^{(n)}-f, \psi_{i}\right]=0, \quad i=1,2, \ldots, n
$$

which, with regard to (3.14) and the fact that the functions $\psi_{1}, \psi_{2}, \ldots$ are orthonormal, provides us with

$$
\begin{equation*}
a_{i}+\sum_{k=1}^{n} a_{k}\left[K \varphi_{k}, \psi_{i}\right]=\left[f, \psi_{i}\right], \quad i=1,2, \ldots, n \tag{3.15}
\end{equation*}
$$

To compose this algebraic system we have to calculate the integrals

$$
\begin{gathered}
{\left[K \varphi_{k}, \psi_{i}\right]=-(2 \pi b)^{-1} \sin (\alpha \pi)\left[h_{k}^{(-\alpha,-\beta)} h_{i}^{(-\alpha,-\beta)}\right]^{-\frac{1}{2}} \times} \\
\times \int_{-1}^{1} \int_{-1}^{1} K(x, t)(1-t)^{\alpha}(1+t)^{\beta}(1-x)^{-\alpha}(1+x)^{-\beta} P_{k-1}^{(\alpha, \beta)}(t) P_{i}^{(\alpha, \beta)}(x) d t d x \\
{\left[f, \psi_{i}\right]=-\left(h_{i}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} \times}
\end{gathered}
$$

$$
\times \int_{-1}^{1}(1-x)^{-\alpha}(1+x)^{-\beta} f(x) P_{i}^{(-\alpha,-\beta)}(x) d x, \quad i, k=1,2, \ldots, n
$$

Theorem 3.2. If there exists the inverse operator $\left[I+K(a+b S)^{-1}\right]^{-1}$ mapping $L_{2, \rho_{2}}^{(2)}$ onto itself, then the algebraic system (3.15) for sufficiently large n has a unique solution $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, and the sequence of approximate solutions $\left\{\varphi^{(n)}\right\}$ converges to the exact solution φ in the space $L_{2, \rho_{2}}$.

This theorem is proved just in the same way as Theorem 2.1.
If $K \equiv 0$, i.e., we have the equation $(a+b S) \varphi=f$, then

$$
a_{i}=\left[f, \psi_{i}\right], \quad i=1,2, \ldots, n
$$

where

$$
\begin{gathered}
{\left[f, \psi_{i}\right]=-\left(h_{i}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} \int_{-1}^{1}(1-x)^{-\alpha}(1+x)^{-\beta} f(x) P_{i}^{(-\alpha,-\beta)}(x) d x} \\
i=1,2, \ldots, n
\end{gathered}
$$

3) $\varkappa=0, \varkappa=-(\alpha+\beta), \beta=-\alpha,|\alpha| \neq \frac{1}{2}, 0<|\alpha|<1$. Introduce a space $L_{2, \rho_{3}}[-1,1]$ with the weight $\rho_{3}=(1-x)^{-\alpha}(1+x)^{\alpha}$. The function of the type $\varphi(x)=(1-x)^{\alpha}(1+x)^{-\alpha} \varphi_{0}(x)$, where $\varphi_{0}(x)$ is a bounded measurable function, belongs to the space $L_{2, \rho_{3}}$.

Let the function $K(x, t)$ satisfy the condition

$$
\int_{-1}^{1} \int_{-1}^{1} K^{2}(x, t)(1-t)^{\alpha}(1+t)^{-\alpha}(1-x)^{-\alpha}(1+x)^{\alpha} d t d x<+\infty
$$

Then the integral operator K is completely continuous in $L_{2, \rho_{3}}$ and the singular integral operator S is bounded in $L_{2, \rho_{3}}$ [4]. The homogeneous equation $(a+b S) \varphi=0$ in the space $L_{2, \rho_{3}}$ has only zero solution. The conjugate operator has the form

$$
(a+b S)^{*}=a-b\left(\frac{1+t}{1-t}\right)^{-\alpha} S\left(\frac{1+x}{1-x}\right)^{\alpha}
$$

The conjugate homogeneous equation $(a+b S)^{*} \varphi=0$ in the space $L_{2, \rho_{3}}$ has only zero solution, and the inverse operator $(a+b S)^{-1}$ mapping $L_{2, \rho_{3}}$ onto itself exists.

If $a^{2}+b^{2}=1$, then the systems of functions $\left\{\varphi_{k}\right\}$ and $\left\{\psi_{k}\right\}$ employed in the paper are orthonormal [13].

The operator $(a+b S)$ is unitary.
If the index is zero, we have the equation

$$
\begin{equation*}
(a+b S+K) \varphi=f, \quad \varphi, f \in L_{2, \rho_{3}} \tag{3.16}
\end{equation*}
$$

Let us take two systems of functions:

1) $\varphi_{k} \equiv b^{-1} \sin (|\alpha| \pi)\left(h_{k}^{(-\alpha, \alpha)}\right)^{-\frac{1}{2}}(1-x)^{\alpha}(1+x)^{-\alpha} P_{k}^{(\alpha,-\alpha)}(x), k=0,1, \ldots$, and
2) $\psi_{k} \equiv-\left(h_{k}^{(-\alpha, \alpha)}\right)^{-\frac{1}{2}} P_{k}^{(-\alpha, \alpha)}(x), k=0,1, \ldots$.

The formula

$$
\begin{equation*}
(a+b S) \varphi_{k}=\psi_{k}, \quad k=0,1, \ldots, \tag{3.17}
\end{equation*}
$$

is valid.
Indeed, on the basis of (3.2) we have

$$
\begin{aligned}
&(a+b S) \varphi_{k}=b^{-1} \sin (|\alpha| \pi)\left(h_{k}^{(-\alpha, \alpha)}\right)^{-\frac{1}{2}}\left[a(1-x)^{\alpha}(1+x)^{-\alpha} P_{k}^{(\alpha,-\alpha)}(x)+\right. \\
&\left.+b S(1-t)^{\alpha}(1+t)^{-\alpha} P_{k}^{(\alpha,-\alpha)}(t)\right]= \\
&=b^{-1} \sin (|\alpha| \pi)\left(h_{k}^{(-\alpha, \alpha)}\right)^{-\frac{1}{2}}\left(-\frac{\pi b}{\sin (|\alpha| \pi)}\right) P_{k}^{(-\alpha, \alpha)}(x)= \\
&=-\left(h_{k}^{(-\alpha, \alpha)}\right)^{-1} P_{k}^{(-\alpha, \alpha)}(x), \quad k=0,1, \ldots
\end{aligned}
$$

An approximate solution of the equation (3.15) is sought in the form

$$
\varphi^{(n)}=\sum_{k=0}^{n} a_{k} \varphi_{k}
$$

We compose an algebraic system by using the conditions

$$
\left[(a+b S+K) \varphi^{(n)}-f, \psi_{i}\right]=0, \quad i=0,1, \ldots, n
$$

which, with regard to (3.17) and the fact that the system $\psi_{0}, \psi_{1}, \ldots$ is orthonormal, provides us with

$$
\begin{equation*}
a_{i}+\sum_{k=0}^{n} a_{k}\left[K \varphi_{k}, \psi_{i}\right]=\left[f, \psi_{i}\right], \quad i=0,1, \ldots, n . \tag{3.18}
\end{equation*}
$$

To compose this algebraic system we have to calculate the integrals

$$
\begin{gathered}
{\left[K \varphi_{k}, \psi_{i}\right]=-b \sin (|\alpha| \pi)\left[h_{k}^{(-\alpha, \alpha)} h_{i}^{(-\alpha, \alpha)}\right]^{-\frac{1}{2}} \times} \\
\times \int_{-1}^{1} \int_{-1}^{1} K(x, t) \frac{(1-x)^{-\alpha}(1+x)^{\alpha}}{(1-t)^{-\alpha}(1+t)^{\alpha}} P_{k}^{(\alpha,-\alpha)}(t) P_{i}^{(-\alpha, \alpha)}(x) d t d x, \\
{\left[f, \psi_{i}\right]=-\left(h_{i}^{(-\alpha, \alpha)}\right)^{-\frac{1}{2}} \times} \\
\times \int_{-1}^{1}(1-x)^{-\alpha}(1+x)^{\alpha} f(x) P_{i}^{(-\alpha, \alpha)}(x) d x, \quad k, i=0,1, \ldots, n .
\end{gathered}
$$

Theorem 3.3. If there exists the inverse operator $\left[I+K(a+b S)^{-1}\right]^{-1}$ mapping $L_{2, \rho_{3}}$ onto itself, then the algebraic system (3.18) for sufficiently large n has a unique solution $\left(a_{0}, a_{1}, \ldots, n\right)$, and the sequence of approximate solutions $\left\{\varphi^{(n)}\right\}$ converges to the exact solution φ in the metric of the space $L_{2, \rho_{3}}$.

If the operator $K \equiv 0$, i.e., we have the characteristic singular equation

$$
(a+b S) \varphi=f
$$

then

$$
a_{i}=\left[f, \psi_{i}\right], \quad i=0,1, \ldots, n
$$

4. Collocation Method for the Singular Integral Equation of the First Kind

We consider the equation

$$
\begin{equation*}
S \varphi+K \varphi=f \tag{4.1}
\end{equation*}
$$

In this section the use will be made of the formulas and reasoning of Section 2. The kernels $K(x, t)$ and $f(x)$ are required to be continuous in a closed domain. Each value of the index will be considered separately.

1) $\varkappa=1$. Taking into account our reasoning in Section 2, we have

$$
\begin{gather*}
(S+K) \phi=f_{1}, \quad \phi \in L_{2, \rho_{1}}^{(2)}, \quad f_{1} \in L_{2, \rho_{1}} \\
f_{1} \equiv f-P \pi^{-1} K\left(1-t^{2}\right)^{-\frac{1}{2}}, \quad \phi \equiv \varphi-P \pi^{-1}\left(1-t^{2}\right)^{-\frac{1}{2}} \tag{4.2}
\end{gather*}
$$

An approximate solution in the collocation method is sought in the form

$$
\phi^{(n)}=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

where

$$
\varphi_{k}=\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\left(1-x^{2}\right)^{-\frac{1}{2}} T_{k}(x), \quad k=1,2 \ldots
$$

It is required that the difference $(S+K) \phi^{(n)}-f_{1}$ at the discrete points $x_{1}, x_{2}, \ldots, x_{n}$ be zero, i.e.,

$$
\left((S+K) \phi^{(n)}-f_{1}\right)\left(x_{j}\right)=0, \quad j=1,2, \ldots, n
$$

This, with regard for (2.3), yields

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} \psi_{k}\left(x_{j}\right)+\sum_{k=1}^{n} a_{k}\left(K \varphi_{k}\right)\left(x_{j}\right)=f_{1}\left(x_{j}\right), \quad j=1,2, \ldots, n \tag{4.3}
\end{equation*}
$$

where

$$
\psi_{k} \equiv\left(\frac{2}{\pi}\right)^{\frac{1}{2}} U_{k-1}(x), \quad k=1,2, \ldots
$$

Theorem 4.1. If there exists the inverse operator $\left(I+K S^{-1}\right)^{-1}$ mapping $L_{2, \rho_{1}}$ onto itself, and as collocation nodes we take the roots of the Chebyshev polynomials $U_{n}(x)$,

$$
x_{j}^{(n)}=\cos \frac{\pi j}{n+1}, \quad j=1,2, \ldots, n
$$

then the algebraic system (4.3) for sufficiently large n has a unique solution $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, and the collocation process converges in the space $L_{2, \rho_{1}}$.

Proof. Introduce the notation $w \equiv S \phi$ and $w^{(n)} \equiv \phi^{(n)}$. Then we write the equations (4.2) and (4.3), respectively, as follows:

$$
\begin{equation*}
w+K S^{-1} w=f_{1}, \quad w, f_{1} \in C[-1,1] \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{(n)}\left(x_{j}\right)+\left(K S^{-1} w^{(n)}\right)\left(x_{j}\right) f_{1}\left(x_{j}\right), \quad j=1,2, \ldots, n \tag{4.5}
\end{equation*}
$$

Take the space of continuous functions $C[-1,1]$ and let P_{m} be the projector defined by the Lagrange interpolation polynomial of the m-th degree; $P_{m} v \equiv L_{m}(v), v \in C$. Then, taking into account that the Lagrange interpolation polynomial is defined uniquely by the function values at nodes, we can write the algebraic system (4.5) in the form

$$
\begin{equation*}
w^{(n)}+P_{n-1} K S^{-1} w^{(n)}=P_{n-1} f_{1}, \quad w^{(n)} \in \bar{L}_{2, \rho_{1}}^{(n)} \tag{4.6}
\end{equation*}
$$

where $\bar{L}_{2, \rho_{1}}^{(n)}$ is the linear span of the functions $\psi_{1}, \psi_{2}, \ldots, \psi_{n}\left(\psi_{k}\right.$ is the polynomial of degree $k-1$).

If as interpolation nodes we take the roots of the Chebyshev polynomial $U_{n}(x)$, then by the Erdös-Turan theorem ([14], [11], [15]) the Lagrange interpolation polynomial for any continuous function converges in the space $L_{2, \rho_{1}}$, i.e.,

$$
\begin{equation*}
\left\|P_{n} v-E v\right\|_{L_{2, \rho_{1}}} \rightarrow 0, \quad n \rightarrow \infty, \quad \forall v \in C[-1,1] \tag{4.7}
\end{equation*}
$$

where E is the operator of the embedding $C[-1,1]$ in $L_{2, \rho_{1}}[-1,1]$, i.e., $P_{n} \rightarrow E$ strongly.

The Banach space $C[-1,1]$ is embedded continuously in $L_{2, \rho_{1}}[-1,1]$, i.e.,

$$
\begin{align*}
\|v\|_{L_{2, \rho_{1}}}= & \left(\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}} v^{2} d x\right)^{\frac{1}{2}} \leq\left(\int_{-1}^{1} v^{2} d x\right)^{\frac{1}{2}} \leq \\
& \leq 2^{\frac{1}{2}}\|v\|_{c}, \quad \forall v \in C[-1,1] \tag{4.8}
\end{align*}
$$

The operator $K S^{-1}$ from the space $L_{2 \rho_{1}}[-1,1]$ to $C[-1,1]$ is completely continuous. Indeed, S^{-1} transforms a bounded set from $L_{2, \rho_{1}}$ into a bounded set in $L_{2, \rho_{1}}^{(2)}$, the kernel $K(x, t)$ is continuous. Thus the operator K transforms a set bounded in $L_{2, \rho_{1}}^{(2)}$ to a uniformly bounded and equicontinuous set of functions on $[-1,1]$.

The projector P_{n} is bounded as the operator from $C[-1,1]$ to $L_{2, \rho_{1}}[-1,1]$,

$$
\left\|P_{n} v\right\|_{L_{2, \rho_{1}}} \leq 2^{\frac{1}{2}}\left\|P_{n} v\right\|_{c} \leq 2^{\frac{1}{2}} C(n)\|v\|_{c}
$$

i.e.,

$$
\begin{equation*}
\left\|P_{n}\right\|_{c \rightarrow L_{2, \rho_{1}}} \leq 2^{\frac{1}{2}} C(n), \quad C(n) \sim \ln n \tag{4.9}
\end{equation*}
$$

By the Banach-Steinhaus theorem, they are uniformly bounded.
As (4.7), (4.8) and (4.9) show, all the conditions of Theorem 15.5 from [9] are fulfilled, and we can conclude that

$$
\begin{equation*}
\left\|P^{(n-1)} K S^{-1}\right\|_{L_{2, \rho_{1}}} \rightarrow 0 \tag{4.10}
\end{equation*}
$$

as $n \rightarrow \infty, P^{(n-1)} \equiv I-P_{n-1}$.
Next, by Theorem 15.5 from [9], the equation (4.6) for sufficiently large n has a unique solution $w^{(n)}$ (hence the algebraic system (4.5) has a unique solution), and the estimate

$$
\begin{equation*}
\left\|w^{(n)}-w\right\| \leq \frac{\left\|\left(I+K S^{-1}\right)^{-1}\right\|}{1-q}\left\|P^{(n-1)} w\right\| \tag{4.11}
\end{equation*}
$$

is valid for

$$
\left\|P^{(n-1)} K S^{-1}\right\| \cdot\left\|\left(I+K S^{-1}\right)^{-1}\right\| \leq q<1
$$

As (4.7) shows, the norm $\left\|P^{(n-1)} w\right\| \rightarrow 0$ as $n \rightarrow \infty$. Further, taking into account (4.11),

$$
\begin{align*}
& \left\|\phi^{(n)}-\phi\right\|_{L_{2, \rho_{1}}^{(2)}}=\left\|S^{-1} S\left(\phi^{(n)}-\phi\right)\right\|=\left\|S^{-1}\left(w^{(n)}-w\right)\right\| \leq \\
& \leq\left\|S^{-1}\right\|_{L_{2, \rho_{1}} \rightarrow L_{2, \rho_{1}}^{(2)}} \cdot\left\|w^{(n)}-w\right\|_{L_{2, \rho_{1}}} \rightarrow 0, \quad n \rightarrow \infty \tag{4.12}
\end{align*}
$$

An approximate solution of the initial problem is given by the equality

$$
\varphi^{(n)}=\phi^{(n)}+P \pi^{-1}(1-x)^{-\frac{1}{2}}(1+x)^{-\frac{1}{2}}
$$

Therefore $\varphi^{(n)}-\varphi=\phi^{(n)}-\phi$, and on the basis of (4.12) we find that

$$
\begin{equation*}
\left\|\varphi^{(n)}-\varphi\right\|^{2}=\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}}\left(\varphi^{(n)}-\varphi\right)^{2} d x \rightarrow 0, \quad n \rightarrow \infty \tag{4.13}
\end{equation*}
$$

which completes the proof of our theorem.
If the operator $K \equiv 0$, i.e., we have the equation $S \varphi=f$ under the additional condition $\int_{-1}^{1} \varphi(t) d t=P($ index $\varkappa=1)$, then we obtain the algebraic system

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k}\left(\frac{2}{\pi}\right)^{\frac{1}{2}} U_{k-1}\left(x_{j}\right)=f_{1}\left(x_{j}\right), \quad j=1,2, \ldots, n \tag{4.14}
\end{equation*}
$$

Theorem 4.1 results in the following
Corollary. For any $n=1,2, \ldots$, the algebraic system (4.14) has the unique solution $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, and the process converges in $L_{2, \rho_{1}}$.
2) $\varkappa=-1$. On the basis of our reasoning in Section 2, we have the equation

$$
\begin{equation*}
S \varphi+K \varphi=f, \quad \varphi \in L_{2, \rho_{2}}, \quad f \in L_{2, \rho_{2}}^{(2)}, \quad \rho_{2}=\left(1-x^{2}\right)^{-\frac{1}{2}}, \tag{4.15}
\end{equation*}
$$

under the restrictions $K\left(L_{2, \rho_{2}}\right) \perp 1, f \perp 1$.
In Section 2 we had the functions

$$
\begin{aligned}
\varphi_{k+1} & \equiv\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\left(1-x^{2}\right)^{\frac{1}{2}} U_{k}(x), \quad k=0,1, \ldots \\
\psi_{k+1} & \equiv-\left(\frac{2}{\pi}\right)^{\frac{1}{2}} T_{k+1}(x), \quad k=0,1, \ldots
\end{aligned}
$$

Take the subspace $C_{0}[-1,1], v \in C_{0}[-1,1]$ meaning that $[v, 1]=0$, $C_{0}[-1,1] \subset C[-1,1]$. Let $L_{n}(v)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ be the Lagrange interpolation polynomial and $C^{(n)}[-1,1] \subset C[-1,1]$ be the linear manifold of polynomials $\psi_{0}, \psi_{1}, \ldots, \psi_{n}\left(\psi_{0}=\widetilde{T}_{0}\right)$. The Lagrange polynomial $L_{n}(v)$ can be represented uniquely in the form

$$
b_{0}+b_{1} x+\cdots+b_{n} x^{n}=a_{0} \psi_{0}+a_{1} \psi_{1}+\cdots+a_{n} \psi_{n}
$$

The algebraic system

$$
a_{0}+a_{1} \psi_{1}\left(x_{j}\right)+\cdots+a_{n} \psi_{n}\left(x_{j}\right)=v_{j}, \quad j=0,1, \ldots, n
$$

has the unique solution $a_{0}^{(n)}, \ldots, a_{n}^{(n)}$.
We define the projector as follows:

$$
\begin{equation*}
\bar{P}_{n}(v)=L_{n}(v)-a_{0}^{(n)} \psi_{0} \tag{4.16}
\end{equation*}
$$

Then $\bar{P}_{n}^{2}=\bar{P}_{n}, \bar{P}_{n}(v) \in C_{0}[-1,1]$ for $\forall v \in C_{0}[-1,1]$.
If as interpolation nodes we take the roots of the Chebyshev polynomial of the first kind $T_{n+1}(x)$, then by the Erdös-Turan theorem [11],

$$
\begin{equation*}
\left\|v-L_{n}(v)\right\|_{2, \rho_{2}} \rightarrow 0, \quad n \rightarrow \infty, \quad \forall v \in C[-1,1] . \tag{4.17}
\end{equation*}
$$

For $v \in C_{0}(-1,1]$ we have

$$
\left\|v-L_{n}(v)\right\|_{L_{2, \rho_{2}}}^{2}=\left(a_{0}^{(n)}\right)^{2}+\sum_{k=1}^{\infty}\left[v-L_{n}(v), \psi_{k}\right]^{2}
$$

which, with regard for (4.17), yields

$$
\begin{equation*}
a_{0}^{(n)} \rightarrow 0, \quad n \rightarrow \infty, \quad \forall v \in C_{0}[-1,1] . \tag{4.18}
\end{equation*}
$$

An approximate solution of the equation (4.15) is sought in the form

$$
\varphi^{(n)}=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

We compose the collocation system from the condition

$$
\begin{equation*}
\bar{P}_{n}\left(S \varphi^{(n)}+K \varphi^{(n)}-f\right)=0 \tag{4.19}
\end{equation*}
$$

Taking into account the relation $S \varphi_{k}=\psi_{k}, k=1,2, \ldots$, and the type of functions $\varphi_{k}, \psi_{k}, k=1,2, \ldots$, the above condition provides us with the algebraic system

$$
\begin{gather*}
a_{0}\left(-\widehat{T}_{0}\right)+\sum_{k=1}^{n} a_{k}\left(-\widehat{T}_{k}\left(x_{j}\right)\right)+\sum_{k=1}^{n} a_{k}\left(K \varphi_{k}\right)\left(x_{j}\right)=f\left(x_{j}\right), \tag{4.20}\\
j=0,1, \ldots, n
\end{gather*}
$$

Theorem 4.2. If there exists the inverse operator $\left(I+K S^{-1}\right)^{-1}$ mapping $L_{2, \rho_{2}}^{(2)}$ onto itself, and as interpolation nodes we take the roots of the Chebyshev polynomial $T_{n+1}(x)$

$$
x_{j}=\cos \frac{(2 j+1)}{2(n+1)}, \quad j=0,1, \ldots, n
$$

then the algebraic system (4.20) for sufficiently large n has the unique solution $\left(a_{0}, a_{1}, \ldots, n\right)$, and the collocation process converges in the space $L_{2, \rho_{2}}$.
Proof. We rewrite the initial equation (4.15) in the form

$$
\begin{equation*}
\left(I+K S^{-1}\right) w=f, \quad w \equiv S \varphi, f, w \in L_{2, \rho_{2}}^{(2)} \tag{4.21}
\end{equation*}
$$

and the approximation (4.19) in the form

$$
\begin{equation*}
w^{(n)}+\bar{P}_{n} K S^{-1} w^{(n)}=\bar{P}_{n} f, \quad w^{(n)} \equiv S \varphi^{(n)} . \tag{4.22}
\end{equation*}
$$

Thus we have:

$$
\begin{gather*}
\text { a) } \quad\left\|v-\bar{P}_{n}(v)\right\|_{L_{2, \rho_{2}}^{(2)}}^{2}=\left\|v-L_{n}(v)+a_{0}^{(n)} \psi_{0}\right\|_{L_{2, \rho_{2}}}^{(2)} \leq \\
\leq\left\|v-L_{n}(v)\right\|_{L_{2, \rho_{2}}}^{2}+\left(a_{0}^{(n)}\right)^{2} \rightarrow 0, \quad \forall v \in C_{0}[-1,1], \quad n \rightarrow \infty \tag{4.23}
\end{gather*}
$$

on the basis of (4.17) and (4.18) we have

$$
\left\|\bar{P}_{n} v\right\|_{L_{2, \rho_{2}}^{(2)}}^{2} \leq\left\|L_{n}(v)\right\|_{L_{2, \rho_{2}}}^{2} \leq,\left(B_{0} \ln n\right)^{2}\|v\|_{C_{0}}^{2}
$$

i.e.,

$$
\left\|\bar{P}_{n}\right\|_{C_{0} \rightarrow L_{2, \rho_{2}}^{(2)}} \leq B_{0} \ln n
$$

b) the operator $K S^{-1}$ is completely continuous from $L_{2, \rho_{2}}^{(2)}$ in $C_{0}[-1,1]$;
c)

$$
\begin{align*}
& \|v\|_{L_{2, \rho_{2}}^{(2)}}^{2}=\int_{-1}^{1}\left(1-x^{2}\right)^{-\frac{1}{2}} v^{2} d x \leq \pi\|v\|_{C_{0}}^{2} \tag{4.24}\\
& \|v\|_{L_{2, \rho_{2}}^{(2)}} \leq \pi^{\frac{1}{2}}\|v\|_{C_{0}}
\end{align*}
$$

From a), b), c) it follows by [9] that

$$
\left\|\bar{P}^{(n)} K S^{-1}\right\| \rightarrow 0, \quad n \rightarrow \infty, \quad \bar{P}^{(n)} \equiv I-\bar{P}_{n}
$$

Next, reasoning as in the proof of Theorem 4.1 we will see that the algebraic system (4.20) for sufficiently large n has a unique solution, and the process converges, i.e.,

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right)^{-\frac{1}{2}}\left(\varphi^{(n)}-\varphi\right)^{2} d x \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{4.25}
\end{equation*}
$$

The theorem is proved.
If the operator $K \equiv 0$, then under the equation $S \varphi=f$ for the condition $[f, 1]=0$ we obtain the algebraic system

$$
\begin{equation*}
a_{0}\left(-\widehat{T}_{0}\right)+\sum_{k=1}^{n} a_{k}\left(-\widehat{T}_{k}\left(x_{j}\right)\right)=f\left(x_{j}\right), \quad j=0,1, \ldots, n \tag{4.26}
\end{equation*}
$$

where $x_{j}, j=0,1, \ldots, n$ are the roots of the Chebyshev polynomial $T_{n+1}(x)$. From the above proven Theorem 4.2 we have

Corollary. For any $n=1,2, \ldots$, the algebraic system (4.26) has the unique solution $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$, and the process converges in $L_{2, \rho_{2}}$.
3) $\varkappa=0$. Arguing as in Section 2, we have

$$
\begin{equation*}
S \varphi+K \varphi=f, \quad f, \varphi \in L_{2, \rho_{3}} \tag{4.27}
\end{equation*}
$$

Consider first the case $\alpha=-\frac{1}{2}, \beta=\frac{1}{2}$; the weight $\rho_{3}=(1-x)^{\frac{1}{2}}(1+x)^{-\frac{1}{2}}$,

$$
\varphi_{k} \equiv\left(h_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}\right)^{-\frac{1}{2}}(1-x)^{-\frac{1}{2}}(1+x)^{\frac{1}{2}} P_{k}(x)^{\left(-\frac{1}{2}, \frac{1}{2}\right)}, \quad k=0,1, \ldots,
$$

where

$$
\begin{gathered}
P_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x)=e_{k} \frac{\cos \left(\frac{2 k+1}{2} \arccos x\right)}{\cos \left(\frac{1}{2} \arccos x\right)}, \quad k=0,1, \ldots \\
e_{0}=1, \quad e_{k}=\frac{1 \cdot 3 \cdots(2 k-1)}{2 \cdot 4 \cdots 2 k}, \quad k=1,2, \ldots
\end{gathered}
$$

and

$$
\psi_{k} \equiv\left(h_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}\right)^{-\frac{1}{2}} P_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x), \quad k=0,1, \ldots
$$

where

$$
P_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x)=e_{k} \frac{\sin \left(\frac{2 k+1}{2} \arccos x\right)}{\sin \left(\frac{1}{2} \arccos x\right)}, \quad k=0,1, \ldots
$$

An approximate solution is sought in the form

$$
\varphi^{(n)}=\sum_{k=0}^{n} a_{k} \varphi_{k}
$$

The coefficients ($a_{0}, a_{1}, \ldots, a_{n}$) in the collocation method are defined from the following conditions:

$$
\left(s \varphi^{(n)}+K \varphi^{(n)}-f\right)\left(x_{j}\right)=0, \quad j=0,1, \ldots, n
$$

which, with regard for the equality $S \varphi_{k}=\psi_{k}, k=0,1, \ldots$, provides us with the algebraic system

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} \psi_{k}\left(x_{j}\right)+\sum_{k=0}^{n} a_{k}\left(K \varphi_{k}\right)\left(x_{j}\right), \quad j=0,1, \ldots, n \tag{4.28}
\end{equation*}
$$

Theorem 4.3. If there exists the inverse operator $\left(I+K S^{-1}\right)^{-1}$ mapping $L_{2, \rho_{3}}$ onto itself and as interpolation nodes we take the roots of the Jacobi polynomial $P_{n+1}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x)$,

$$
x_{j}=\cos \frac{2(j+1) \pi}{2 n+3}, \quad j=0,1, \ldots, n
$$

then the algebraic system (4.28) for sufficiently large n has a unique solution, and the collocation process converges in the space $L_{2, \rho_{3}}\left(\rho_{3}=(1-x)^{\frac{1}{2}}(1+\right.$ $x)^{-\frac{1}{2}}$).

Proof. We denote $w \equiv S \varphi, w^{(n)} \equiv S \varphi^{(n)}$. Then the equations (4.27) and (4.28) can be rewritten as follows:

$$
\begin{gather*}
w+K S^{-1} w=f, \quad f, w \in L_{2, \rho_{3}} \tag{4.29}\\
w^{(n)}\left(x_{j}\right)+\left(K S^{-1} w^{(n)}\right)\left(x_{j}\right)=f\left(x_{j}\right), \quad j=0,1, \ldots, n \tag{4.30}
\end{gather*}
$$

Let P_{n} be the projector defined by the Lagrange interpolation polynomial of the n-th degree; $P_{n} v \equiv L_{n}(v), v \in C[-1,1]$. Then we can write the algebraic system (4.30) in the form

$$
\begin{equation*}
w^{(n)}+P_{n} K S^{-1} w^{(n)}=P_{n} f, \quad w^{(n)} \in \bar{L}_{2, \rho_{3}}^{(n)} \tag{4.31}
\end{equation*}
$$

where $\bar{L}_{2, \rho_{3}}^{(n)}$ is the linear span of the functions $\psi_{0}, \psi_{1}, \ldots, \psi_{n}\left(\psi_{k}\right.$ is a polynomial of the k-th degree).

If in the Lagrange polynomial we take as interpolation nodes the roots of the Jacobi polynomial $P_{n+1}^{\left(\frac{1}{2} ;-\frac{1}{2}\right)}(x)$, then by the Erdös-Turan theorem [11], the Lagrange interpolation polynomial for any continuous function converges in the space $L_{2, \rho_{3}}$, i.e.,

$$
\begin{equation*}
\left\|P_{n} v-E v\right\|_{L_{2, \rho_{3}}} \rightarrow 0, \quad n \rightarrow \infty, \quad \forall v \in C[-1,1] ; \tag{4.32}
\end{equation*}
$$

$P_{n} \rightarrow E$ strongly (E is the operator of embedding $C[-1,1]$ in $L_{2, \rho_{3}}$.
The Banach space $C[-1,1]$ is embedded continuously in $L_{2, \rho_{3}}[-1,1]$, since

$$
\begin{equation*}
\|v\|_{L_{2, \rho_{3}}}=\left(\int_{-1}^{1}(1-x)^{\frac{1}{2}}(1+x)^{-\frac{1}{2}} v^{2} d x\right)^{\frac{1}{2}} \leq 2\|v\|_{c} \tag{4.33}
\end{equation*}
$$

The operator $K S^{-1}$ from the space $L_{2, \rho_{3}}$ in $C[-1,1]$ is completely continuous; S^{-1} is bounded in $L_{2, \rho_{3}}$.

The projector P_{n} is bounded as an operator from C to $L_{2, \rho_{3}}$,

$$
\left\|P_{n} v\right\|_{L_{2, \rho_{3}}} \leq 2\left\|P_{n} v\right\|_{c} \leq 2 C_{1}(n)\|v\|_{c}
$$

i.e.,

$$
\begin{equation*}
\left\|P_{n}\right\|_{c \rightarrow L_{2, \rho_{3}}} \leq 2 C_{1}(n) \tag{4.34}
\end{equation*}
$$

(by the Banach-Steinhaus theorem, they are uniformly bounded). This yields

$$
\begin{equation*}
\left\|P^{(n)} K S^{-1}\right\|_{L_{2, \rho_{3}}} \rightarrow 0 \tag{4.35}
\end{equation*}
$$

as $n \rightarrow \infty, P^{(n)} \equiv I-P_{n}$.
From (4.35) we conclude that for sufficiently large n the system (4.28) has a unique solution, and the process

$$
\begin{equation*}
\int_{-1}^{1}(1-x)^{\frac{1}{2}}(1+x)^{-\frac{1}{2}}\left(\varphi^{(n)}-\varphi\right)^{2} d x \rightarrow 0 \tag{4.36}
\end{equation*}
$$

converges as $n \rightarrow \infty$, which completes the proof of the theorem.

If the operator $K \equiv 0$, i.e., we have the equation $S \varphi=f$, then we obtain the algebraic system

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} \psi_{k}\left(x_{j}\right)=f\left(x_{j}\right), \quad j=0,1, \ldots, n \tag{4.37}
\end{equation*}
$$

Theorem 4.3 results in the corollary: the algebraic system (4.37) for any $n=1,2, \ldots$, has the unique solution $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$, and the collocation process converges in $L_{2, \rho_{3}}$.

If $\alpha=\frac{1}{2}$, and $\beta=-\frac{1}{2}$, then in the weight space $L_{2, \rho_{3}}$, where $\rho_{3}=$ $(1-x)^{-\frac{1}{2}}(1+x)^{\frac{1}{2}}$, we again take

$$
\begin{aligned}
& \varphi_{k} \equiv\left(h_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}\right)^{-\frac{1}{2}}(1-x)^{\frac{1}{2}}(1+x)^{-\frac{1}{2}} P_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x), \quad k=0,1, \ldots, \\
& \psi_{k} \equiv-\left(h_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}\right)^{-\frac{1}{2}} P_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x), \quad k=0,1, \ldots
\end{aligned}
$$

The collocation method provides us with the algebraic system

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} \psi_{k}\left(x_{j}\right)+\sum_{k=0}^{n} a_{k}\left(K \varphi_{k}\right)\left(x_{j}\right)=f\left(x_{j}\right), \quad j=0,1, \ldots, n \tag{4.38}
\end{equation*}
$$

in which as collocation nodes we take the roots of the Jacobi polynomial $P_{n+1}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x)$,

$$
x_{j}=\cos \frac{(2 j+1) \pi}{2 n+3}, \quad j=0,1, \ldots, n
$$

Repeating here our reasoning, we can get an analogous result.

5. Collocation Method for the Singular Integral Equation of the Second Kind

Consider the equation of the second kind

$$
\begin{equation*}
(a+b S+K) \varphi=f, \quad f \in C[-1,1] \tag{5.1}
\end{equation*}
$$

In this section the use will be made of the formulas and arguments of Section 3. As in Section 4, the function $K(x, t)$ is required to be continuous on the square $[-1,1] \times[-1,1]$. Every value of the index $\varkappa=1,-1,0$ will be considered separately.

1) $\varkappa=1$. In this case we have the equation

$$
\begin{equation*}
(a+b S+K) \phi=f_{1}, \quad \phi \in L_{2, \rho_{1}}^{(2)}, \quad f_{1} \in L_{2, \rho_{1}} \tag{5.2}
\end{equation*}
$$

where

$$
\begin{gathered}
\phi \equiv \varphi-P \pi^{-1} \sin (|\alpha| \pi)(1-x)^{\alpha}(1+x)^{\beta}, \\
f_{1} \equiv f-P \pi^{-1} \sin (|\alpha| \pi) K\left[(1-t)^{\alpha}(1+)^{\beta}\right], \\
f_{1} \equiv-1<\alpha, \quad \beta<0
\end{gathered}
$$

We use the functions
$\varphi_{k} \equiv 2 b^{-1} \sin (|\alpha| \pi)\left(h_{k-1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}}(1-x)^{\alpha}(1+x)^{\beta} P_{k}^{(\alpha, \beta)}(x), \quad k=0,1, \ldots$,
and

$$
\psi_{k} \equiv\left(h_{k-1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} P_{k-1}^{(-\alpha,-\beta)}(x), \quad k=1,2, \ldots
$$

An approximate solution is sought in the form

$$
\phi^{(n)}=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

It is required that the difference $(a+b S+K) \phi^{(n)}-f_{1}$ at the discrete points $x_{1}, x_{2}, \ldots, x_{n}$ be equal to zero,

$$
\left((a+b S+K) \phi^{(n)}-f_{1}\right)\left(x_{j}\right)=0, \quad j=1,2, \ldots, n
$$

which, on the basis of (3.7), provides us with the algebraic system

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} \psi_{k}\left(x_{j}\right)+\sum_{k=1}^{n} a_{k}\left(K \varphi_{k}\right)\left(x_{j}\right)=f_{1}\left(x_{j}\right), \quad j=1,2, \ldots, n \tag{5.3}
\end{equation*}
$$

Theorem 5.1. If there exists the inverse operator $\left[I+K(a+b S)^{-1}\right]^{-1}$ mapping $L_{2, \rho_{1}}$ onto itself and as collocation nodes we take the roots of the Jacobi polynomial $P_{n}^{(-\alpha,-\beta)}(x)$, then the algebraic system (5.3) for sufficiently large n has a unique solution, and the process converges in the space $L_{2, \rho_{1}}$.

Proof. Denote $w \equiv(a+b S) \phi$ and $w^{(n)} \equiv(a+b S) \phi^{(n)}$. Then the equations (5.2) and (5.3) can, respectively, be rewritten as follows:

$$
\begin{equation*}
w+K(a+b S)^{-1} w=f_{1}, \quad w, f_{1} \in C[-1,1] \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{(n)}\left(x_{j}\right)+\left(K(a+b S)^{-1} w^{(n)}\right)\left(x_{j}\right)=f_{1}\left(x_{j}\right), \quad j=1,2, \ldots, n \tag{5.5}
\end{equation*}
$$

Let P_{m} be the projector defined by the Lagrange interpolation polynomial of the m-th degree; $P_{m} v=L_{m}(v), v \in C[-1,1]$. Then we write the algebraic system (5.5) in the form

$$
\begin{equation*}
w^{(n)}+P_{n-1} K(a+b S)^{-1} w^{(n)}=P_{n-1} f_{1}, \quad w^{(n)} \in L_{2, \rho_{1}}^{(n)} \tag{5.6}
\end{equation*}
$$

where $L_{2, \rho_{1}}^{(n)}$ is the linear span of functions $\psi_{1}, \psi_{2}, \ldots, \psi_{n}\left(\psi_{k}\right.$ is the polynomial of ($k-1$)-th degree).

If as interpolation nodes we take the roots of the Jacobi polynomial $P_{n}^{(-\alpha-\beta)}(x)$, then by the Erdös-Turan theorem [11], the Lagrange interpolation polynomial for any continuous function converges in the space $L_{2, \rho_{1}}$, i.e., $\left\|P_{n} v-E v\right\| \rightarrow 0$ as $n \rightarrow \infty, \forall v \in C[-1,1], E$ is the operator of embedding of $C[-1,1]$ into $L_{2, \rho_{1}}[-1,1]$. The Banach space $C[-1,1]$ is embedded continuously in $L_{2, \rho_{1}}[-1,1]$. Every norm $\left\|P_{m}\right\|_{c \rightarrow L_{2, \rho_{1}}}$ is bounded
and, moreover, the operator $K(a+b S)^{-1}$ from the space $L_{2, \rho_{1}}$ in C is completely continuous. Then

$$
\left\|P^{(n-1)} K(a+b S)^{-1}\right\|_{L_{2, \rho_{1}}} \rightarrow 0
$$

as $n \rightarrow \infty\left(P^{(n)} \equiv I-P_{n}\right)$.
Therefore the equation (5.6) for sufficiently large n has the unique solution $w^{(n)}$ (then the algebraic system (5.5) also has a unique solution), and the estimate

$$
\left\|w^{(n)}-w\right\| \leq \frac{\left\|\left[I+K(a+b S)^{-1}\right]^{-1}\right\|}{1-q}\left\|P^{(n-1)} w\right\|
$$

is valid for

$$
\left\|P^{(n-1)} K(a+b S)^{-1}\right\|\left\|\left[I+K(a+b S)^{-1}\right]^{-1}\right\| \leq q<1
$$

The norm $\left\|P^{(n-1)} w\right\| \rightarrow 0$ as $n \rightarrow \infty$, since $w \in C[-1,1]$.
Further,

$$
\begin{aligned}
\left\|\phi^{(n)}-\phi\right\|_{L_{2, \rho_{1}}^{(2)}} & =\left\|(a+b S)^{-1}(a+b S)\left(\phi^{(n)}-\phi\right)\right\|=\left\|(a+b S)^{-1} w^{(n)}-w\right\| \leq \\
& \leq\left\|(a+b S)^{-1}\right\|_{L_{2, \rho_{1}} \rightarrow L_{2, \rho_{1}}^{(2)}}\left\|w^{(n)}-w\right\|_{L_{2, \rho_{1}}}
\end{aligned}
$$

An approximate solution of the initial problem has the form

$$
\varphi^{(n)}=\phi^{(n)}+P \pi^{-1} \sin (|\alpha| \pi)(1-x)^{\alpha}(1+x)^{\beta} .
$$

Owing to $\varphi^{(n)}-\varphi=\phi^{(n)}-\phi$, we finally get

$$
\begin{equation*}
\left\|\varphi^{(n)}-\varphi\right\|=\left(\int_{-1}^{1}(1-x)^{-\alpha}(1+x)^{-\beta}\left(\varphi^{(n)}-\varphi\right)^{2} d x\right)^{\frac{1}{2}} \rightarrow 0 \tag{5.7}
\end{equation*}
$$

as $n \rightarrow \infty$.
If $K \equiv 0$, i.e., we have the characteristic singular integral equation

$$
(a+b S) \varphi=f
$$

with the additional condition $\int_{-1}^{1} \varphi(x) d x=P$, from (5.3) we obtain the algebraic system

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} \psi_{k}\left(x_{j}\right)=f\left(x_{j}\right), \quad j=1,2, \ldots, n \tag{5.8}
\end{equation*}
$$

Theorem 5.1 results in the following
Corollary. The algebraic system (5.8) for any $n=1,2, \ldots$ has the unique solution $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, and the process converges in the space $L_{2, \rho_{1}}$.
2) $\varkappa=-1$. In this case, on the basis of our reasoning in Section 3, we have the equation

$$
\begin{equation*}
(a+b S+K) \varphi=f, \quad \varphi \in L_{2, \rho_{2}}, \quad f \in L_{2, \rho_{2}}^{(2)} \tag{5.9}
\end{equation*}
$$

under the restriction $K\left(L_{2, \rho_{2}}\right) \perp 1$, where $\rho_{2}=(1-x)^{-\alpha}(1+x)^{-\beta}, 0<\alpha$, $\beta<1$ is the weight. We have the functions:

1) $\varphi_{k+1} \equiv(2 b)^{-1} \sin (|\alpha| \pi)\left(h_{k+1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}}(1-x)^{\alpha}(1+x)^{\beta} P_{k}^{(\alpha, \beta)}(x), k=$ $0,1, \ldots$, and
2) $\psi_{k+1}=-\left(h_{k+1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} P_{k+1}^{(-\alpha,-\beta)}(x), k=0,1, \ldots, \alpha+\beta=1$.

The systems $\psi_{1}, \psi_{2}, \ldots$ and $\varphi_{1}, \varphi_{2}, \ldots$ are the bases in $L_{2, \rho_{2}}$ and $L_{2, \rho_{2}}^{(2)}$, respectively.

Just is in point 2 of Section 4, we take the subspace $C_{0}[-1,1] \subset C[-1,1]$; $C_{0}[-1,1] \subset L_{2, \rho_{2}}^{(2)}, v \in C_{0}[-1,1]$ if $[v, 1]=0$. Let $L_{n}(v)$ be the Lagrange interpolation polynomial for the function $v, C^{(n)} \subset C[-1,1]$ be the linear span of the polynomials $\psi_{0}, \psi_{1}, \ldots, \psi_{n}$. The Lagrange polynomial $L_{n}(v) \in$ $C^{(n)}$ is representable uniquely in the form $L_{n}(v)=a_{0} \psi_{0}+a_{1} \psi_{1}+\cdots+a_{n} \psi_{n}$ for any $v \in C[-1,1]$.

The algebraic system

$$
a_{0} \psi_{0}+a_{1} \psi_{1}\left(x_{j}\right)+\cdots+a_{n} \psi_{n}\left(x_{j}\right)=v_{j}, \quad j=0,1, \ldots, n
$$

has the unique solution $a_{0}^{(n)}, a_{1}^{(n)}, \ldots, a_{n}^{(n)}$.
We take the projector

$$
\begin{aligned}
& \bar{P}_{n} v=L_{n}(v)-a_{0}^{(n)} \psi_{0} \quad\left(\psi_{0}=\left(\pi^{-1} \sin \alpha \pi\right)^{\frac{1}{2}}\right) \\
& \bar{P}_{n}^{2}=\bar{P}_{n}, \quad \bar{P}_{n} v \in C_{0}[-1,1], \quad \forall v \in C_{0}[-1,1]
\end{aligned}
$$

If as interpolation nodes we take the roots of the Jacobi polynomial $P_{n+1}^{-\alpha,-\beta}(x)$, then by the Erdös-Turan theorem [11],

$$
\left\|v-L_{n}(v)\right\|_{L_{2, \rho_{2}}} \rightarrow 0, \quad n \rightarrow \infty, \quad \forall v \in C[-1,1]
$$

For $v \in C_{0}[-1,1]$ we have

$$
\left\|v-L_{n}(v)\right\|_{L_{2, \rho_{2}}}^{2}=\left(a_{0}^{(n)}\right)^{2}+\sum_{k=1}^{\infty}\left[v-L_{n}\left(v, \psi_{k}\right)\right]^{2}
$$

Therefore

$$
a_{0}^{(n)} \rightarrow 0, \quad n \rightarrow \infty, \quad \forall v \in C_{0}[-1,1]
$$

An approximate solution of the equation (5.9) is sought in the form

$$
\varphi^{(n)}=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

Using the condition

$$
\bar{P}_{n}\left[(a+b S) \varphi^{(n)}+K \varphi^{(n)}-f\right]=0
$$

we compose the collocation system which, with regard for the equality $(a+$ bS) $\varphi_{k}=\psi_{k}, k=1,2, \ldots$, provides us with the algebraic system

$$
\begin{equation*}
a_{0} \psi_{0}+\sum_{k=1}^{n} a_{k} \psi_{k}\left(x_{j}\right)+\sum_{k=1}^{n} a_{k}\left(K \varphi_{k}\right)\left(x_{j}\right)=f\left(x_{j}\right), \quad j=0,1, \ldots, n \tag{5.10}
\end{equation*}
$$

Theorem 5.2. If there exists the inverse operator $\left[I+K(a+b S)^{-1}\right]^{-1}$ mapping $L_{2, \rho_{2}}^{(2)}$ onto itself and as interpolation nodes we take the roots of the Jacobi polynomial $P_{n+1}^{(-\alpha,-\beta)}(x)$, then the algebraic system (5.10) for sufficiently large n has a unique solution, and the process converges in the space $L_{2, \rho_{2}}$.

Proof. We rewrite the equation (5.9) in the form

$$
\left[I+K(a+b S)^{-1}\right] w=f, \quad w \equiv(a+b S) \varphi, \quad w, f \in L_{2, \rho_{2}}^{(2)}
$$

and the approximate equation (5.10) in the form

$$
w^{(n)}+\bar{P}_{n} K(a+b S)^{-1} w^{(n)}=\bar{P}_{n} f, \quad w^{(n)} \equiv(a+b S) \varphi^{(n)}
$$

$w^{(n)} \in \bar{L}_{2, \rho}^{(n)}$, where $\bar{L}_{2, \rho_{2}}^{(n)}$ is the linear span of the functions $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$.
We have
a) $\left\|v-\bar{P}_{n} v\right\|_{L_{2, \rho_{2}}^{(2)}} \rightarrow 0, n \rightarrow \infty$,
b) $\left\|\bar{P}_{n} v\right\|_{L_{2, \rho_{2}}^{(2)}} \leq B_{0} C(n)\|v\|_{C_{0}}$, that is,

$$
\left\|\bar{P}_{n}\right\|_{C_{0} \rightarrow L_{2, \rho_{2}}^{(2)}} \leq B_{0} c(n), \quad c(n) \sim \ln n
$$

where $c(n)$ is a number dependent of n;
c) the operator $K(a+b S)^{-1}$ is completely continuous from $L_{2, \rho_{2}}^{(2)}$ to C_{0};
d) $\|v\|_{L_{2, \rho_{2}}^{(2)}} \leq c\|v\|_{C_{0}}$.

Arguing as in point 2 of Section 4, we find that the algebraic system (5.10) for sufficiently large n has a unique solution, and the process converges in the space $L_{2, \rho_{2}}$, i.e.,

$$
\begin{equation*}
\int_{-1}^{1}(1-x)^{-\alpha}(1+x)^{-\beta}\left(\varphi^{(n)}-\varphi\right)^{2} d x \rightarrow 0 \tag{5.11}
\end{equation*}
$$

as $n \rightarrow \infty(0<\alpha, \beta<1)$
If the operator $K \equiv 0$, i.e., we have the equation

$$
(a+b S) \varphi=f
$$

with the condition $[f, 1]=0$, then the algebraic system (5.10) takes the form

$$
\begin{equation*}
a_{0} \psi_{0}+\sum_{k=1}^{n} a_{k} \psi_{k}\left(x_{j}\right)=f\left(x_{j}\right), \quad j=0,1, \ldots, n \tag{5.12}
\end{equation*}
$$

where $x_{0}, x_{1}, \ldots, x_{n}$ are, as before, the roots of the Jacobi polynomial $P_{n+1}^{(-\alpha,-\beta)}(x)$.

From Theorem 5.2 we get
Corollary. The algebraic system (5.12) for any $n=1,2, \ldots$ has the unique solution $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$, and the process converges in the space $L_{2, \rho_{2}}$.
3) $\varkappa=0, \varkappa=-(\alpha+\beta), \beta=-\alpha,|\alpha| \neq \frac{1}{2}, 0<|\alpha|<1$. As in Section 3, the equation will be considered in the weight space $L_{2, \rho_{3}}[-1,1]$, where the weight $\rho_{3}=(1-x)^{-\alpha}(1+x)^{\alpha}$. We have the equation

$$
\begin{equation*}
(a+b S+K) \varphi=f, \quad \varphi, f \in L_{2, \rho_{3}} . \tag{5.13}
\end{equation*}
$$

The kernel $K(x, t)$ and the right-hand side $f(x)$ are required to be continuous in a closed domain. Then the solution w of the equation $w+K(a+$ $b S)^{-1} w=f$ likewise belongs to $C[-1,1]$.

The inverse operator $\left(a+b S^{-1}\right)$ mapping the space $L_{2, \rho_{3}}$ onto itself exists. It will be required that the operator $(a+b S+K)^{-1}$, transforming the space $L_{2, \rho_{3}}$ onto itself, exist too.

To construct an approximate solution of the equation (5.13), just as in the projective method, we use the following two systems:

1) $\left.\varphi_{k} \equiv b^{-1} \sin |\alpha| \pi\right)\left(h_{k}^{(-\alpha, \alpha)}\right)^{-\frac{1}{2}}(1-x)^{\alpha}(1+x)^{-\alpha} P_{k}(x)^{(\alpha,-\alpha)}$
and
2) $\psi_{k} \equiv-\left(h_{k}^{(-\alpha, \alpha)}\right)^{-\frac{1}{2}} P_{k}^{(-\alpha, \alpha)}(x), k=0,1, \ldots$.

The formula

$$
(a+b S) \varphi_{k}=\psi_{k}, \quad k=0,1, \ldots
$$

is valid. Each of these systems is an orthonormal basis in the space $L_{2, \rho_{3}}$.
An approximate solution of the equation (5.13) is sought in the form

$$
\varphi^{(n)}=\sum_{k=0}^{n} a_{k} \varphi_{k}
$$

The method of collocation

$$
\left.(a+b S) \varphi^{(n)}+K \varphi^{(n)}-f\right)\left(x_{j}\right)=0, \quad j=0,1, \ldots, n
$$

with regard for $(a+b S) \varphi_{k}=\psi_{k}$ provides us with the algebraic system

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} \psi_{k}\left(x_{j}\right)+\sum_{k=0}^{n} a_{k}\left(K \varphi_{k}\right)\left(x_{j}\right)=f\left(x_{j}\right), \quad j=0,1, \ldots, n \tag{5.14}
\end{equation*}
$$

Theorem 5.3. If there exists the inverse operator $\left[I+K(a+b S)^{-1}\right]^{-1}$ mapping $L_{2, \rho_{3}}$ onto itself and as collocation nodes we take the roots of the Jacobi polynomial $P_{n+1}^{(-\alpha, \alpha)}(x)$, then the algebraic system (5.14) for sufficiently large n has a unique solution, and the collocation process converges in the space $L_{2, \rho_{3}}$.
Proof. Denote $w \equiv(a+b S) \varphi$ and $w^{(n)} \equiv(a+b S) \varphi^{(n)}$. Then the equations (5.13) and (5.14) can be rewritten as

$$
\begin{gather*}
w+K(a+b S)^{-1} w=f, \quad w, f \in L_{2, \rho_{3}} \tag{5.15}\\
w^{(n)}\left(x_{j}\right)+\left(K(a+b S)^{-1} w^{(n)}\right)\left(x_{j}\right)=f\left(x_{j}\right), \quad j=0,1, \ldots, n \tag{5.16}
\end{gather*}
$$

Let P_{n} be the projector defined by means of the Lagrange interpolation polynomial $P_{n} v=L_{n}(v), v \in C[-1,1]$. Then the algebraic system (5.16) can be written in the form

$$
\begin{equation*}
w^{(n)}+P_{n} K(a+b S)^{-1} w^{(n)}=P_{n} f, \quad w^{(n)} \in \bar{L}_{2, \rho_{3}}^{(n)} \tag{5.17}
\end{equation*}
$$

where $\bar{L}_{2, \rho_{3}}^{(n)}$ is the linear span of the functions $\psi_{0}, \psi_{1}, \ldots, \psi_{n}\left(\psi_{k}\right.$ is the polynomial of k-th degree).

If as interpolation nodes we take the roots of the Jacobi polynomial $P_{n+1}^{(-\alpha, \alpha)}(x)$, then
a) $\left\|v-P_{n} v\right\|_{L_{2, \rho_{3}}} \rightarrow 0, n \rightarrow \infty, \forall v \in C[-1,1]$. Moreover,
b) $\left\|P_{n}\right\|_{c \rightarrow L_{2, \rho_{3}}} \leq B_{0} C(n)$;
c) the operator $K(a+b S)^{-1}$ is completely continuous from the space $L_{2, \rho_{3}}$ to $C[-1,1]$;
d) $\|v\|_{L_{2, \rho_{3}}} \leq C\|v\|_{c}$.

Then the same arguments as in Theorem 5.1 allow us to show that the algebraic system (5.14) for sufficiently large n has a unique solution, and the process converges:

$$
\begin{equation*}
\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\alpha}\left(\varphi^{(n)}-\varphi\right)^{2} d x \rightarrow 0 \tag{5.18}
\end{equation*}
$$

as $n \rightarrow \infty$.
If the operator $K \equiv 0$, i.e., we have the equation $(a+b S)=f$, then we obtain the algebraic system

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} \psi_{k}\left(x_{j}\right)=f\left(x_{j}\right), \quad j=0,1, \ldots, n \tag{5.19}
\end{equation*}
$$

where $x_{0}, x_{1}, \ldots, x_{n}$ are again the roots of the Jacobi polynomial $P_{n+1}^{(-\alpha, \alpha)}(x)$. From Theorem 5.3 it follows

Corollary. The algebraic system (5.19) for any $n=1,2, \ldots$ has the unique solution $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$, and the process converges in the space $L_{2, \rho_{3}}$.

In Sections $2-5$ the author has presented the results obtained by him in [16] and [17]. The collocation schemes for the equation (1.1) have been given by many authors, for example, by F. Erdogan and G.D. Gupta ([18], [19]). The author's schemes differ considerably from the already known schemes, especially for the index $\varkappa=1,-1$. Moreover, in his above-mentioned works the author gives the proof for the convergence of approximate schemes.

6. Some Remarks on the Projective and Collocation Schemes

In this section (a) we prove that the process of replacement of the initial problem for the index $\varkappa=1$ by one functional equation is stable; (b) for the index $\varkappa=-1$, we remove the restriction imposed on the kernel $K(x, t)$ in Sections 2-5; (c) we prove that the projective schemes are stable. Here the results obtained by the author in [20] are presented.

1) In case $\varkappa=1$, we have

$$
\begin{equation*}
(a+b S+K) \varphi=f \tag{6.1}
\end{equation*}
$$

with the additional condition

$$
\begin{equation*}
\int_{-1}^{1} \varphi(t) d t=P \tag{6.2}
\end{equation*}
$$

where P is a given number.
In Sections 2-5 this problem has been replaced by one functional equation

$$
\begin{equation*}
(a+b S+K) \phi=f_{1}, \quad \phi \in L_{2, \rho_{1}}^{(2)}, \quad f_{1} \in L_{2, \rho_{1}} \tag{6.3}
\end{equation*}
$$

where $\phi \equiv \varphi-P \pi^{-1} \sin (|\alpha| \pi)(1-x)^{\alpha}(1+x)^{\beta} ;-1<\alpha, \beta<0, \varkappa=-(\alpha+\beta)$

$$
f_{1} \equiv f-P \pi^{-1} \sin (|\alpha| \pi) K(1-t)^{\alpha}(1+t)^{\beta}
$$

$L_{2, \rho_{1}}=L_{2, \rho_{1}}^{(1)} \oplus L_{2, \rho_{1}}^{(2)}, L_{2, \rho_{1}}^{(1)}$ is the linear span of one function, $\varphi_{0}=(1-$ $x)^{\alpha}(1+x)^{\beta}, L_{2, \rho_{1}}^{(2)}$ is its orthogonal complement. When defining the function f_{1}, we have to calculate the integral $K(1-t)^{\alpha}(1+t)^{\beta}$ which, of course, not always can be taken exactly. Let there be an error $\delta(x)=f_{1}-\widetilde{f}_{1}$. Then instead of (6.3) we have the perturbed equation

$$
\begin{equation*}
(a+b S+K) \widetilde{\phi}=\widetilde{f}_{1}, \quad \widetilde{\phi} \in L_{2, \rho_{1}}^{(2)}, \quad \widetilde{f}_{1} \in L_{2, \rho_{1}} \tag{6.4}
\end{equation*}
$$

which will be solved approximately. Approximate schemes provide us with approximations $\widetilde{\phi}^{(n)}, n=1,2, \ldots$; the sequence $\left\{\widetilde{\phi}^{(n)}\right\}$ converges to $\widetilde{\phi}$ in the metric of the space $L_{2, \rho_{1}}^{(2)}$. In our schemes we assume that there exists the inverse operator $\left[I+K(a+b S)^{-1}\right]^{-1}$ transforming $L_{2, \rho_{1}}$ onto itself.

Take the difference of (6.3) and (6.4),

$$
(a+b S+K)(\phi-\widetilde{\phi})=\delta(x)
$$

hence $\phi-\widetilde{\phi}=(a+b S+K)^{-1} \delta(x)$, or

$$
\begin{equation*}
\phi-\widetilde{\phi}=(a+b S)^{-1}\left[I+K(a+b S)^{-1}\right]^{-1} \delta(x) \tag{6.5}
\end{equation*}
$$

i.e.,

$$
\begin{align*}
\|\phi-\widetilde{\phi}\|_{L_{2, \rho_{1}}^{(2)}} \leq & \left\|(a+b S)^{-1}\right\|_{L_{2, \rho_{1}} \rightarrow L_{2, \rho_{1}}^{(2)}} \times \\
& \times\left\|\left[I+K(a+b S)^{-1}\right]^{-1}\right\|_{L_{2, \rho_{1}}}\|\delta(x)\|_{L_{2, \rho_{1}}} \tag{6.6}
\end{align*}
$$

The estimate (6.6) shows that the process of approximate substitution of the problem (6.1)-(6.2) by one functional equation (6.3) is stable.
2) $\varkappa=-1, \varkappa=-(\alpha+\beta), 0<\alpha, \beta<1$. We consider the equation $(a+b S+K) \varphi=f$ in the weight space $L_{2, \rho_{2}}[-1,1], \rho_{2}=(1-x)^{-\alpha}(1+x)^{-\beta}$. If this equation has the solution $\varphi \in L_{2, \rho_{2}}$, then

$$
\begin{equation*}
[K \varphi-f, 1]=\int_{-1}^{1}(K \varphi-f)(1-x)^{-\alpha}(1+x)^{-\beta} d x=0 \tag{6.7}
\end{equation*}
$$

In Sections 2-5 the operator K is subject to the restriction

$$
\begin{equation*}
K\left(L_{2, \rho_{2}}\right) \perp 1 \tag{6.8}
\end{equation*}
$$

and the problem is transformed to the functional equation

$$
\begin{equation*}
(a+b S+K) \varphi=f, \quad \varphi \in L_{2, \rho_{2}}, \quad f \in L_{2, \rho_{2}}^{(2)} \tag{6.9}
\end{equation*}
$$

We now remove the restriction (6.8) and take in the space $L_{2, \rho_{2}}$ two systems of functions
$\varphi_{k+1} \equiv(2 b)^{-1} \sin (\alpha \pi)\left(h_{k+1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}}(1-x)^{\alpha}(1+x)^{\beta} P_{k}^{(\alpha, \beta)}(x), \quad k=0,1, \ldots$, and
$\psi_{0} \equiv-\left(\frac{\sin (\alpha \pi)}{\pi}\right)^{-\frac{1}{2}}, \quad \psi_{k+1} \equiv-\left(h_{k+1}^{(-\alpha,-\beta)}\right)^{-\frac{1}{2}} P_{k+1}^{(-\alpha,-\beta)}(x), \quad k=0,1, \ldots$.
These systems are orthonormal and complete in $L_{2, \rho_{2}}$. The system $\psi_{1}, \psi_{2}, \ldots$ is orthonormal and complete in $L_{2, \rho_{2}}^{(2)}$.

Introduce the following notation:

1) $\widetilde{K}(t) \equiv\left[K(x, t), \psi_{0}\right]_{x}=\int_{-1}^{1} \rho_{2}(x) K(x, t) \psi_{0} d x$;
2) $K_{0}(x, t) \equiv K(x, t)-\widetilde{K}(t) \psi_{0}$.

Then

$$
\left[K_{0}(x, t), \psi_{0}\right]_{x}=\left[K(x, t), \psi_{0}\right]_{x}-\widetilde{K}(t)=0 .
$$

The operator

$$
K_{0} \varphi \equiv \pi^{-1} \int_{-1}^{1} K_{0}(x, t) \varphi(t) d t
$$

satisfies the condition (6.8), i.e., $K_{0}\left(L_{2, \rho_{2}}\right) \perp 1$. In the above notation, the initial equation can now be written as

$$
\begin{equation*}
\left(a+b S+K_{0}\right) \varphi+\pi^{-1} \int_{-1}^{1} \widetilde{K}(t) \psi_{0} \varphi(t) d t=f \tag{6.10}
\end{equation*}
$$

and the condition (6.7) as

$$
\begin{equation*}
\left[\pi^{-1} \int_{-1}^{1} \widetilde{K}(t) \psi_{0} \varphi(t) d t-f, \psi_{0}\right]=0 \tag{6.11}
\end{equation*}
$$

owing to $\left[K_{0} \varphi, \psi_{0}\right]_{x}=0, \forall \varphi \in L_{2, \rho_{2}}$.
The condition (6.11) yields

$$
\pi^{-1} \int_{-1}^{1} \widetilde{K}(t) \varphi(t) d t \psi_{0}=\left[f, \psi_{0}\right] \psi_{0}
$$

Therefore (6.10) allows us to get the functional equation

$$
\begin{equation*}
\left(a+b S+K_{0}\right) \varphi=f_{1}, \quad \varphi \in L_{2, \rho_{2}}, \quad f_{1} \in L_{2, \rho_{2}}^{(2)} \tag{6.12}
\end{equation*}
$$

where $f_{1} \equiv f-\left[f, \psi_{0}\right] \psi_{0}$. Obviously, $\left[f_{1}, \psi_{0}\right]=0$.
Thus the matter is reduced to the case we have considered in Sections 2-5.

Under the condition of existence of the inverse operator $\left[I+K_{0}(a+\right.$ $\left.b S)^{-1}\right]^{-1}$ mapping $L_{2, \rho_{2}}^{(2)}$ onto itself, let us show that the problem (6.1)(6.7) and the functional equation (6.12) are equivalent.

Let φ be a solution of the initial problem (6.1)-(6.7). The problem (6.1)$6.7)$ is equivalent to the problem (6.10)-(6.11), hence

$$
\begin{equation*}
\left(a+b S+K_{0}\right) \widetilde{\varphi}=f_{1}, \quad \widetilde{\varphi} \in L_{2, \rho_{2}}, \quad f_{1} \in L_{2, \rho_{2}}^{(2)} \tag{6.13}
\end{equation*}
$$

Taking the difference of formulas (6.12) and (6.13), we obtain

$$
\left(a+b S+K_{0}\right)(\varphi-\widetilde{\varphi})=0
$$

i.e.,

$$
\varphi-\widetilde{\varphi}=0
$$

In both projective and collocation approximate schemes, we mean that the additional condition (6.8) is fulfilled. Let us now show that for practical realizations there is no need in calculating $\widetilde{K}(t)$ and $\left[f, \psi_{0}\right]$.

In the projective scheme, an approximate solution is sought in the form

$$
\varphi^{(n)}=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

and, just as in Section 2, we compose the algebraic system

$$
\begin{equation*}
a_{i}+\sum_{k=1}^{n} a_{k} \pi^{-1}\left[\left[K(x, t), \varphi_{k}\right]_{t}, \psi_{i}\right]_{x}=\left[f, \psi_{i}\right], \quad i=1,2, \ldots, n \tag{6.14}
\end{equation*}
$$

Taking into account that

$$
K(x, t)=\sum_{i=0}^{\infty}\left[K(x, t), \psi_{i}\right]_{x} \psi_{i}(x), \quad f(x)=\sum_{i=0}^{\infty}\left[f, \psi_{i}\right] \psi_{i}(x)
$$

we obtain

$$
\left[f, \psi_{i}\right]=\left[f_{1}, \psi_{i}\right], \quad i=1,2, \ldots
$$

Next,

$$
\begin{aligned}
{\left[\left[K(x, t), \varphi_{k}\right]_{t}, \psi_{i}\right]_{x} } & =\left[\left[K(x, t), \psi_{i}\right]_{x}, \varphi_{k}\right]_{t}=\left[\left[K_{0}(x, t), \psi_{i}\right]_{x}, \varphi_{k}\right]_{t}= \\
& =\left[\left[K_{0}(x, t), \varphi_{k}\right]_{t}, \psi_{i}\right]_{x}
\end{aligned}
$$

Thus if in the system (6.14) we replace $K(x, t)$ by $K_{0}(x, t)$ and f by f_{1}, everything remains unchanged.

In the collocation scheme, an approximate solution is again sought in the form

$$
\varphi^{(n)}=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

and the algebraic system is composed from the condition

$$
\begin{equation*}
\bar{P}_{n}\left[(a+b S+K) \varphi^{(n)}-f_{1}\right]=0 \tag{6.15}
\end{equation*}
$$

For any continuous function, the projector \bar{P} is defined as follows:

$$
\bar{P}_{n} v=L_{n}(v)-a_{0} \psi_{0}
$$

where $L_{n}(v)$ is the Lagrange interpolation polynomial, and a_{0} is the first coefficient of the decomposition $L_{n}(x)=a_{0} \psi_{0}+a_{1} \psi_{1}+\cdots+a_{n} \psi_{n}$. When v is unknown, the coefficient a_{0} is undefined and the equation (6.15) can be written in the form

$$
\begin{equation*}
L_{n}\left[\left(a+b S+K_{0}\right) \varphi^{(n)}-f_{1}\right]-a_{0} \psi_{0}=0 \tag{6.16}
\end{equation*}
$$

The Lagrange polynomial is defined uniquely by the values of the function at the discrete points, therefore (6.16) is equivalent to the algebraic system

$$
\begin{equation*}
-a_{0} \psi_{0}+\sum_{k=1}^{n} a_{k} \psi_{k}\left(x_{i}\right)+\sum_{k=1}^{n} a_{k}\left(K_{0} \varphi_{k}\right)\left(x_{i}\right)=f_{1}\left(x_{i}\right) \tag{6.17}
\end{equation*}
$$

$i=0,1, \ldots, n, x_{i}$ are the roots of the Jacobi polynomial $P_{n+1}^{(-\alpha,-\beta)}(x)$.
In Section 5 we have proved the existence of the unique solution (a_{0}, a_{1}, \ldots, a_{n}) of the system (6.17) for $n>n_{0}$ and the convergence of the process.

Let now the projector \bar{P}_{n} be used directly (not passing to $K_{0}(x, t)$ and f_{1})

$$
\begin{equation*}
\bar{P}_{n}\left[(a+b S+K) \varphi^{(n)}-f\right]=0 \tag{6.18}
\end{equation*}
$$

i.e.,
$\bar{P}_{n}\left[\left(a+b S+K_{0}\right) \varphi^{(n)}+\pi^{-1} \int_{-1}^{1} \widetilde{K}(t) \varphi^{(n)}(t) \psi_{0} d t-\left(f_{1}+\left[f_{1}, \psi_{0}\right] \psi_{0}\right)\right]=0$.
We require that

$$
\pi^{-1} \int_{-1}^{1} \widetilde{K}(t) \varphi^{(n)}(t) d t \psi_{0}=\left[f, \psi_{0}\right] \psi_{0}
$$

i.e.,

$$
\pi^{-1} \int_{-1}^{1} \widetilde{K}(t) \varphi^{(n)}(t) d t=\left[f, \psi_{0}\right]
$$

Then (6.18) transforms to (6.17).
The algebraic system shows that there is no need in calculating $\widetilde{K}(t)$ and $\left[f, \psi_{0}\right]$. We rewrite the formula (6.18) in the form

$$
\begin{equation*}
L_{n}\left[(a+b S+K) \varphi^{(n)}-f\right]-\widetilde{a}_{0} \psi_{0}=0 \tag{6.19}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
-\widetilde{a}_{0} \psi_{0}+\sum_{k=1}^{n} \widetilde{a}_{k} \psi_{k}\left(x_{i}\right)+\sum_{k=1}^{n} \widetilde{a}_{k}\left(K \varphi_{k}\right)\left(x_{i}\right)=f\left(x_{i}\right), \quad i=0,1 \ldots, n \tag{6.20}
\end{equation*}
$$

Thus we have

$$
\begin{aligned}
\left(K \varphi_{k}\right)\left(x_{i}\right) & =\left(\pi^{-1} \int_{-1}^{1} K\left(x_{i}, t\right) \varphi_{k}(t) d t\right)\left(x_{i}\right)= \\
& =\left(\pi^{-1} \int_{-1}^{1} K_{0}\left(x_{i}, t\right) \varphi_{k}(t) d t+\pi^{-1} \int_{-1}^{1} \widetilde{K}(t) \psi_{0} \varphi_{k}(t) d t\right)= \\
& =\left(\pi^{-1} \int_{-1}^{1} K_{0}\left(x_{i}, t\right) \varphi_{k}(t) d t\right)\left(x_{i}\right)+C_{k}=\left(K_{0} \varphi_{k}\right)\left(x_{i}\right)+C_{k}, \\
f\left(x_{i}\right) & =f_{1}\left(x_{i}\right)+\left(\left[f, \psi_{0}\right] \psi_{0}\right)=f_{1}\left(x_{i}\right)+C
\end{aligned}
$$

where C_{k} and C are constants independent of i. Therefore the algebraic system (6.20) can be written as

$$
\begin{gather*}
-\widetilde{a}_{0} \psi_{0}+\sum_{k=1}^{n} \widetilde{a}_{k} \psi_{k}\left(x_{i}\right)+\sum_{k=1}^{n} \widetilde{a}_{k}\left[\left(K_{0} \varphi_{k}\right)\left(x_{i}\right)+C_{k}\right]= \\
=f_{1}\left(x_{i}\right)+C, \quad i=0,1, \ldots, n . \tag{6.21}
\end{gather*}
$$

The first column of the determinant of the system (6.21) is $\left(-\psi_{0}\right.$, $\left.-\psi_{0}, \ldots,-\psi_{0}\right)^{T}\left(\psi_{0}\right.$ is a constant), hence the algebraic systems (6.17) and (6.21) have the same solutions $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$; the determinants of the algebraic systems (6.17) and (6.21) are equal and the numerators in Kramer formulas for determination of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ are also equal.

Thus for practical calculations there is no need finding $\widetilde{K}(t)$ and $\left[f, \psi_{0}\right]$ which are important only in proving the existence of a solution of the algebraic system and for the convergence of the process.
3) Consider now the questions connected with the stability of approximate schemes. Projective methods considered in Sections 2 and 3 are stable. The stability of the projective scheme will be shown for the equation of the first kind $(S+K) \varphi=f$ for the index $\varkappa=1$. The stability of the projective scheme for another values of the index and for the equation of the second kind can be established analogously.

Let the matrix $R_{n} \equiv\left(\left(\left[K \varphi_{k}, \psi_{i}\right]\right)_{k, i=1}^{(n)}\right.$ and the vector $f_{1}^{(n)}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ be calculated with the errors $\Gamma_{n} \equiv\left(\left(\gamma_{k, i}\right)\right)_{k, i=1}^{(n)}$ and $\delta^{(n)} \equiv\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$, respectively. Then instead of

$$
\begin{equation*}
\left(I_{n}+R_{n}\right) a^{(n)}=f_{1}^{(n)} \tag{6.22}
\end{equation*}
$$

we have the algebraic system

$$
\begin{equation*}
\left[I_{n}+\left(R_{n}+\Gamma_{n}\right)\right] \widetilde{a}^{(n)}=f_{1}^{(n)}+\delta^{(n)} \tag{6.23}
\end{equation*}
$$

and instead of

$$
\begin{equation*}
w^{(n)}+P_{n} K S^{-1} w^{(n)}=P_{n} f_{1}, \quad w^{(n)} \equiv S \phi^{(n)}, \tag{6.24}
\end{equation*}
$$

we have the perturbed equation

$$
\begin{equation*}
\widetilde{w}^{(n)}+\left[P_{n} K S^{-1}+\Delta\left(P_{n} K S^{-1}\right)\right] \widetilde{w}^{(n)}=P_{n} f_{1}+\Delta\left(P_{n} f_{1}\right) \tag{6.25}
\end{equation*}
$$

$\widetilde{w}^{(n)} \equiv S \widetilde{\phi}^{(n)}$.
Introduce the operator

$$
\tau_{n}\left(\sum_{k=1}^{n} \alpha_{k} \psi_{k}\right)=\alpha^{(n)}
$$

where the vector $\alpha^{(n)}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, the domain of definition of the operator $\tau_{n}, D\left(\tau_{n}\right)=\bar{L}_{2, \rho_{1}}^{(n)}$ is the linear span of the functions $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$, the domain of values $R\left(\tau_{n}\right)=l_{2}^{(n)}$, where $l_{2}^{(n)}$ is the n-dimensional vector space. The inverse operator τ_{n}^{-1} maps $l_{2}^{(n)}$ onto $\bar{L}_{1, \rho_{1}}^{(n)}$. The norms $\left\|\tau_{n}\right\|=$ $\left\|\tau_{n}^{-1}\right\|=1$, since the system $\psi_{1}, \psi_{2}, \ldots$ is orthonormal in $L_{2, \rho_{1}}$. Using the operators τ_{n} and τ_{n}^{-1}, we can easily realize the passage from the equation (6.23) to (6.25), and vice versa. For example, proceeding from the equation (6.25), we have

$$
\begin{gathered}
\tau_{n} \widetilde{w}^{(n)}+\tau_{n}\left[P_{n} K S^{-1}+\Delta\left(P_{n} K S^{-1}\right)\right] \tau_{n}^{-1} \tau_{n} \widetilde{w}^{(n)}= \\
=\tau_{n} P_{n} f_{1}+\tau_{n}\left(\Delta P_{n} f_{1}\right)
\end{gathered}
$$

The norm $\left\|P^{(n)} K S^{-1}\right\| \rightarrow 0$ as $n \rightarrow \infty\left(P^{n}=I-P_{n}\right)$, and therefore for $0<q<1$ there exists n_{0} such that for $n \geq n_{0}$

$$
\left\|\left(I+P_{n} K S^{-1}\right)^{-1}\right\| \leq \frac{\left\|\left(I+K S^{-1}\right)^{-1}\right\|}{1-q}
$$

If

$$
\frac{\left\|\left(I+K S^{-1}\right)^{-1}\right\|}{1-q}\left\|\Delta_{n}\left(P_{n} K S^{-1}\right)\right\|<1
$$

then the perturbed equation (6.25) has a unique solution $\widetilde{w}(n)$, and

$$
\begin{equation*}
\left\|\widetilde{w}^{(n)}-w^{(n)}\right\| \leq C_{1}\left\|\Delta\left(P_{n} K S^{-1}\right)\right\|+C_{2}\left\|\Delta\left(P_{n} f_{1}\right)\right\| \tag{6.26}
\end{equation*}
$$

Then the algebraic system (6.23) for $n \geq n_{0}$ has likewise a unique solution.
Further, we have

$$
\begin{aligned}
\left\|\Delta\left(P_{n} K S^{-1}\right)\right\|_{L_{2, \rho_{1}}} & =\left\|\tau_{n}^{-1} \Gamma_{n} \tau_{n}\right\| \leq\left(\sum_{i, k=1}^{n} \gamma_{i, k}^{2}\right)^{\frac{1}{2}} \\
\left\|\Delta\left(P_{n} f_{1}\right)\right\|_{L_{2, \rho_{1}}} & =\left\|\tau_{n}^{-1} \delta^{(n)}\right\|=\left\|\delta^{(n)}\right\| \\
\left\|\widetilde{w}^{(n)}-w^{(n)}\right\| & =\left\|\widetilde{\phi}^{(n)}-\phi^{(n)}\right\|
\end{aligned}
$$

and hence (6.26) yields

$$
\left\|\widetilde{\phi}^{(n)}-\phi^{(n)}\right\| \leq C_{1}\left(\sum_{i, k=1}^{n} \gamma_{i k}^{2}\right)^{\frac{1}{2}}+C_{2}\left(\sum_{i=1}^{n} \delta_{i}^{2}\right)^{\frac{1}{2}}
$$

which means that the process is stable.

Note that another approach for approximate solution of the equation (1.1) is available in [21], and the questions dealing with the approximation of a singular integral can be found in [22].

7. Numerical Solutions of Some Singular Integral Equations of the Plane Theory of Elasticity

In this section we present numerical solutions of some problems of the plane theory of cracks. Coefficients of stress intensity are calculated for the following problems: 1) periodic system of parallel cracks; 2) interior crack in a half-plane; 3) interior crack in a non-homogeneous plane consisting of homogeneous half-planes. There are no exact solutions for none of the above-mentioned problems.

1) Periodic system of parallel cracks. Under symmetric distribution of stresses with respect to the crack line the following integral equation has been obtained for the periodic system of parallel cracks [23]:

$$
\begin{equation*}
\int_{-l}^{l} v^{\prime}(t) K_{1}(t-x) d t=\pi \sigma(x), \quad|x|<l \tag{7.1}
\end{equation*}
$$

$2 l$ is the crack length, d is the distance between the cracks, the function $v^{\prime}(t)$ defines the coefficients of stress intensity by the formula ([23], p. 132)

$$
K_{1}^{ \pm}=\mp \lim _{t \rightarrow \pm l}\left[\left(\frac{l^{2}-t^{2}}{l}\right)^{\frac{1}{2}} v^{\prime}(t)\right]
$$

("+" and "-" denote the right and the left end, respectively), the kernel

$$
K_{1}(\tau)=\frac{\pi}{d}\left(2 \operatorname{coth} \frac{\pi \tau}{d}-\frac{\pi \tau}{d} \operatorname{csch}^{2} \frac{\pi \tau}{d}\right)
$$

$\sigma(x)$ is the load applied to the crack contours. The additional condition

$$
\begin{equation*}
\int_{-l}^{l} v^{\prime}(t) d t=0 \tag{7.2}
\end{equation*}
$$

is given.

After simple calculations the function $K_{1}(\tau)$ takes the form

$$
K_{1}(\tau)=\frac{1}{\tau}+\frac{\frac{2 \pi \tau}{d} \operatorname{sh} \frac{2 \pi \tau}{d}-\operatorname{ch} \frac{2 \pi \tau}{d}+1-2\left(\frac{\pi \tau}{d}\right)^{2}}{\tau \operatorname{ch} \frac{2 \pi \tau}{d}-\tau}
$$

Introduce the following notation:

$$
t_{1}=\frac{t}{l}, \quad v^{\prime}(t)=v^{\prime}\left(l t_{1}\right)=\varphi\left(t_{1}\right), \quad x_{1}=\frac{x}{l}, \quad \sigma(x)=\sigma\left(l x_{1}\right)=f\left(x_{1}\right),
$$

the parameter $\lambda=\frac{2 l}{d}$. Then we have

$$
\begin{gathered}
K_{1}\left(x_{1}, t_{1}\right)= \\
=\frac{\pi \lambda\left(t_{1}-x_{1}\right) \operatorname{sh} \pi \lambda\left(t_{1}-x_{1}\right)-\operatorname{ch} \pi \lambda\left(t_{1}-x_{1}\right)+1-2\left[\frac{\pi \lambda\left(t_{1}-x_{1}\right)}{2}\right]^{2}}{\left(t_{1}-x_{1}\right) \operatorname{ch} \pi \lambda\left(t_{1}-x_{1}\right)-\left(t_{1}-x_{1}\right)} .
\end{gathered}
$$

Denote $\xi=\pi \lambda\left(t_{1}-x_{1}\right)$. Then

$$
\begin{aligned}
K_{1}\left(x_{1}, t_{1}\right)= & \frac{\xi \operatorname{sh} \xi-\operatorname{ch} \xi+1-2\left(\frac{\xi}{2}\right)^{2}}{\frac{\xi}{\pi \lambda}(\operatorname{ch} \xi-1)}=\frac{\xi \frac{e^{\xi}-e^{-\xi}}{2}-\frac{e^{\xi}+e^{-\xi}}{2}+1-\frac{\xi^{2}}{2}}{\frac{\xi}{\pi \lambda}\left(\frac{e^{\xi}-e^{-\xi}}{2}-1\right)}= \\
= & \frac{\xi\left[\left(1+\xi+\frac{\xi^{2}}{2!}+\cdots\right)-\left(1-\xi+\frac{\xi^{2}}{2!}-\cdots\right)\right]}{\frac{\xi}{\pi \lambda}\left[\left(1+\xi+\frac{\xi^{2}}{2!}+\cdots\right)+\left(1-\xi+\frac{\xi^{2}}{2!}-\cdots\right)-2\right]}- \\
& -\frac{\left[\left(1+\xi+\frac{\xi^{2}}{2!}+\cdots\right)-\left(1-\xi+\frac{\xi^{2}}{2!}-\cdots\right)\right]+2-\xi^{2}}{\frac{\xi}{\pi \lambda}\left[\left(1+\xi+\frac{\xi^{2}}{2!}+\cdots\right)+\left(1-\xi+\frac{\xi^{2}}{2!}-\cdots\right)-2\right]}= \\
= & \frac{\xi\left(2 \xi+2 \frac{\xi^{3}}{3!}+\cdots\right)-\left(2+2 \frac{\xi^{2}}{2!}+\cdots\right)+2-\xi^{2}}{\frac{\xi}{\pi \lambda}\left(2 \frac{\xi^{2}}{2!}+2 \frac{\xi^{4}}{4!}+\cdots\right)}= \\
= & \frac{2 \xi^{4}\left[\left(\frac{1}{3!}-\frac{1}{4!}\right)+\left(\frac{1}{5!}-\frac{1}{6!}\right) \xi^{2}+\cdots\right]}{\frac{2 \xi^{3}}{\pi \lambda}\left(\frac{1}{2!}+\frac{\xi^{2}}{4!}+\cdots\right)}=\frac{\pi \lambda \xi\left(\frac{3}{4!}+\frac{5}{6!} \xi^{2}+\cdots\right)}{\frac{1}{2!}+\frac{\xi^{2}}{4!}+\cdots}= \\
= & \frac{(\pi \lambda)^{2}\left(t_{1}-x_{1}\right)\left\{\frac{3}{4!}+\frac{5}{6!}\left[\pi \lambda\left(t_{1}-x_{1}\right)\right]^{2}+\cdots\right\}}{\frac{1}{2!}+\frac{\left[\pi \lambda\left(t_{1}-x_{1}\right)\right]^{2}}{4!}+\cdots} .
\end{aligned}
$$

Thus the problem (7.1)-(7.2) can be written as follows:

$$
\begin{gathered}
\frac{1}{\pi} \int_{-1}^{1} \frac{\varphi\left(t_{1}\right) d t}{t_{1}-x_{1}}+\frac{1}{\pi} \int_{-1}^{1} K\left(x_{1}, t_{1}\right) \varphi\left(t_{1}\right) d t_{1}=f\left(x_{1}\right), \quad\left|x_{1}\right|<1 \\
\int_{-1}^{1} \varphi\left(t_{1}\right) d t_{1}=0, \quad K\left(x_{1}, t_{1}\right)=K_{1}\left(x_{1}, t_{1}\right)
\end{gathered}
$$

Instead of t_{1}, x_{1} we write t, x. Finally, we have the following singular integral equation

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\varphi(t) d t}{t-x}+\frac{1}{\pi} \int_{-1}^{1} K(x, t) \varphi(t) d t=f(x) \tag{7.3}
\end{equation*}
$$

with the additional condition

$$
\begin{equation*}
\int_{-1}^{1} \varphi(t) d t=0 \tag{7.4}
\end{equation*}
$$

where the kernel

$$
K(x, t)=\frac{(n \lambda)^{2}(t-x)\left\{\frac{3}{4!}+\sum_{n=2}^{\infty} \frac{2 n+1}{(2 n+2)!}[\pi \lambda(t-x)]^{2 n-2}\right\}}{\frac{1}{2!}+\sum_{n=2}^{\infty} \frac{1}{(2 n)!}[\pi \lambda(t-x)]^{2 n-2}}
$$

Thus we have the singular integral equation of the first kind (7.3) with the index $\varkappa=1$ (the condition (7.4)). The kernel $K(x, t)$ is the ratio of two converging power series (for any values of parameters).

The problem (7.3)-(7.4) is solved by the method of collocation. We take the constant load $f(x)=-1$ and seek the fifth approximation

$$
\varphi^{(5)}(x)=\sum_{k=1}^{5} a_{k} \varphi_{k}(x)
$$

The functions $\varphi_{k}(x)$ have the form

$$
\varphi_{k}(x)=\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\left(1-x^{2}\right)^{-\frac{1}{2}} T_{k}(x), \quad k=1,2, \ldots, 5
$$

where $T_{k}(x)$ are the Chebyshev polynomials of the first kind:

$$
\begin{array}{ll}
T_{1}(x)=x, & T_{4}(x)=8 x^{4}-8 x^{2}+1 \\
T_{2}(x)=2 x^{2}-1, & T_{5}(x)=16 x^{5}-20 x^{3}+5 x . \\
T_{3}(x)=4 x^{3}-3 x, &
\end{array}
$$

Moreover, we need the functions

$$
\psi_{k}(x)=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} U_{k-1}(x), \quad k=1,2, \ldots, 5
$$

where U_{k-1} are the Chebyshev polynomials of the second kind:

$$
\begin{array}{ll}
U_{0}(x)=1, & U_{3}(x)=8 x^{3}-4 x, \\
U_{1}(x)=x, & U_{4}(x)=16 x^{4}-12 x^{2}+1 . \\
U_{2}(x)=4 x^{2}-1, &
\end{array}
$$

The algebraic system (4.3) takes the form

$$
\begin{equation*}
\sum_{k=1}^{5} a_{k}\left(\frac{2}{\pi}\right)^{\frac{1}{2}} U_{k-1}\left(x_{j}\right)+\sum_{k=1}^{5} a_{k}\left(K \varphi_{k}\right)\left(x_{j}\right)=-1, \quad j=1,2, \ldots, 5 \tag{7.5}
\end{equation*}
$$

where the collocation nodes

$$
x_{j}=\cos \frac{j \pi}{6}, \quad j=1,2, \ldots, 5
$$

are the roots of the Chebyshev polynomial

$$
U_{5}(x)=32 x^{5}-32 x^{3}+6 x:
$$

$$
x_{1}=\frac{\sqrt{3}}{2}, \quad x_{2}=\frac{1}{2}, \quad x_{3}=0, \quad x_{4}=-\frac{1}{2}, \quad x_{5}=-\frac{\sqrt{3}}{2} .
$$

To calculate the integrals with weak singularities $K \varphi_{k}, k=1,2, \ldots, 5$, we use the following Gauss-Chebyshev formula [7]

$$
\int_{-1}^{1}\left(1-t^{2}\right)^{-\frac{1}{2}} g(t) d t \approx \frac{\pi}{m} \sum_{i=1}^{m} g\left(\cos \frac{2 i-1}{2 m}\right)
$$

Taking $m=10$, in our case we have

$$
g(t)=\frac{1}{\pi}\left(\frac{2}{\pi}\right)^{\frac{1}{2}} K\left(x_{j}, t\right) T_{k}(t)
$$

In the kernel $K(x, t)$, we take in numerator and denominator as many terms in the series as needed for the error to be less than 10^{-5}. Towards this end, for the value of the parameter $\lambda=1$ we need the terms up to the twentieth degree.

The main difficulty arises in calculating the expression

$$
\begin{gathered}
\left(K \varphi_{k}\right)\left(x_{j}\right)=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{1}{10} \sum_{i=1}^{10} K\left(x_{j}, \cos \frac{2 i-1}{20} \pi\right) T_{k}\left(\cos \frac{2 i-1}{20} \pi\right) \equiv \\
\equiv\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \gamma_{k, j} \quad k, j=1,2, \ldots, 5
\end{gathered}
$$

As a result of calculation, we obtain the algebraic system

$$
\begin{gather*}
\left(1+\gamma_{1 j}\right) a_{1}+\left(2 x_{j}+\gamma_{2 j}\right) a_{2}+\left(4 x_{j}^{2}-1+\gamma_{3 j}\right) a_{3}+ \\
+\left(8 x_{j}^{3}-4 x_{j}+\gamma_{4 j}\right) a_{4}+\left(16 x_{j}^{4}-12 x_{j}^{2}+1+\gamma_{5 j}\right) a_{5}= \\
=-\left(\frac{2}{\pi}\right)^{-\frac{1}{2}}, \quad j=1,2, \ldots, 5 . \tag{7.6}
\end{gather*}
$$

We take the following values of the parameter: $\lambda=0.1,0.2, \ldots, 1.1$. The parameter λ affects $\gamma_{k j}, k, j=1,2, \ldots, 5$. Using the Gaussian method, we solve the algebraic system (7.6). For the coefficients $a_{1}, a_{2}, \ldots, a_{5}$ we obtain the following numerical values.

λ	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
0.1	-1.2381020	0.0000000	-0.0000310	0.0000000	0.0000000
0.2	-1.1952743	0.0000000	-0.0004621	0.0000000	0.0000024
0.3	-1.1320088	0.0000000	-0.0020897	0.0000000	0.0000238
0.4	-1.0570586	0.0000000	-0.0057024	0.0000000	0.0001090
0.5	-0.9782156	0.0000000	-0.0117116	0.0000000	0.0003247
0.6	-0.9010623	-0.0000001	-0.0200507	0.0000000	0.0007316
0.7	-0.8288983	-0.0000001	-0.0302837	0.0000000	0.0013545
0.8	-0.7632536	-0.0000001	-0.0417850	0.0000000	0.0021656
0.9	-0.7045076	-0.0000001	-0.0538971	0.0000000	0.0030879
1.0	-0.6523904	-0.0000001	-0.0660312	0.0000000	0.0040109
1.1	-0.6063210	-0.0000001	-0.0777163	0.0000000	0.0048114

The coefficients of stress intensity are as follows

$$
K_{1}^{ \pm}=\mp \lim _{x \rightarrow \pm 1}\left[\left(l\left(1-x^{2}\right)\right)^{\frac{1}{2}} \varphi(x)\right]
$$

Taking $l=1$, we have

$$
K_{1}^{ \pm}=\mp \lim _{x \rightarrow \pm 1}\left[\left(1-x^{2}\right)^{\frac{1}{2}} \varphi^{(5)}(x)\right]=\mp \lim _{x \rightarrow \pm 1} \sum_{k=1}^{5} a_{k}\left(\frac{2}{\pi}\right)^{\frac{1}{2}} T_{k}(x)
$$

Next, $T_{k}(1)=1, T_{k}(-1)=(-1)^{k}$, hence

$$
K_{1}^{+}=-\sum_{k=1}^{5}\left(\frac{2}{\pi}\right)^{\frac{1}{2}} a_{k}, \quad K_{1}^{-}=\sum_{k=1}^{5}\left(\frac{2}{\pi}\right)^{\frac{1}{2}}(-1)^{k} a_{k}
$$

Applying these formulas, we calculate the coefficients of stress intensity, K_{1}^{+}and K_{1}^{-}. Here we present the following numerical results.

λ	k_{1}^{+}	k_{1}^{-}
0.1	0.9878877	0.9878878
0.2	0.9540582	0.9540582
0.3	0.9048612	0.9048612
0.4	0.8478740	0.8478740
0.5	0.7895890	0.7895889
0.6	0.7343585	0.7343584
0.7	0.6844478	0.6844477
0.8	0.6406004	0.6406003
0.9	0.6026560	0.6026559
1.0	0.5700177	0.5700176
1.1	0.5419442	0.5419441

The coefficients of stress intensity at the crack ends must be equal; this property remains to within 10^{-6}. The crack length $2 l=2(l=1)$, the parameter $\lambda=\frac{2 l}{d}=\frac{2}{d}$, where d is the distance between the cracks. As the distance d increases, the stress coefficient at the crack ends decreases. The obtained numerical results are close to those obtained in [23] (pp. 134-139).
2) Interior crack in a half-plane. Consider the problem of determination of the stressed state of an elastic half-plane with an interior cut perpendicular to the boundary ([23], p. 175) (the crack is on the segment $[a, b]$).

Stresses on the half-plane boundary and at infinity are assumed to be absent, and on the cut contours $y= \pm 0, a \leq x \leq b$, the loads act. This problem is reduced to the singular integral equation ([23], p. 176)

$$
\begin{equation*}
\int_{a}^{b}\left[\frac{1}{t-x}+\frac{1}{t+x}+\frac{2 t}{(t+x)^{2}}-\frac{4 t^{2}}{(t+x)^{3}}\right] g^{\prime}(t) d t=\pi P(x) \tag{7.7}
\end{equation*}
$$

$a<x<b, P(x)$ is the load, $g(t)$ is the displacement,

$$
\begin{equation*}
g(a)=g(b)=0 \quad(a>0) \tag{7.8}
\end{equation*}
$$

In the general case, for any function $P(x)$ there is no exact solution of the problem (7.7)-(7.8), but an approximate solution of that problem is obtained in [23] by approximating the kernel of the integral equation. Numerical results for $a>0$ are not available in [23]; they are given for the limiting case, as $a \rightarrow 0$.

We transform the problem (7.7)-(7.8) to the form which will be convenient for our consideration and introduce the new variable

$$
x=\frac{a+b}{2}+\frac{b-a}{2} \tau \quad\left(t=\frac{a+b}{2}+\frac{b-a}{2} \xi\right) .
$$

Denote

$$
g^{\prime}(t)=\varphi(\xi), \quad P(x)=f(\tau)
$$

Then the problem (7.7)-(7.8) can be written as

$$
\begin{gather*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\varphi(\xi) d \xi}{\xi-\tau}+\frac{b-a}{2 \pi} \times \\
\times \int_{-1}^{1} \frac{\left[\left(\frac{a+b}{2}+\frac{b-a}{2} \tau\right)^{2}+4\left(\frac{a+b}{2}+\frac{b-a}{2} \xi\right)\left(\frac{a+b}{2}+\frac{b-a}{2} \tau\right)-\left(\frac{a+b}{2}+\frac{b-a}{2} \xi\right)^{2}\right]}{\left[a+b+\frac{b-a}{2}(\xi+\tau)\right]^{3}} \varphi(\xi) d \xi= \\
=f(\tau) \tag{7.9}\\
\int_{-1}^{1} \varphi(\xi) d \xi=0 \tag{7.10}
\end{gather*}
$$

Consider two cases:

1) if $a=1, b=3$, then $x=2+\tau(t=2+\xi)$;
2) if $a=0.5, b=2.5$, then $x=1.5+\tau(t=1.5+\xi)$.

Instead of the variables τ and ξ we use again x and t. As a result, we obtain two problems: for the case 1) we have

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\varphi(t) d t}{t-x}+\frac{1}{\pi} \int_{-1}^{1} K_{1}(x, t) \varphi(t) d t=f(x) \tag{7.11}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-1}^{1} \varphi(t) d t=0 \tag{7.12}
\end{equation*}
$$

where the kernel

$$
K_{1}(x, t)=\frac{(2+x)^{2}+4(2+t)(2+x)-(2+t)^{2}}{(4+t+x)^{3}}
$$

For the case (2) we have

$$
\begin{gather*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\varphi(t) d t}{t-x}+\frac{1}{\pi} \int_{-1}^{1} K_{2}(x, t) \varphi(t) d t=f(x) \tag{7.13}\\
\int_{-1}^{1} \varphi(t) d t=0 \tag{7.14}
\end{gather*}
$$

where the kernel

$$
K_{2}(x, t)=\frac{(1,5+x)^{2}+4(1,5+t)(1,5+x)-(1,5+t)^{2}}{(3+t+x)^{3}} .
$$

We solve the problems (7.11)-(7.12) and (7.13)-(7.14) by using the method of collocation. We take the constant load $f(x) \equiv-1$. In this case we need the same functions as in the problem of parallel cracks. An approximate solution is sought in the form

$$
\varphi^{(n)}(x)=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

To define the coefficients $a_{1}, a_{2}, \ldots, a_{n}$, we obtain for the problem (7.11)(7.12) the following algebraic system:

$$
\begin{gathered}
\sum_{k=1}^{n}\left(\frac{2}{\pi}\right)^{\frac{1}{2}} a_{k}\left\{U_{k-1}\left(x_{j}\right)+\frac{1}{m} \sum_{i=1}^{m}\left[K_{1}\left(x_{j}, \cos \frac{2 i-1}{2 m} \pi\right) T_{k}\left(\cos \frac{2 i-1}{2 m} \pi\right)\right]\right\}= \\
=-1, \quad j=1,2, \ldots, n
\end{gathered}
$$

The collocation nodes

$$
x_{j}=\cos \frac{j \pi}{n+1}, \quad j=1,2, \ldots, n
$$

For the problem (7.13)-(7.14) we replace $K_{1}(x, t)$ by the function $K_{2}(x, t)$. The kernels $K_{1}(x, t)$ and $K_{2}(x, t)$ are rational functions and hence the corresponding integrals can be easily calculated.

We calculate the coefficients of stress intensity by using the formulas of [23] (p. 128)

$$
K_{1}^{+}=-\lim _{x \rightarrow b}\left[(2(b-x))^{\frac{1}{2}} g^{\prime}(x)\right] \quad \text { and } \quad K_{1}^{-}=-\lim _{x \rightarrow a}\left[(2(x-a))^{\frac{1}{2}} g^{\prime}(x)\right]
$$

In our case, for $a=1, b=3(x=2+\tau)$ we have

$$
\left\{\begin{array}{l}
K_{1}^{+}=-\lim _{\tau \rightarrow 1}\left[(2(1-\tau))^{\frac{1}{2}} \varphi(\tau)\right], \tag{7.15}\\
K_{1}^{-}=\lim _{\tau \rightarrow-1}\left[(2(1+\tau))^{\frac{1}{2}} \varphi(\tau)\right]
\end{array}\right.
$$

For $a=0.5$ and $b=2.5$, the formulas (7.15) remain valid.
From (7.15) we find that

$$
K_{1}^{+}=-\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \sum_{k=1}^{n} a_{k}, \quad K_{1}^{-}=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \sum_{k=1}^{n}(-1)^{k} a_{k}
$$

For the coefficients of stress intensity we have obtained the following numerical values.

Number of Approximation	Segment	k_{1}^{+}	k_{1}^{-}
$n=5$	$a=1, \quad b=3$	1.05386	1.09139
	$a=0,5, \quad b=2.5$	1.09645	1.20493
$n=10$	$a=1, \quad b=3$	1.05390	1.09131
	$a=0.5, \quad b=2.5$	1.09669	1.20355

It can be seen that the coefficient of stress intensity on the left end is greater than on the right one ($K_{1}^{-}>K_{1}^{+}$), which corresponds to the physical content. Moreover, when the crack is shifting to the boundary, the coefficients of stress intensity increase, which also corresponds to the physical content. When an analogous crack takes place on an infinite plane, the coefficients of stress intensity at the ends are equal to unity [23]. As the half-plane recedes, the coefficients of stress intensity increase. Numerical solutions likewise satisfy physical meaning. The fifth and tenth approximations for $a=1, b=3$ coincide to within 10^{-3}, and for $a=0.5, b=2.5$, to within 10^{-2}.

3) Interior crack in a non-homogeneous plane consisting of homogeneous half-planes [24]. Let there be two half-planes ($x \geq 0$ and $x \leq 0$) of different materials which are rigidly clamped along the line $x=0$. One of the halfplanes $(x \geq 0)$ has interior crack on the segment $[a, b](a>0)$. Symmetric normal stresses $P(x)$ are applied to the crack contours. This problem is
reduced to the following singular integral equation

$$
\begin{gather*}
\frac{1}{\pi} \int_{a}^{b} \frac{g^{\prime}(t) d t}{t-x}+\frac{1}{\pi} \int_{a}^{b}\left[-\frac{1}{2} \frac{1-\alpha}{\alpha+\varkappa_{1}}+\frac{\varkappa_{1}-\alpha \varkappa_{2}}{1+\alpha \varkappa_{2}} \frac{1}{t+x}+\right. \\
\left.+\frac{2(\alpha-1)}{\alpha+\varkappa_{1}} \frac{t x-t^{3}}{(t+x)^{3}}\right] g^{\prime}(t) d t=P(x) \tag{7.16}\\
\alpha=\frac{\mu_{1}}{\mu_{2}}, \quad \varkappa_{k}=\frac{3-\nu_{k}}{1+\nu_{k}}, \quad k=1,2
\end{gather*}
$$

μ_{1}, μ_{2} are Lamé constants and ν_{1}, ν_{2} are Poisson coefficients. The right halfplane is taken to be aluminum and the left one is steel. Poisson's coefficients $\nu_{1}=0.34$ and $\nu_{2}=0.26$. Young's moduli are:

$$
E_{1}=0,7 \cdot 10^{6} \frac{K_{2}}{\mathrm{~cm}^{2}} \quad \text { and } \quad E_{2}=2,1 \cdot 10^{6} \frac{K_{2}}{\mathrm{~cm}^{2}}
$$

Lamé's constant

$$
\mu=\frac{E}{2(1+\nu)}
$$

Equation (7.16) takes the form

$$
\begin{equation*}
\frac{1}{\pi} \int_{a}^{b} \frac{g^{\prime}(t) d t}{t-x}+\frac{1}{\pi} \int_{a}^{b} K(x, t) g^{\prime}(t) d t=P(x) \tag{7.17}
\end{equation*}
$$

where

$$
\begin{gathered}
K(x, t)=-0.54 \cdot \frac{1}{t+x}-0.60 \cdot \frac{t x-t^{3}}{(t+x)^{3}} \\
g(a)=g(b)=0
\end{gathered}
$$

We consider two cases.

1) $a=1, b=3$ and 2) $a=0.5, b=2.5$.

For the first case we introduce new variables $\tau, \xi ; x=2+\tau, t=2+\xi$. Denote $g^{\prime}(2+\xi) \equiv \varphi(\xi), P(2+\tau) \equiv f(\tau), K(2+\tau, 2+\xi) \equiv K_{1}(\tau, \xi)$. Then from (7.17) we have

$$
\begin{gathered}
\frac{1}{\pi} \int_{-1}^{1} \frac{\varphi(\xi) d \xi}{\xi-\tau}+\frac{1}{\pi} \int_{-1}^{1} K_{1}(\tau, \xi) \varphi(\xi) d \xi=f(\tau) \\
\int_{-1}^{1} \varphi(\xi) d \xi=0
\end{gathered}
$$

Instead of the variables τ, ξ we again write x, t and obtain the singular integral equation

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\varphi(t) d t}{t-x}+\frac{1}{\pi} \int_{-1}^{1} K_{1}(x, t) \varphi(t) d t=f(x) \tag{7.18}
\end{equation*}
$$

where

$$
\begin{gather*}
K_{1}(x, t)=-0.54 \cdot \frac{1}{4+t+x}-0.60 \cdot \frac{(2+t)(2+x)-(2+t)^{3}}{(4+t+x)^{3}}, \\
\int_{-1}^{1} \varphi(t) d t=0 \tag{7.19}
\end{gather*}
$$

Analogously, for the second case ($a=0.5, b=2.5$) we obtain the following singular integral equation

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\varphi(t) d t}{t-x}+\frac{1}{\pi} \int_{-1}^{1} K_{2}(x, t) \varphi(t) d t=f(x) \tag{7.20}
\end{equation*}
$$

where

$$
\begin{gather*}
K_{2}(x, t)=-0.54 \cdot \frac{1}{3+t+x}-0.60 \cdot \frac{(1,5+t)(1,5+x)-(1,5+t)^{3}}{(3+t+x)^{3}} \\
\int_{-1}^{1} \varphi(t) d t=0 \tag{7.21}
\end{gather*}
$$

As before, using the method of collocation, we seek for an approximate solution

$$
\varphi^{(n)}(x)=\sum_{k=1}^{n} a_{k} \varphi_{k}(x)
$$

The coefficients of stress intensity can be calculated as in problem (2) by the formulas

$$
K_{1}^{+}=-\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \sum_{k=1}^{n} a_{k}, \quad \text { and } \quad K_{1}^{-}=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \sum_{k=1}^{n}(-1)^{k} a_{k}
$$

For the coefficients of stress intensity we obtain the following numerical values:

Approximation	Segment		k_{1}^{+}
$n=5$	$a=1, \quad b=3$	0.96250	k_{1}^{-}
	$a=0.93435$		
$n=10$	$a=1, \quad b=3.5$	0.94798	0.88489
	$a=0.5, \quad b=2.5$	0.96281	0.93469
	0.94798	0.88501	

It can be seen that: 1) the coefficient of stress intensity is smaller at the left end than at the right one $\left.\left(K_{1}^{-}<K_{1}^{+}\right) ; 2\right)$ when the crack is shifting to the boundary, the coefficients of stress intensity decrease; 3) coefficients of stress intensity are less then unity. The above-mentioned facts correspond to physical content of the problem (steel is more rigid than aluminum). The fifth and tenth approximations coincide to within 10^{-3}.

In Section 7 we have presented the results obtained in [25].

8. Projective-Iterative Method of Solution of Singular Integral Equations

In this section we will consider 1) the scheme of the projective-iterative method for the operator equation of the second kind; 2) projective-iterative method for the singular integral equation; 3) numerical results.

1) Scheme of the projective-iterative method for the equation of the second kind. Let in the Banach space E the operator equation of the second kind

$$
\begin{equation*}
u+T u=f, \quad u, f \in E, \tag{8.1}
\end{equation*}
$$

be given, where T is a linear bounded operator in E. An approximate solution u_{n} of the equation (8.1) satisfies the equation ([9], p. 199)

$$
\begin{equation*}
u_{n}+P_{n} T u_{n}=P_{n} f, \quad u_{n} \in E_{n} \tag{8.2}
\end{equation*}
$$

where $\left\{E_{n}\right\}$ and $\left\{P_{n}\right\}$ are subspaces and projectors, respectively: $P_{n}^{2}=$ $P_{n}, P_{n}\left(D\left(P_{n}\right)\right)=E_{n}, E_{n} \subset D\left(P_{n}\right), T(E) \subset D\left(P_{n}\right), f \in D\left(P_{n}\right), P_{n} T$ is bounded in E.

In [9], under the conditions that there exists the inverse bounded operator $(I+T)^{-1}: E \rightarrow E$ and $\left\|P^{(n)} T\right\|_{n \rightarrow \infty} \rightarrow 0\left(P^{(n)} \equiv I-P_{n}\right)$ it has been proved that

$$
\begin{equation*}
\left\|\left(I+P_{n} T\right)^{-1}\right\| \leq C_{1}, \quad n \geq n_{0} \tag{8.3}
\end{equation*}
$$

Moreover, $\left\|P^{(n)} f\right\| \rightarrow 0$ as $n \rightarrow \infty$, and $\left\|u-u_{n}\right\| \rightarrow 0, n \rightarrow \infty$.
Suppose that an approximate solution u_{n} of the equation (8.2) is found and the iteration

$$
\begin{equation*}
\widetilde{u}_{n}=-T u_{n}+f \tag{8.4}
\end{equation*}
$$

is taken.
The projective-iterative scheme proposed in [26] looks as follows:

1) calculation of the residual

$$
r_{0} \equiv f-\widetilde{u}_{n}-T \widetilde{u}_{n}
$$

2) solution of the Galerkin equations

$$
u_{n}^{(1)}+P_{n} T u_{n}^{(1)}=P_{n} r_{0}, \quad u_{n}^{(1)} \in E_{n} ;
$$

3) taking the iteration

$$
\widetilde{u}_{n}^{(1)}=-T u_{n}^{(1)}+r_{0} ;
$$

4) finding the sum

$$
\widetilde{u}_{n, 1} \equiv \widetilde{u}_{n}+\widetilde{u}_{n}^{(1)} .
$$

Cycles (1)-(4) can be repeated l times after which we obtain an approximate solution

$$
\begin{equation*}
\widetilde{u}_{n, l} \equiv \widetilde{u}_{n}+\widetilde{u}_{n}^{(1)}+\cdots+\widetilde{u}_{n}^{(l)} \tag{8.5}
\end{equation*}
$$

It is shown in [26] that if there exists the inverse bounded operator $(I+$ $T)^{-1}$ and $\left\|T P^{(n)}\right\|_{n \rightarrow \infty} \rightarrow 0$, then for $n \geq n_{0}$

$$
\begin{equation*}
u-\widetilde{u}_{n, l}=\left(I+T P_{n}\right)^{-1}\left(-T P^{(n)}\right) \cdots\left(I+T P_{n}\right)^{-1}\left(-T P^{(n)} u\right), \tag{8.6}
\end{equation*}
$$

and for $q_{n} \equiv\left\|\left(I+T P_{n}\right)^{-1} T P^{(n)}\right\| \leq q<1$ the estimate

$$
\begin{equation*}
\left\|u-\widetilde{u}_{n, l}\right\| \leq q^{l+1}\left\|P^{(n)} u\right\| \tag{8.7}
\end{equation*}
$$

is valid.
In [27], the projective-iterative scheme has been applied to the equation of the type $A u+K u=f, u \in D(A), f \in H$, where H is a Hilbert space ([28], p. 426). When Green's function of the operator $A, u \in D(A)$ is known, one can obtain the error estimates showing the order of convergence of the projective-iterative method as $n \rightarrow \infty$ (l is fixed) both for a version of the Bubnov-Galerkin method and for the method of finite elements.

In this subsection we will consider projective-iterative methods for singular integral equations and prove theorems showing the order of convergence when the number of cycles l is fixed, and approximation number $n \rightarrow \infty$.
a) Projective-iterative method for the equation of the first kind

$$
\begin{equation*}
S u+K u=f \tag{8.8}
\end{equation*}
$$

where

$$
S u \equiv \frac{1}{\pi} \int_{-1}^{1} \frac{u(t) d t}{t-x}, \quad-1<x<1, \quad K u \equiv \frac{1}{\pi} \int_{-1}^{1} K(x, t) u(t) d t
$$

For the index $\varkappa=1$ we take the additional condition

$$
\begin{equation*}
\int_{-1}^{1} u(t) d t=P \tag{8.9}
\end{equation*}
$$

where P is a given number. In Section 2 the use has been made of the weight space $L_{2, \rho_{1}}$ with the weight $\rho_{1}=\left(1-x^{2}\right)^{\frac{1}{2}}, L_{2, \rho_{1}}=L_{2, \rho_{1}}^{(1)} \oplus L_{2, \rho_{1}}^{(2)}$ and S an isometric operator mapping $L_{2, \rho_{1}}^{(2)}$ onto $L_{2, \rho_{1}}$;

$$
S^{-1}\left(L_{2, \rho_{1}}\right)=L_{2, \rho_{1}}^{(2)}, \quad S^{*} u=-\left(1-t^{2}\right)^{-\frac{1}{2}} S\left(1-x^{2}\right)^{\frac{1}{2}} u, \quad S^{-1}=S^{*}
$$

The problem (8.8)-(8.9) has been replaced by one functional equation

$$
\begin{equation*}
S \phi+K \phi=f_{1}, \quad \phi \in L_{2, \rho_{1}}^{(2)}, \quad f_{1} \in L_{2, \rho_{1}} \tag{8.10}
\end{equation*}
$$

where

$$
f_{1} \equiv f-P \pi^{-1} K\left(1-t^{2}\right)^{-\frac{1}{2}} \quad \phi(t)=u(t)-p \pi^{-1}\left(1-t^{2}\right)^{-\frac{1}{2}} .
$$

It was required of the kernel $K(x, t)$ that

$$
\int_{-1}^{1} \int_{-1}^{1} K^{2}(x, t) \frac{\rho_{1}(x)}{\rho_{1}(t)} d t d x<+\infty
$$

We took two orthonormal complete systems:

1) $\varphi_{k}(x) \equiv\left(1-x^{2}\right)^{-\frac{1}{2}} \widehat{T}_{k}(x), k=0,1, \ldots, \widehat{T}_{0}=\left(\frac{1}{\pi}\right)^{\frac{1}{2}} T_{0}, \widehat{T}_{k+1}=$ $\left(\frac{2}{\pi}\right)^{\frac{1}{2}} T_{k+1}(x), k=0,1, \ldots$, where $T_{k}(x), k=0,1, \ldots$, are the Chebyshev polynomials of the first kind;
2) $\psi_{k+1} \equiv\left(\frac{2}{\pi}\right)^{\frac{1}{2}} U_{k}(x), k=0,1, \ldots$, where $U_{k}, k=0,1, \ldots$, are the Chebyshev polynomials of the second kind.

We had

$$
\begin{equation*}
S \varphi_{0}=0, \quad S \varphi_{k}=\psi_{k}, \quad k=1,2, \ldots \tag{8.11}
\end{equation*}
$$

An approximate solution of the equation (8.10) is sought in the form

$$
\phi_{n}=\sum_{k=1}^{n} a_{k} \varphi_{k} .
$$

We compose the algebraic system by using the Galerkin-Petrov method

$$
\left[S \phi_{n}+K \phi_{n}-f_{1}, \psi_{i}\right]=0, \quad i=1,2, \ldots, n
$$

which with regard for (8.11) results in

$$
\begin{equation*}
a_{i}+\sum_{k=1}^{n}\left[K \varphi_{k}, \psi_{i}\right] a_{k}=\left[f_{1}, \psi_{i}\right], \quad i=1,2, \ldots, n \tag{8.12}
\end{equation*}
$$

Introducing the notation $w \equiv S \phi, w_{n} \equiv S \phi_{n}$, we write the equations (8.10) and (8.12), respectively, in the form

$$
\begin{gather*}
w+K S^{-1} w=f_{1}, \quad w, f_{1} \in L_{2, \rho_{1}} \tag{8.13}\\
w_{n}+P_{n} K S^{-1} w_{n}=P_{n} f_{1} \tag{8.14}
\end{gather*}
$$

where the projector

$$
P_{n} v=\sum_{k=1}^{n}\left[v, \psi_{k}\right] \psi_{k}
$$

Thus we have obtained the operators of the type (8.1) and (8.2) in which $T=K S^{-1}$.

One iteration is as follows:

$$
\widetilde{w}_{n}=-K S^{-1} w_{n}+f_{1}=-K \phi_{n}+f_{1}
$$

Further, we find that

$$
\begin{align*}
\widetilde{\phi}_{n} & =S^{-1} \widetilde{w}_{n}=\frac{\left(1-t^{2}\right)^{-\frac{1}{2}}}{\pi} \int_{-1}^{1} \frac{(1-x)^{\frac{1}{2}} \widetilde{w}_{n}(x)}{t-x} d x= \\
& =\frac{\left(1-t^{2}\right)^{-\frac{1}{2}}}{\pi} \int_{-1}^{1} \frac{\left(1-x^{2}\right)^{\frac{1}{2}}\left(-K \phi_{n}+f_{1}\right)}{t-x} d x \tag{8.15}
\end{align*}
$$

Finally,

$$
\begin{equation*}
\widetilde{u}_{n}=\widetilde{\phi}_{n}+P \pi^{-1}\left(1-x^{2}\right)^{-\frac{1}{2}} . \tag{8.16}
\end{equation*}
$$

In [29], under certain conditions for \widetilde{u}_{n} the error estimate is established. We will establish an analogous estimate for the cyclic projective-iterative scheme.

Cycle 1)-4) has the following form:

1) $r_{0}=f_{1}-\widetilde{w}_{n}-K S^{-1} \widetilde{w}_{n}=f_{1}-\left(-K \phi_{n}+f_{1}\right)-K \widetilde{\phi}_{n}=K \phi_{n}-K \widetilde{\phi}_{n}$;
2) We find scalar products $\left[r_{0}, \psi_{i}\right], i=1,2, \ldots, n$, and then solve the algebraic system (the left-hand side of the algebraic system remains unchanged)

$$
a_{i}^{(1)}+\sum_{k=1}^{n} a_{k}^{(1)}\left[K \varphi_{k}, \psi_{i}\right]=\left[r_{0}, \psi_{i}\right], \quad i=1,2, \ldots, n .
$$

We obtain

$$
\phi_{n}^{(1)}=\sum_{k=1}^{n} a_{k}^{(1)} \varphi_{k}, \quad w_{n}^{(1)}=\sum_{k=1}^{n} a_{k}^{(1)} \psi_{k}, \quad w_{n}^{(1)}+P_{n} K S^{-1} w_{n}^{(1)}=P_{n} r_{0}
$$

3) Taking the iteration

$$
\widetilde{w}_{n}^{(1)}=-K S^{-1} w_{n}^{(1)}+r_{0}=-K \phi_{n}^{(1)}+r_{0},
$$

we arrive at

$$
\widetilde{\phi}_{n}^{(1)}=S^{-1} \widetilde{w}_{n}^{(1)}=\frac{\left(1-t^{2}\right)^{-\frac{1}{2}}}{\pi} \int_{-1}^{1} \frac{\left(1-x^{2}\right)^{\frac{1}{2}}\left(-K \phi_{n}^{(1)}+r_{0}\right)}{t-x} d x
$$

4) Taking now the sum

$$
\widetilde{\phi}_{n, 1}=\widetilde{\phi}_{n}+\widetilde{\phi}_{n}^{(1)}\left(\widetilde{w}_{n, 1}=\widetilde{w}_{n}+\widetilde{w}_{n}^{(1)}=\left(-K \phi_{n}+f_{1}\right)+\left(-K \phi_{n}^{(1)}+r_{0}\right)\right)
$$

we finally get

$$
\widetilde{u}_{n, 1}=\widetilde{\phi}_{n, 1}+P \pi^{-1}\left(1-x^{2}\right)^{-\frac{1}{2}}
$$

If we repeat the cycle 1)-4) l times, we will obtain

$$
\widetilde{\phi}_{n, l}=\widetilde{\phi}_{n}+\widetilde{\phi}_{n}^{(1)}+\cdots+\widetilde{\phi}_{n}^{(l)}, \quad \widetilde{u}_{n, l}=\widetilde{\phi}_{n, l}+P \pi^{-1}\left(1-x^{2}\right)^{-\frac{1}{2}} .
$$

Our aim is to obtain an estimate for $\left\|u-\widetilde{u}_{n, l}\right\|$.
For the sake of clearness, we write out the cycle for $l=2$. We have

1) $r_{1}=f_{1}-\widetilde{w}_{n, 1}-K S^{-1} \widetilde{w}_{n, 1}=f_{1}-\left[\left(-K \phi_{n}+f_{1}\right)-\left(-K \phi_{n}^{(1)}+r_{0}\right)\right]-$ $K\left(\widetilde{\phi}_{n}+\widetilde{\phi}_{n}^{(1)}\right)=K \phi_{n}+K \phi_{n}^{(1)}-K\left(\widetilde{\phi}_{n}+\widetilde{\phi}_{n}^{(1)}\right)-r_{0}=K\left(\phi_{n}+\phi_{n}^{(1)}\right)-K\left(\widetilde{\phi}_{n}+\right.$ $\left.\widetilde{\phi}_{n}^{(1)}\right)-r_{0}$.

The right-hand side of the algebraic system is a column matrix with elements $\left[r_{1}, \psi_{i}\right], i=1,2, \ldots, n$. We find $a_{1}^{(2)}, a_{2}^{(2)}, \ldots, a_{n}^{(2)}, \phi_{n}^{(2)}, w_{n}^{(2)}$. Taking the iteration $\widetilde{u}_{n, 2}=\widetilde{\phi}_{n, 2}+P \pi^{-1}\left(1-x^{2}\right)^{-\frac{1}{2}}$, we get $\widetilde{\Phi}_{n}^{(2)}=S^{-1} \widetilde{w}_{n}^{(2)}$, $\widetilde{\phi}_{n, 2}=\widetilde{\phi}_{n}+\widetilde{\phi}_{n}^{(1)}+\widetilde{\phi}_{n}^{(2)}$, and finally, $\widetilde{u}_{n, 2}=\widetilde{\phi}_{n, 2}+P \pi^{-1}\left(1-x^{2}\right)^{-\frac{1}{2}}$.

For our case, the formula (8.6) takes the form

$$
\begin{align*}
w-\widetilde{w}_{n, l}=(I+K & \left.S^{-1} P_{n}\right)^{-1}\left(-K S^{-1} P^{(n)}\right) \cdots \\
& \cdots\left(I+K S^{-1} P_{n}\right)^{-1}\left(-K S^{-1} P^{(n)} w\right) \tag{8.17}
\end{align*}
$$

where $w=S \phi, \widetilde{w}_{n, l}=S \widetilde{\phi}_{n, l}$.

Theorem 8.1. Let the following conditions be fulfilled: 1) there exists the inverse operator $\left(I+K S^{-1}\right)^{-1}$ mapping $L_{2, \rho_{1}}$ onto itself; 2) the derivative $\left.w^{(m)} \in \operatorname{Lip}_{M} \alpha ; 0<\alpha \leq 1 ; 3\right)$ the derivative of order r with respect to t of the kernel $K_{t}^{(r)}(x, t) \in \operatorname{Lip}_{M_{1}} \alpha_{1}, 0<\alpha_{1} \leq 1, \forall x \in[-1,1]$. Then the estimate

$$
\begin{equation*}
\left\|u-\widetilde{u}_{n, l}\right\|_{L_{2, \rho_{1}}}=0\left(n^{-(m+\alpha)-(l+1)\left(r+\alpha_{1}\right)}\right) \quad \text { as } \quad n \rightarrow \infty \tag{8.18}
\end{equation*}
$$

is valid, where l is fixed.
Proof. We have $u-\widetilde{u}_{n, l}=\phi-\widetilde{\phi}_{n, l}=S^{-1}\left(w-\widetilde{w}_{n, l}\right), S\left(L_{2, \rho_{1}}^{(2)}\right)=L_{2, \rho_{1}}$, $S^{-1}\left(L_{2, \rho_{1}}\right)=L_{2, \rho_{1}}^{(2)}$. The norm $\|S\|_{L_{2, \rho_{1}}^{(2)} \rightarrow L_{2, \rho_{1}}}=\left\|S^{-1}\right\|_{L_{2, \rho_{1}} \rightarrow L_{2, \rho_{1}}^{(2)}}=1$. Therefore from (8.17) it follows that

$$
\begin{gather*}
\left\|u-\widetilde{u}_{n, l}\right\|=\left\|w-\widetilde{w}_{n, l}\right\| \leq \\
\leq\left\|\left(I+K S^{-1} P_{n}\right)^{-1}\right\|^{l+1}\left\|K S^{-1} P^{(n)}\right\|^{l+1}\left\|P^{(n)} u\right\| \tag{8.19}
\end{gather*}
$$

Estimate now the norms $\left\|K S^{-1} P^{(n)}\right\|,\left\|P^{(n)} u\right\|$. We have

$$
\begin{aligned}
& \left\|K S^{-1} P^{(n)} v\right\|^{2}=\left\|K S^{-1} \sum_{k=1}^{\infty}\left[v, \psi_{k}\right] \psi_{k}\right\|^{2}=\left\|K \sum_{k=n+1}^{\infty}\left[v, \psi_{k}\right] \varphi_{k}\right\|^{2}= \\
& =\frac{1}{\pi^{2}}\left\|\sum_{k=n+1}^{\infty}\left[v, \psi_{k}\right]\left(\left(K(x, t), \varphi_{k}(t)\right)\right)\right\|^{2} \leq \\
& \leq \frac{1}{\pi^{2}}\left\|\left\{\sum_{k=n+1}^{\infty}\left[v, \psi_{k}\right]^{2}\right\}^{\frac{1}{2}} \times\left\{\sum_{k=n+1}^{\infty}\left(K(x, t), \varphi_{k}(t)\right)^{2}\right\}^{\frac{1}{2}}\right\|^{2} \leq \\
& \leq \frac{\|v\|^{2}}{\pi^{2}} \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}}\left(\sum_{k=n+1}^{\infty}\left(K(x, t), \varphi_{k}(t)\right)\right)^{2} d x= \\
& =\frac{\|v\|^{2}}{\pi^{2}} \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}}\left(\sum_{k=n+1}^{\infty}\left(K(x, t),\left(1-t^{2}\right)^{-\frac{1}{2}} \widehat{T}_{k}(t)\right)^{2}\right) d x= \\
& =\frac{\|v\|^{2}}{\pi^{2}} \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}}\left\|\sum_{k=n+1}^{\infty}\left[K(x, t), \widehat{T}_{k}(t)\right]_{L_{2, \rho_{1}^{-1}}} \widehat{T}_{k}(t)\right\|_{L_{2, \rho_{1}^{-1}}} d x \\
& \left\|\sum_{k=n+1}^{\infty}\left[K(x, t), \widehat{T}_{k}(t)\right]_{L_{2, \rho_{1}^{-1}}} \widehat{T}_{k}(t)\right\|_{L_{2, \rho_{1}^{-1}}^{2}}^{2}= \\
& =\int_{-1}^{1}\left(1-t^{2}\right)^{\frac{1}{2}}\left(\sum_{k=n+1}^{\infty}\left[K(x, t), \widehat{T}_{k}(t)\right]_{L_{2, \rho_{1}^{-1}}} \widehat{T}_{k}(t)\right)^{2} d t=
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-1}^{1}\left(1-t^{2}\right)^{\frac{1}{2}}\left(K(x, t)-\sum_{k=0}^{n}\left[K(x, t), \widehat{T}_{k}(t)\right]_{L_{2, \rho_{1}^{-1}}} \widehat{T}_{k}(t)\right)^{2} d t \leq \\
& \leq \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{1}{2}}\left(K(x, t)-P_{n}(x, t)\right)^{2} d t \leq \pi\left(E_{n}^{t}(K(x, t))\right)^{2}
\end{aligned}
$$

where x is a parameter, $P_{n}(x, t)$ is the polynomial of the best uniform approximation with respect to t, and $E_{n}^{t}(K(x, t))$ is the corresponding derivation

$$
\left|K(x, t)-P_{n}(x, t)\right| \leq E_{n}^{t}(K(x, t)), \quad-1 \leq x, t \leq 1 .
$$

If $K_{t}^{(r)}(x, t) \in \operatorname{Lip}_{M} \alpha_{1}, 0<\alpha_{1} \leq 1, \forall x \in[-1,1]$, and is continuous with respect to x in $[-1,1]$, then ([8], Ch. XIV, §4)

$$
E_{n}^{t}(K(x, t))=O\left(n^{\left(-r+\alpha_{1}\right)}\right) .
$$

Furthermore,

$$
\begin{aligned}
\left\|K S^{-1} P^{(n)} v\right\|^{2} & \leq \frac{\|v\|^{2}}{\pi^{2}} \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}} \pi\left(E_{n}^{t}(K(x, t))\right)^{2} d x= \\
& =\frac{\|v\|^{2}}{\pi^{2}} \pi \frac{\pi}{2}\left(E_{n}^{t}(K(x, t))\right)^{2} .
\end{aligned}
$$

Thus $\left\|K S^{-1} P^{(n)}\right\|=O\left(n^{-\left(r+\alpha_{1}\right)}\right)$.
Moreover,

$$
\begin{aligned}
\left\|P^{(n)} w\right\|^{2} & =\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}}\left(w-P_{n} w\right)^{2} d x= \\
& =\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}}\left(w-\sum_{k=1}^{n}\left[w, \psi_{k}\right] \psi_{k}\right)^{2} d x \leq \\
& \leq \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}}\left(w-P_{n-1}\right)^{2} d x \leq \frac{\pi}{2}\left\|w-P_{n-1}\right\|_{c}^{2}
\end{aligned}
$$

where P_{n-1} is the polynomial of the best uniform approximation.
Due to the condition 2) from the statement of the above theorem, by Jackson's theorem [30] we have

$$
\left\|w-P_{n-1}\right\|_{c} \leq \frac{C(w)}{(n-1)^{m+\alpha}}, \quad n>1
$$

with the constant $C(w)$ depending on w and its derivatives, i.e., if $w^{(m)} \in$ $\operatorname{Lip}_{m} \alpha, 0<\alpha \leq 1$ then $\left\|P^{(n)} w\right\|=O\left(n^{-(m+\alpha)}\right)$.

Finally, we get

$$
\left\|w-\widetilde{w}_{n, l}\right\|=O\left(n^{-(m+\alpha)}\right) O\left(n^{-(l+1)\left(r+\alpha_{1}\right)}\right)
$$

i.e., we obtain the estimate (8.18).

The index $\varkappa=-1$. The weight space $L_{2, \rho_{2}}[-1,1]$ has the weight $\rho_{2}=$ $\left(1-x^{2}\right)^{-\frac{1}{2}}$. The homogeneous equation $S u=0$ has in the space $L_{2, \rho_{2}}$ only zero solution $u=0$, and the conjugate homogeneous equation $S^{*} u=$ $-\left(1-t^{2}\right)^{\frac{1}{2}} S\left(1-x^{2}\right)^{-\frac{1}{2}} u=0$ has in $L_{2, \rho_{2}}$ the nonzero solution $u=1$.

For the equation

$$
\begin{equation*}
S u+K u=f, \quad u, f \in L_{2, \rho_{2}}, \tag{8.20}
\end{equation*}
$$

to have a solution $u \in L_{2, \rho_{2}}$, it is necessary that

$$
\begin{equation*}
[K u-f, 1]=0 . \tag{8.21}
\end{equation*}
$$

This can be fulfilled if

$$
\begin{equation*}
K\left(L_{2, \rho_{2}}\right) \perp 1 \quad \text { and } \quad f \perp 1 \tag{8.22}
\end{equation*}
$$

The condition $K\left(L_{2, \rho_{2}}\right) \perp 1$ means that

$$
\int_{-1}^{1} K(x, t)\left(1-x^{2}\right)^{-\frac{1}{2}} d x=0
$$

If the conditions (8.22) are not fulfilled for the equation (8.20), then we can always transform it in such a way that it will be fulfilled for the transformed equation [20]. One have to take the function $\psi_{0}(x) \equiv-\pi^{-\frac{1}{2}}$ and then find $\widetilde{K}(t)=\left[K(x, t), \psi_{0}\right], K_{0}(x, t)-\widetilde{K}(t) \psi_{0},\left[f, \psi_{0}\right]$ and $f_{1}=$ $f-\left[f, \psi_{0}\right] \psi_{0}$. The equation (8.20) can now be written as

$$
\begin{equation*}
S u+K_{0} u=f_{1}, \quad u \in L_{2, \rho_{2}}, \quad f_{1} \in L_{2, \rho_{2}}^{(2)} \tag{8.23}
\end{equation*}
$$

where $L_{2, \rho_{2}}^{(2)}$ is the orthogonal supplement of the one-dimensional subspace $L_{2, \rho_{2}}^{(1)}$ of the function $\psi_{0}=-\pi^{-\frac{1}{2}}, L_{2, \rho_{2}}=L_{2, \rho_{2}}^{(1)}+L_{2, \rho_{2}}^{(2)}$. It has been shown in [20] (just as in Section 6) that the procedure described above is not necessary in practice; an approximate solution u_{n} remains unchanged. We will need the equation (8.23) only in order to prove that the process converges.

In the space $L_{2, \rho_{2}}$ the following two systems of functions are orthonormal and complete:

1) $\varphi_{k+1}=\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\left(1-x^{2}\right)^{\frac{1}{2}} U_{k}(x), k=0,1, \ldots$;
2) $\psi_{0}=-\pi^{-\frac{1}{2}}, \psi_{k+1}=-\left(\frac{2}{\pi}\right)^{\frac{1}{2}} T_{k+1}(x), k=0,1, \ldots$,
where U_{k}, T_{k+1} are the Chebyshev polynomials of the second and first kind, respectively.

In Section 2 we had $S \varphi_{k}=\psi_{k}, k=1,2, \ldots$ Under the conditions (8.22) we have the equation

$$
\begin{equation*}
S u+K u=f, \quad u \in L_{2, \rho_{2}}, \quad f \in L_{2, \rho_{2}}^{(2)} . \tag{8.24}
\end{equation*}
$$

Its approximate solution is sought in the form

$$
u_{n}=\sum_{k=1}^{n} a_{k} \varphi_{k}(x)
$$

By the Galerkin-Petrov method,

$$
\left[S u_{n}+K u_{n}-f, \psi_{i}\right]=0, \quad i=1,2, \ldots, n,
$$

with regard for which $S \varphi_{k}=\psi_{k}$ results in the algebraic system

$$
\begin{equation*}
a_{i}+\sum_{k=1}^{n}\left[K \varphi_{k}, \psi_{i}\right] a_{k}=\left[f, \psi_{i}\right], \quad i=1,2, \ldots, n \tag{8.25}
\end{equation*}
$$

We denote $w=S u, w_{n}=S u_{n}=\sum_{k=1}^{n} a_{k} \psi_{k}$. Then the algebraic system (8.25) can be written by means of the orthoprojector P_{n} on the span of the functions $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$ as follows:

$$
\begin{equation*}
w_{n}+P_{n} K S^{-1} w_{n}=P_{n} f \tag{8.26}
\end{equation*}
$$

Let an approximate solution $u_{n}\left(w_{n}\right)$ be found. Taking the iteration

$$
\widetilde{w}_{n}=-K S^{-1} w_{n}+f=-K u_{n}+f
$$

we have to find

$$
\begin{aligned}
\widetilde{u}_{n}= & S^{-1} \widetilde{w}_{n}=\frac{\left(1-t^{2}\right)^{\frac{1}{2}}}{\pi} \int_{-1}^{1} \frac{\left(1-x^{2}\right)^{-\frac{1}{2}} \widetilde{w}_{n}(x)}{t-x} d x= \\
& =\frac{\left(1-t^{2}\right)^{\frac{1}{2}}}{\pi} \int_{-1}^{1} \frac{\left(1-x^{2}\right)^{-\frac{1}{2}}\left(-K u_{n}+f\right)}{t-x} d x
\end{aligned}
$$

Cycle 1)-4) looks as follows:

1) We find

$$
r_{0}=f-\widetilde{w}_{n}-K S^{-1} \widetilde{w}_{n}=f-\left(-K u_{n}+f\right)-K \widetilde{u}_{n}=K u_{n}-K \widetilde{u}_{n}
$$

and then take the exact equation $S u^{(1)}+K u^{(1)}=r_{0}$ whose approximate solution is sought in the form

$$
u_{n}^{(1)}=\sum_{k=1}^{n} a_{k}^{(1)} \varphi_{k}
$$

2) We find scalar products $\left[r_{0}, \psi_{i}\right], i=1,2, \ldots, n$, and solve the algebraic system

$$
a_{i}^{(1)}+\sum_{k=1}^{n}\left[K \varphi_{k}, \psi_{i}\right] a_{k}^{(1)}=\left[r_{0}, \psi_{i}\right], \quad i=1,2, \ldots, n,
$$

and then we find $u_{n}^{(1)}$.
3) We take the iteration

$$
\widetilde{w}_{n}^{(1)}=-K S^{-1} w_{n}^{(1)}+r_{0}=-K u_{n}^{(1)}+r_{0}
$$

and find

$$
\widetilde{u}_{n}^{(1)}=S^{-1} \widetilde{w}_{n}^{(1)}=\frac{\left(1-t^{2}\right)^{\frac{1}{2}}}{\pi} \int_{-1}^{1} \frac{\left(1-x^{2}\right)^{-\frac{1}{2}}\left(-K u_{n}+r_{0}\right)}{t-x} d x
$$

4) We take the sum

$$
\widetilde{u}_{n, 1}=\widetilde{u}_{n}+\widetilde{u}_{n}^{(1)} .
$$

This cycle can be repeated. Using the projective-iterative method, we obtain an approximate solution

$$
\widetilde{u}_{n, l}=\widetilde{u}_{n}+\widetilde{u}_{n}^{(1)}+\cdots+\widetilde{u}_{n}^{(l)}
$$

Theorem 8.2. If there exists the inverse operator $\left(I+K S^{-1}\right)^{-1}$ which maps $L_{2, \rho_{2}}^{(2)}$ onto itself, the derivatives $w^{(m)} \in \operatorname{Lip}_{M} \alpha, 0<\alpha \leq 1, K_{t}^{(r)}(x, t) \in$ $\operatorname{Lip}_{M_{1}} \alpha_{1}, 0<\alpha_{1}, 0<\alpha_{1} \leq 1, \forall x \in[-1,1]$, then the estimate

$$
\begin{equation*}
\left\|u-\widetilde{u}_{n, l}\right\|_{L_{2, \rho_{2}}}=O\left(n^{-(m+\alpha)-(l+1)\left(r+\alpha_{1}\right)}\right) \quad \text { as } \quad n \rightarrow \infty \tag{8.27}
\end{equation*}
$$

is valid, where l is fixed.
This theorem is proved analogously to Theorem 8.1.
2) The index $\varkappa=0$. Here we may have two cases $\rho_{3}^{(1)}=\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}}$ and $\rho_{3}^{(2)}=\left(\rho_{3}^{(1)}\right)^{-1}$.

Let us consider the case $\rho_{3}=\rho_{3}^{(1)}$. The homogeneous equations $S u=0$ and $S^{*} u=0$ have only the trivial solution $u=0$. We have the equation

$$
\begin{equation*}
S u+K u=f, \quad u, f \in L_{2, \rho_{3}} \tag{8.28}
\end{equation*}
$$

In Section 2, we had two orthonormal complete systems of functions:

1) $\varphi_{k} \equiv C_{k}(1-x)^{-\frac{1}{2}}(1+x)^{\frac{1}{2}} P_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x), k=0,1, \ldots, C_{k}=\left(h_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}\right)^{-\frac{1}{2}}$, $h_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}=h_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}=2 \Gamma\left(k+\frac{1}{2}\right) \Gamma\left(k+\frac{3}{2}\right)\left[(2 k+1)(k!)^{2}\right]^{-1}$, where $P_{k}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x)$, $k=0,1, \ldots$, are the Jacobi polynomials;
2) $\psi_{k} \equiv-C_{k} P_{k}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x), k=0,1, \ldots$,

$$
\begin{equation*}
S \varphi_{k}=\psi_{k}, \quad k=0,1, \ldots \tag{8.29}
\end{equation*}
$$

An approximate solution of the equation (8.28) is sought in the form

$$
u_{n}=\sum_{k=0}^{n} a_{k} \varphi_{k} .
$$

The Galerkin-Petrov method yields

$$
\left[S u_{n}+K u_{n}-f, \psi_{i}\right]=0, \quad i=0,1, \ldots, n
$$

The latter with regard for (8.29) results in the algebraic system

$$
\begin{equation*}
a_{i}+\sum_{k=0}^{n}\left[K \varphi_{k}, \psi_{i}\right] a_{k}=\left[f, \psi_{i}\right], \quad i=0,1, \ldots, n \tag{8.30}
\end{equation*}
$$

which can be written by means of the orthoprojector P_{n} on the span of the functions $\psi_{0}, \psi_{1}, \ldots, \psi_{n}$ as follows:

$$
\begin{equation*}
w_{n}+P_{n} K S^{-1} w_{n}=P_{n} f, \quad w_{n} \equiv S u_{n}=\sum_{k=0}^{n} a_{k} \psi_{k} \tag{8.31}
\end{equation*}
$$

The singular operator $S: L_{2, \rho_{3}} \rightarrow L_{2, \rho_{3}}$ is unitary, $S\left(L_{2, \rho_{3}}\right)=L_{2, \rho_{3}}$, $S^{-1}\left(L_{2, \rho_{3}}\right)=L_{2, \rho_{3}}$.

The iteration has the form

$$
\widetilde{w}_{n}=-K S^{-1} w_{n}+f=-K u_{n}+f .
$$

We have to find

$$
\widetilde{u}_{n}=S^{-1} \widetilde{w}_{n}=\frac{1}{\pi}\left(\frac{1+t}{1-t}\right)^{\frac{1}{2}} \int_{-1}^{1}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}} \frac{\widetilde{w}_{n}(x)}{t-x} d x
$$

Cycle 1)-4) looks as follows:

1) We find

$$
r_{0}=f-\widetilde{w}_{n}-K S^{-1} \widetilde{w}_{n}=f-\left(-K u_{n}+f\right)-K \widetilde{u}_{n}=K u_{n}-K \widetilde{u}_{n} .
$$

2) We calculate $\left[r_{0}, \psi_{i}\right], i=0,1, \ldots, n$, solve the algebraic system

$$
a_{i}^{(1)}+\sum_{k=0}^{n}\left[K \varphi_{k}, \psi_{i}\right] a_{k}^{(1)}=\left[r_{0}, \psi_{i}\right], \quad i=0,1, \ldots, n
$$

and then find $u_{n}^{(1)}=\sum_{k=0}^{n} a_{k}^{(1)} \varphi_{k}(x), w_{n}^{(1)}=\sum_{k=0}^{n} a_{k}^{(1)} \psi_{k}(x)$.
3) We take the iteration

$$
\widetilde{w}_{n}^{(1)}=-K S^{-1} w_{n}^{(1)}+r_{0}=-K u_{n}^{(1)}+r_{0},
$$

and find

$$
\widetilde{u}_{n}^{(1)}=S^{-1} \widetilde{w}_{n}^{(1)}=\frac{1}{\pi}\left(\frac{1+t}{1-t}\right)^{\frac{1}{2}} \int_{-1}^{1}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}} \frac{\left(-K u_{n}^{(1)}+r_{0}\right)}{t-x} d x
$$

4) We take the sum

$$
\widetilde{u}_{n, 1}=\widetilde{u}_{n}+\widetilde{u}_{n}^{(1)} .
$$

Repeating the cycle 1)-4) l times, we obtain an approximate solution of the equation (8.28),

$$
\widetilde{u}_{n, l}=\widetilde{u}_{n}+\widetilde{u}_{n}^{(1)}+\cdots+\widetilde{u}_{n}^{l} .
$$

The following theorem is valid.
Theorem 8.3. If there exists the inverse operator $\left(I+K S^{-1}\right)^{-1}$ which maps $L_{2, \rho_{3}}$ onto itself, the derivatives $u^{(m)} \in \operatorname{Lip}_{M} \alpha, 0<\alpha \leq 1, K_{t}^{(r)}(x, t) \in$ $\operatorname{Lip}_{M_{1}} \alpha_{1}, 0<\alpha_{1} \leq 1, \forall x \in[-1,1]$, then the estimate

$$
\begin{equation*}
\left\|u-\widetilde{u}_{n, l}\right\|_{L_{2, \rho_{3}}}=O\left(n^{-(m+\alpha)-(l+1)\left(r+\alpha_{1}\right)}\right) \tag{8.32}
\end{equation*}
$$

is valid as $n \rightarrow \infty$, where l is fixed.

This theorem is proved analogously to Theorem 8.1.
Consider now the collocation-iterative method.

1) $\varkappa=1, \alpha=\beta=-\frac{1}{2}$. In Section 4, we had the approximate solution

$$
\phi_{n}=\sum_{k=1}^{n} a_{k} \varphi_{k}
$$

the algebraic system

$$
\sum_{k=1}^{n} a_{k} \psi_{k}\left(x_{j}\right)+\sum_{k=1}^{n} a_{k}\left(K \varphi_{k}\right)\left(x_{j}\right)=f_{1}\left(x_{j}\right), \quad j=1,2, \ldots, n
$$

and the nodes were the roots of the Chebyshev polynomial $U_{n}(x)$. The algebraic system by means of the projector $\Pi_{m} v \equiv L_{m}(v), v \in C[-1,1]$, where $L_{m}(v)$ is the Lagrange interpolation polynomial, can be written in the form

$$
\begin{equation*}
w^{(n)}+\Pi_{n-1} K S^{-1} w^{(n)}=\Pi_{n-1} f, \quad w^{(n)} \in \bar{L}_{2, \rho_{1}}^{(n)} \tag{8.33}
\end{equation*}
$$

where $\bar{L}_{2, \rho_{1}}^{(n)}$ is the linear span of the functions $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$.
The initial equation is as follows:

$$
\begin{equation*}
w+K S^{-1} w=f_{1}, \quad w, f_{1} \in L_{2, \rho_{1}} \tag{8.34}
\end{equation*}
$$

The cyclic projective-iterative method provides us with

$$
\begin{align*}
w-\widetilde{w}_{n, l}=(I+ & \left.K S^{-1} \Pi_{n-1}\right)^{-1}\left(-K S^{-1} \Pi^{(n-1)}\right) \cdots\left(I+K S^{-1} \Pi_{n-1}\right)^{-1} \times \\
& \times\left(-K S^{-1} \Pi^{(n-1)} w\right), \quad \Pi^{(n-1)}=I-\Pi_{n-1}, \tag{8.35}
\end{align*}
$$

whence

$$
\begin{equation*}
\left\|w-\widetilde{w}_{n, l}\right\| \leq\left\|\left(I+K S^{-1} \Pi_{n-1}\right)^{-1}\right\|^{l+1}\left\|K S^{-1} \Pi^{(n-1)}\right\|^{l+1}\left\|\Pi^{(n-1)} w\right\| . \tag{8.36}
\end{equation*}
$$

Estimate the following norms: $\left\|\Pi^{(n-1)} w\right\|$ and $\left\|K S^{-1} \Pi^{(n-1)}\right\|$.
If the function $w(x)$ is m times continuously differentiable on the segment $[-1,1]$, and $w^{(m)}(x) \in \operatorname{Lip} \alpha, 0<\alpha \leq 1$, then

$$
\begin{equation*}
\left\|w(x)-L_{n}(x, w)\right\|_{c} \leq \frac{c_{2} \ln n}{n^{m+\alpha}} \tag{8.37}
\end{equation*}
$$

(see [30], p. 288). Moreover, $\left\|\Pi^{(n)} w\right\|=\left\|w-L_{n}\right\| \leq\left\|\Pi^{(n)} w\right\|_{c}\left(\frac{\pi}{2}\right)^{\frac{1}{2}}$.
The residual term of the Newton and Lagrange interpolation formulas is expressed by the formula ([5], p. 109)

$$
R_{n}(x)=w(x)-L_{n}(x, w)=\left[\prod_{k=0}^{n}\left(x-x_{k}\right)\right] w\left(x ; x_{0} ; \ldots, x_{n}\right)
$$

where $w\left(x ; x_{0} ; \ldots ; x_{n}\right)$ is the divided difference of the function $w(x)$.
Denote $K_{1}(x, t) \equiv\left(1-t^{2}\right)^{-\frac{1}{2}} K(x, t)$. In our case

$$
\Pi^{(n-1)} v=v-L_{n-1}(v)=\prod_{k=0}^{n-1}\left(x-x_{k}\right) v\left(x, x_{0} \ldots ; x_{n-1}\right)=
$$

$$
=\prod_{k=0}^{n-1}\left(x-x_{k}\right) \delta^{(n)} v(x)=\omega(x) \delta^{(n)} v(x)
$$

where $\delta^{(n)} v(t) \equiv v\left(t ; t_{0} ; \ldots ; t_{n-1}\right)$ is the divided difference.
If as interpolation nodes we take the zeros of the Chebyshev polynomial $U_{n}(x)$, then

$$
\Pi^{(n-1)} v=\left(\frac{\pi}{2}\right)^{\frac{1}{2}} \frac{\widehat{U}_{n}(t)}{2^{n}} \delta^{(n)} v
$$

Thus we have

$$
\begin{align*}
\left\|K S^{-1} \Pi^{(n-1)} v\right\| & =\pi^{-1}\left\|\left(K(x, t), S^{-1} \Pi^{(n-1)} v\right)\right\|= \\
& =\pi^{-1}\left\|\left[K_{1}(x, t), S^{-1} \Pi^{(n-1)} v\right]_{t}\right\|= \\
& =\pi^{-1}\left\|\left[S K_{1}(x, \tau)(x, t), \Pi^{(n-1)} v(t)\right]_{t}\right\|_{x}= \\
& =\pi^{-1}\left\|\left[S K_{1}(x, \tau)(x, t),\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{\widehat{U}_{n}(t)}{2^{n}} \delta^{(n)} v(t)\right]_{t}\right\|= \\
& =\frac{1}{\pi}\left(\frac{\pi}{2}\right)^{\frac{1}{2}} \frac{1}{2^{n}}\left\|\left[\delta^{(n)} v\left(S K_{1}\right)(x, t), \widehat{U}_{n}(t)\right]_{t}\right\|= \\
& =\frac{1}{\pi}\left(\frac{\pi}{2}\right)^{\frac{1}{2}} \frac{1}{2^{n}}\left\|\left[\delta^{(n)} v\left(S K_{1}\right)(x, t), P^{(n-1)} \widehat{U}_{n}\right]\right\|= \\
& =\left(\frac{1}{2 \pi}\right)^{\frac{1}{2}} \frac{1}{2^{n}} \|\left[P^{n-1}\left(\delta^{(n)} v\left(S K_{1}\right)(x, t), \widehat{U}_{n}(t)\right]_{t} \| .\right. \tag{8.38}
\end{align*}
$$

Further,

$$
\left\|K S^{-1} \Pi^{(n-1)} v\right\| \leq\left(\frac{1}{2 \pi}\right)^{\frac{1}{2}} \frac{1}{2^{n}}\left\|P^{(n-1)}\left(\delta^{(n)} v\left(S K_{1}\right)(x, t)\right)\right\|
$$

$\left\|\left(I-P_{n-1}\right) v\right\| \leq\left\|v-P_{n-1} v\right\|$, where $P_{n-1} v$ is the polynomial of the best uniform approximation. If the derivative $v^{(m)} \in \operatorname{Lip} \alpha, 0<\alpha \leq 1$, then by Jackson's theorem,

$$
\left\|v-P_{n-1} v\right\|_{c}=O\left(\frac{1}{n-1}\right)^{m+\alpha}
$$

Thus the following theorem is valid.
Theorem 8.4. If there exists the inverse operator $\left(I+K S^{-1}\right)^{-1}$ mapping $L_{2, \rho_{1}}$ onto itself, the derivative $w^{(m)} \in \operatorname{Lip}_{M} \alpha, 0<\alpha_{1} \leq 1$, and the derivative $\left(\delta^{(n)} v(t)\left(S K_{1}\right)(x, t)\right)_{t}^{(r)} \in \operatorname{Lip}_{M_{1}} \alpha_{1}, 0<\alpha_{1} \leq 1, \forall x \in[-1,1]$, then the estimate

$$
\begin{equation*}
\left\|u-\widetilde{u}_{n, l}\right\|_{L_{2, \rho_{1}}}=O\left(\frac{\ln \pi}{n^{m+\alpha}} \frac{1}{2^{n}} \frac{1}{n^{r+\alpha_{1}}}\right) \tag{8.39}
\end{equation*}
$$

is valid.
This estimate has been obtained under rigid restrictions imposed on the functions $S u,\left(S K_{1}\right)(x, t)$ and $\delta^{(n)}(S u)$, where $\delta^{(n)}(S u)$ is the divided difference of the function $S u$.

Collocation-iterative schemes for the indices $\varkappa=-1$ and $\varkappa=0$ can be considered analogously.
Remark. The result obtained for the equation $(S+K) u=f$ is likewise valid for the general equation $(a+b S+K) u=f$, where a and b are real numbers, $a^{2}+b^{2}=1$. The operator $S^{-1} v=S^{*} v=-\left(1-t^{2}\right)^{-\frac{1}{2}} S\left(1-x^{2}\right)^{\frac{1}{2}} v$ of the projective-iterative method in the general case is replaced by the operator

$$
(a+b S)^{-1} v=(a+b S)^{*} v=a-b(1-t)^{\alpha}(1+t)^{\beta} S(1-x)^{-\alpha}(1+x)^{-\beta}
$$

Numerical Example. For the index $\varkappa=-1$ we consider the singular integral equation

$$
\begin{equation*}
\left.\frac{1}{\pi} \int_{-1}^{1} \frac{u(t) d t}{t-x}+\frac{1}{\pi} \int_{-1}^{1}\left(t^{8} x^{8}+t^{7} x^{7}\right) u(t) d t=f(x), \quad x \in\right]-1,1[\tag{8.40}
\end{equation*}
$$

where $f(x)=\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\left(\frac{3}{128} x^{7}-32 x^{6}+48 x^{4}-18 x^{2}+1\right)$, with the exact solution

$$
u(x)=\varphi_{6}(x)=\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\left(32 x^{5}-32 x^{3}+6 x\right)\left(1-x^{2}\right)^{\frac{1}{2}}
$$

where $\varphi_{k}, k=0,1, \ldots$, is the orthonormal system of functions in $L_{2, \rho_{2}}$, $\rho_{2}=\left(1-x^{2}\right)^{-\frac{1}{2}}$.

We find the fifth approximation

$$
u_{5}(x)=\sum_{k=1}^{5} a_{k} \varphi_{k}(x), \quad \varphi_{k}(x)=\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\left(1-x^{2}\right)^{\frac{1}{2}} U_{k-1}(x),
$$

where $u_{k-1}(x), k=1,2, \ldots$, are the Chebyshev polynomials of the second kind.

The Petrov-Galerkin method provides us with the algebraic system

$$
\begin{equation*}
a_{i}+\sum_{k=1}^{5}\left[K \varphi_{k}, \psi_{i}\right] a_{k}=\left[f, \psi_{i}\right], \quad i=1,2, \ldots, 5, \tag{8.41}
\end{equation*}
$$

$\psi_{k+1}=-\left(\frac{2}{\pi}\right)^{\frac{1}{2}} T_{k-1}(x), k=0,1, \ldots, T_{k}(x)$ are the Chebyshev polynomials of the first kind.

Solution of the above system (calculations are performed to within 10^{-7}) yields $a_{1}=-0.0128344, a_{2}=-0.0003810, a_{3}=-0.0077006, a_{4}=$ $-0.0001905, a_{5}=-0.0025327$.

$$
w_{5} \equiv S u_{5}=\sum_{k=1}^{5} a_{k} \psi_{k} \quad\left(S \varphi_{k}=\psi_{k}, \quad k=1,2, \ldots\right)
$$

Then we take the iteration

$$
\widetilde{w}_{5}=-K S^{-1} w_{5}+f=-K u_{5}+f
$$

and calculate

$$
\begin{gathered}
\widetilde{u}_{5}=S^{-1} \widetilde{w}_{5}=\frac{\left(1-t^{2}\right)^{\frac{1}{2}}}{\pi} \int_{-1}^{1} \frac{\left(1-x^{2}\right)^{-\frac{1}{2}} \widetilde{w}_{5}(x)}{t-x} d x= \\
=-0.0128344 \varphi_{1}-0.0003810 \varphi_{2}-0.0077006 \varphi_{3}-0.0001905 \varphi_{4}- \\
-0.0025668 \varphi_{5}+0.9999456 \varphi_{6}-0.0003666 \varphi_{7}-0.00000068 \varphi_{8}
\end{gathered}
$$

Next, we calculate the residual

$$
\begin{gathered}
r_{0}(x)=f(x)-\widetilde{w}_{5}(x)-K S^{-1} \widetilde{w}_{5}(t)= \\
=f(x)-\left(-K u_{5}+f(x)\right)-K \widetilde{u}_{5}=K u_{5}-K \widetilde{u}_{5}
\end{gathered}
$$

by means of which we find $\left[r_{0}, \psi_{i}\right], i=1,2, \ldots, 5$, and then compose the algebraic system

$$
\begin{equation*}
a_{i}^{(1)}+\sum_{k=1}^{n} a_{k}^{(1)}\left[K \varphi_{k}, \psi_{i}\right]=\left[r_{0}, \psi_{i}\right], \quad i=1,2, \ldots, 5 . \tag{8.42}
\end{equation*}
$$

(The equations (8.41) and (8.42) differ by their right-hand sides only.)
Solving the system (8.42), we arrive at

$$
\begin{gathered}
a_{1}^{(1)}=0.0128327, \quad a_{2}^{1}=0.0003564, \quad a_{3}^{(1)}=0.0076996, \\
a_{4}^{(1)}=0.0001782, \quad a_{5}^{(1)}=0.0012529
\end{gathered}
$$

An approximate solution is

$$
u_{5}^{(1)}(x)=\sum_{k=1}^{5} a_{k}^{(1)} \varphi_{k}(x) .
$$

Again, we take the iteration

$$
\widetilde{w}_{5}^{(1)}=-K S^{-1} w_{5}^{(1)}+r_{0}=-K u_{5}^{(1)}+r_{0}, \quad w_{5}^{(1)}=S u_{5}^{(1)}=\sum_{k=1}^{5} a_{k}^{(1)} \psi_{k}
$$

and calculate

$$
\begin{aligned}
& \quad \widetilde{u}_{5}^{(1)}=S^{-1} \widetilde{w}_{5}^{(1)}=\frac{\left(1-t^{2}\right)^{\frac{1}{2}}}{\pi} \int_{-1}^{1} \frac{\left(1-x^{2}\right)^{-\frac{1}{2}} \widetilde{w}_{5}^{(1)}(x) d x}{t-x}= \\
& =0.0128376 \varphi_{1}+0.0003564 \varphi_{2}+0.0077026 \varphi_{3}+0.0001782 \varphi_{4}+ \\
& +0.0025675 \varphi_{5}+0.0000509 \varphi_{6}+0.0003668 \varphi_{7}+0.0000069 \varphi_{8}
\end{aligned}
$$

The projective-iterative method for the cycle $l=1$ provides us with the approximate solution

$$
\begin{gathered}
\widetilde{u}_{5,1}=\widetilde{u}_{5}+\widetilde{u}_{5}^{(1)}=0.0000032 \varphi_{1}-0.0000246 \varphi_{2}+0.0000020 \varphi_{3}- \\
-0.0000123 \varphi_{4}+0.0000007 \varphi_{5}+0.9999547 \varphi_{6}+ \\
+0.0000002 \varphi_{7}+0.0000001 \varphi_{8}
\end{gathered}
$$

In the norm of the space $L_{2, \rho_{2}}$, for the relative error we obtain

1) $\frac{\left\|\Delta u_{5}(x)\right\|}{\|u\|} \approx 100.01151 \%$;
2) $\frac{\left\|\Delta \bar{u}_{5}(x)\right\|}{\|u\|} \approx 1.51855 \%$;
3) $\frac{\left\|\Delta \widetilde{u}_{5.1}(x)\right\|}{\|u\|} \approx 0.00476 \%,\|u\|=1$,
$\|\cdot\|$ is the norm of the space $L_{2, \rho_{2}}, \rho_{2}=\left(1-x^{2}\right)^{-\frac{1}{2}}$.
The above example can be solved by means of the collocation-iterative method as well. An approximate solution is again sought in the form

$$
u_{5}(x)=\sum_{k=1}^{5} a_{k} \varphi_{k}(x), \quad \varphi_{k}(x)=\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\left(1-x^{2}\right)^{\frac{1}{2}} U_{k-1}(x),
$$

and the algebraic system (4.20) yields

$$
\begin{gather*}
a_{0}\left(-\widehat{T}_{0}\right)+\sum_{k=1}^{5} a_{k}\left(-\widehat{T}_{k}\left(x_{j}\right)\right)+\sum_{k=1}^{5} a_{k}\left(K \varphi_{k}\right)\left(x_{j}\right)=f\left(x_{j}\right) \tag{8.43}\\
j=0,1, \ldots, 5
\end{gather*}
$$

where the collocation points $x_{0}, x_{1}, \ldots, x_{5}$ are the roots of the Chebyshev polynomial $T_{n+1}(x)(n=5)$,

$$
x_{j}=\cos \frac{2 j+1}{2(n+1)}, \quad j=0,1, \ldots, 5
$$

Solving the system (8.43), we find $u_{5}(x)$. Repeating the cycle, we find $\widetilde{u}_{5}(x)$ and $\widetilde{u}_{5,1}(x)$. We obtain relative errors in the norm of the space $L_{2, \rho_{2}}$:

1) $\frac{\left\|\Delta u_{5}\right\|}{\|u\|} \approx 100.02931 \%$;
2) $\frac{\left\|\Delta \widetilde{u}_{5}\right\|}{\|u\|} \approx 1.59781 \%$;
3) $\frac{\left\|\Delta \widetilde{u}_{5,1}\right\|}{\|u\|} \approx 0.06325 \%$.

The relative errors $\frac{\left\|u-u_{5}\right\|}{\|u\|}$ of the projective and collocation methods are approximately equal to 100%. This is natural, because an approximate solution is sought in the form of a combination of $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{5}$, and the exact solution $u=\varphi_{6}$; the system $\left\{\varphi_{k}\right\}$ is orthonormal.

Numerical calculations were performed by G. G. Khvedelidze. The pro-jective-iterative methods quoted in Section 8 are presented in [29] and [31].

9. Stability of the Projective-Iterative Method

In this section we investigate the stability of the projective-iterative method for the singular integral equation

$$
\begin{equation*}
S u+K u=f \tag{9.1}
\end{equation*}
$$

The scheme of approximate solution is proposed and investigated in Section 8.

The projective-iterative method has been considered in [26] for the operator equation of the second kind

$$
\begin{equation*}
u+T u=f, \quad u, f \in E \tag{9.2}
\end{equation*}
$$

where T is a completely continuous operator in the Banach space E.
An approximate solution u_{n} by the Galerkin method satisfies the equation

$$
\begin{equation*}
u_{n}+P_{n} T u_{n}=P_{n} f, \quad u_{n} \in E_{n} \tag{9.3}
\end{equation*}
$$

here $\left\{P_{n}\right\}$ and $\left\{E_{n}\right\}$ are the sequences of projectors and subspaces, respectively. An approximate solution is sought in the form

$$
u_{n}=\sum_{k=1}^{n} a_{k} \varphi_{k},
$$

where $\varphi_{1}, \varphi_{2}, \ldots$ is the basis system. If E is a Hilbert space, then the equation (9.3) can be written as

$$
\begin{equation*}
\sum_{k=1}^{n}\left((I+T) \varphi_{k}, \varphi_{i}\right) a_{k}=\left(f, \varphi_{i}\right), \quad i=1,2, \ldots, n \tag{9.4}
\end{equation*}
$$

In practice, when defining scalar products $\left((I+T) \varphi_{k}, \varphi_{i}\right)$ and $\left(f, \varphi_{i}\right), k$, $i=1,2, \ldots, n$ there may take place the errors $\gamma_{i k}$ and δ_{i}. Naturally, there arises the question as to how these errors affect the approximate solution u_{n}. For the projective method, this question has been investigated by many authors (see, e.g., [32], [33], [34]). For the projective-iterative scheme, the question on the stability has been considered by the author in [35].

We introduce the following notation: H is a Hilbert space, $\Gamma_{n} \equiv\left(\gamma_{i k}\right)_{i, k=1}^{n}$ is the error matrix, and $\delta^{(n)} \equiv\left(\delta_{1}, \ldots, \delta_{n}\right)$ is the error vector. In practice, instead of (9.3) we have a perturbed approximate equation

$$
\begin{equation*}
\left(I+P_{n} T+\Delta_{n}\right) v_{n}=P_{n} f+\Delta\left(P_{n} f\right), \quad v_{n} \in H_{n} \tag{9.5}
\end{equation*}
$$

where the operator Δ_{n} corresponds to the error matrix Γ_{n}, and $\Delta\left(P_{n} f\right)$ to the error vector $\delta^{(n)}, H_{n}$ is the linear span of the elements $\varphi_{1}, \ldots, \varphi_{n}$.

In the projective-iterative method, for every cycle j we have the exact equation

$$
\begin{equation*}
(I+T) u^{j}=r_{j-1}, \quad u^{j}, r_{j-1} \in H, \quad j=0,1, \ldots, l, \tag{9.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& r_{j-1} \equiv f-\widetilde{u}_{n, j-1}-T \widetilde{u}_{n, j-1}=(I+T)\left(u-\widetilde{u}_{n, j-1}\right) \\
& \widetilde{u}_{n, j-1}=\widetilde{u}_{n}+\widetilde{u}_{n}^{1}+\cdots+\widetilde{u}_{n}^{j-1}, \quad \widetilde{u}_{n}^{j}=-T u_{n}^{j}+r_{j-1}
\end{aligned}
$$

and the corresponding approximate equation

$$
\begin{gather*}
u_{n}^{j}+P_{n} T u_{n}^{j}=P_{n} r_{j-1}, \quad u_{n}^{j} \in H_{n}, \quad j=0,1, \ldots, l \tag{9.7}\\
\left(r_{-1}=f, \quad u_{n}^{0}=u_{n}\right) .
\end{gather*}
$$

For perturbation we have

$$
\begin{align*}
& \quad\left(I+P_{n} T+\Delta_{n}\right) v_{n}^{j}=P_{n} \widetilde{r}_{j-1}+\Delta\left(P_{n} \widetilde{r}_{j-1}\right)=P_{n} r_{j-1}+ \\
& +P_{n}\left(\widetilde{r}_{j-1}-r_{j-1}\right)+\Delta\left(P_{n} \widetilde{r}_{j-1}\right), \quad v_{n}^{j} \in H_{n}, \quad j=0,1, \ldots, l, \tag{9.8}
\end{align*}
$$

where

$$
\begin{gathered}
\widetilde{r}_{j-1} \equiv f-\widetilde{v}_{n, j-1}-T \widetilde{v}_{n, j-1}, \quad \widetilde{v}_{n, j-1}=\widetilde{v}_{n}+\widetilde{v}_{n}^{1}+\cdots+\widetilde{v}_{n}^{j-1} \\
\widetilde{v}_{n}^{j}=-T v_{n}^{j}+\widetilde{r}_{j-1}, \quad j=0,1, \ldots, l \quad\left(\widetilde{r}_{-1}=f\right)
\end{gathered}
$$

Indeed, the perturbation Δ_{n} of the operator $I+P_{n} T$ for every cycle remains unchanged, but the right-hand side with the additional term $P_{n}\left(\widetilde{r}_{j-1}-r_{j-1}\right)$ varies. Thus

$$
\begin{gathered}
\widetilde{r}_{j-1}-r_{j-1}=\left(f-\widetilde{v}_{n, j-1}-T \widetilde{v}_{n, j}\right)-\left(f-\widetilde{u}_{n, j-1}\right)-T \widetilde{u}_{n, j-1}= \\
=(I+T)\left(\widetilde{v}_{n, j-1}-\widetilde{u}_{n, j-1}\right) \neq 0, \quad j=1,2, \ldots, l .
\end{gathered}
$$

The equations (9.7) and (9.8) result in

$$
\begin{align*}
& \left(I+P_{n} T+\Delta_{n}\right)\left(v_{n}^{j}-u_{n}^{j}\right)=P_{n}\left(\widetilde{r}_{j-1}-r_{j-1}\right)+ \\
& \quad+\Delta\left(P_{n} \widetilde{r}_{j-1}\right)-\Delta_{n} u_{n}^{j}, \quad j=0,1, \ldots, l \quad\left(\widetilde{r}_{-1}=r_{-1}=f\right) \tag{9.9}
\end{align*}
$$

If the operator $I+T$ is continuously invertible and $\left\|P^{(n)} T\right\|_{n \rightarrow \infty} \rightarrow 0$ $\left(P^{(n)} \equiv I-P_{n}\right)$, then $\left\|\left(I+P_{n} T\right)^{-1}\right\| \leq C, n \geq n_{0}$.

Let $A_{n} \equiv I+P_{n} T+\Delta_{n}$. If $C\left\|\Delta_{n}\right\| \leq \beta, \beta \in(0,1)$, i.e., $\left\|\Delta_{n}\right\| \leq \beta / C \equiv r$, we have

$$
\begin{equation*}
\left\|A_{n}^{-1}\right\| \leq \frac{C}{1-\beta}, \quad n \geq n_{0} \tag{9.10}
\end{equation*}
$$

From the equation (9.9) we have

$$
\begin{gather*}
v_{n}^{j}-u_{n}^{j}=A_{n}^{-1}\left[P_{n}\left(\widetilde{r}_{j-1}-r_{j-1}\right)+\Delta\left(P_{n} \widetilde{r}_{j-1}\right)-\Delta_{n} u_{n}^{j}\right] \tag{9.11}\\
j=0,1, \ldots, l, \quad n \geq n_{0} .
\end{gather*}
$$

To determine the stability of the projective-iterative method and to find the conditions of stability, we present here auxiliary lemmas. Lemmas 1,2 and 4 are proved by the method of mathematical induction.

Lemma 1. The formula

$$
\begin{equation*}
\widetilde{v}_{n l}-\widetilde{u}_{n, l}=\sum_{k=0}^{l}(-T)^{l+1-k}\left(v_{n}^{k}-u_{n}^{k}\right), \quad l=0,1, \ldots, \tag{9.12}
\end{equation*}
$$

is valid.
Proof. For $l=0$ we have $\widetilde{v}_{n_{0}}=\widetilde{v}_{n}, \widetilde{u}_{n_{0}}=\widetilde{u}_{n}, v_{n}^{0}=v_{n}, u_{n}^{0}=u_{n}, \widetilde{v}_{n}=$ $-T v_{n}+f, \widetilde{u}_{n}=-T u_{n}+f$, and hence

$$
\widetilde{v}_{n_{0}}-\widetilde{u}_{n, 0}=-T\left(v_{n}^{0}-u_{n}^{0}\right) .
$$

Suppose that the equation (9.12) is valid and prove it for $l+1$. We have

$$
\begin{aligned}
& \widetilde{v}_{n, l+1}-\widetilde{u}_{n, l+1}=\widetilde{v}_{n l}-\widetilde{u}_{n, l}+\widetilde{v}_{n}^{l+1}-\widetilde{u}_{n}^{l+1}= \\
& =\widetilde{v}_{n l}-\widetilde{u}_{n l}+\left(-T v_{n}^{l+1}+\widetilde{r}_{l}\right)-\left(-T u_{n}^{l+1}+r_{l}\right)= \\
& \quad=\widetilde{v}_{n l}-\widetilde{u}_{n l}-T\left(v_{n}^{l+1}-u_{n}^{l+1}\right)+\left(\widetilde{r}_{l}-r_{l}\right) .
\end{aligned}
$$

Further,

$$
\widetilde{r}_{l}-r_{l}=\left(f-\widetilde{v}_{n l}-T \widetilde{v}_{n l}\right)-\left(f-\widetilde{u}_{n l}-T \widetilde{u}_{n l}\right)=-(I+T)\left(\widetilde{v}_{n l}-\widetilde{u}_{n l}\right) .
$$

Therefore

$$
\begin{gathered}
\widetilde{v}_{n, l+1}-\widetilde{u}_{n, l+1}=-T\left(\widetilde{v}_{n l}-\widetilde{u}_{n l}\right)-T\left(v_{n}^{l+1}-u_{n}^{l+1}\right)= \\
=-T \sum_{k=0}^{l}(-T)^{l+1-k}\left(v_{n}^{k}-u_{n}^{k}\right)-T\left(v_{n}^{l+1}-u_{n}^{l+1}\right)= \\
=\sum_{k=0}^{l+1}(-T)^{l+2-k}\left(v_{n}^{k}-u_{n}^{k}\right) .
\end{gathered}
$$

The lemma is proved.
Lemma 2. The formula

$$
\begin{gather*}
\widetilde{r}_{l}-r_{l}=L \sum_{k=-1}^{l-1}\left(-T+A_{n}^{-1} P_{n} L\right)^{l-1-k} A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}-\Delta_{n} u_{n}^{k+1}\right)\right] \tag{9.13}\\
l=0,1, \ldots \quad\left(L \equiv T+T^{2}, \quad \widetilde{r}_{-1}=r_{-1}=0\right)
\end{gather*}
$$

is valid.
Proof. For $l=0$ we have

$$
\begin{aligned}
& \widetilde{r}_{0}-r_{0}=\left(f-\widetilde{v}_{n}\right)-T \widetilde{v}-\left(f-\widetilde{u}_{n}-T \widetilde{u}_{n}\right)=-(I+T)\left(\widetilde{v}_{n}-\widetilde{u}_{n}\right)= \\
& =-(I+T)(-T)\left(v_{n}-u_{n}\right)=L\left(v_{n}-u_{n}\right)=L A_{n}^{-1}\left[\Delta\left(P_{n} f\right)-\Delta_{n} u_{n}\right]
\end{aligned}
$$

For $l+1$,

$$
\begin{gathered}
\widetilde{r}_{l+1}-r_{l+1}=\left[f-(I+T) \widetilde{v}_{n, l+1}\right]-\left[f-(I+T) \widetilde{u}_{n, l+1}\right]= \\
=-(I+T)\left(\widetilde{v}_{n, l+1}-\widetilde{u}_{n, l+1}\right)=-(I+T)\left(\widetilde{v}_{n l}-\widetilde{u}_{n l}\right)- \\
-(I+T)\left(\widetilde{v}_{n}^{l+1}-\widetilde{u}_{n}^{l+1}\right) .
\end{gathered}
$$

Taking into account (9.11) and the type of the expression $\widetilde{v}_{n}^{l+1}-\widetilde{u}_{n}^{l+1}$, we get

$$
\begin{gathered}
\widetilde{r}_{l+1}-r_{l+1}=\widetilde{r}_{l}-r_{l}-(I-T)\left[(-T)\left(v_{n}^{l+1}-u_{n}^{l+1}\right)+\left(\widetilde{r}_{l}-r_{l}\right)\right]= \\
=L\left(v_{n}^{l+1}-u_{n}^{l+1}\right)-T\left(\widetilde{r}_{l}-r_{l}\right)=L A_{n}^{-1}\left[P_{n}\left(\widetilde{r}_{l}-r_{l}\right)+\right. \\
\left.+\Delta\left(P_{n} \widetilde{r}_{l}\right)-\Delta_{n} u_{n}^{l+1}\right]-T\left(\widetilde{r}_{l}-r_{l}\right) .
\end{gathered}
$$

Thus we obtain the recurrence formula

$$
\widetilde{r}_{l+1}-r_{l+1}=\left(-T+L A_{n}^{-1} P_{n}\right)\left(\widetilde{r}_{l}-r_{l}\right)+L A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{l}\right)-\Delta_{n} u_{n}^{l+1}\right] .
$$

Next, we have

$$
\begin{gathered}
\widetilde{r}_{l+1}-r_{l+1}= \\
=\left(-T+L A_{n}^{-1} P_{n}\right) L \sum_{k=-1}^{l-1}\left(-T+A_{n}^{-1} P_{n} L\right)^{l-1-k} A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}\right)-\Delta_{n} u_{n}^{k+1}\right]+
\end{gathered}
$$

$$
\begin{gathered}
+L A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{l}\right)-\Delta_{n} u_{n}^{l+1}\right]= \\
=L \sum_{k=-1}^{l}\left(-T+A_{n}^{-1} P_{n} L\right)^{l-k} A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}\right)-\Delta_{n} u_{n}^{k+1}\right]
\end{gathered}
$$

(the operators L and T are commutative).
Lemma 3. The following formula is valid:

$$
\begin{gather*}
v_{n}^{l}-u_{n}^{l}=A_{n}^{-1} P_{n} L \sum_{k=-1}^{l-2}\left(-T+A_{n}^{-1} P_{n} L\right)^{l-2-k} A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}\right)-\Delta_{n} u_{n}^{k+1}\right]+ \\
+A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{l-1}\right)-\Delta_{n} u_{n}^{l}\right] \tag{9.14}
\end{gather*}
$$

$l=0,1, \ldots($ for $l=0$ only the second summand remains $)$.
Proof. On the basis of the formula (9.11) and Lemma 2, we have

$$
\begin{gathered}
v_{n}^{l}-u_{n}^{l}=A_{n}^{-1}\left[P_{n}\left(\widetilde{r}_{l-1}-r_{l-1}\right)+\Delta\left(P_{n} \widetilde{r}_{l-1}\right)-\Delta_{n} u_{n}^{l}\right]= \\
=A_{n}^{-1} P_{n} L \sum_{k=-1}^{l-2}\left(-T+A_{n}^{-1} P_{n} L\right)^{l-2-k} A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}\right)-\Delta_{n} u_{n}^{k+1}\right]+ \\
+A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{l-1}\right)-\Delta_{n} u_{n}^{l}\right]
\end{gathered}
$$

The lemma is proved.
Lemma 4. The formula

$$
\begin{gather*}
\widetilde{v}_{n l}-\widetilde{u}_{n l}=-T \sum_{k=-1}^{l-1}\left(-T+A_{n}^{-1} P_{n} L\right)^{l-1-k} A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}\right)-\Delta_{n} u_{n}^{k+1}\right] \tag{9.15}\\
l=0,1, \ldots \quad\left(L=T+T^{2}\right)
\end{gather*}
$$

is valid.
Proof. For $l=0$ we have

$$
\widetilde{v}_{n_{0}}-\widetilde{u}_{n_{0}}=-T\left(v_{n}-u_{n}\right)=-T A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{-1}\right)-\Delta_{n} u_{n}\right] \quad\left(\widetilde{r}_{-1}=f\right) .
$$

For $l+1$, relying on Lemma 3, we obtain

$$
\begin{gathered}
\widetilde{v}_{n, l+1}-\widetilde{u}_{n, l+1}=\widetilde{v}_{n l}-\widetilde{u}_{n l}-T\left(v_{n}^{l+1}-u_{n}^{l+1}\right)+\left(\widetilde{r}_{l}-r_{l}\right)= \\
=\widetilde{v}_{n l}-\widetilde{u}_{n l}-T\left(v_{n}^{l+1}-u_{n}^{l+1}\right)-(I+T)\left(\widetilde{v}_{n l}-\widetilde{u}_{n l}\right)= \\
=-T\left(\widetilde{v}_{n l}-\widetilde{u}_{n l}\right)-T\left(v_{n}^{l+1}-u_{n}^{l+1}\right)= \\
=-T\left\{-T \sum_{k=-1}^{l-1}\left(-T+A_{n}^{-1} P_{n} L\right)^{l-1-k} A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}\right)-\Delta_{n} u_{n}^{k+1}\right]\right\}- \\
-T\left\{A_{n}^{-1} P_{n} L \sum_{k=-1}^{l-1}\left(-T+A_{n}^{-1} P_{n} L\right)^{l-1-k} A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}\right)-\Delta_{n} u_{n}^{k+1}\right]+\right. \\
\left.+A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{l}\right)-\Delta_{n} u_{n}^{l+1}\right]\right\}=
\end{gathered}
$$

$$
\begin{gathered}
=-T \sum_{k=-1}^{l-1}\left(-T+A_{n}^{-1} P_{n} L\right)^{l-k} A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}\right)-\Delta_{n} u_{n}^{k+1}\right]- \\
-T A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{l}\right)-\Delta_{n} u_{n}^{l+1}\right]= \\
=-T \sum_{k=-1}^{l}\left(-T+A_{n}^{-1} P_{n} L\right)^{l-k} A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}\right)-\Delta_{n} u_{n}^{k+1}\right] .
\end{gathered}
$$

Lemma is proved.
Lemma 5. The solutions $u_{n}^{j}, j=0,1, \ldots, l, n \geq n_{0}$, of the equation (9.7) are uniformly bounded.

Proof. For $n \geq n_{0}$, from the equation (9.7) we have

$$
\begin{aligned}
& u_{n}^{j}=\left(I+P_{n} T\right)^{-1} P_{n} r_{j-1}=\left(I+P_{n} T\right)^{-1} P_{n}(I+T)\left(u-\widetilde{u}_{n, j-1}\right) \\
& \left\|u_{n}^{j}\right\| \leq C\|I+T\|\left\|u-\widetilde{u}_{n, l-1}\right\|_{n \rightarrow \infty} \rightarrow 0 \quad \text { as } \quad\left\|P^{(n)} u\right\|_{n \rightarrow \infty} \rightarrow 0 .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\|u_{n}^{j}\right\| \leq D(u), \quad n \geq n_{0}, \quad j=0,1, \ldots, l \tag{9.16}
\end{equation*}
$$

here D is a constant depending on u.
It is assumed that the following conditions for the convergence are fulfilled: a) invertibility of the operator $I+T$; b) completeness of the coordinate system $\varphi_{1}, \varphi_{2}, \ldots ;$ c) linear independence of $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$; d) $\left\|P^{(n)} T\right\|_{n \rightarrow \infty} \rightarrow 0\left(P^{(n)} \equiv I-P_{n}\right)$. If these conditions are fulfilled, we can formulate the problem of stability.

The solutions obtained by means of the projective-iterative scheme do not, in general, belong to the linear span H_{n} of the elements $\varphi_{1}, \ldots, \varphi_{n}$. For convergence of the sequence $\left\{\widetilde{u}_{n, l}\right\}, n=1,2, \ldots, l, l$ is fixed, of approximate solutions of the projective-iterative method, it is necessary that $\left\|T P^{(n)}\right\|_{n \rightarrow \infty} \rightarrow 0$.

Consider first the stability of the projective-iterative method from the theoretical point of view. The norm on H_{n} is induced, $\left\|w_{n}\right\|_{H_{n}}=\left\|w_{n}\right\|_{H}$, $w_{n} \in H_{n}$.

Definition 1. The projective-iterative method is said to be stable from the space H_{n} to H, if there exist independent of n constants $r>0, C_{1}^{(l)}>0$ and $C_{2}^{(l)}>0$ such that for $\left\|\Delta_{n}\right\| \leq r$ the perturbed approximate equations (9.8) have unique solutions $v_{n}^{j}, j=0,1, \ldots, l$, and the estimate

$$
\begin{equation*}
\left\|\widetilde{v}_{n l}-\widetilde{u}_{n l}\right\|_{H} \leq C_{1}^{(l)} \max _{-1 \leq k \leq l-1}\left\|\Delta\left(P_{n} \widetilde{r}_{k}\right)\right\|_{H_{n}}+C_{2}^{(l)}\left\|\Delta_{n}\right\|_{H_{n}} \tag{9.17}
\end{equation*}
$$

is valid.
Theorem 9.1. For the stability of the projective-iterative method in terms of Definition 1 the conditions of its convergence are sufficient.

Proof. From the estimates (9.10), (9.16) and Lemma 4 we obtain (9.17), where

$$
C_{1}^{(l)} \equiv \frac{\|T\| C}{1-\beta} \sum_{k=-1}^{l-1}\left(\|T\|+\frac{C}{1-\beta}\left\|T+T^{2}\right\|\right)^{l-1-k}, \quad C_{2}^{(l)} \equiv C_{1}^{(l)} D(u)
$$

Consider now the stability from the Euclidean space $R_{n}\left(l_{2}^{(n)}\right)$ to H. The norm of the vector $\tau^{(n)} \in l_{2}^{(n)}$ has the form $\left\|\tau^{(n)}\right\|=\left(\sum_{k=1}^{n} \tau_{k}^{2}\right)^{\frac{1}{2}}$.

We write the equations (9.3) and (9.5) in matrix form and suppose

$$
\begin{gathered}
B_{n} \equiv\left((I+T) \varphi_{k}, \varphi_{i}\right)_{i, k=1}^{n}, \quad \Gamma_{n} \equiv\left(\gamma_{i k}\right)_{i, k=1}^{n}, \quad a^{(n)} \equiv\left(a_{1}, \ldots, a_{n}\right)^{T} \\
f^{(n)} \equiv\left[\left(f, \varphi_{1}\right), \ldots,\left(f, \varphi_{n}\right)\right]^{T}, \quad \delta^{(n)} \equiv\left(\delta_{1}, \ldots, \delta_{n}\right)^{T} \\
b^{(n)} \equiv\left(b_{1}, \ldots, b_{n}\right)^{T}, \quad v_{n}=\sum_{k=1}^{n} b_{k} \varphi_{k}
\end{gathered}
$$

We have

$$
\begin{gather*}
B_{n} a^{(n)}=f^{(n)}, \quad a^{(n)}, f^{(n)} \in l_{2}^{(n)}, \tag{9.18}\\
\left(B_{n}+\Gamma_{n}\right) b^{(n)}=f^{(n)}+\delta^{(n)}, \quad b^{(n)}, f^{(n)}, \delta^{(n)} \in l_{2}^{(n)} . \tag{9.19}
\end{gather*}
$$

In the case of the Bubnov-Galerkin method, the passage from (9.18), (9.19) to (9.3), (9.5) can be realized as follows: the orthoprojectors $P_{n} v=\sum_{k=1}^{n} \beta_{k} \varphi_{k}$, where $\beta_{1}, \ldots, \beta_{n}$, are defined from the condition

$$
\left\|v-\sum_{k=1}^{n} \beta_{k} \varphi_{k}\right\|_{H}^{2}=\min
$$

Thus we obtain the linear algebraic system

$$
\sum_{k=1}^{n} \beta_{k}\left(\varphi_{k}, \varphi_{i}\right)=\left(v, \varphi_{i}\right), \quad i=1, \ldots, n
$$

We denote by $\phi_{n} \equiv\left(\varphi_{k}, \varphi_{i}\right)_{i, k=1}^{n}$ the matrix of the above system. Hence we have

$$
\phi_{n} \beta^{(n)}=v^{(n)}, \quad \beta^{(n)} \equiv\left(\beta_{1}, \ldots, \beta_{n}\right)^{T}, \quad v^{(n)}=\left[\left(v, \varphi_{1}\right), \ldots,\left(v, \varphi_{n}\right)\right]^{T} .
$$

Introduce the operator

$$
S_{n} v_{n} \equiv S_{n} \sum_{k=1}^{n} \tau_{k} \varphi_{k}=\tau^{(n)}, \quad \tau^{(n)} \in l_{2}^{(n)}, \quad v_{n} \in H_{n}
$$

When the elements $\varphi_{1}, \ldots, \varphi_{n}$ are linearly independent, there exist ϕ_{n}^{-1} and S_{n}^{-1}. Thus

$$
P_{n} v=S_{n}^{-1} \phi_{n}^{-1} v^{(n)}, \quad v^{(n)} \in l_{2}^{(n)}, \quad P_{n} v \in H_{n}
$$

Using this notation we can write the equations (9.3) and (9.5) in the form

$$
\begin{equation*}
S_{n}^{-1} \phi_{n}^{-1} B_{n} S_{n} u_{n}=S_{n}^{-1} \phi_{n}^{-1} f^{(n)} \tag{9.20}
\end{equation*}
$$

$$
\begin{equation*}
S_{n}^{-1} \phi_{n}^{-1}\left(B_{n}+\Gamma_{n}\right) S_{n} v_{n}=S_{n}^{-1} \phi_{n}^{-1}\left(f^{(n)}+\delta^{(n)}\right) \tag{9.21}
\end{equation*}
$$

and the operators $I+P_{n} T=S_{n}^{-1} \phi_{n}^{-1} B_{n} S_{n}, A_{n} \equiv I+P_{n} T+\Delta_{n}=$ $S_{n}^{-1} \phi_{n}^{-1}\left(B_{n}+\Gamma_{n}\right) S_{n}$.

If the coordinate system $\varphi_{1}, \varphi_{2}, \ldots$ is strongly minimal in H, i.e., the least eigenvalue $\lambda_{1}^{(n)}$ of the symmetric matrix ϕ_{n} satisfies the condition $\lambda_{1}^{(n)} \geq \lambda_{0}>0$, then

$$
\begin{equation*}
\left\|\phi_{n}^{-1}\right\|_{l_{2}^{(n)} \rightarrow l_{2}^{(n)}} \leq \lambda_{0}^{-1}, \quad\left\|S_{n}\right\|_{H_{n} \rightarrow l_{2}^{(n)}} \leq \lambda_{0}^{-\frac{1}{2}} \tag{9.22}
\end{equation*}
$$

Indeed,

$$
\begin{gathered}
\left(w_{n}, w_{n}\right)=\sum_{i, k=1}^{n} \tau_{i} \tau_{k}\left(\varphi_{k}, \varphi_{i}\right)=\left(\phi_{n} \tau^{(n)}, \tau^{(n)}\right) \geq \lambda_{1}^{(n)}\left\|\tau^{(n)}\right\|^{2} \\
\left\|\phi_{n} \tau^{(n)}\right\| \geq \lambda_{1}^{(n)}\left\|\tau^{(n)}\right\| \geq \lambda_{0}\left\|\tau^{(n)}\right\|,\left\|\phi_{n}^{-1}\right\| \leq \lambda_{0}^{-1},\left\|w_{n}\right\| \geq \lambda_{0}^{\frac{1}{2}}\left\|\tau^{(n)}\right\|, \\
w_{n}=S_{n}^{-1} \tau^{(n)}, \quad\left\|S_{n}\right\|_{H_{n} \rightarrow l_{2}^{(n)}} \leq \lambda_{0}^{-\frac{1}{2}}
\end{gathered}
$$

If the eigenvalues of the matrix ϕ_{n} are bounded from above by a number Λ_{0} not dependent on n, then

$$
\begin{equation*}
\left\|\phi_{n}\right\|_{l_{2}^{(n)} \rightarrow l_{2}^{(n)}} \leq \Lambda_{0}, \quad\left\|S_{n}^{-1}\right\|_{l_{2}^{(n)} \rightarrow H_{n}} \leq \Lambda_{0}^{\frac{1}{2}} \tag{9.23}
\end{equation*}
$$

If the eigenvalues of the matrix ϕ_{n} are bounded from above and from below by positive numbers $\Lambda_{0}>0$ and $\lambda_{0}>0$ not dependent on n, then the basis system $\varphi_{1}, \varphi_{2}, \ldots$, is called uniformly linear independent, or almost orthonormal in H ([32], [33]). In [34] the uniformly linear independence is defined by the conditionality number of the matrix

$$
K\left(\phi_{n}\right)=\frac{\lambda_{\max }\left(\phi_{n}\right)}{\lambda_{\min }\left(\phi_{n}\right)}, \quad K\left(\phi_{n}\right) \leq \text { const }, \quad \forall n \in N .
$$

The theorem is proved.
Definition 2. The projective-iterative method is said to be stable from the space $l_{2}^{(n)}$ to H, if there exist independent of n constants $r>0, C_{1}^{(l)}>0$ and $C_{2}^{(l)}>0$ such that for $\left\|\Gamma_{n}\right\| \leq r$ the perturbed approximate equations (9.8) have the unique solutions $v_{n}^{j}, j=0,1, \ldots, l$, and the estimate

$$
\begin{equation*}
\left\|\widetilde{v}_{n l}-\widetilde{u}_{n l}\right\|_{H} \leq C_{1}^{(l)} \max _{-1 \leq k \leq l-1}\left\|\delta^{(n k)}\right\|_{l_{2}^{(n)}}+C_{2}^{(l)}\left\|\Gamma_{n}\right\|_{l_{2}^{(n)}} \tag{9.24}
\end{equation*}
$$

is valid.
Theorem 9.2. The uniform linear independence (almost orthonormality) of the coordinate system $\varphi_{1}, \varphi_{2}, \ldots$ in H is sufficient for the projectiveiterative method to be stable in terms of Definition 2.

Proof. We have

$$
B_{n}^{-1}=S_{n}\left(I+P_{n} T\right)^{-1} S_{n}^{-1} \phi_{n}^{-1}, \quad n \geq n_{0} .
$$

Taking into account $(9.22),(9.23)$ and the fact that $\left\|\left(I-P_{n} T\right)^{-1}\right\| \leq C$, $n \geq n_{0}$, we find that

$$
\left\|B_{n}^{-1}\right\| \leq C \lambda_{0}^{-\frac{3}{2}} \Lambda_{0}^{\frac{1}{2}} \equiv C_{1}, \quad n \geq n_{0}
$$

For $C_{1}\left\|\Gamma_{n}\right\| \leq \beta<1$, i.e., when $\left\|\Gamma_{n}\right\| \leq \frac{\beta}{C_{1}} \equiv r$, we obtain

$$
\begin{equation*}
\left\|\left(B_{n}+\Gamma_{n}\right)^{-1}\right\| \leq\left\|B_{n}^{-1}\right\|\left\|\left(I+B_{n}^{-1} \Gamma_{n}\right)^{-1}\right\| \leq \frac{C_{1}}{1-\beta}, \quad n \geq n_{0} \tag{9.25}
\end{equation*}
$$

Further, taking into account the type of the operator A_{n}, we find that

$$
A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}\right)-\Delta_{n} u_{n}^{k+1}\right]=S_{n}^{-1}\left(B_{n}+\Gamma_{n}\right)^{-1}\left(\widetilde{\delta}^{(n k)}-\Gamma_{n} S_{n} u_{n}^{k+1}\right)
$$

whence, on the basis of (9.22), (9.23) and (9.25), we have

$$
\begin{equation*}
\left\|A_{n}^{-1}\left[\Delta\left(P_{n} \widetilde{r}_{k}\right)-\Delta_{n} u_{n}^{k+1}\right]\right\|_{H} \leq \frac{C_{1} \Lambda_{0}^{\frac{1}{2}}}{1-\beta}\left(\left\|\widetilde{\delta}^{(n k)}\right\|+\lambda_{0}^{-\frac{1}{2}}\left\|\Gamma_{n}\right\|\left\|u_{n}^{k+1}\right\|\right) \tag{9.26}
\end{equation*}
$$

From (9.15), (9.16) and (9.26) it follows the estimate (9.24), where

$$
\begin{aligned}
& C_{1}^{(l)} \equiv \frac{\Lambda_{0}^{\frac{1}{2}} C_{1}}{1-\beta}\|T\| \sum_{k=-1}^{l-1}\left\|-T+A_{n}^{-1} P_{n} L\right\|^{l-1-k} \\
& C_{2}^{(l)} \equiv C_{1}^{(l)} \lambda_{0}^{-\frac{1}{2}} D(u), \quad\left\|\Gamma_{n}\right\| \leq\left(\sum_{i, k=1}^{n} \gamma_{i k}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

here $\widetilde{\delta}^{n k}$ is the error of the vector $\left[\left(\widetilde{r}_{k}, \varphi_{1}\right), \ldots,\left(\widetilde{r}_{k}, \varphi_{n}\right)\right]$.
Definition 2 and Theorem 9.2 are used directly for the singular integral equations $S u+K u=f$ and $(a+b S+K) u=f$ when they are solved by the projective-iterative method proposed in Section 8. Approximate schemes regularize singular integral equations, and the matter reduces to the operator equation of the second kind $w+K S^{-1} w=f$, where $w=S u$, and $w+K S^{-1} w=f$, where $w=(a+b S)^{-1} u$. Weight spaces $L_{2, \rho}[-1,1]$ are Hilbert ones. Systems of the functions $\left\{\phi_{k}\right\}$ and $\left\{\psi_{k}\right\}$ are orthonormal; $\lambda_{0}=\Lambda_{0}=1$. One should take into account different values of the index $\varkappa=1,-1,0$. For $\varkappa=1$, the domain of definition of the operator $S+K$ $(a+b S+K)$ gets narrower. For $\varkappa=-1$, it is the domain of values of the operator $S+K(a+b S+K)$ that gets narrower.

Lemmas 1-4 are essential in the problem of stability of the projectiveiterative method. In the perturbed equation, unlike the projective method, where only the operator and the right-hand side perturb, there appear additional perturbation caused by mutual connection between the projective scheme and iteration.

The problem on the stability of the collocation and collocation- iterative methods still remains unsolved.

References

1. N. I. Muskhelishvili, Singular Integral Equations. Boundary problems of function theory and their application to mathematical physics. (Russian) Fizmatgiz, Moscow, 1962.
2. B. V. Khvedelidze, Linear discontinuous boundary problems in the theory of functions, singular integral equations and some of their applications. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 23(1956), 3-158.
3. M. A. Lavrent'ev, On the construction of flux flowing around the arc of the given form. (Russian) Trudy CAGI 118(1932), 3-56.
4. I. Ts. Gokhberg and N. Ya. Krupnik, Introduction to the theory of onedimensional singular integral operators. (Russian) Štiinca, Kishinev, 1973.
5. I. S. Berezin and N. P. Zhidkov, Computational methods. (Russian) I. Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959.
6. F. G. Tricomi, On the finite Hilbert transformation. Quart. J. Math., Oxford Ser. (2) 2(1951), 199-211.
7. V. I. Krylov, Approximate calculation of integrals. (Russian) Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959.
8. L. V. Kantorovich and G. P. Akilov, Functional analysis. (Russian) Second edition, revised. Nauka, Moscow, 1977.
9. M. A. Krasnosel'skiĬ, G. M. Vainikko, P. P. Zabreĭko, Ja. B. Rutickĭ̆, and V. Ja. Stecenko, Approximate solution of operator equations. (Russian) Nauka, Moscow, 1969.
10. S. N. Bernstein, Collected works. Vol. III: Differential equations, calculus of variations and geometry (1903-1947). (Russian) Izdat. Akad. Nauk SSSR, Moscow, 1960.
11. G. Szegö, Orthogonal polynomials. (Russian) Fizmatgiz, Moscow, 1962.
12. S. Krenk, On quadrature formulas for singular integral equations of the first and the second kind. Quart. Appl. Math. 33 (1975/76), No. 3, 225-238.
13. G. G. Khvedelidze, An approximate solution of integral equations by projectiveiterative methods. Dissertation for the degree of candidate of the phys.-math. sciences. N. Muskhelishvili Inst. Comput. Math., 2001.
14. I. P. Natanson, Constructive theory of functions. (Russian) GITTL, MoscowLeningrad, 1949.
15. P. Erdös and P. Turan, On interpolation. I. Quadrature- and mean-convergence in the Lagrange-interpolation. Ann. of Math. (2) 38(1937), No. 1, 142-155.
16. A. V. Dzhishkariani, The solution of singular integral equations by approximate projection methods. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 19(1979), 1149-1161; English transl.: USSR Comput. Math. Math. Phys. 19(1980), No. 5, 61-74.
17. A. V. Dzhishkariani, The solution of singular integral equations by collocation methods. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 21(1981), 355-362; English transl.: USSR Comput. Math. Math. Phys. 21(1981), No. 2, 99-107.
18. F. Erdogan and G. D. Gupta, On the numerical solution of singular integral equations. Quart. Appl. Math. 29 (1971/72), 525-534.
19. F. Erdogan, Approximate solutions of systems of singular integral equations. SIAM J. Appl. Math. 17 (1969) 1041-1059.
20. A. V. Dzhishkariani, On the approximate solution of a class of singular integral equations. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 81(1986), 41-49.
21. S. M. Belotserkovskĭ and I. K. Lifanov, Numerical methods in singular integral equations and their application in aerodynamics, elasticity theory and electrodynamics. (Russian) Nauka, Moscow, 1985.
22. J. SANIKIDZE, The approximate computation of singular integrals with summable density by the method of mechanical quadratures. (Russian) Ukrain. Mat. Zh. 22(1970), 106-114.
23. V. V. Panasyuk, M. P. Savruk, and A. P. Datsyshin, Distribution of stresses near cracks in plates and shells. (Russian) Naukova Dumka, Kiev, 1976.
24. R. D. Bantsuri, Contact problems of the plane theory of elasticity and related with them boundary value problems of the theory of functions. (Russian) Abstract of Thesis for the degree of doctor of phys.-math. sciences, Moscow, 1981.
25. A. V. Dzhishkariani, R. D. Bantsuri, T. V. Bochorishvili, and A. I. Svanidze Approximate solution of certain singular integral equations of crack theory. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 75(1984), 46-56.
26. D. Porter and D.S.G. Stirling, The reiterated Galerkin method. IMA J. Numer. Anal. 13(1993), No. 1, 125-139.
27. A. V. Dzhishkariani, The convergence rate of an iterative projection method. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 37(1997), No. 6, 663-669; English transl.: Comput. Math. Math. Phys. 37(1997), No. 6, 646-652.
28. S. G. Mikhlin, Variational methods in mathematical physics. (Russian) Nauka, Moscow, 1970.
29. A. Dzhishkariani and G. Khvedelidze, On projective method of approximate solution of singular integral equations. Georgian Math. J. 3 (1996), No. 5, 457-474.
30. P. K. Suetin, Classical orthogonal polynomials. (Russian) Nauka, Moscow, 1976.
31. A. Dzhishkariani and G. Khvedelidze, Projective-iterative method of solution of integral equations. Proc. A. Razmadze Math. Inst. 120(1999), 27-47.
32. S. G. Mikhlin, Numerical realization of variational methods. (Russian) Nauka, Moscow, 1966.
33. G. I. Marchuk and V. I. Agoshkov, Introduction to projection-grid methods. (Russian) Nauka, Moscow, 1981.
34. G. Streng and Dž. Fiks, The theory of finite element method. (Translated from English into Russian) Mir, Moscow, 1977.
35. A. V. Dzhishkariani, Stability of projection-iterative methods. (Russian) Zh. Vychisl. Mat. i Mat. Phys. 39(1999), No. 7, 1074-1084; English transl.: Comput. Math. Math. Phys. 39(1999), No. 7, 1034-1044.
(Received 15.07.2004)
Author's address:
A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 0193
Georgia

