Memoirs on Differential Equations and Mathematical Physics VOLUME 33, 2004, 95–101

K. Koca and A. O. Çelebi

A REPRESENTATION OF SOLUTIONS FOR A SYSTEM OF COMPLEX DIFFERENTIAL EQUATIONS IN THE PLANE AND PERIODIC SOLUTIONS **Abstract.** In this article, first we will obtain a representation of the solutions for the system of complex differential equations

$$w_z = A(z, \overline{z})w$$

$$w_{\overline{z}} = B(z, \overline{z})w, \quad A, B \in C^1(G)$$

which are defined in a simply-connected domain $G\subset\mathbb{C}$ containing $z_0=0$ and satisfying the functional relations

$$w(z_1 + z_2) = w(z_1) + w(z_2), w(0) = 1; z_1, z_2, z_1 + z_2 \in G$$

Then we will discuss the conditions under which the solutions of the system are periodic.

2000 Mathematics Subject Classification. 30D05.

Key words and phrases. Functional equation, ordinary differential equation, exponential representation.

რეზიუმე. ნაშრომში მიღებულია კომპლექსურ დიფერენციალურ განტოლებათა

$$w_z = A(z,\overline{z})w$$

$$w_{\overline{z}} = B(z,\overline{z})w, \quad A, B \in C^1(G)$$

სისტემის ისეთ ამონახსნთა ერთი წარმოდგენა, რომლებიც განსაზღვრულია $z_0=0$ წერტილის შემცველ ცალადბმულ G არეზე და აკმაყოფილებს

$$w(z_1 + z_2) = w(z_1) + w(z_2), w(0) = 1; z_1, z_2, z_1 + z_2 \in G$$

ფუნქციონალურ დამოკიდებულებას. შემდეგ განხილულია პირობები, რომელთა შესრულებისას სისტემის ამონახსნები პერიოდულია. $A \ Representation \ of \ Solutions$

1. INTRODUCTION

It is trivial that the function $w = e^z$ defined in a domain in \mathbb{C} is a particular solution of the system of differential equations

$$w_z = w,$$
$$w_{\overline{z}} = 0$$

and the functional relations

$$w(z_1 + z_2) = w(z_1) + w(z_2), \quad w(0) = 1$$
(1)

are satisfied for all $z_1, z_2 \in \mathbb{C}$. Tutschke [3] has considered a more general system

$$w_z = A(z, \overline{z})w,$$

$$w_{\overline{z}} = B(z, \overline{z})w,$$
(2)

and obtained the necessary conditions for the solutions to satisfy (1), as

Theorem 1 ([3]). If the coefficients A and B of the system (2) satisfy

$$A(z_0 - z) = A(z), \quad B(z_0 - z) = B(z),$$
 (3)

then every solution of (2) satisfies the functional relation (1) for all $z_1, z_2 \in G$ with $z_1 + z_2 = z_0$.

The condition (3) means that the coefficients A and B are symmetric with respect to the point $\frac{1}{2}z_0$. In that article, Tutschke has investigated the solutions of (2) satisfying (1) along the straight lines passing through the origin; thus the argument of the points is considered as constant.

Definition 1. The solutions of the system (2) satisfying the relations (1) are called *pseudoholomorphic exponential functions*.

2. A Representation of Solution

Let $G \subset \mathbb{C}$ be a simply connected domain with smooth boundary and let $z_0 = 0$ be a point in G. Now, let us look for a solution of the system (2) in G of the form

$$w(z) = \exp[H(z)], \quad H \in C^{1}(G).$$
 (4)

Substituting (4) in (2), we find that $H(z, \overline{z})$ should satisfy

$$\begin{aligned} H_z &= A \\ H_{\overline{z}} &= B; \quad A, B \in C^1(G). \end{aligned}$$
 (5)

If w is a solution of the system (2), then $A_{\overline{z}} = B_z$ should hold. Thus we can write

$$dw = w_z dz + w_{\overline{z}} d\overline{z} = (A \, dz + B \, d\overline{z}) \, w. \tag{6}$$

On the other hand, the exact differential of (4) is

$$dw = \exp\left[H(z)\right] dH = w \, dH.\tag{7}$$

Comparing (6) and (7), we get

$$dH = A\,dz + B\,d\overline{z}.\tag{8}$$

K. Koca and A. O. Çelebi

From (8) we find

$$H(z) = \int_{\gamma(z_0, z)} (A \, dz + B \, d\overline{z}), \quad z \neq z_0, \tag{9}$$

where $\gamma(z_0, z)$ is a smooth curve in *G* connecting $z_0 = 0$ to *z*. Besides, w(0) = 1 corresponds to H(0) = 0. So we can identify *H* uniquely. Thus, we have obtained

Theorem 2. Let $G \subset \mathbb{C}$ be a simply-connected domain containing the point $z_0 = 0$. If the function H defined by (9) satisfies the condition H(0) = 0, then

$$w(z) = \exp\left[\int_{\gamma} A \, dz + B \, d\overline{z}\right] \tag{10}$$

is a solution of the system (2) satisfying w(0) = 1. Furthermore, if the coefficients A, B satisfy (3), then w(z) satisfies the functional relationship

$$w(z_1 + z_2) = w(z_1) + w(z_2).$$

Note. The similar complex system

$$w_{\overline{z}} = A \exp(-w),$$

 $w_z = B \exp(-w)$

has been investigated previously [2], and a solution of the form

$$w(z,\overline{z}) = \log \left[\int_{\gamma(z_0,z)} A \, dz + B \, d\overline{z} \right]$$

has been obtained, imposing the condition w(1) = 0.

3. Periodic Solutions

It is well known from complex analysis that the function $w(z) = e^z$ satisfies

$$w(z+2n\pi i) = \exp\left[z+2n\pi i\right] = w(z), \quad n \in \mathbb{Z}$$

In this section, we will investigate the conditions under which the solution (10) satisfies

$$w(z+p) = w(z) \tag{11}$$

for some constant $p \in \mathbb{C}$. We have to assume that if $z \in G$, then $z + p \in G$ for $p \in \mathbb{C}$. From (10) we can write

$$w(z+p) = \exp\left\{\int_{z_0}^{z+p} [A(z)dz + B(z)d\overline{z}]\right\} =$$
$$= \exp\left\{\int_{z_0}^{z} [A(z)dz + B(z)d\overline{z}]\right\} \exp\left\{\int_{z}^{z+p} [A(z)dz + B(z)d\overline{z}]\right\} =$$

98

 $A \ Representation \ of \ Solutions$

$$= w(z) \exp \left[H\left(z+p\right) - H(z)\right].$$

Thus we can state the following theorem on periodic solutions of the system (2):

Theorem 3. If the function H(z) defined by (9) satisfies

$$H(z+p) - H(z) = 2\pi i,$$
 (12)

then the solution w(z) defined by (10) satisfies the property (11) of periodicity. This solution is unique.

Now let us consider the set

$$P = \{p_n \in \mathbb{C} : n \in \mathbb{Z}, w(z+p_n) = w(z), z+p_n \in G\}.$$

Corollary 1. If H satisfies the functional relation

$$H(z+p_m) - H(z) = 2m\pi i, \quad m \in \mathbb{Z},$$

then $p_m \in P$. In particular, if H is a linear function, then

$$H\left(p_{m}\right)=2m\pi i.$$

Corollary 2. Let H satisfy (12) and let the coefficients A, B of the system (2) satisfy (3). Then $w(z) = \exp H(z)$ is a single valued solution satisfying the functional relation (1) and w(z+p) = w(z). Conversely, if $w(z) = \exp [H(z)]$ is a solution of (2) satisfying w(z+p) = w(z), then H(z) satisfies the functional relation

$$H(z+p_m) - H(z) = 2m\pi i, \quad m \in \mathbb{Z}.$$
(13)

However, H(z) cannot be determined uniquely from (13).

Theorem 4. If $w(z) = \exp H(z)$ is a periodic solution of the system (2), then the coefficients A and B are periodic functions with period p.

Proof. Let $w(z) = \exp H(z)$ be a periodic solution of (2). Then (13) holds. Let us differentiate both sides of (13) with respect to z and \overline{z} .

$$\frac{\partial H\left(z+p_{m}\right)}{\partial z} - \frac{\partial H(z)}{\partial z} = 0,$$

$$\frac{\partial H\left(z+p_{m}\right)}{\partial \overline{z}} - \frac{\partial H(z)}{\partial \overline{z}} = 0,$$
(14)

which leads to

$$A(z+p_m) - A(z) = 0,$$

$$B(z+p_m) - B(z) = 0$$

by (5). But these are the conditions for the coefficients A and B to be periodic with period p_m .

Example 1. Let the coefficients of A and B of (2) be complex constants subject to $|A| \neq |B|$. Then from (9) we have

$$H(z) = A \, z + B \, \overline{z}$$

and

 $w(z) = \exp\left(A\,z + B\,\overline{z}\right)$

is obtained. This solution fulfills the requirements

$$w(z_1 + z_2) = w(z_1) w(z_2),$$

 $w(0) = 1.$

Also, we can find by (13) that

$$A p_m + B \overline{p_m} = 2m\pi i, \quad m \in \mathbb{Z},$$

that is,

$$p_m = \frac{2m\pi i \left(\overline{A} + B\right)}{\left|A\right|^2 - \left|B\right|^2}, \quad m \in \mathbb{Z}.$$
(15)

On the other hand, since we can write

$$p_m = \frac{m}{n} \, p_n$$

for every $m, n \in \mathbb{Z}$, $n \neq 0$, the period p_m is simple (see [1]).

Note. If |A| = |B|, we still can determine the period p_m by a simple computation as

$$p_m = \frac{im\pi \left(1 + e^{-i\theta}\right)A}{|A|^2 \left(1 + \cos\theta\right)},$$

where $A \neq 0, m \in \mathbb{Z}$.

Example 2. Let *h* be a complex valued function of y = Im z subject to h(-y) = h(y). Let us assume that the coefficients *A* and *B* of (2) are given as

$$A(z) = c_1 + h(y), B(z) = c_2 - h(y),$$
(16)

where $c_1, c_2 \in \mathbb{C}$ are constants. In this case the solubility condition $A_{\overline{z}} = B_z$ holds. Thus (9) yields

$$H(z) = \int_{z_0}^{z} \{ [c_1 + h(y)] dz + [c_2 - h(y)] d\overline{z} \} =$$

= $c_1 z + c_2 \overline{z} + F(z - \overline{z}),$ (17)

where F is the primitive of h. Hence

$$w(z) = \exp\left[c_1 z + c_2 \overline{z} + F\left(z - \overline{z}\right)\right]$$
(18)

is a solution of the system (2). The values p_n satisfying

$$c_1 p_n + c_2 \overline{p_n} + F\left(z - \overline{z} + p_n - \overline{p_n}\right) = 2n\pi i + F\left(z - \overline{z}\right), \quad n \in \mathbb{Z},$$
(19)

100

A Representation of Solutions

are the periods of the solutions of (18). Restricting ourselves to the real periods, we get

$$p_n = \frac{2n\pi i}{c_1 + c_2}, \quad n \in \mathbb{Z},$$

if $\operatorname{Re}(c_1 + c_2) = 0$.

Choosing $h(y) = i y^{2m}, m \in \mathbb{N}$, the function H satisfying H(0) = 0 will be obtained as

$$H(z) = c_1 z + c_2 \overline{z} + \frac{(-1)^m i}{2^m (2m+1)} (z - \overline{z})^{2m+1}.$$

So the solution of the system (2) with the coefficients defined by (16) is

$$w(z) = \exp\left[c_1 z + c_2 \overline{z} + \frac{(-1)^m i}{2^m (2m+1)} (z - \overline{z})^{2m+1}\right]$$

with the period

$$p_n = \frac{2n\pi i}{c_1 + c_2} \,,$$

where $\operatorname{Re}(c_1 + c_2) = 0$.

References

- 1. G. A. JONES AND D. SINGERMAN, Complex functions. An algebraic and geometric viewpoint. *Cambridge University Press, Cambridge*, 1987.
- K. KOCA, Pseudoholomorphe Logarithmusfunktionen. Riv. Mat. Univ. Parma (4) 15(1989), 1–6.
- 3. W. TUTSCHKE, Pseudoholomorphe Exponentialfunktionen. Beiträge Anal. No. 1, (1971), 115–121.

(Received 4.10.2004)

Authors' addresses:

K. Koca Kırıkkale University Faculty of Sciences and Letters Department of Mathematics 71450 Yahşihan, Kırıkkale Turkey

A. O. Çelebi Middle East Technical University Department of Mathematics 06531 Ankara Turkey