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A REPRESENTATION OF

SOLUTIONS FOR A SYSTEM OF

COMPLEX DIFFERENTIAL EQUATIONS

IN THE PLANE AND PERIODIC SOLUTIONS



Abstract. In this article, first we will obtain a representation of the
solutions for the system of complex differential equations

wz = A(z, z)w

wz = B(z, z)w, A, B ∈ C1 (G),

which are defined in a simply-connected domain G ⊂ C containing z0 = 0
and satisfying the functional relations

w (z1 + z2) = w (z1) + w (z2) , w (0) = 1; z1, z2, z1 + z2 ∈ G.

Then we will discuss the conditions under which the solutions of the system
are periodic.
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1. Introduction

It is trivial that the function w = ez defined in a domain in C is a
particular solution of the system of differential equations

wz = w,

wz = 0

and the functional relations

w (z1 + z2) = w (z1) + w (z2) , w (0) = 1 (1)

are satisfied for all z1, z2 ∈ C. Tutschke [3] has considered a more general
system

wz = A(z, z)w,

wz = B(z, z)w,
(2)

and obtained the necessary conditions for the solutions to satisfy (1), as

Theorem 1 ([3]). If the coefficients A and B of the system (2) satisfy

A (z0 − z) = A (z) , B (z0 − z) = B (z) , (3)

then every solution of (2) satisfies the functional relation (1) for all z1, z2 ∈
G with z1 + z2 = z0.

The condition (3) means that the coefficients A and B are symmetric
with respect to the point 1

2z0. In that article, Tutschke has investigated the
solutions of (2) satisfying (1) along the straight lines passing through the
origin; thus the argument of the points is considered as constant.

Definition 1. The solutions of the system (2) satisfying the relations
(1) are called pseudoholomorphic exponential functions.

2. A Representation of Solution

Let G ⊂ C be a simply connected domain with smooth boundary and let
z0 = 0 be a point in G. Now, let us look for a solution of the system (2) in
G of the form

w(z) = exp [H(z)] , H ∈ C1 (G) . (4)

Substituting (4) in (2), we find that H(z, z) should satisfy

Hz = A

Hz = B; A, B ∈ C1 (G).
(5)

If w is a solution of the system (2), then Az = Bz should hold. Thus we
can write

dw = wzdz + wzdz = (A dz + B dz) w. (6)

On the other hand, the exact differential of (4) is

dw = exp [H(z)] dH = w dH. (7)

Comparing (6) and (7), we get

dH = A dz + B dz. (8)
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From (8) we find

H(z) =

∫

γ(z0,z)

(A dz + B dz) , z 6= z0, (9)

where γ (z0, z) is a smooth curve in G connecting z0 = 0 to z. Besides,
w (0) = 1 corresponds to H (0) = 0. So we can identify H uniquely. Thus,
we have obtained

Theorem 2. Let G ⊂ C be a simply-connected domain containing the

point z0 = 0. If the function H defined by (9) satisfies the condition H (0) =
0, then

w(z) = exp

[
∫

γ

A dz + B dz

]

(10)

is a solution of the system (2) satisfying w (0) = 1. Furthermore, if the

coefficients A, B satisfy (3), then w(z) satisfies the functional relationship

w (z1 + z2) = w (z1) + w (z2) .

Note. The similar complex system

wz = A exp (−w) ,

wz = B exp (−w)

has been investigated previously [2], and a solution of the form

w (z, z) = log

[
∫

γ(z0,z)

A dz + B dz

]

has been obtained, imposing the condition w (1) = 0.

3. Periodic Solutions

It is well known from complex analysis that the function w(z) = ez

satisfies
w (z + 2nπi) = exp [z + 2nπi] = w(z), n ∈ Z.

In this section, we will investigate the conditions under which the solution
(10) satisfies

w (z + p) = w(z) (11)

for some constant p ∈ C. We have to assume that if z ∈ G, then z + p ∈ G

for p ∈ C. From (10) we can write

w (z + p) = exp

{

z+p
∫

z0

[A(z)dz + B(z)dz]

}

=

= exp

{

z
∫

z0

[A(z)dz + B(z)dz]

}

exp

{

z+p
∫

z

[A(z)dz + B(z)dz]

}

=
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= w(z) exp [H (z + p)−H(z)] .

Thus we can state the following theorem on periodic solutions of the system
(2):

Theorem 3. If the function H(z) defined by (9) satisfies

H (z + p)−H(z) = 2πi, (12)

then the solution w(z) defined by (10) satisfies the property (11) of period-

icity. This solution is unique.

Now let us consider the set

P = {pn ∈ C : n ∈ Z, w (z + pn) = w(z), z + pn ∈ G} .

Corollary 1. If H satisfies the functional relation

H (z + pm)−H(z) = 2mπi, m ∈ Z,

then pm ∈ P . In particular, if H is a linear function, then

H (pm) = 2mπi.

Corollary 2. Let H satisfy (12) and let the coefficients A, B of the

system (2) satisfy (3). Then w(z) = exp H(z) is a single valued solution

satisfying the functional relation (1) and w (z + p) = w(z). Conversely, if

w (z) = exp [H(z)] is a solution of (2) satisfying w (z + p) = w(z), then

H(z) satisfies the functional relation

H (z + pm)−H(z) = 2mπi, m ∈ Z. (13)

However, H(z) cannot be determined uniquely from (13).

Theorem 4. If w(z) = exp H(z) is a periodic solution of the system (2),
then the coefficients A and B are periodic functions with period p.

Proof. Let w(z) = expH(z) be a periodic solution of (2). Then (13) holds.
Let us differentiate both sides of (13) with respect to z and z.

∂H (z + pm)

∂z
−

∂H(z)

∂z
= 0,

∂H (z + pm)

∂z
−

∂H(z)

∂z
= 0,

(14)

which leads to

A (z + pm)−A(z) = 0,

B (z + pm)−B(z) = 0

by (5). But these are the conditions for the coefficients A and B to be
periodic with period pm.



100 K. Koca and A. O. Çelebi

Example 1. Let the coefficients of A and B of (2) be complex constants
subject to |A| 6= |B|. Then from (9) we have

H(z) = A z + B z

and

w(z) = exp (A z + B z)

is obtained. This solution fulfills the requirements

w (z1 + z2) = w (z1) w (z2) ,

w (0) = 1.

Also, we can find by (13) that

A pm + B pm = 2mπi, m ∈ Z,

that is,

pm =
2mπi

(

A + B
)

|A|
2
− |B|

2 , m ∈ Z. (15)

On the other hand, since we can write

pm =
m

n
pn

for every m, n ∈ Z, n 6= 0, the period pm is simple (see [1]).

Note. If |A| = |B|, we still can determine the period pm by a simple
computation as

pm =
imπ

(

1 + e−iθ
)

A

|A|2 (1 + cos θ)
,

where A 6= 0, m ∈ Z.

Example 2. Let h be a complex valued function of y = Im z subject
to h (−y) = h (y). Let us assume that the coefficients A and B of (2) are
given as

A(z) = c1 + h (y) ,

B(z) = c2 − h (y) ,
(16)

where c1, c2 ∈ C are constants. In this case the solubility condition Az = Bz

holds. Thus (9) yields

H(z) =

z
∫

z0

{[c1 + h (y)] dz + [c2 − h (y)] dz} =

= c1z + c2z + F (z − z) , (17)

where F is the primitive of h. Hence

w(z) = exp [c1z + c2z + F (z − z)] (18)

is a solution of the system (2). The values pn satisfying

c1pn + c2pn + F (z − z + pn − pn) = 2nπi + F (z − z) , n ∈ Z, (19)
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are the periods of the solutions of (18). Restricting ourselves to the real
periods, we get

pn =
2nπi

c1 + c2
, n ∈ Z,

if Re (c1 + c2) = 0.

Choosing h (y) = i y2m, m ∈ N, the function H satisfying H (0) = 0 will
be obtained as

H(z) = c1z + c2z +
(−1)

m
i

2m (2m + 1)
(z − z)

2m+1
.

So the solution of the system (2) with the coefficients defined by (16) is

w(z) = exp

[

c1z + c2z +
(−1)m

i

2m (2m + 1)
(z − z)

2m+1

]

with the period

pn =
2nπi

c1 + c2
,

where Re (c1 + c2) = 0.
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