J. Šremr and P. Šremr

ON A TWO POINT BOUNDARY PROBLEM
FOR FIRST ORDER LINEAR DIFFERENTIAL EQUATIONS WITH A DEVIATING ARGUMENT

Abstract. The aim of the paper is to study the question on the existence and uniqueness of a solution of the problem

$$
u^{\prime}(t)=p(t) u(\tau(t))+q(t), \quad u(a)+\lambda u(b)=c,
$$

where $p, q:[a, b] \rightarrow R$ are Lebesgue integrable functions, $\tau:[a, b] \rightarrow[a, b]$ is a measurable function, and $\lambda, c \in R$. More precisely, some solvability conditions established in $[5,6,8]$ are refined for the special case, where
τ maps the segment $[a, b]$ into some subsegment $\left[\tau_{0}, \tau_{1}\right] \subseteq[a, b]$.
2000 Mathematics Subject Classification. 34K10.
Key words and phrases: First order linear differential equations with deviating argument, two point boundary value problem, unique solvability.

$$
u^{\prime}(t)=p(t) u(\tau(t))+q(t), \quad u(a)+\lambda u(b)=c
$$

งдм

Introduction

The following notation is used throughout.
R is the set of all real numbers, $R_{+}=[0,+\infty[$.

$$
[x]_{+}=\frac{|x|+x}{2}, \quad[x]_{-}=\frac{|x|-x}{2} .
$$

$\widetilde{C}([a, b] ; D)$, where $D \subseteq R$, is the set of absolutely continuous functions $u:[a, b] \rightarrow D$.
$\mathcal{M}_{a b}$ is the set of measurable functions $\tau:[a, b] \rightarrow[a, b]$.
$L([a, b] ; R)$ is the Banach space of Lebesgue integrable functions $p:$
$[a, b] \rightarrow R$ with the norm

$$
\|p\|_{L}=\int_{a}^{b}|p(s)| d s
$$

By a solution of the equation

$$
\begin{equation*}
u^{\prime}(t)=p(t) u(\tau(t))+q(t) \tag{0.1}
\end{equation*}
$$

where $p, q \in L([a, b] ; R)$ and $\tau \in \mathcal{M}_{a b}$, we understand a function $u \in$ $\widetilde{C}([a, b] ; R)$ satisfying the equality (0.1) almost everywhere in $[a, b]$. Note also that throughout the paper the equalities and inequalities with integrable functions are understood to hold almost everywhere.

Consider the problem on the existence and uniqueness of a solution of the equation (0.1) satisfying the boundary condition

$$
\begin{equation*}
u(a)-\lambda u(b)=c, \tag{0.2}
\end{equation*}
$$

resp.

$$
\begin{equation*}
u(a)+\lambda u(b)=c, \tag{0.3}
\end{equation*}
$$

where $\lambda \in R_{+}$and $c \in R$.
The theory of differential equations with deviating arguments was begun to develop in 50's of the 20th century (see, e.g., $[9,11]$ and references therein). Throughout the second half of the 20th century, a lot was done to construct the general theory of boundary value problems for functional differential equations (see, e.g., $[1,2,10,12]$ and references therein). In spite of this, there are only few effective criteria for the solvability of special types of boundary value problems for functional differential equations.

In $[5,8]$ and $[6]$, there were established sufficient conditions for the unique solvability of the problem $(0.1),(0.2)$ and $(0.1),(0.3)$, respectively. Moreover, those results are, in general, nonimprovable (see the examples constructed in $[5,6,8]$). On the other hand, if τ maps the segment $[a, b]$ into some subsegment $\left[\tau_{0}, \tau_{1}\right] \subseteq[a, b]$, the above-mentioned results can be improved in a certain way. In the present paper, some results from [5, 6,8$]$ are refined for such special case of the equation (0.1). For this purpose, put

$$
\tau_{0}=\operatorname{ess} \inf \{\tau(t): t \in[a, b]\}, \quad \tau_{1}=\operatorname{ess} \sup \{\tau(t): t \in[a, b]\}
$$

It is clear that $\tau_{0}, \tau_{1} \in[a, b], \tau_{0} \leq \tau_{1}$, and $\tau(t) \in\left[\tau_{0}, \tau_{1}\right]$ for almost all $t \in[a, b]$.

The paper is organized as follows. Sections 1 and 2 deal with the problem (0.1), (0.2) and (0.1), (0.3), respectively. Section 3 is devoted to the examples verifying the optimality of the obtained results.

The Cauchy problem is a special case of the discussed boundary value problem (for $\lambda=0$). In that case, the below formulated theorems coincide with the results obtained in [4].

The following result is well-known from the general theory of the boundary value problems for functional differential equations (see $[1-3,10,12]$).

Theorem 0.1. The problem (0.1), (0.2), resp. (0.1), (0.3), is uniquely solvable if and only if the corresponding homogeneous problem

$$
\begin{gather*}
u^{\prime}(t)=p(t) u(\tau(t)), \tag{0}\\
u(a)-\lambda u(b)=0, \tag{0}
\end{gather*}
$$

resp.

$$
\begin{gather*}
u^{\prime}(t)=p(t) u(\tau(t)) \\
u(a)+\lambda u(b)=0 \tag{0}
\end{gather*}
$$

has only the trivial solution.

$$
\text { 1. Problem }(0.1),(0.2)
$$

1.1. Main Results.

Theorem 1.1. Let $\lambda \in[0,1]$ and

$$
\begin{equation*}
A \stackrel{\text { def }}{=} \int_{a}^{\tau_{1}}[p(s)]_{+} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s \tag{1.1}
\end{equation*}
$$

If

$$
\begin{gather*}
A<1, \tag{1.2}\\
\left(\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{0}}^{b}[p(s)]_{-} d s\right)\left(1-\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s\right)>\lambda-1+A, \tag{1.3}\\
(1-A)\left(1+\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s\right)>\lambda-\int_{a}^{\tau_{0}}[p(s)]_{-} d s-\lambda \int_{\tau_{1}}^{b}[p(s)]_{-} d s, \tag{1.4}
\end{gather*}
$$

and either

$$
\begin{gather*}
\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{-} d s<\lambda+\sqrt{1-A} \tag{1.5}\\
\int_{a}^{\tau_{1}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{-} d s<1+\lambda+2 \sqrt{1-A} \tag{1.6}
\end{gather*}
$$

or

$$
\begin{gather*}
\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{-} d s \geq \lambda+\sqrt{1-A}, \tag{1.7}\\
\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s<1+\frac{1-A}{\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{-} d s-\lambda}, \tag{1.8}
\end{gather*}
$$

then the problem (0.1), (0.2) has a unique solution.
Remark 1.1. Theorem 1.1 is nonimprovable in the sense that neither of the strict inequalities (1.3), (1.4), (1.6), and (1.8) can be replaced by the nonstrict one (see Examples 3.1-3.4).

Example 1.1. On the segment $[0,1]$ consider the boundary value problem

$$
\begin{gather*}
u^{\prime}(t)=k(1-3 t) u\left(\frac{(3 r-1) t+1}{3}\right)+q(t), \tag{1.9}\\
u(0)-\lambda u(1)=c,
\end{gather*}
$$

where $\left.\lambda \in\left[\frac{1}{4}, 1\right], k \in\right] 0,6\left[, q \in L([a, b] ; R), c \in R\right.$, and $r \in\left[\frac{2}{3}, 1\right]$ is such that $3(1+3 r)(1-r) \geq 1$. Put

$$
\begin{equation*}
\alpha=\frac{(1+3 r)(1-r)}{2}, \quad \beta=\frac{(3 r-1)^{2}}{6} . \tag{1.10}
\end{equation*}
$$

It is not difficult to verify that $\tau_{0}=\frac{1}{3}, \tau_{1}=r$, and the condition (1.2) holds. Obviously, if

$$
k<\frac{3(4 \lambda-1)}{4 \lambda}+\sqrt{\left[\frac{3(4 \lambda-1)}{4 \lambda}\right]^{2}+9 \frac{1-\lambda}{\lambda}},
$$

then the conditions (1.3) and (1.4) are fulfilled. If

$$
k<\frac{1}{\alpha}+\frac{-1+\sqrt{1+24 \lambda^{2} \alpha(6 \alpha-1)}}{12 \lambda^{2} \alpha^{2}}
$$

then the condition (1.5) is satisfied. If

$$
k \leq \frac{6(1+\lambda)}{(3 r-1)^{2}+3 \lambda(1+3 r)(1-r)},
$$

then the condition (1.6) holds. If

$$
k \geq \frac{1}{\alpha}+\frac{-1+\sqrt{1+24 \lambda^{2} \alpha(6 \alpha-1)}}{12 \lambda^{2} \alpha^{2}}
$$

then the condition (1.7) is fulfilled. If

$$
k<\frac{6 \lambda(\alpha+\beta)-1+\sqrt{[6 \lambda(\alpha+\beta)-1]^{2}+144 \lambda \alpha \beta(1-\lambda)}}{12 \lambda \alpha \beta}
$$

then the condition (1.8) is satisfied.
In particular, if $k \in] 0,3.02\left[\cup\left[3.65,4.52\left[, \lambda=0.95\right.\right.\right.$, and $r=\frac{17}{24}$, then, according to Theorem 1.1, the problem (1.9) has a unique solution.

Theorem 1.2. Let $\lambda \in] 0,1]$ and

$$
\begin{equation*}
B \stackrel{\text { def }}{=} \int_{a}^{\tau_{1}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{-} d s \tag{1.11}
\end{equation*}
$$

If

$$
\begin{gather*}
B<\lambda \tag{1.12}\\
(\lambda-B)\left(1+\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s\right)>1-\int_{a}^{\tau_{0}}[p(s)]_{+} d s-\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s \tag{1.13}\\
\left(\int_{a}^{\tau_{0}}[p(s)]_{+} d s+\lambda \int_{\tau_{0}}^{b}[p(s)]_{+} d s\right)\left(1-\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s\right)> \\
>1-\lambda+\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{0}}^{b}[p(s)]_{-} d s \tag{1.14}
\end{gather*}
$$

and either

$$
\begin{align*}
& \int_{a}^{\tau_{0}}[p(s)]_{+} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s<1+\sqrt{\lambda-B} \tag{1.15}\\
& \int_{a}^{\tau_{1}}[p(s)]_{+} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s<2+2 \sqrt{\lambda-B} \tag{1.16}
\end{align*}
$$

or

$$
\begin{array}{r}
\int_{a}^{\tau_{0}}[p(s)]_{+} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s \geq 1+\sqrt{\lambda-B} \\
\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s<1+\frac{\lambda-B}{\int_{a}^{\tau_{0}}[p(s)]_{+} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s-1}, \tag{1.18}
\end{array}
$$

then the problem (0.1), (0.2) has a unique solution.
Remark 1.2. Theorem 1.2 is nonimprovable in the sense that neither of the strict inequalities (1.13), (1.2), (1.16), and (1.18) can be replaced by the nonstrict one (see Examples 3.5-3.8).

Note also that if $\tau_{0}=a$ and $\tau_{1}=b$, then from Theorems 1.1 and 1.2 we obtain Corollary 1.1 in [5].
Example 1.2. On the segment $[0,1]$ consider the boundary value problem (1.9), where $\left.\left.\lambda \in] \frac{3}{4}, 1\right], k \in\right]-6 \lambda, 0\left[, q \in L([a, b] ; R), c \in R\right.$, and $r \in\left[\frac{2}{3}, 1\right]$ is such that $3 \lambda^{2}(1+3 r)(1-r) \geq 1$. Define the numbers α and β by (1.10).

It is not difficult to verify that $\tau_{0}=\frac{1}{3}, \tau_{1}=r$, and the condition (1.12) holds. Obviously, if

$$
|k|>\frac{3(4 \lambda-1)}{4}-\sqrt{\left[\frac{3(4 \lambda-1)}{4}\right]^{2}-9(1-\lambda)}
$$

and

$$
|k|<\frac{3(4 \lambda-1)}{4}+\sqrt{\left[\frac{3(4 \lambda-1)}{4}\right]^{2}-9(1-\lambda)}
$$

then the conditions (1.13) and (1.2) are fulfilled. If

$$
|k|<\frac{1}{\lambda \alpha}+\frac{-1+\sqrt{1+24 \lambda \alpha\left(6 \lambda^{2} \alpha-1\right)}}{12 \lambda^{2} \alpha^{2}},
$$

then the condition (1.15) is satisfied. If

$$
|k| \leq \frac{12}{(3 r-1)^{2}+3 \lambda(1+3 r)(1-r)},
$$

then the condition (1.16) holds. If

$$
|k| \geq \frac{1}{\lambda \alpha}+\frac{-1+\sqrt{1+24 \lambda \alpha\left(6 \lambda^{2} \alpha-1\right)}}{12 \lambda^{2} \alpha^{2}}
$$

then the condition (1.17) is fulfilled. If

$$
|k|>\frac{6(\lambda \alpha+\beta)-1-\sqrt{[6(\lambda \alpha+\beta)-1]^{2}-144 \lambda \alpha \beta(1-\lambda)}}{12 \lambda \alpha \beta}
$$

and

$$
|k|<\frac{6(\lambda \alpha+\beta)-1+\sqrt{[6(\lambda \alpha+\beta)-1]^{2}-144 \lambda \alpha \beta(1-\lambda)}}{12 \lambda \alpha \beta},
$$

then the condition (1.18) is satisfied.
In particular, if $k \in[-4.08,-3.66] \cup]-3.10,-0.12\left[, \lambda=0.95\right.$, and $r=\frac{17}{24}$, then, according to Theorem 1.2, the problem (1.9) has a unique solution.
Remark 1.3. Let $\lambda \in[0,1]$. Denote by H_{1} the set of 6 -tuples $\left(x_{i}\right)_{i=1}^{6} \in R_{+}^{6}$ satisfying

$$
\begin{gathered}
x_{1}+x_{2}+\lambda x_{3}<1 \\
\left(x_{4}+\lambda\left(x_{5}+x_{6}\right)\right)\left(1-x_{2}\right)>\lambda-1+x_{1}+x_{2}+\lambda x_{3}, \\
\left(1-x_{1}-x_{2}-\lambda x_{3}\right)\left(1+x_{5}\right)>\lambda-x_{4}-\lambda x_{6},
\end{gathered}
$$

and either

$$
\begin{gathered}
x_{4}+\lambda x_{6}<\lambda+\sqrt{1-x_{1}-x_{2}-\lambda x_{3}}, \\
x_{4}+x_{5}+\lambda x_{6}<1+\lambda+2 \sqrt{1-x_{1}-x_{2}-\lambda x_{3}}
\end{gathered}
$$

or

$$
\begin{gathered}
x_{4}+\lambda x_{6} \geq \lambda+\sqrt{1-x_{1}-x_{2}-\lambda x_{3}}, \\
\left(x_{4}+\lambda x_{6}-\lambda\right)\left(x_{5}-1\right)<1-x_{1}-x_{2}-\lambda x_{3} .
\end{gathered}
$$

Further, denote by H_{2} the set of 6 -tuples $\left(x_{i}\right)_{i=1}^{6} \in R_{+}^{6}$ satisfying

$$
\begin{gathered}
x_{4}+x_{5}+\lambda x_{6}<\lambda, \\
\left(\lambda-x_{4}-x_{5}-\lambda x_{6}\right)\left(1+x_{2}\right)>1-x_{1}-\lambda x_{3}, \\
\left(x_{1}+\lambda\left(x_{2}+x_{3}\right)\right)\left(1-x_{5}\right)>1-\lambda+x_{4}+\lambda\left(x_{5}+x_{6}\right),
\end{gathered}
$$

and either

$$
\begin{gathered}
x_{1}+\lambda x_{3}<1+\sqrt{\lambda-x_{4}-x_{5}-\lambda x_{6}} \\
x_{1}+x_{2}+\lambda x_{3}<2+2 \sqrt{\lambda-x_{4}-x_{5}-\lambda x_{6}}
\end{gathered}
$$

or

$$
\begin{gathered}
x_{1}+\lambda x_{3} \geq 1+\sqrt{\lambda-x_{4}-x_{5}-\lambda x_{6}} \\
\left(x_{1}+\lambda x_{3}-1\right)\left(x_{2}-1\right)<\lambda-x_{4}-x_{5}-\lambda x_{6}
\end{gathered}
$$

Now, according to Theorems 1.1 and 1.2 , if $p \in L([a, b] ; R)$ is such that the point
$\left(\int_{a}^{\tau_{0}}[p(s)]_{+} d s, \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s, \int_{\tau_{1}}^{b}[p(s)]_{+} d s, \int_{a}^{\tau_{0}}[p(s)]_{-} d s, \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s, \int_{\tau_{1}}^{b}[p(s)]_{-} d s\right)$
belongs to the set $H_{1} \cup H_{2}$, then the problem (0.1), (0.2) has a unique solution.

On Fig. 1.1 one can see the intersection of the set $H_{1} \cup H_{2}$ and the 3 -dimensional subspace $\{(0, x, 0, y, z, 0): x, y, z \in R\}$ of the space R^{6}, i.e., the sets

$$
\begin{aligned}
& G_{1}=\left\{(x, y, z) \in R_{+}^{3}: \quad(0, x, 0, y, z, 0) \in H_{1}\right\}, \\
& G_{2}=\left\{(x, y, z) \in R_{+}^{3}:(0, x, 0, y, z, 0) \in H_{2}\right\} .
\end{aligned}
$$

Theorem 1.3. Let $\lambda \in[0,1]$,

$$
\begin{equation*}
\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s<1, \quad \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s<1 \tag{1.19}
\end{equation*}
$$

and either

$$
\begin{gather*}
\int_{a}^{\tau_{1}}[p(s)]_{+} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s- \\
-\left(\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{0}}^{b}[p(s)]_{-} d s\right)(1-T)<1-\lambda \tag{1.20}
\end{gather*}
$$

or

$$
\begin{gather*}
\left(\int_{a}^{\tau_{0}}[p(s)]_{+} d s+\lambda \int_{\tau_{0}}^{b}[p(s)]_{+} d s\right)(1-T)- \\
-\int_{a}^{\tau_{1}}[p(s)]_{-} d s-\lambda \int_{\tau_{1}}^{b}[p(s)]_{-} d s>(1-\lambda)(1-T), \tag{1.21}
\end{gather*}
$$

where

$$
\begin{equation*}
T=\max \left\{\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s, \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s\right\} \tag{1.22}
\end{equation*}
$$

Then the problem (0.1), (0.2) has a unique solution.

Fig. 1.1.

Remark 1.4. Theorem 1.3 is nonimprovable in the sense that the strict inequalities (1.20) and (1.21) cannot be replaced by the nonstrict ones (see Examples 3.9 and 3.10).

Note also that if the segment $\left[\tau_{0}, \tau_{1}\right]$ degenerates to a point $c \in[a, b]$, i.e., $\tau(t)=c$ for $t \in[a, b]$, then $T=0$ and the inequalities (1.20) and (1.21) can be rewritten as

$$
\int_{a}^{c} p(s) d s+\lambda \int_{c}^{b} p(s) d s \neq 1-\lambda .
$$

On the other hand, the last relation is sufficient and necessary for the unique solvability of the problem (0.1), (0.2) with $\tau(t)=c$ for $t \in[a, b]$.

Theorem 1.4. Let $\lambda \in[0,1[$ and let there exist $\gamma \in \widetilde{C}([a, b] ;] 0,+\infty[)$ such that

$$
\begin{align*}
\gamma^{\prime}(t) \geq[p(t)]_{+} \gamma(\tau(t)) & +[p(t)]_{-} \quad \text { for } \quad t \in[a, b], \tag{1.23}\\
\gamma(a) & >\lambda \gamma(b), \tag{1.24}
\end{align*}
$$

and either

$$
\begin{gather*}
\gamma\left(\tau_{0}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\tau_{1}\right)\right)<1+\lambda \tag{1.25}\\
\lambda\left(\gamma(b)-\gamma\left(\tau_{1}\right)\right)+\gamma\left(\tau_{1}\right)-\gamma(a)<3+\lambda \tag{1.26}
\end{gather*}
$$

or

$$
\begin{gather*}
\gamma\left(\tau_{0}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\tau_{1}\right)\right) \geq 1+\lambda, \tag{1.27}\\
\gamma\left(\tau_{1}\right)-\gamma\left(\tau_{0}\right)<1+\frac{1}{\gamma\left(\tau_{0}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\tau_{1}\right)\right)-\lambda} . \tag{1.28}
\end{gather*}
$$

Then the problem (0.1), (0.2) has a unique solution.
Remark 1.5. Theorem 1.4 is nonimprovable in the sense that the strict inequalities (1.26) and (1.28) cannot be replaced by the nonstrict ones (see Examples 3.3 and 3.4).

Note also that if $\tau_{0}=a$ and $\tau_{1}=b$, then from Theorem 1.4 we obtain Theorem 1.1 in [8].

Remark 1.6. Let $\lambda \in[1,+\infty[$ and let functions $\widetilde{p}, \widetilde{\tau}$, and \widetilde{q} be defined by

$$
\begin{gather*}
\widetilde{p}(t) \stackrel{\text { def }}{=}-p(a+b-t), \quad \widetilde{\tau}(t) \stackrel{\text { def }}{=} a+b-\tau(a+b-t), \tag{1.29}\\
\widetilde{q}(t) \stackrel{\text { def }}{=}-q(a+b-t) \quad \text { for } \quad t \in[a, b] .
\end{gather*}
$$

Put $\mu=1 / \lambda$ and $\widetilde{c}=-\mu c$. It is clear that if u is a solution of the problem (0.1), (0.2), then the function v, defined by $v(t) \stackrel{\text { def }}{=} u(a+b-t)$ for $t \in[a, b]$, is a solution of the problem

$$
\begin{equation*}
v^{\prime}(t)=\widetilde{p}(t) v(\widetilde{\tau}(t))+\widetilde{q}(t), \quad v(a)-\mu v(b)=\widetilde{c} \tag{1.30}
\end{equation*}
$$

and vice versa, if v is a solution of the problem (1.30), then the function u, defined by $u(t) \stackrel{\text { def }}{=} v(a+b-t)$ for $t \in[a, b]$, is a solution of the problem (0.1), (0.2).

Therefore, Theorems 1.1-1.4 immediately yield the following assertions.
Theorem 1.5. Let $\lambda \in[1,+\infty[$ and

$$
\widetilde{B} \stackrel{\text { def }}{=} \frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{-} d s+\int_{\tau_{0}}^{b}[p(s)]_{-} d s
$$

If

$$
\begin{gathered}
\widetilde{B}<1, \\
\left(\frac{1}{\lambda} \int_{a}^{\tau_{1}}[p(s)]_{+} d s+\int_{\tau_{1}}^{b}[p(s)]_{+} d s\right)\left(1-\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s\right)>\frac{1}{\lambda}-1+\widetilde{B}, \\
(1-\widetilde{B})\left(1+\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s\right)>\frac{1}{\lambda}-\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{+} d s-\int_{\tau_{1}}^{b}[p(s)]_{+} d s,
\end{gathered}
$$

and either

$$
\begin{gathered}
\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{+} d s+\int_{\tau_{1}}^{b}[p(s)]_{+} d s<\frac{1}{\lambda}+\sqrt{1-\widetilde{B}}, \\
\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{+} d s+\int_{\tau_{0}}^{b}[p(s)]_{+} d s<1+\frac{1}{\lambda}+2 \sqrt{1-\widetilde{B}}
\end{gathered}
$$

or

$$
\begin{gathered}
\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{+} d s+\int_{\tau_{1}}^{b}[p(s)]_{+} d s \geq \frac{1}{\lambda}+\sqrt{1-\widetilde{B}}, \\
\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s<1+\frac{1-\widetilde{B}}{\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{+} d s+\int_{\tau_{1}}^{b}[p(s)]_{+} d s-\frac{1}{\lambda}},
\end{gathered}
$$

then the problem (0.1), (0.2) has a unique solution.
Theorem 1.6. Let $\lambda \in[1,+\infty[$ and

$$
\widetilde{A} \stackrel{\text { def }}{=} \frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{+} d s+\int_{\tau_{0}}^{b}[p(s)]_{+} d s
$$

If

$$
\begin{gathered}
\widetilde{A}<\frac{1}{\lambda}, \\
\left(\frac{1}{\lambda}-\widetilde{A}\right)\left(1+\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s\right)>1-\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{-} d s-\int_{\tau_{1}}^{b}[p(s)]_{-} d s, \\
\left(\frac{1}{\lambda} \int_{a}^{\tau_{1}}[p(s)]_{-} d s+\int_{\tau_{1}}^{b}[p(s)]_{-} d s\right)\left(1-\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s\right)> \\
>1-\frac{1}{\lambda}+\frac{1}{\lambda} \int_{a}^{\tau_{1}}[p(s)]_{+} d s+\int_{\tau_{1}}^{b}[p(s)]_{+} d s,
\end{gathered}
$$

and either

$$
\begin{aligned}
& \frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{-} d s+\int_{\tau_{1}}^{b}[p(s)]_{-} d s<1+\sqrt{\frac{1}{\lambda}-\widetilde{A}}, \\
& \frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{-} d s+\int_{\tau_{0}}^{b}[p(s)]_{-} d s<2+2 \sqrt{\frac{1}{\lambda}-\widetilde{A}}
\end{aligned}
$$

or

$$
\begin{gathered}
\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{-} d s+\int_{\tau_{1}}^{b}[p(s)]_{-} d s \geq 1+\sqrt{\frac{1}{\lambda}-\widetilde{A}}, \\
\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s<1+\frac{\frac{1}{\lambda}-\widetilde{A}}{\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{-} d s+\int_{\tau_{1}}^{b}[p(s)]_{-} d s-1},
\end{gathered}
$$

then the problem (0.1), (0.2) has a unique solution.
Theorem 1.7. Let $\lambda \in[1,+\infty[$, the condition (1.19) be fulfilled, and let either

$$
\begin{gathered}
\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{-} d s+\int_{\tau_{0}}^{b}[p(s)]_{-} d s- \\
-\left(\frac{1}{\lambda} \int_{a}^{\tau_{1}}[p(s)]_{+} d s+\int_{\tau_{1}}^{b}[p(s)]_{+} d s\right)(1-T)<1-\frac{1}{\lambda}
\end{gathered}
$$

or

$$
\begin{gathered}
\left(\frac{1}{\lambda} \int_{a}^{\tau_{1}}[p(s)]_{-} d s+\int_{\tau_{1}}^{b}[p(s)]_{-} d s\right)(1-T)- \\
-\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{+} d s-\int_{\tau_{0}}^{b}[p(s)]_{+} d s>\left(1-\frac{1}{\lambda}\right)(1-T),
\end{gathered}
$$

where T is defined by (1.22). Then the problem (0.1), (0.2) has a unique solution.

Theorem 1.8. Let $\lambda \in] 1,+\infty[$ and let there exist $\gamma \in \widetilde{C}([a, b] ;] 0,+\infty[)$ such that

$$
\begin{aligned}
-\gamma^{\prime}(t) \geq[p(t)]_{-} & \gamma(\tau(t))+[p(t)]_{+} \quad \text { for } \quad t \in[a, b] \\
& \gamma(a)<\lambda \gamma(b)
\end{aligned}
$$

and either

$$
\begin{aligned}
& \gamma(a)-\gamma\left(\tau_{0}\right)+\lambda\left(\gamma\left(\tau_{1}\right)-\gamma(b)\right)<1+\lambda, \\
& \frac{1}{\lambda}\left(\gamma(a)-\gamma\left(\tau_{0}\right)\right)+\gamma\left(\tau_{0}\right)-\gamma(b)<3+\frac{1}{\lambda}
\end{aligned}
$$

or

$$
\begin{gathered}
\gamma(a)-\gamma\left(\tau_{0}\right)+\lambda\left(\gamma\left(\tau_{1}\right)-\gamma(b)\right) \geq 1+\lambda, \\
\gamma\left(\tau_{0}\right)-\gamma\left(\tau_{1}\right)<1+\frac{\lambda}{\gamma(a)-\gamma\left(\tau_{0}\right)+\lambda\left(\gamma\left(\tau_{1}\right)-\gamma(b)\right)-1} .
\end{gathered}
$$

Then the problem (0.1), (0.2) has a unique solution.
Remark 1.7. According to Remarks 1.1-1.6, Theorems 1.5-1.8 are nonimprovable in an appropriate sense.
1.2. Proofs. According to Theorem 0.1, to prove Theorems 1.1-1.4 it is sufficient to show that the homogeneous problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$ has only the trivial solution. First introduce the following notation

$$
\begin{array}{rll}
A_{1} & =\int_{a}^{\tau_{0}}[p(s)]_{+} d s, & A_{2}=\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s,
\end{array} A_{3}=\int_{\tau_{1}}^{b}[p(s)]_{+} d s, ~ 子 \int_{a}^{\tau_{0}}[p(s)]_{-} d s, \quad B_{2}=\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s, \quad B_{3}=\int_{\tau_{1}}^{b}[p(s)]_{-} d s .
$$

Proof of Theorem 1.1. Assume that the problem (0.1_{0}), (0.2_{0}) has a nontrivial solution u.

First suppose that u does not change its sign in $\left[\tau_{0}, \tau_{1}\right]$. Without loss of generality we can assume that

$$
\begin{equation*}
u(t) \geq 0 \quad \text { for } \quad t \in\left[\tau_{0}, \tau_{1}\right] \tag{1.32}
\end{equation*}
$$

Put

$$
\begin{equation*}
M=\max \left\{u(t): t \in\left[\tau_{0}, \tau_{1}\right]\right\}, \quad m=\min \left\{u(t): t \in\left[\tau_{0}, \tau_{1}\right]\right\} \tag{1.33}
\end{equation*}
$$

and choose $t_{M}, t_{m} \in\left[\tau_{0}, \tau_{1}\right]$ such that

$$
\begin{equation*}
u\left(t_{M}\right)=M, \quad u\left(t_{m}\right)=m \tag{1.34}
\end{equation*}
$$

Furthermore, let

$$
\begin{equation*}
\alpha_{0}=\min \left\{t_{M}, t_{m}\right\}, \quad \alpha_{1}=\max \left\{t_{M}, t_{m}\right\} \tag{1.35}
\end{equation*}
$$

$A_{21}=\int_{\tau_{0}}^{\alpha_{0}}[p(s)]_{+} d s, \quad A_{22}=\int_{\alpha_{0}}^{\alpha_{1}}[p(s)]_{+} d s, \quad A_{23}=\int_{\alpha_{1}}^{\tau_{1}}[p(s)]_{+} d s$,
$B_{21}=\int_{\tau_{0}}^{\alpha_{0}}[p(s)]_{-} d s, \quad B_{22}=\int_{\alpha_{0}}^{\alpha_{1}}[p(s)]_{-} d s, \quad B_{23}=\int_{\alpha_{1}}^{\tau_{1}}[p(s)]_{-} d s$.
It is clear that

$$
\begin{equation*}
m \geq 0, \quad M>0 \tag{1.37}
\end{equation*}
$$

since if $M=0$, then, in view of $\left(0.1_{0}\right),(1.32)$, and (1.33), we obtain $u\left(\tau_{0}\right)=$ 0 and $u^{\prime}(t)=0$ for $t \in[a, b]$, i.e., $u \equiv 0$. Obviously, either

$$
\begin{equation*}
t_{M}<t_{m} \tag{1.38}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{M} \geq t_{m} \tag{1.39}
\end{equation*}
$$

First suppose that (1.38) holds. The integrations of (0.1_{0}) from a to t_{M}, from t_{M} to t_{m}, from t_{m} to τ_{1}, and from τ_{1} to b, on account of (1.31), (1.33)-(1.36), and the assumption $\lambda \in[0,1]$, result in

$$
\begin{gather*}
M-u(a)=\int_{a}^{t_{M}}[p(s)]_{+} u(\tau(s)) d s-\int_{a}^{t_{M}}[p(s)]_{-} u(\tau(s)) d s \leq \\
\leq M\left(A_{1}+A_{21}\right)-m\left(B_{1}+B_{21}\right), \tag{1.40}\\
m-M=\int_{t_{M}}^{t_{m}}[p(s)]_{+} u(\tau(s)) d s-\int_{t_{M}}^{t_{m}}[p(s)]_{-} u(\tau(s)) d s \leq \\
\leq M A_{22}-m B_{22}, \tag{1.41}\\
\lambda\left(u\left(\tau_{1}\right)-m\right) \leq u\left(\tau_{1}\right)-m=\int_{t_{m}}^{\tau_{1}}[p(s)]_{+} u(\tau(s)) d s- \\
-\int_{t_{m}}^{\tau_{1}}[p(s)]_{-} u(\tau(s)) d s \leq M A_{23}-m B_{23}, \tag{1.42}\\
u(b)-u\left(\tau_{1}\right)=\int_{\tau_{1}}^{b}[p(s)]_{+} u(\tau(s)) d s-\int_{\tau_{1}}^{b}[p(s)]_{-} u(\tau(s)) d s \leq \\
\leq M A_{3}-m B_{3} . \tag{1.43}
\end{gather*}
$$

Multiplying both sides of (1.43) by λ, summing with (1.40) and (1.42), and taking into account $\left(0.2_{0}\right)$ and the assumption $\lambda \in[0,1]$, we get

$$
M-\lambda m \leq M\left(A_{1}+A_{21}+A_{23}+\lambda A_{3}\right)-m\left(B_{1}+B_{21}+B_{23}+\lambda B_{3}\right) .
$$

Hence, by virtue of (1.1), (1.2), (1.31), (1.36), and (1.37), the last inequality implies

$$
\begin{align*}
0<M\left(1-A_{1}-A_{21}\right. & \left.-A_{23}-\lambda A_{3}\right) \leq \\
& \leq m\left(\lambda-B_{1}-B_{21}-B_{23}-\lambda B_{3}\right) \tag{1.44}
\end{align*}
$$

On the other hand, by (1.36) and (1.37), (1.41) results in

$$
\begin{equation*}
0 \leq m\left(1+B_{22}\right) \leq M\left(1+A_{22}\right) \tag{1.45}
\end{equation*}
$$

Thus, it follows from (1.44) and (1.45) that

$$
\begin{align*}
\left(1-A_{1}-A_{21}\right. & \left.-A_{23}-\lambda A_{3}\right)\left(1+B_{22}\right) \leq \\
& \leq\left(\lambda-B_{1}-B_{21}-B_{23}-\lambda B_{3}\right)\left(1+A_{22}\right) \tag{1.46}
\end{align*}
$$

Obviously, on account of (1.1), (1.31), (1.36), and the assumption $\lambda \in[0,1]$, we find

$$
\begin{gathered}
\left(1-A_{1}-A_{21}-A_{23}-\lambda A_{23}\right)\left(1+B_{22}\right)= \\
=\left(1-A_{1}-A_{2}-\lambda A_{3}\right)\left(1+B_{2}\right)-\left(1-A_{1}-A_{2}-\lambda A_{3}\right)\left(B_{21}+B_{23}\right)+ \\
+A_{22}\left(1+B_{22}\right) \geq(1-A)\left(1+B_{2}\right)-\left(B_{21}+B_{23}\right)+A_{22}
\end{gathered}
$$

and

$$
\begin{gathered}
\left(\lambda-B_{1}-B_{21}-B_{23}-\lambda B_{3}\right)\left(1+A_{22}\right)= \\
=\lambda+\lambda A_{22}-\left(B_{1}+\lambda B_{3}\right)\left(1+A_{22}\right)-\left(B_{21}+B_{23}\right)\left(1+A_{22}\right) \leq \\
\leq \lambda-B_{1}-\lambda B_{3}+A_{22}-\left(B_{21}+B_{23}\right)
\end{gathered}
$$

By virtue of the last two inequalities, (1.46) yields

$$
(1-A)\left(1+B_{2}\right) \leq \lambda-B_{1}-\lambda B_{3}
$$

which, in view of (1.31), contradicts (1.4).
Now suppose that (1.39) is fulfilled. The integrations of (0.1_{0}) from a to t_{m}, from t_{m} to t_{M}, and from t_{M} to b, on account of (1.31) and (1.33)-(1.36), result in

$$
\begin{gather*}
m-u(a)=\int_{a}^{t_{m}}[p(s)]_{+} u(\tau(s)) d s-\int_{a}^{t_{m}}[p(s)]_{-} u(\tau(s)) d s \leq \\
\quad \leq M\left(A_{1}+A_{21}\right)-m\left(B_{1}+B_{21}\right) \tag{1.47}\\
M-m=\int_{t_{m}}^{t_{M}}[p(s)]_{+} u(\tau(s)) d s-\int_{t_{m}}^{t_{M}}[p(s)]_{-} u(\tau(s)) d s \leq \\
\quad \leq M A_{22}-m B_{22} \tag{1.48}\\
u(b)-M=\int_{t_{M}}^{b}[p(s)]_{+} u(\tau(s)) d s-\int_{t_{M}}^{b}[p(s)]_{-} u(\tau(s)) d s \leq \\
\quad \leq M\left(A_{23}+A_{3}\right)-m\left(B_{23}+B_{3}\right) \tag{1.49}
\end{gather*}
$$

Multiplying both sides of (1.49) by λ, summing with (1.47), and taking into account (0.2_{0}) and the assumption $\lambda \in[0,1]$, we get

$$
\begin{equation*}
m-\lambda M \leq M\left(A_{1}+A_{21}+\lambda A_{23}+\lambda A_{3}\right)-m\left(B_{1}+B_{21}+\lambda B_{23}+\lambda B_{3}\right) \tag{1.50}
\end{equation*}
$$

Hence, by virtue of (1.1), (1.2), (1.31), (1.36), and (1.37), it follows from (1.48) and (1.50) that

$$
\begin{aligned}
0<M\left(1-A_{22}\right) & \leq m\left(1-B_{22}\right) \\
0 \leq m\left(1+B_{1}+B_{21}+\lambda B_{23}+\lambda B_{3}\right) & \leq M\left(\lambda+A_{1}+A_{21}+\lambda A_{23}+\lambda A_{3}\right)
\end{aligned}
$$

Thus,

$$
\begin{align*}
\left(1+B_{1}+B_{21}\right. & \left.+\lambda B_{23}+\lambda B_{3}\right)\left(1-A_{22}\right) \leq \\
& \leq\left(\lambda+A_{1}+A_{21}+\lambda A_{23}+\lambda A_{3}\right)\left(1-B_{22}\right) \tag{1.51}
\end{align*}
$$

Obviously, in view of (1.1), (1.2), (1.31), (1.36), and the assumption $\lambda \in$ $[0,1]$, we obtain

$$
\begin{gathered}
\left(1+B_{1}+B_{21}+\lambda B_{23}+\lambda B_{3}\right)\left(1-A_{22}\right)=1-A_{22}+ \\
+\left(B_{1}+B_{21}+\lambda B_{22}+\lambda B_{23}+\lambda B_{3}\right)\left(1-A_{22}\right)-\lambda B_{22}\left(1-A_{22}\right) \geq \\
\geq 1-A_{22}+\left(B_{1}+\lambda B_{2}+\lambda B_{3}\right)\left(1-A_{2}\right)-\lambda B_{22}
\end{gathered}
$$

and

$$
\begin{gathered}
\left(\lambda+A_{1}+A_{21}+\lambda A_{23}+\lambda A_{3}\right)\left(1-B_{22}\right)= \\
=\lambda-\lambda B_{22}+\left(A_{1}+A_{21}+\lambda A_{23}+\lambda A_{3}\right)\left(1-B_{22}\right) \leq \\
\leq \lambda-\lambda B_{22}+A_{1}+A_{21}+A_{22}+\lambda A_{23}+\lambda A_{3}-A_{22} \leq \\
\leq \lambda-\lambda B_{22}+A-A_{22}
\end{gathered}
$$

By virtue of the last two inequalities, (1.51) implies

$$
\left(B_{1}+\lambda B_{2}+\lambda B_{3}\right)\left(1-A_{2}\right) \leq \lambda-1+A
$$

which, in view of (1.31), contradicts (1.3).
Now suppose that u changes its sign in $\left[\tau_{0}, \tau_{1}\right]$. Put

$$
\begin{equation*}
m_{0}=-\min \left\{u(t): t \in\left[\tau_{0}, \tau_{1}\right]\right\}, \quad M_{0}=\max \left\{u(t): t \in\left[\tau_{0}, \tau_{1}\right]\right\} \tag{1.52}
\end{equation*}
$$

and choose $\alpha_{0}, \alpha_{1} \in\left[\tau_{0}, \tau_{1}\right]$ such that

$$
\begin{equation*}
u\left(\alpha_{0}\right)=-m_{0}, \quad u\left(\alpha_{1}\right)=M_{0} \tag{1.53}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
M_{0}>0, \quad m_{0}>0 \tag{1.54}
\end{equation*}
$$

and without loss of generality we can assume that $\alpha_{0}<\alpha_{1}$. Furthermore, define numbers $A_{2 i}, B_{2 i}(i=1,2,3)$ by (1.36) and put

$$
\begin{equation*}
g(x) \stackrel{\text { def }}{=} \frac{1-A}{x+B_{1}+\lambda B_{3}-\lambda}+x \quad \text { for } \quad x>\lambda-B_{1}-\lambda B_{3}, \tag{1.55}
\end{equation*}
$$

where A is given by (1.1).

The integrations of $\left(0.1_{0}\right)$ from a to α_{0}, from α_{0} to α_{1}, and from α_{1} to b, in view of (1.31), (1.36), (1.52), and (1.53), result in

$$
\begin{align*}
u(a)+m_{0}= & \int_{a}^{\alpha_{0}}[p(s)]_{-} u(\tau(s)) d s-\int_{a}^{\alpha_{0}}[p(s)]_{+} u(\tau(s)) d s \leq \\
& \leq M_{0}\left(B_{1}+B_{21}\right)+m_{0}\left(A_{1}+A_{21}\right) \tag{1.56}\\
M_{0}+m_{0}= & \int_{\alpha_{0}}^{\alpha_{1}}[p(s)]_{+} u(\tau(s)) d s-\int_{\alpha_{0}}^{\alpha_{1}}[p(s)]_{-} u(\tau(s)) d s \leq \\
& \leq M_{0} A_{22}+m_{0} B_{22} \tag{1.57}\\
M_{0}-u(b)= & \int_{\alpha_{1}}^{b}[p(s)]_{-} u(\tau(s)) d s-\int_{\alpha_{1}}^{b}[p(s)]_{+} u(\tau(s)) d s \leq \\
& \leq M_{0}\left(B_{23}+B_{3}\right)+m_{0}\left(A_{23}+A_{3}\right) \tag{1.58}
\end{align*}
$$

Multiplying both sides of (1.58) by λ, summing with (1.56), and taking into account $\left(0.2_{0}\right),(1.54)$, and the assumption $\lambda \in[0,1]$, we get

$$
\begin{equation*}
\lambda M_{0}+m_{0} \leq M_{0}\left(B_{1}+B_{21}+B_{23}+\lambda B_{3}\right)+m_{0}\left(A_{1}+A_{21}+A_{23}+\lambda A_{3}\right) . \tag{1.59}
\end{equation*}
$$

Due to (1.1), (1.2), (1.31), and (1.36), we have

$$
A_{1}+A_{21}+A_{23}+\lambda A_{3}<1, \quad A_{22}<1
$$

Thus, it follows from (1.54), (1.57), and (1.59) that

$$
\begin{equation*}
B_{22}>1, \quad B_{1}+B_{21}+B_{23}+\lambda B_{3}>\lambda, \tag{1.60}
\end{equation*}
$$

and

$$
\begin{gather*}
B_{22} \geq 1+\frac{M_{0}}{m_{0}}\left(1-A_{22}\right), \tag{1.61}\\
\frac{M_{0}}{m_{0}} \geq \frac{1-A_{1}-A_{21}-A_{23}-\lambda A_{3}}{B_{1}+B_{21}+B_{23}+\lambda B_{3}-\lambda} . \tag{1.62}
\end{gather*}
$$

According to (1.60) and the fact that
$\left(1-A_{22}\right)\left(1-A_{1}-A_{21}-A_{23}-\lambda A_{3}\right) \geq 1-A_{1}-A_{21}-A_{22}-A_{23}-\lambda A_{3}=1-A$, from (1.61) and (1.62) we get

$$
\begin{equation*}
B_{22} \geq 1+\frac{1-A}{B_{1}+B_{21}+B_{23}+\lambda B_{3}-\lambda} \tag{1.63}
\end{equation*}
$$

First suppose that (1.5) and (1.6) are satisfied. By virtue of (1.60), from (1.63) we have

$$
\begin{gathered}
1-A \leq\left(B_{22}-1\right)\left(B_{1}+B_{21}+B_{23}+\lambda B_{3}-\lambda\right) \leq \\
\leq \frac{1}{4}\left(B_{1}+B_{21}+B_{22}+B_{23}+\lambda B_{3}-1-\lambda\right)^{2}=\frac{1}{4}\left(B_{1}+B_{2}+\lambda B_{3}-1-\lambda\right)^{2}
\end{gathered}
$$

which, in view of (1.2), (1.31), (1.36), and (1.60), contradicts (1.6).

Now suppose that (1.7) and (1.8) are fulfilled. It is not difficult to verify that, on account of (1.7) and (1.31), the function g defined by (1.55) is nondecreasing in $[0,+\infty[$. Therefore, from (1.63) we obtain

$$
\begin{gathered}
B_{21}+B_{22}+B_{23} \geq 1+\frac{1-A}{B_{1}+B_{21}+B_{23}+\lambda B_{3}-\lambda}+B_{21}+B_{23}= \\
=1+g\left(B_{21}+B_{23}\right) \geq 1+g(0)=1+\frac{1-A}{B_{1}+\lambda B_{3}-\lambda}
\end{gathered}
$$

which, in view of (1.31) and (1.36), contradicts (1.8).
Proof of Theorem 1.2. Assume that the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$ has a nontrivial solution u.

First suppose that u does not change its sign in $\left[\tau_{0}, \tau_{1}\right]$. Without loss of generality we can assume that (1.32) is fulfilled. Define the numbers M and m by (1.33) and choose $t_{M}, t_{m} \in\left[\tau_{0}, \tau_{1}\right]$ such that (1.34) holds. Furthermore, define the numbers α_{0}, α_{1} and $A_{2 i}, B_{2 i}(i=1,2,3)$ by (1.35) and (1.36), respectively. It is clear that (1.37) is satisfied, since if $M=0$, then, in view of $\left(0.1_{0}\right),(1.32)$, and (1.33), we obtain $u\left(\tau_{0}\right)=0$ and $u^{\prime}(t)=0$ for $t \in[a, b]$, i.e., $u \equiv 0$. It is also evident that either (1.38) or (1.39) is fulfilled.

First suppose that (1.38) holds. The integrations of (0.1_{0}) from t_{M} to t_{m}, from a to τ_{0}, and from τ_{0} to b, in view of (1.31)-(1.34), result in

$$
\begin{gather*}
M-m=\int_{t_{M}}^{t_{m}}[p(s)]_{-} u(\tau(s)) d s-\int_{t_{M}}^{t_{m}}[p(s)]_{+} u(\tau(s)) d s \leq M B_{2} \tag{1.64}\\
u(a)-u\left(\tau_{0}\right)=\int_{a}^{\tau_{0}}[p(s)]_{-} u(\tau(s)) d s-\int_{a}^{\tau_{0}}[p(s)]_{+} u(\tau(s)) d s \leq \\
\leq M B_{1}-m A_{1} \tag{1.65}\\
u\left(\tau_{0}\right)-u(b)=\int_{\tau_{0}}^{b}[p(s)]_{-} u(\tau(s)) d s-\int_{\tau_{0}}^{b}[p(s)]_{+} u(\tau(s)) d s \leq \\
\leq M\left(B_{2}+B_{3}\right)-m\left(A_{2}+A_{3}\right) \tag{1.66}
\end{gather*}
$$

Multiplying both sides of (1.66) by λ, summing with (1.65), and taking into account $\left(0.2_{0}\right),(1.33),(1.37)$, and the assumption $\left.\left.\lambda \in\right] 0,1\right]$, we get

$$
M(\lambda-1) \leq u\left(\tau_{0}\right)(\lambda-1) \leq M\left(B_{1}+\lambda B_{2}+\lambda B_{3}\right)-m\left(A_{1}+\lambda A_{2}+\lambda A_{3}\right)
$$

i.e.,

$$
\begin{equation*}
0 \leq m\left(A_{1}+\lambda A_{2}+\lambda A_{3}\right) \leq M\left(1-\lambda+B_{1}+\lambda B_{2}+\lambda B_{3}\right) \tag{1.67}
\end{equation*}
$$

On the other hand, due to (1.11), (1.12), (1.31), (1.37), and the assumption $\lambda \in] 0,1]$, (1.64) yields

$$
\begin{equation*}
0<M\left(1-B_{2}\right) \leq m \tag{1.68}
\end{equation*}
$$

Thus, it follows from (1.67) and (1.68) that

$$
\left(A_{1}+\lambda A_{2}+\lambda A_{3}\right)\left(1-B_{2}\right) \leq 1-\lambda+B_{1}+\lambda B_{2}+\lambda B_{3}
$$

which, on account of (1.31), contradicts (1.2).
Now suppose that (1.39) is fulfilled. The integrations of (0.1_{0}) from a to t_{m}, from t_{m} to t_{M}, and from t_{M} to b, on account of (1.31) and (1.33)-(1.36), yield

$$
\begin{gather*}
u(a)-m=\int_{a}^{t_{m}}[p(s)]_{-} u(\tau(s)) d s-\int_{a}^{t_{m}}[p(s)]_{+} u(\tau(s)) d s \leq \\
\leq M\left(B_{1}+B_{21}\right)-m\left(A_{1}+A_{21}\right), \tag{1.69}\\
m-M=\int_{t_{m}}^{t_{M}}[p(s)]_{-} u(\tau(s)) d s-\int_{t_{m}}^{t_{M}}[p(s)]_{+} u(\tau(s)) d s \leq \\
\quad \leq M B_{22}-m A_{22}, \tag{1.70}\\
M-u(b)=\int_{t_{M}}^{b}[p(s)]_{-} u(\tau(s)) d s-\int_{t_{M}}^{b}[p(s)]_{+} u(\tau(s)) d s \leq \\
\leq M\left(B_{23}+B_{3}\right)-m\left(A_{23}+A_{3}\right) . \tag{1.71}
\end{gather*}
$$

Multiplying both sides of (1.71) by λ, summing with (1.69), and taking into account (0.2_{0}) and the assumption $\left.\left.\lambda \in\right] 0,1\right]$, we get

$$
\lambda M-m \leq M\left(B_{1}+B_{21}+\lambda B_{23}+\lambda B_{3}\right)-m\left(A_{1}+A_{21}+\lambda A_{23}+\lambda A_{3}\right)
$$

Hence, by virtue of (1.11), (1.12), (1.31), (1.36), (1.37), and the assumption $\lambda \in] 0,1]$, the last inequality results in

$$
\begin{equation*}
0<M\left(\lambda-B_{1}-B_{21}-\lambda B_{23}-\lambda B_{3}\right) \leq m\left(1-A_{1}-A_{21}-\lambda A_{23}-\lambda A_{3}\right) . \tag{1.72}
\end{equation*}
$$

On the other hand, due to (1.36) and (1.37), (1.70) implies

$$
\begin{equation*}
0 \leq m\left(1+A_{22}\right) \leq M\left(1+B_{22}\right) \tag{1.73}
\end{equation*}
$$

Thus, it follows from (1.72) and (1.73) that

$$
\begin{align*}
\left(\lambda-B_{1}-B_{21}\right. & \left.-\lambda B_{23}-\lambda B_{3}\right)\left(1+A_{22}\right) \leq \\
& \leq\left(1-A_{1}-A_{21}-\lambda A_{23}-\lambda A_{3}\right)\left(1+B_{22}\right) \tag{1.74}
\end{align*}
$$

Obviously, on account of (1.11), (1.31), (1.36), and the assumption $\lambda \in] 0,1]$, we obtain

$$
\begin{gathered}
\left(\lambda-B_{1}-B_{21}-\lambda B_{23}-\lambda B_{3}\right)\left(1+A_{22}\right)= \\
=\left(\lambda-B_{1}-B_{21}-B_{22}-\lambda B_{23}-\lambda B_{3}\right)\left(1+A_{2}\right)+B_{22}\left(1+A_{2}\right)- \\
-\left(\lambda-B_{1}-B_{21}-\lambda B_{23}-\lambda B_{3}\right)\left(A_{21}+A_{23}\right) \geq \\
\geq(\lambda-B)\left(1+A_{2}\right)+B_{22}-\lambda\left(A_{21}+A_{23}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\left(1-A_{1}-A_{21}-\lambda A_{23}-\lambda A_{3}\right)\left(1+B_{22}\right)= \\
=1-A_{1}-\lambda A_{3}-\left(A_{21}+\lambda A_{23}\right)+\left(1-A_{1}-A_{21}-\lambda A_{23}-\lambda A_{3}\right) B_{22} \leq \\
\leq 1-A_{1}-\lambda A_{3}-\lambda\left(A_{21}+A_{23}\right)+B_{22}
\end{gathered}
$$

By virtue of the last two inequalities, (1.74) yields

$$
(\lambda-B)\left(1+A_{2}\right) \leq 1-A_{1}-\lambda A_{3}
$$

which, in view of (1.31), contradicts (1.13).
Now suppose that u changes its sign in $\left[\tau_{0}, \tau_{1}\right]$. Define the numbers m_{0} and M_{0} by (1.52) and choose $\alpha_{0}, \alpha_{1} \in\left[\tau_{0}, \tau_{1}\right]$ such that (1.53) holds. It is clear that (1.54) is satisfied and without loss of generality we can assume that $\alpha_{0}<\alpha_{1}$. Moreover, define the numbers $A_{2 i}, B_{2 i}(i=1,2,3)$ by (1.36) and put

$$
\begin{equation*}
g(x) \stackrel{\text { def }}{=} \frac{\lambda-B}{x+A_{1}+\lambda A_{3}-1}+x \quad \text { for } \quad x>1-A_{1}-\lambda A_{3} \tag{1.75}
\end{equation*}
$$

where B is given by (1.11).
In a similar manner as in the second part of the proof of Theorem 1.1, it can be shown that the inequalities (1.57) and (1.59) hold. Due to (1.11), (1.12), (1.31), (1.36), and the assumption $\lambda \in] 0,1]$, we have

$$
B_{1}+B_{21}+B_{23}+\lambda B_{3}<\lambda, \quad B_{22}<1
$$

Thus, by virtue of (1.54), it follows from (1.57) and (1.59) that

$$
\begin{equation*}
A_{22}>1, \quad A_{1}+A_{21}+A_{23}+\lambda A_{3}>1 \tag{1.76}
\end{equation*}
$$

and

$$
\begin{gather*}
A_{22} \geq 1+\frac{m_{0}}{M_{0}}\left(1-B_{22}\right), \tag{1.77}\\
\frac{m_{0}}{M_{0}} \geq \frac{\lambda-B_{1}-B_{21}-B_{23}-\lambda B_{3}}{A_{1}+A_{21}+A_{23}+\lambda A_{3}-1} . \tag{1.78}
\end{gather*}
$$

According to (1.76), the assumption $\lambda \in] 0,1]$, and the fact that

$$
\left(1-B_{22}\right)\left(\lambda-B_{1}-B_{21}-B_{23}-\lambda B_{3}\right) \geq \lambda-B_{1}-B_{21}-\lambda B_{22}-B_{23}-\lambda B_{3} \geq \lambda-B
$$

from (1.77) and (1.78) we get

$$
\begin{equation*}
A_{22} \geq 1+\frac{\lambda-B}{A_{1}+A_{21}+A_{23}+\lambda A_{3}-1} \tag{1.79}
\end{equation*}
$$

First suppose that (1.15) and (1.16) are satisfied. By virtue of (1.76), from (1.79) we have

$$
\begin{gathered}
\lambda-B \leq\left(A_{22}-1\right)\left(A_{1}+A_{21}+A_{23}+\lambda A_{3}-1\right) \leq \\
\leq \frac{1}{4}\left(A_{1}+A_{21}+A_{22}+A_{23}+\lambda A_{3}-2\right)^{2}=\frac{1}{4}\left(A_{1}+A_{2}+\lambda A_{3}-2\right)^{2}
\end{gathered}
$$

which, in view of (1.12), (1.31), (1.36), and (1.76), contradicts (1.16).
Now suppose that (1.17) and (1.18) are fulfilled. It is not difficult to verify that, on account of (1.17) and (1.31), the function g defined by (1.75)
is nondecreasing in $[0,+\infty[$. Therefore, from (1.79) we obtain

$$
\begin{gathered}
A_{21}+A_{22}+A_{23} \geq 1+\frac{\lambda-B}{A_{1}+A_{21}+A_{23}+\lambda A_{3}-1}+A_{21}+A_{23}= \\
=1+g\left(A_{21}+A_{23}\right) \geq 1+g(0)=1+\frac{\lambda-B}{A_{1}+\lambda A_{3}-1}
\end{gathered}
$$

which, in view of (1.31) and (1.36), contradicts (1.18).
Proof of Theorem 1.3. Assume that the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$ has a nontrivial solution u.

First suppose that u has a zero in $\left[\tau_{0}, \tau_{1}\right]$. Define the numbers m_{0} and M_{0} by (1.52) and choose $\alpha_{0}, \alpha_{1} \in\left[\tau_{0}, \tau_{1}\right]$ such that (1.53) holds. Obviously,

$$
\begin{equation*}
m_{0} \geq 0, \quad M_{0} \geq 0, \quad m_{0}+M_{0}>0 \tag{1.80}
\end{equation*}
$$

since, if $m_{0}=0$ and $M_{0}=0$, then, in view of (0.1_{0}) and (1.52), we obtain $u\left(\tau_{0}\right)=0$ and $u^{\prime}(t)=0$ for $t \in[a, b]$, i.e., $u \equiv 0$. It is also evident that without loss of generality we can assume that $\alpha_{0}<\alpha_{1}$.

The integration of $\left(0.1_{0}\right)$ from α_{0} to α_{1}, on account of (1.52), (1.53), and (1.80), yields

$$
\begin{align*}
M_{0}+m_{0} & =\int_{\alpha_{0}}^{\alpha_{1}}[p(s)]_{+} u(\tau(s)) d s-\int_{\alpha_{0}}^{\alpha_{1}}[p(s)]_{-} u(\tau(s)) d s \leq \\
& \leq M_{0} \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s+m_{0} \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s \tag{1.81}
\end{align*}
$$

which, by virtue of (1.19) and (1.80), results in $M_{0}+m_{0}<M_{0}+m_{0}$, a contradiction.

Now suppose that u has no zero in $\left[\tau_{0}, \tau_{1}\right]$. Without loss of generality we can assume that $u(t)>0$ for $t \in\left[\tau_{0}, \tau_{1}\right]$. Define the numbers M and m by (1.33) and choose $t_{M}, t_{m} \in\left[\tau_{0}, \tau_{1}\right]$ such that (1.34) holds. Furthermore, let

$$
\begin{align*}
& f_{+}(t) \stackrel{\text { def }}{=} \int_{a}^{t}[p(s)]_{+} d s+\lambda \int_{t}^{b}[p(s)]_{+} d s \quad \text { for } \quad t \in[a, b], \tag{1.82}\\
& f_{-}(t) \stackrel{\text { def }}{=} \int_{a}^{t}[p(s)]_{-} d s+\lambda \int_{t}^{b}[p(s)]_{-} d s \quad \text { for } \quad t \in[a, b] .
\end{align*}
$$

It is obvious that

$$
\begin{equation*}
M>0, \quad m>0 \tag{1.83}
\end{equation*}
$$

and either (1.38) or (1.39) is satisfied.
If (1.38) holds, then the integration of $\left(0.1_{0}\right)$ from t_{M} to t_{m}, on account of (1.33), (1.34), and (1.83), results in

$$
M-m=\int_{t_{M}}^{t_{m}}[p(s)]_{-} u(\tau(s)) d s-\int_{t_{M}}^{t_{m}}[p(s)]_{+} u(\tau(s)) d s \leq M \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s
$$

If (1.39) holds, then the integration of $\left(0.1_{0}\right)$ from t_{m} to t_{M}, in view of (1.33), (1.34), and (1.83), results in
$M-m=\int_{t_{m}}^{t_{M}}[p(s)]_{+} u(\tau(s)) d s-\int_{t_{m}}^{t_{M}}[p(s)]_{-} u(\tau(s)) d s \leq M \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s$.
Therefore, due to (1.19) and (1.83), in both cases (1.38) and (1.39) we have

$$
\begin{equation*}
0<M(1-T) \leq m \tag{1.84}
\end{equation*}
$$

where T is defined by (1.22).
First suppose that (1.20) holds with T given by (1.22). The integrations of $\left(0.1_{0}\right)$ from a to t_{M} and from t_{M} to b, on account of (1.33) and (1.34), imply

$$
\begin{align*}
M-u(a) & =\int_{a}^{t_{M}}[p(s)]_{+} u(\tau(s)) d s-\int_{a}^{t_{M}}[p(s)]_{-} u(\tau(s)) d s \leq \\
& \leq M \int_{a}^{t_{M}}[p(s)]_{+} d s-m \int_{a}^{t_{M}}[p(s)]_{-} d s, \tag{1.85}\\
u(b)-M & =\int_{t_{M}}^{b}[p(s)]_{+} u(\tau(s)) d s-\int_{t_{M}}^{b}[p(s)]_{-} u(\tau(s)) d s \leq \\
& \leq M \int_{t_{M}}^{b}[p(s)]_{+} d s-m \int_{t_{M}}^{b}[p(s)]_{-} d s . \tag{1.86}
\end{align*}
$$

Multiplying both sides of (1.86) by λ, summing with (1.85), and taking into account $\left(0.2_{0}\right),(1.82)$, and the assumption $\lambda \in[0,1]$, we get

$$
\begin{gather*}
M(1-\lambda) \leq M\left(\int_{a}^{t_{M}}[p(s)]_{+} d s+\lambda \int_{t_{M}}^{b}[p(s)]_{+} d s\right)- \\
-m\left(\int_{a}^{t_{M}}[p(s)]_{-} d s+\lambda \int_{t_{M}}^{b}[p(s)]_{-} d s\right)=M f_{+}\left(t_{M}\right)-m f_{-}\left(t_{M}\right) \tag{1.87}
\end{gather*}
$$

It is easy to verify that, in view of the assumption $\lambda \in[0,1]$, the functions f_{+}and f_{-}defined by (1.82) are nondecreasing in $[a, b]$ and thus, due to (1.31) and (1.82), it follows from (1.87) that

$$
\begin{gather*}
M(1-\lambda) \leq M f_{+}\left(t_{M}\right)-m f_{-}\left(t_{M}\right) \leq M f_{+}\left(\tau_{1}\right)-m f_{-}\left(\tau_{0}\right)= \\
=M\left(A_{1}+A_{2}+\lambda A_{3}\right)-m\left(B_{1}+\lambda B_{2}+\lambda B_{3}\right) . \tag{1.88}
\end{gather*}
$$

By virtue of (1.84), (1.88) yields

$$
M(1-\lambda) \leq M\left(A_{1}+A_{2}+\lambda A_{3}\right)-M\left(B_{1}+\lambda B_{2}+\lambda B_{3}\right)(1-T)
$$

which, in view of (1.31) and (1.83), contradicts (1.20).
Now suppose that (1.21) holds with T given by (1.22). The integrations of $\left(0.1_{0}\right)$ from a to t_{m} and from t_{m} to b, on account of (1.33) and (1.34),
imply

$$
\begin{align*}
m-u(a) & =\int_{a}^{t_{m}}[p(s)]_{+} u(\tau(s)) d s-\int_{a}^{t_{m}}[p(s)]_{-} u(\tau(s)) d s \geq \\
& \geq m \int_{a}^{t_{m}}[p(s)]_{+} d s-M \int_{a}^{t_{m}}[p(s)]_{-} d s, \tag{1.89}\\
u(b)-m & =\int_{t_{m}}^{b}[p(s)]_{+} u(\tau(s)) d s-\int_{t_{m}}^{b}[p(s)]_{-} u(\tau(s)) d s \geq \\
& \geq m \int_{t_{m}}^{b}[p(s)]_{+} d s-M \int_{t_{m}}^{b}[p(s)]_{-} d s . \tag{1.90}
\end{align*}
$$

Multiplying both sides of (1.90) by λ, summing with (1.89), and taking into account (0.2_{0}), (1.82), and the assumption $\lambda \in[0,1]$, we obtain

$$
\begin{gather*}
m(1-\lambda) \geq m\left(\int_{a}^{t_{m}}[p(s)]_{+} d s+\lambda \int_{t_{m}}^{b}[p(s)]_{+} d s\right)- \\
-M\left(\int_{a}^{t_{m}}[p(s)]_{-} d s+\lambda \int_{t_{m}}^{b}[p(s)]_{-} d s\right)=m f_{+}\left(t_{m}\right)-M f_{-}\left(t_{m}\right) . \tag{1.91}
\end{gather*}
$$

As above, in view of the assumption $\lambda \in[0,1]$, the functions f_{+}and f_{-} defined by (1.82) are nondecreasing in $[a, b]$ and thus, due to (1.31) and (1.82), it follows from (1.91) that

$$
\begin{gather*}
m(1-\lambda) \geq m f_{+}\left(t_{m}\right)-M f_{-}\left(t_{m}\right) \geq m f_{+}\left(\tau_{0}\right)-M f_{-}\left(\tau_{1}\right)= \\
=m\left(A_{1}+\lambda A_{2}+\lambda A_{3}\right)-M\left(B_{1}+B_{2}+\lambda B_{3}\right) \tag{1.92}
\end{gather*}
$$

By virtue of (1.19), (1.22), and (1.84), (1.92) implies

$$
m(1-\lambda)(1-T) \geq m\left(A_{1}+\lambda A_{2}+\lambda A_{3}\right)(1-T)-m\left(B_{1}+B_{2}+\lambda B_{3}\right)
$$

which, in view of (1.31) and (1.83), contradicts (1.21).
Proof of Theorem 1.4. Assume that the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$ has a nontrivial solution u.

According to (1.23), (1.24), and Theorem 1.1 in [7], u changes its sign in $\left[\tau_{0}, \tau_{1}\right]$. Define the numbers m_{0} and M_{0} by (1.52) and choose $\alpha_{0}, \alpha_{1} \in\left[\tau_{0}, \tau_{1}\right]$ such that (1.53) holds. Obviously, (1.54) is satisfied and without loss of generality we can assume that $\alpha_{1}<\alpha_{0}$. From $\left(0.1_{0}\right),\left(0.2_{0}\right),(1.23)$, and (1.24), due to (1.52) and (1.54), we obtain

$$
\begin{gather*}
\left(M_{0} \gamma(t)+u(t)\right)^{\prime} \geq \\
\geq[p(t)]_{+}\left(M_{0} \gamma(\tau(t))+u(\tau(t))\right)+[p(t)]_{-}\left(M_{0}-u(\tau(t))\right) \geq \tag{1.93}\\
\geq[p(t)]_{+}\left(M_{0} \gamma(\tau(t))+u(\tau(t))\right) \quad \text { for } \quad t \in[a, b], \\
M_{0} \gamma(a)+u(a)-\lambda\left(M_{0} \gamma(b)+u(b)\right)>0,
\end{gather*}
$$

and

$$
\begin{gather*}
\left(m_{0} \gamma(t)-u(t)\right)^{\prime} \geq \\
\geq[p(t)]_{+}\left(m_{0} \gamma(\tau(t))-u(\tau(t))\right)+[p(t)]_{-}\left(m_{0}+u(\tau(t))\right) \geq \tag{1.94}\\
\geq[p(t)]_{+}\left(m_{0} \gamma(\tau(t))-u(\tau(t))\right) \quad \text { for } \quad t \in[a, b], \\
m_{0} \gamma(a)-u(a)-\lambda\left(m_{0} \gamma(b)-u(b)\right)>0 .
\end{gather*}
$$

Hence, according to (1.23), (1.24), Theorem 1.1 in [7], and Remark 0.1 in [7], we get

$$
M_{0} \gamma(t)+u(t) \geq 0, \quad m_{0} \gamma(t)-u(t) \geq 0 \quad \text { for } \quad t \in[a, b] .
$$

By virtue of the last inequalities, it follows from (1.93) and (1.94) that

$$
\begin{equation*}
\left(M_{0} \gamma(t)+u(t)\right)^{\prime} \geq 0, \quad\left(m_{0} \gamma(t)-u(t)\right)^{\prime} \geq 0 \quad \text { for } \quad t \in[a, b] . \tag{1.95}
\end{equation*}
$$

The integration of the first inequality in (1.95) from α_{1} to α_{0}, in view of (1.53) and (1.54), yields

$$
M_{0} \gamma\left(\alpha_{0}\right)-m_{0}-M_{0} \gamma\left(\alpha_{1}\right)-M_{0} \geq 0
$$

i.e.,

$$
\begin{equation*}
\gamma\left(\alpha_{0}\right)-\gamma\left(\alpha_{1}\right) \geq 1+\frac{m_{0}}{M_{0}} \tag{1.96}
\end{equation*}
$$

On the other hand, the integrations of the second inequality in (1.95) from a to α_{1} and from α_{0} to b, on account of (1.53), imply

$$
\begin{align*}
m_{0} \gamma\left(\alpha_{1}\right)-M_{0}-m_{0} \gamma(a)+u(a) & \geq 0, \tag{1.97}\\
m_{0} \gamma(b)-u(b)-m_{0} \gamma\left(\alpha_{0}\right)-m_{0} & \geq 0 . \tag{1.98}
\end{align*}
$$

Multiplying both sides of (1.98) by λ, summing with (1.97), and taking into account $\left(0.2_{0}\right),(1.54)$, and the assumption $\lambda \in[0,1[$, we get

$$
\begin{equation*}
\gamma\left(\alpha_{1}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\alpha_{0}\right)\right) \geq \lambda+\frac{M_{0}}{m_{0}} \tag{1.99}
\end{equation*}
$$

First suppose that (1.25) and (1.26) are fulfilled. Summing (1.96) and (1.99) and taking into account (1.54), we obtain

$$
\begin{equation*}
\gamma\left(\alpha_{0}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\alpha_{0}\right)\right) \geq 1+\lambda+\frac{M_{0}}{m_{0}}+\frac{m_{0}}{M_{0}} \geq 3+\lambda . \tag{1.100}
\end{equation*}
$$

On the other hand, by virtue of the fact that the function γ is nondecreasing in $[a, b]$ and the assumption $\lambda \in[0,1[$, we get

$$
\lambda \gamma(b)+(1-\lambda) \gamma\left(\tau_{1}\right)-\gamma(a) \geq \lambda \gamma(b)+(1-\lambda) \gamma\left(\alpha_{0}\right)-\gamma(a)
$$

which, together with (1.100), contradicts (1.26).
Now suppose that (1.27) and (1.28) are satisfied. According to (1.27), (1.54), and the fact that the function γ is nondecreasing in $[a, b]$, it follows from (1.99) that

$$
\frac{m_{0}}{M_{0}} \geq \frac{1}{\gamma\left(\alpha_{1}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\alpha_{0}\right)\right)-\lambda}
$$

and thus, (1.96) implies

$$
\begin{equation*}
\gamma\left(\alpha_{0}\right)-\gamma\left(\alpha_{1}\right) \geq 1+\frac{1}{\gamma\left(\alpha_{1}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\alpha_{0}\right)\right)-\lambda} \tag{1.101}
\end{equation*}
$$

Let

$$
\begin{equation*}
g(x) \stackrel{\text { def }}{=} \frac{1}{x-\lambda}+x \quad \text { for } \quad x>\lambda \tag{1.102}
\end{equation*}
$$

By virtue of (1.101), (1.102), the assumption $\lambda \in[0,1[$, and the fact that the function γ is nondecreasing in $[a, b]$, we get

$$
\begin{gather*}
\gamma\left(\tau_{1}\right)-\gamma\left(\tau_{0}\right)= \\
=\gamma\left(\alpha_{0}\right)-\gamma\left(\alpha_{1}\right)+\gamma\left(\tau_{1}\right)-\gamma\left(\alpha_{0}\right)+\gamma\left(\alpha_{1}\right)-\gamma\left(\tau_{0}\right) \geq \\
\geq 1+\frac{1}{\gamma\left(\alpha_{1}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\alpha_{0}\right)\right)-\lambda}+ \\
+\lambda\left(\gamma\left(\tau_{1}\right)-\gamma\left(\alpha_{0}\right)\right)+\gamma\left(\alpha_{1}\right)-\gamma\left(\tau_{0}\right)= \\
=1+g\left(\gamma\left(\alpha_{1}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\alpha_{0}\right)\right)\right)+ \\
+\gamma(a)-\gamma\left(\tau_{0}\right)+\lambda\left(\gamma\left(\tau_{1}\right)-\gamma(b)\right) . \tag{1.103}
\end{gather*}
$$

It is easy to verify that the function g is nondecreasing in $[1+\lambda,+\infty[$ and thus, according to (1.27) and the fact that the function γ is nondecreasing in $[a, b]$, we find

$$
g\left(\gamma\left(\alpha_{1}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\alpha_{0}\right)\right)\right) \geq g\left(\gamma\left(\tau_{0}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\tau_{1}\right)\right)\right)
$$

Therefore, (1.103) yields

$$
\begin{aligned}
& \gamma\left(\tau_{1}\right)-\gamma\left(\tau_{0}\right) \geq 1+g\left(\gamma\left(\tau_{0}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\tau_{1}\right)\right)\right)+ \\
&+\gamma(a)-\gamma\left(\tau_{0}\right)+\lambda\left(\gamma\left(\tau_{1}\right)-\gamma(b)\right)= \\
&= 1+\frac{1}{\gamma\left(\tau_{0}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\tau_{1}\right)\right)-\lambda}
\end{aligned}
$$

which contradicts (1.28).
2. Problem (0.1), (0.3)

2.1. Main Results.

Theorem 2.1. Let $\lambda \in R_{+}$, the condition (1.19) be fulfilled, and let either

$$
\begin{gather*}
\int_{a}^{\tau_{1}}[p(s)]_{+} d s+\lambda \int_{\tau_{0}}^{b}[p(s)]_{-} d s- \\
-\left(\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s\right)(1-T)<1+\lambda \tag{2.1}
\end{gather*}
$$

or

$$
\begin{gather*}
\left(\int_{a}^{\tau_{0}}[p(s)]_{+} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{-} d s\right)(1-T)- \\
-\int_{a}^{\tau_{1}}[p(s)]_{-} d s-\lambda \int_{\tau_{0}}^{b}[p(s)]_{+} d s>(1+\lambda)(1-T), \tag{2.2}
\end{gather*}
$$

where T is defined by (1.22). Then the problem (0.1), (0.3) has a unique solution.

Remark 2.1. Theorem 2.1 is nonimprovable in the sense that the strict inequalities (2.1) and (2.2) cannot be replaced by the nonstrict ones (see Examples 3.11 and 3.12).

Note also that if the segment $\left[\tau_{0}, \tau_{1}\right]$ degenerates to a point $c \in[a, b]$, i.e., $\tau(t)=c$ for $t \in[a, b]$, then $T=0$ and the inequalities (2.1) and (2.2) can be rewritten as

$$
\int_{a}^{c} p(s) d s-\lambda \int_{c}^{b} p(s) d s \neq 1+\lambda .
$$

On the other hand, the last relation is sufficient and necessary for the unique solvability of the problem (0.1), (0.3) with $\tau(t)=c$ for $t \in[a, b]$.

The following theorem can be understood as a supplement of the previous one for the case $T \geq 1$, where T is given by (1.22).

Theorem 2.2. Let $\lambda \in[0,1]$,

$$
\begin{equation*}
D \stackrel{\text { def }}{=} \int_{a}^{\tau_{1}}[p(s)]_{+} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{-} d s, \tag{2.3}
\end{equation*}
$$

and let one of the following items be fulfilled:
a)

$$
\begin{gather*}
\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s \geq 1 \tag{2.4}\\
\int_{a}^{\tau_{1}}[p(s)]_{+} d s+\lambda \int_{\tau_{0}}^{b}[p(s)]_{-} d s+ \\
+\left(\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s\right)\left(\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s-1\right)<1+\lambda \tag{2.5}
\end{gather*}
$$

b)

$$
\begin{gather*}
\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s \geq 1 \tag{2.6}\\
D \geq 1-\lambda^{2} \tag{2.7}\\
\int_{a}^{\tau_{1}}[p(s)]_{+} d s+\lambda \int_{\tau_{0}}^{b}[p(s)]_{-} d s+
\end{gather*}
$$

100

$$
\begin{equation*}
+\left(\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s\right)\left(\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s-1\right)<1+\lambda ; \tag{2.8}
\end{equation*}
$$

c) the condition (2.6) holds,

$$
\begin{equation*}
D<1-\lambda^{2}, \tag{2.9}
\end{equation*}
$$

and either

$$
\begin{gather*}
\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s<-\lambda+\sqrt{1-D}, \tag{2.10}\\
\int_{a}^{\tau_{1}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s<1-\lambda+2 \sqrt{1-D} \tag{2.11}
\end{gather*}
$$

or

$$
\begin{equation*}
\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s \geq-\lambda+\sqrt{1-D} \tag{2.12}
\end{equation*}
$$

and the condition (2.8) holds.
Then the problem (0.1), (0.3) has a unique solution.
Remark 2.2. Theorem 2.2 is nonimprovable in the sense that neither of the strict inequalities (2.5), (2.8), and (2.11) can be replaced by the nonstrict one (see Examples 3.13-3.16).

Note also that if $\tau_{0}=a$ and $\tau_{1}=b$, then from Theorems 2.1 and 2.2 we obtain Corollary 1.1 in [6].

Example 2.1. On the segment $[0,1]$ consider the boundary value problem

$$
\begin{gather*}
u^{\prime}(t)=k\left(\frac{|2 t-1|}{2}-\frac{1}{4}\right) u\left(\frac{2 t+1}{4}\right)+q(t), \tag{2.13}\\
u(0)+\lambda u(1)=c
\end{gather*}
$$

where $\lambda \in[0,1], k \in R, q \in L([a, b] ; R)$, and $c \in R$.
It is not difficult to verify that $\tau_{0}=\frac{1}{4}$ and $\tau_{1}=\frac{3}{4}$. Obviously, if $k \leq-16$, then the condition (2.4) holds. If

$$
8(1+\lambda)-\sqrt{[8(1+\lambda)]^{2}+512(1+\lambda)}<k \leq 0
$$

then the condition (2.5) is fulfilled. If $k \geq 16$, then the condition (2.6) is satisfied. If $k \geq 32\left(1-\lambda^{2}\right)$, then the condition (2.7) holds. If

$$
0 \leq k<-\frac{8(1+\lambda)}{\lambda}+\sqrt{\left[\frac{8(1+\lambda)}{\lambda}\right]^{2}+512 \frac{1+\lambda}{\lambda}}
$$

then the condition (2.8) is fulfilled. If $0 \leq k<32\left(1-\lambda^{2}\right)$, then the condition (2.9) is satisfied. If

$$
0 \leq k<-\frac{16\left(1+2 \lambda^{2}\right)}{\lambda^{2}}+16 \sqrt{\left[\frac{1+2 \lambda^{2}}{\lambda^{2}}\right]^{2}+4 \frac{1-\lambda^{2}}{\lambda^{2}}}
$$

then the condition (2.10) holds. If

$$
0 \leq k<32 \frac{(2+\lambda)(1-\lambda)-2}{(2+\lambda)^{2}}+32 \sqrt{\left[\frac{(2+\lambda)(1-\lambda)-2}{(2+\lambda)^{2}}\right]^{2}+\frac{3+\lambda^{2}}{(2+\lambda)^{2}}},
$$

then the condition (2.11) is satisfied. If

$$
k \geq-\frac{16\left(1+2 \lambda^{2}\right)}{\lambda^{2}}+16 \sqrt{\left[\frac{1+2 \lambda^{2}}{\lambda^{2}}\right]^{2}+4 \frac{1-\lambda^{2}}{\lambda^{2}}}
$$

then the condition (2.12) is fulfilled.
In particular if $k \in]-17.4,-16[\cup[16,22.21[\cup[23.38,23.81[$ and $\lambda=0.3$, then, according to Theorem 2.2, the problem (2.13) has a unique solution.

Remark 2.3. Let $\lambda \in[0,1]$. Denote by H the set of 6 -tuples $\left(x_{i}\right)_{i=1}^{6} \in R_{+}^{6}$ satisfying one of the following items:
a)

$$
x_{2}<1, \quad x_{5}<1
$$

and either

$$
x_{1}+x_{2}+\lambda\left(x_{5}+x_{6}\right)-\left(x_{4}+\lambda x_{3}\right)(1-T)<1+\lambda
$$

or
$\left(x_{1}+\lambda x_{6}\right)(1-T)-x_{4}-x_{5}-\lambda\left(x_{2}+x_{3}\right)>(1+\lambda)(1-T)$,
where $T=\max \left\{x_{2}, x_{5}\right\}$;
b)

$$
\begin{gathered}
x_{2} \geq 1 \\
x_{1}+x_{2}+\lambda\left(x_{5}+x_{6}\right)+\left(x_{4}+\lambda x_{3}\right)\left(x_{2}-1\right)<1+\lambda ;
\end{gathered}
$$

c)

$$
\begin{gathered}
x_{5} \geq 1 \\
x_{1}+x_{2}+\lambda x_{6} \geq 1-\lambda^{2} \\
x_{1}+x_{2}+\lambda\left(x_{5}+x_{6}\right)+\left(x_{4}+\lambda x_{3}\right)\left(x_{5}-1\right)<1+\lambda ;
\end{gathered}
$$

d)

$$
\begin{gathered}
x_{5} \geq 1, \\
x_{1}+x_{2}+\lambda x_{6}<1-\lambda^{2},
\end{gathered}
$$

and either

$$
\begin{gathered}
x_{4}+\lambda x_{3}<-\lambda+\sqrt{1-x_{1}-x_{2}-\lambda x_{6}}, \\
x_{4}+x_{5}+\lambda x_{3}<1-\lambda+2 \sqrt{1-x_{1}-x_{2}-\lambda x_{6}}
\end{gathered}
$$

or

$$
\begin{gathered}
x_{4}+\lambda x_{3} \geq-\lambda+\sqrt{1-x_{1}-x_{2}-\lambda x_{6}} \\
x_{1}+x_{2}+\lambda\left(x_{5}+x_{6}\right)+\left(x_{4}+\lambda x_{3}\right)\left(x_{5}-1\right)<1+\lambda .
\end{gathered}
$$

Now, according to Theorems 2.1 and 2.2, if $p \in L([a, b] ; R)$ is such that the point
$\left(\int_{a}^{\tau_{0}}[p(s)]_{+} d s, \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s, \int_{\tau_{1}}^{b}[p(s)]_{+} d s, \int_{a}^{\tau_{0}}[p(s)]_{-} d s, \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s, \int_{\tau_{1}}^{b}[p(s)]_{-} d s\right)$
belongs to the set H, then the problem $(0.1),(0.3)$ has a unique solution.
On Fig. 2.1 one can see an intersection of the set H and the 3 -dimensional subspace $\{(0, x, 0, y, z, 0): x, y, z \in R\}$ of the space R^{6}, i.e., the set

$$
G=\left\{(x, y, z) \in R_{+}^{3}:(0, x, 0, y, z, 0) \in H\right\} .
$$

Fig. 2.1.

Remark 2.4. Let $\lambda \in[1,+\infty[$ and let the functions $\widetilde{p}, \widetilde{\tau}$, and \widetilde{q} be defined by (1.29). Put $\mu=1 / \lambda$ and $\widetilde{c}=\mu c$.

It is clear that if u is a solution of the problem (0.1), (0.3), then the function v, defined by $v(t) \stackrel{\text { def }}{=} u(a+b-t)$ for $t \in[a, b]$, is a solution of the problem

$$
\begin{equation*}
v^{\prime}(t)=\widetilde{p}(t) v(\widetilde{\tau}(t))+\widetilde{q}(t), \quad v(a)+\mu v(b)=\widetilde{c}, \tag{2.14}
\end{equation*}
$$

and vice versa, if v is a solution of the problem (2.14), then the function u, defined by $u(t) \stackrel{\text { def }}{=} v(a+b-t)$ for $t \in[a, b]$, is a solution of the problem (0.1), (0.3).

Therefore, Theorem 2.2 immediately implies the following assertion.
Theorem 2.3. Let $\lambda \in[1,+\infty[$,

$$
\widetilde{D} \stackrel{\text { def }}{=} \frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{+} d s+\int_{\tau_{0}}^{b}[p(s)]_{-} d s
$$

and let one of the following items be fulfilled:
a)

$$
\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s \geq 1
$$

and the condition (2.8) holds;
b)

$$
\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s \geq 1, \quad \widetilde{D} \geq 1-\frac{1}{\lambda^{2}}
$$

and the condition (2.5) holds;
c)

$$
\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s \geq 1, \quad \widetilde{D}<1-\frac{1}{\lambda^{2}}
$$

and either

$$
\begin{gathered}
\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{-} d s+\int_{\tau_{1}}^{b}[p(s)]_{+} d s<-\frac{1}{\lambda}+\sqrt{1-\widetilde{D}}, \\
\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{-} d s+\int_{\tau_{0}}^{b}[p(s)]_{+} d s<1-\frac{1}{\lambda}+2 \sqrt{1-\widetilde{D}}
\end{gathered}
$$

or

$$
\frac{1}{\lambda} \int_{a}^{\tau_{0}}[p(s)]_{-} d s+\int_{\tau_{1}}^{b}[p(s)]_{+} d s \geq-\frac{1}{\lambda}+\sqrt{1-\widetilde{D}}
$$

and the condition (2.5) holds.
Then the problem (0.1), (0.3) has a unique solution.
Remark 2.5. According to Remarks 2.2 and 2.4, Theorem 2.3 is nonimprovable in an appropriate sense.
2.2. Proofs. According to Theorem 0.1, to prove Theorems 2.1 and 2.2 it is sufficient to show that the homogeneous problem $\left(0.1_{0}\right),\left(0.3_{0}\right)$ has only the trivial solution. As above, define the numbers $A_{i}, B_{i}(i=1,2,3)$ by (1.31).

Proof of Theorem 2.1. Assume that the problem $\left(0.1_{0}\right),\left(0.3_{0}\right)$ has a nontrivial solution u.

First suppose that u has a zero in $\left[\tau_{0}, \tau_{1}\right]$. Define the numbers m_{0} and M_{0} by (1.52) and choose $\alpha_{0}, \alpha_{1} \in\left[\tau_{0}, \tau_{1}\right]$ such that (1.53) holds. Obviously,
(1.80) is satisfied since, if $m_{0}=0$ and $M_{0}=0$, then, in view of (0.1_{0}) and (1.52), we obtain $u\left(\tau_{0}\right)=0$ and $u^{\prime}(t)=0$ for $t \in[a, b]$, i.e., $u \equiv 0$. It is also evident that without loss of generality we can assume that $\alpha_{0}<\alpha_{1}$.

The integration of $\left(0.1_{0}\right)$ from α_{0} to α_{1}, by virtue of (1.52), (1.53), and (1.80), yields the inequality (1.81), which, on account of (1.19) and (1.80), results in $M_{0}+m_{0}<M_{0}+m_{0}$, a contradiction.

Now suppose that u has no zero in $\left[\tau_{0}, \tau_{1}\right]$. Without loss of generality we can assume that $u(t)>0$ for $t \in\left[\tau_{0}, \tau_{1}\right]$. Define the numbers M and m by (1.33) and choose $t_{M}, t_{m} \in\left[\tau_{0}, \tau_{1}\right]$ such that (1.34) holds. It is obvious that (1.83) is fulfilled and either (1.38) or (1.39) is satisfied. As in the proof of Theorem 1.3, one can show that in both cases (1.38) and (1.39) the inequality (1.84) holds, where T is defined by (1.22).

On the other hand, the integrations of $\left(0.1_{0}\right)$ from a to t_{M}, from t_{M} to b, from a to t_{m}, and from t_{m} to b, in view of (1.33) and (1.34), yield

$$
\begin{align*}
M-u(a) & =\int_{a}^{t_{M}}[p(s)]_{+} u(\tau(s)) d s-\int_{a}^{t_{M}}[p(s)]_{-} u(\tau(s)) d s \leq \\
& \leq M \int_{a}^{t_{M}}[p(s)]_{+} d s-m \int_{a}^{t_{M}}[p(s)]_{-} d s, \tag{2.15}\\
M-u(b) & =\int_{t_{M}}^{b}[p(s)]_{-} u(\tau(s)) d s-\int_{t_{M}}^{b}[p(s)]_{+} u(\tau(s)) d s \leq \\
& \leq M \int_{t_{M}}^{b}[p(s)]_{-} d s-m \int_{t_{M}}^{b}[p(s)]_{+} d s, \tag{2.16}\\
m-u(a)= & \int_{a}^{t_{m}}[p(s)]_{+} u(\tau(s)) d s-\int_{a}^{t_{m}}[p(s)]_{-} u(\tau(s)) d s \geq \\
& \geq m \int_{a}^{t_{m}}[p(s)]_{+} d s-M \int_{a}^{t_{m}}[p(s)]_{-} d s, \tag{2.17}\\
m-u(b) & =\int_{t_{m}}^{b}[p(s)]_{-} u(\tau(s)) d s-\int_{t_{m}}^{b}[p(s)]_{+} u(\tau(s)) d s \geq \\
& \geq m \int_{t_{m}}^{b}[p(s)]_{-} d s-M \int_{t_{m}}^{b}[p(s)]_{+} d s . \tag{2.18}
\end{align*}
$$

Put

$$
\begin{align*}
& f_{1}(t) \stackrel{\text { def }}{=} M \int_{a}^{t}[p(s)]_{+} d s-\lambda m \int_{t}^{b}[p(s)]_{+} d s \quad \text { for } \quad t \in[a, b], \tag{2.19}\\
& f_{2}(t) \stackrel{\text { def }}{=} m \int_{a}^{t}[p(s)]_{-} d s-\lambda M \int_{t}^{b}[p(s)]_{-} d s \quad \text { for } \quad t \in[a, b], \\
& f_{3}(t) \stackrel{\text { def }}{=} m \int_{a}^{t}[p(s)]_{+} d s-\lambda M \int_{t}^{b}[p(s)]_{+} d s \quad \text { for } \quad t \in[a, b], \\
& f_{4}(t) \stackrel{\text { def }}{=} M \int_{a}^{t}[p(s)]_{-} d s-\lambda m \int_{t}^{b}[p(s)]_{-} d s \quad \text { for } \quad t \in[a, b] . \tag{2.20}
\end{align*}
$$

First suppose that (2.1) holds, where T is defined by (1.22). Multiplying both sides of (2.16) by λ, summing with (2.15), and taking into account $\left(0.3_{0}\right),(2.19)$, and the assumption $\lambda \in R_{+}$, we get

$$
\begin{gather*}
M(1+\lambda) \leq M \int_{a}^{t_{M}}[p(s)]_{+} d s-\lambda m \int_{t_{M}}^{b}[p(s)]_{+} d s- \\
-\left(m \int_{a}^{t_{M}}[p(s)]_{-} d s-\lambda M \int_{t_{M}}^{b}[p(s)]_{-} d s\right)=f_{1}\left(t_{M}\right)-f_{2}\left(t_{M}\right) \tag{2.21}
\end{gather*}
$$

It is easy to verify that the functions f_{1} and f_{2} defined by (2.19) are nondecreasing in $[a, b]$ and therefore, due to (1.31) and (2.19), it follows from (2.21) that

$$
\begin{align*}
& M(1+\lambda) \leq f_{1}\left(t_{M}\right)-f_{2}\left(t_{M}\right) \leq f_{1}\left(\tau_{1}\right)-f_{2}\left(\tau_{0}\right)= \\
& =M\left(A_{1}+A_{2}+\lambda B_{2}+\lambda B_{3}\right)-m\left(B_{1}+\lambda A_{3}\right) \tag{2.22}
\end{align*}
$$

Thus, (1.84) and (2.22) imply

$$
M(1+\lambda) \leq M\left(A_{1}+A_{2}+\lambda B_{2}+\lambda B_{3}\right)-M\left(B_{1}+\lambda A_{3}\right)(1-T)
$$

which, in view of (1.31) and (1.83), contradicts (2.1).
Now suppose that (2.2) is satisfied, where T is defined by (1.22). Multiplying both sides of (2.18) by λ, summing with (2.17), and taking into account $\left(0.3_{0}\right),(2.20)$, and the assumption $\lambda \in R_{+}$, we obtain

$$
\begin{gather*}
m(1+\lambda) \geq m \int_{a}^{t_{m}}[p(s)]_{+} d s-\lambda M \int_{t_{m}}^{b}[p(s)]_{+} d s- \\
-\left(M \int_{a}^{t_{m}}[p(s)]_{-} d s-\lambda m \int_{t_{m}}^{b}[p(s)]_{-} d s\right)=f_{3}\left(t_{m}\right)-f_{4}\left(t_{m}\right) \tag{2.23}
\end{gather*}
$$

It is easy to verify that the functions f_{3} and f_{4} defined by (2.20) are nondecreasing in $[a, b]$ and thus, due to (1.31) and (2.20), it follows from (2.23) that

$$
\begin{gather*}
m(1+\lambda) \geq f_{3}\left(t_{m}\right)-f_{4}\left(t_{m}\right) \geq f_{3}\left(\tau_{0}\right)-f_{4}\left(\tau_{1}\right)= \\
=m\left(A_{1}+\lambda B_{3}\right)-M\left(B_{1}+B_{2}+\lambda A_{2}+\lambda A_{3}\right) \tag{2.24}
\end{gather*}
$$

By virtue of (1.19) and (1.22), (1.84) and (2.24) yield

$$
m(1+\lambda)(1-T) \geq m\left(A_{1}+\lambda B_{3}\right)(1-T)-m\left(B_{1}+B_{2}+\lambda A_{2}+\lambda A_{3}\right)
$$

which, in view of (1.31) and (1.83), contradicts (2.2).
Proof of Theorem 2.1. Assume that the problem $\left(0.1_{0}\right),\left(0.3_{0}\right)$ has a nontrivial solution u.

First suppose that u changes its sign in $\left[\tau_{0}, \tau_{1}\right]$. Define numbers m_{0} and M_{0} by (1.52) and choose $\alpha_{0}, \alpha_{1} \in\left[\tau_{0}, \tau_{1}\right]$ such that (1.53) holds. It is clear that (1.54) is satisfied and without loss of generality we can assume that $\alpha_{0}<\alpha_{1}$. Furthermore, define the numbers $A_{2 i}, B_{2 i}(i=1,2,3)$ by (1.36).

The integrations of $\left(0.1_{0}\right)$ from a to α_{0}, from α_{0} to α_{1}, from α_{1} to b, and from τ_{1} to b, in view of (1.31), (1.36), (1.52), and (1.53), result in

$$
\begin{align*}
&-m_{0}-u(a)= \int_{a}^{\alpha_{0}}[p(s)]_{+} u(\tau(s)) d s-\int_{a}^{\alpha_{0}}[p(s)]_{-} u(\tau(s)) d s \leq \\
& \leq M_{0}\left(A_{1}+A_{21}\right)+m_{0}\left(B_{1}+B_{21}\right), \tag{2.25}\\
& u(a)+m_{0}= \int_{a}^{\alpha_{0}}[p(s)]_{-} u(\tau(s)) d s-\int_{a}^{\alpha_{0}}[p(s)]_{+} u(\tau(s)) d s \leq \\
& \leq M_{0}\left(B_{1}+B_{21}\right)+m_{0}\left(A_{1}+A_{21}\right), \tag{2.26}\\
& M_{0}+m_{0}= \int_{\alpha_{0}}^{\alpha_{1}}[p(s)]_{+} u(\tau(s)) d s-\int_{\alpha_{0}}^{\alpha_{1}}[p(s)]_{-} u(\tau(s)) d s \leq \\
& \quad \leq M_{0} A_{22}+m_{0} B_{22}, \tag{2.27}\\
& M_{0}-u(b)= \int_{\alpha_{1}}^{b}[p(s)]_{-} u(\tau(s)) d s-\int_{\alpha_{1}}^{b}[p(s)]_{+} u(\tau(s)) d s \leq \\
& \leq M_{0}\left(B_{23}+B_{3}\right)+m_{0}\left(A_{23}+A_{3}\right), \tag{2.28}\\
& u(b)- M_{0} \leq u(b)-u\left(\tau_{1}\right)=\int_{\tau_{1}}^{b}[p(s)]_{+} u(\tau(s)) d s- \\
&- \int_{\tau_{1}}^{b}[p(s)]_{-} u(\tau(s)) d s \leq M_{0} A_{3}+m_{0} B_{3} . \tag{2.29}
\end{align*}
$$

Multiplying both sides of (2.28) by λ, summing with (2.25), and taking into account (0.3_{0}) and the assumption $\lambda \in[0,1]$, we get

$$
\begin{gather*}
\lambda M_{0}-m_{0} \leq \\
\leq M_{0}\left(A_{1}+A_{21}+\lambda B_{23}+\lambda B_{3}\right)+m_{0}\left(B_{1}+B_{21}+\lambda A_{23}+\lambda A_{3}\right) \tag{2.30}
\end{gather*}
$$

Analogously, (2.26) and (2.29) imply

$$
\begin{equation*}
m_{0}-\lambda M_{0} \leq M_{0}\left(B_{1}+B_{21}+\lambda A_{3}\right)+m_{0}\left(A_{1}+A_{21}+\lambda B_{3}\right) \tag{2.31}
\end{equation*}
$$

First suppose that the assumption a) holds. In that case $\lambda \neq 0$. According to (1.36), (2.4), and (2.5), we have $B_{22}<1$. Consequently, in view of (1.54), (2.27) yields

$$
\begin{equation*}
0<m_{0}\left(1-B_{22}\right) \leq M_{0}\left(A_{22}-1\right) \tag{2.32}
\end{equation*}
$$

Moreover, it follows from (2.5) that

$$
\begin{equation*}
A_{22}<1+\lambda \tag{2.33}
\end{equation*}
$$

From (2.2) we get

$$
M_{0}\left(\lambda-A_{1}-A_{21}-\lambda B_{23}-\lambda B_{3}\right) \leq m_{0}\left(B_{1}+B_{21}+\lambda A_{23}+\lambda A_{3}+1\right)
$$

which, together with (2.32), implies

$$
\begin{align*}
\left(\lambda-A_{1}-A_{21}\right. & \left.-\lambda B_{23}-\lambda B_{3}\right)\left(1-B_{22}\right) \leq \\
& \leq\left(B_{1}+B_{21}+\lambda A_{23}+\lambda A_{3}+1\right)\left(A_{22}-1\right) \tag{2.34}
\end{align*}
$$

Obviously,

$$
\begin{align*}
\left(\lambda-A_{1}-A_{21}\right. & \left.-\lambda B_{23}-\lambda B_{3}\right)\left(1-B_{22}\right) \geq \\
& \geq \lambda-A_{1}-A_{21}-\lambda\left(B_{22}+B_{23}+B_{3}\right) \tag{2.35}
\end{align*}
$$

On the other hand, by virtue of (2.33) and the assumption $\lambda \in] 0,1]$, we obtain

$$
\begin{gather*}
\left(B_{1}+B_{21}+\lambda A_{23}+\lambda A_{3}+1\right)\left(A_{22}-1\right)= \\
=\left(B_{1}+\lambda A_{3}\right)\left(A_{22}-1\right)+B_{21}\left(A_{22}-1\right)+\lambda A_{23}\left(A_{22}-1\right)+ \\
+A_{22}-1 \leq\left(B_{1}+\lambda A_{3}\right)\left(A_{2}-1\right)+\lambda B_{21}+A_{22}+A_{23}-1 . \tag{2.36}
\end{gather*}
$$

Using (1.31), (1.36), (2.35), and (2.36), (2.34) results in

$$
A_{1}+A_{2}+\lambda\left(B_{2}+B_{3}\right)+\left(B_{1}+\lambda A_{3}\right)\left(A_{2}-1\right) \geq 1+\lambda
$$

which, in view of (1.31), contradicts (2.5).
Now suppose that the assumption b) holds. In that case $\lambda \neq 0$. According to (1.36), (2.6), and (2.8), we have $A_{22}<1$. Consequently, on account of (1.54), (2.27) implies

$$
\begin{equation*}
0<M_{0}\left(1-A_{22}\right) \leq m_{0}\left(B_{22}-1\right) . \tag{2.37}
\end{equation*}
$$

Moreover, it follows from (2.3), (2.6)-(2.8), and the assumption $\lambda \in] 0,1]$ that

$$
\begin{equation*}
B_{22}<1+\lambda . \tag{2.38}
\end{equation*}
$$

From (2.31) we obtain

$$
\begin{equation*}
m_{0}\left(1-A_{1}-A_{21}-\lambda B_{3}\right) \leq M_{0}\left(B_{1}+B_{21}+\lambda A_{3}+\lambda\right) \tag{2.39}
\end{equation*}
$$

which, together with (2.37), yields

$$
\begin{align*}
\left(1-A_{1}-A_{21}\right. & \left.-\lambda B_{3}\right)\left(1-A_{22}\right) \leq \\
& \leq\left(B_{1}+B_{21}+\lambda A_{3}+\lambda\right)\left(B_{22}-1\right) \tag{2.40}
\end{align*}
$$

Clearly,

$$
\begin{align*}
\left(1-A_{1}-A_{21}\right. & \left.-\lambda B_{3}\right)\left(1-A_{22}\right) \geq \\
& \geq 1-A_{1}-A_{21}-A_{22}-\lambda B_{3} \tag{2.41}
\end{align*}
$$

On the other hand, by virtue of (2.38) and the assumption $\lambda \in] 0,1]$, we get

$$
\begin{align*}
& \left(B_{1}+B_{21}+\lambda A_{3}+\lambda\right)\left(B_{22}-1\right)= \\
& \quad=\left(B_{1}+\lambda A_{3}\right)\left(B_{22}-1\right)+B_{21}\left(B_{22}-1\right)+\lambda B_{22}-\lambda \leq \\
& \quad \leq\left(B_{1}+\lambda A_{3}\right)\left(B_{2}-1\right)+\lambda\left(B_{21}+B_{22}\right)-\lambda . \tag{2.42}
\end{align*}
$$

Using (1.31), (1.36), (2.41), and (2.42), (2.40) implies

$$
A_{1}+A_{2}+\lambda\left(B_{2}+B_{3}\right)+\left(B_{1}+\lambda A_{3}\right)\left(B_{2}-1\right) \geq 1+\lambda
$$

which, in view of (1.31), contradicts (2.8).

Finally suppose that the assumption c) holds. According to (1.31), (1.36), (2.3), and (2.9), we have

$$
A_{22}<1, \quad A_{1}+A_{21}+\lambda B_{3}<1
$$

Thus, it follows from (1.54), (2.27), and (2.31) that

$$
\begin{equation*}
B_{22}>1, \quad B_{1}+B_{21}+\lambda A_{3}+\lambda>0 \tag{2.43}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-A_{1}-A_{21}-\lambda B_{3}\right)\left(1-A_{22}\right) \leq\left(B_{1}+B_{21}+\lambda A_{3}+\lambda\right)\left(B_{22}-1\right) \tag{2.44}
\end{equation*}
$$

According to (2.3), (2.43), and the fact that

$$
\left(1-A_{1}-A_{21}-\lambda B_{3}\right)\left(1-A_{22}\right) \geq 1-A_{1}-A_{21}-A_{22}-\lambda B_{3} \geq 1-D
$$

from (2.44) we get

$$
\begin{equation*}
B_{22} \geq 1+\frac{1-D}{B_{1}+B_{21}+\lambda A_{3}+\lambda} \tag{2.45}
\end{equation*}
$$

First suppose that (2.10) and (2.11) are satisfied. By virtue of (2.43), from (2.45) we obtain

$$
\begin{gathered}
1-D \leq\left(B_{1}+B_{21}+\lambda A_{3}+\lambda\right)\left(B_{22}-1\right) \leq \\
\leq \frac{1}{4}\left(B_{1}+B_{21}+B_{22}+\lambda A_{3}-1+\lambda\right)^{2} \leq \frac{1}{4}\left(B_{1}+B_{2}+\lambda A_{3}-1+\lambda\right)^{2}
\end{gathered}
$$

which, in view of (1.31), (2.9), and (2.43), contradicts (2.11).
Now suppose that (2.8) and (2.12) are fulfilled. Let

$$
g(x) \stackrel{\text { def }}{=} \frac{1-D}{x+B_{1}+\lambda A_{3}+\lambda}+x \quad \text { for } \quad x>-B_{1}-\lambda A_{3}-\lambda,
$$

where D is given by (2.3). It is not difficult to verify that, on account of (1.31) and (2.12), the function g is nondecreasing in $[0,+\infty[$. Therefore, from (2.45) we obtain

$$
\begin{aligned}
B_{21}+B_{22}+B_{23} & \geq 1+\frac{1-D}{B_{1}+B_{21}+\lambda A_{3}+\lambda}+B_{21}= \\
=1+g\left(B_{21}\right) & \geq 1+g(0)=1+\frac{1-D}{B_{1}+\lambda A_{3}+\lambda}
\end{aligned}
$$

which, in view of (1.31), (1.36), and (2.3), contradicts (2.8).
Now suppose that u does not change its sign in $\left[\tau_{0}, \tau_{1}\right]$. Without loss of generality we can assume that (1.32) is satisfied. Define the numbers M and m by (1.33) and choose $t_{M}, t_{m} \in\left[\tau_{0}, \tau_{1}\right]$ such that (1.34) holds. It is clear that (1.37) is satisfied since, if $M=0$, then, in view of $\left(0.1_{0}\right),(1.32)$, and (1.33), we obtain $u\left(\tau_{0}\right)=0$ and $u^{\prime}(t)=0$ for $t \in[a, b]$, i.e., $u \equiv 0$.

The integrations of $\left(0.1_{0}\right)$ from a to t_{M}, from t_{M} to b, from a to τ_{0}, and from τ_{1} to b, in view of (1.31)-(1.34), result in (2.15), (2.16),

$$
-u(a) \leq u\left(\tau_{0}\right)-u(a)=
$$

$$
\begin{align*}
& =\int_{a}^{\tau_{0}}[p(s)]_{+} u(\tau(s)) d s-\int_{a}^{\tau_{0}}[p(s)]_{-} u(\tau(s)) d s \leq M A_{1} \tag{2.46}\\
-u(b) & \leq u\left(\tau_{1}\right)-u(b)= \\
& =\int_{\tau_{1}}^{b}[p(s)]_{-} u(\tau(s)) d s-\int_{\tau_{1}}^{b}[p(s)]_{+} u(\tau(s)) d s \leq M B_{3} \tag{2.47}
\end{align*}
$$

Moreover, from (2.15) and (2.16), in view of (1.31) and (1.37), we find

$$
\begin{align*}
M-u(a) & \leq M\left(A_{1}+A_{2}\right) \tag{2.48}\\
M-u(b) & \leq M\left(B_{2}+B_{3}\right) \tag{2.49}
\end{align*}
$$

Multiplying both sides of (2.47) by λ, summing with (2.48), and taking into account $\left(0.3_{0}\right),(1.37)$, and the assumption $\lambda \in[0,1]$, we get

$$
\begin{equation*}
A_{1}+A_{2}+\lambda B_{3} \geq 1 \tag{2.50}
\end{equation*}
$$

Analogously, (2.46) and (2.49) yield

$$
\begin{equation*}
A_{1}+\lambda B_{2}+\lambda B_{3} \geq \lambda \tag{2.51}
\end{equation*}
$$

First suppose that the assumption a) holds. By virtue of (1.31), (2.4), and (2.51), (2.5) results in

$$
\begin{equation*}
1+\lambda>A_{1}+A_{2}+\lambda\left(B_{2}+B_{3}\right) \geq 1+\lambda \tag{2.52}
\end{equation*}
$$

a contradiction.
Now suppose that the assumption b) holds. With respect to (1.31), (2.6), (2.50), and the assumption $\lambda \in[0,1],(2.8)$ implies (2.52), a contradiction.

Finally suppose that the assumption c) holds. On account of (1.31) and (2.3), (2.50) contradicts (2.9).

3. Comments and Examples

In the examples below, the functions $p \in L([a, b] ; R)$ and $\tau \in \mathcal{M}_{a b}$ are constructed such that the homogeneous problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$, resp. (0.1_{0}), $\left(0.3_{0}\right)$, has a nontrivial solution. Then, according to the Fredholm property (for more general case see, e.g., $[1-3,10,12]$) of the problem (0.1), (0.2), resp. (0.1), (0.3), there exist $q \in L([a, b] ; R)$ and $c \in R$ such that the problem (0.1), (0.2), resp. (0.1), (0.3), has no solution.

Example 3.1. Let $\lambda \in[0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that

$$
\begin{equation*}
x_{1}+x_{2}+\lambda x_{3}<1 \tag{3.1}
\end{equation*}
$$

and

$$
\left(y_{1}+\lambda y_{2}+\lambda y_{3}\right)\left(1-x_{2}\right)=\lambda-1+x_{1}+x_{2}+\lambda x_{3} .
$$

Let, moreover, $a=0, b=7$,

$$
p(t)=\left\{\begin{array}{lll}
-y_{1} & \text { for } & t \in[0,1[\tag{3.2}\\
x_{1} & \text { for } & t \in[1,2[\\
x_{2} & \text { for } & t \in[2,3[\\
-y_{2} & \text { for } & t \in[3,4[\\
0 & \text { for } & t \in[4,5[\\
x_{3} & \text { for } & t \in[5,6[\\
-y_{3} & \text { for } & t \in[6,7]
\end{array}\right.
$$

and

$$
\tau(t)=\left\{\begin{array}{lll}
2 & \text { for } & t \in[0,1[\cup[3,4[\cup[6,7] \\
3 & \text { for } & t \in[1,3[\cup[5,6[\\
4 & \text { for } & t \in[4,5[
\end{array} .\right.
$$

Obviously, $\tau_{0}=2, \tau_{1}=4$, and

$$
\begin{array}{lll}
\int_{a}^{\tau_{0}}[p(s)]_{+} d s=x_{1}, & \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s=x_{2}, & \int_{\tau_{1}}^{b}[p(s)]_{+} d s=x_{3}, \tag{3.3}\\
\int_{a}^{\tau_{0}}[p(s)]_{-} d s=y_{1}, & \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s=y_{2}, & \int_{\tau_{1}}^{b}[p(s)]_{-} d s=y_{3} .
\end{array}
$$

On the other hand, the function

$$
u(t)= \begin{cases}y_{1}\left(1-x_{2}\right)(1-t)+1-x_{1}-x_{2} & \text { for } t \in[0,1[\\ x_{1}(t-2)+1-x_{2} & \text { for } t \in[1,2[\\ x_{2}(t-3)+1 & \text { for } t \in[2,3[\\ y_{2}\left(1-x_{2}\right)(3-t)+1 & \text { for } t \in[3,4[\\ 1-y_{2}\left(1-x_{2}\right) & \text { for } t \in[4,5[\\ x_{3}(t-5)+1-y_{2}\left(1-x_{2}\right) & \text { for } t \in[5,6[\\ y_{3}\left(1-x_{2}\right)(7-t)+1+x_{3}-\left(y_{2}+y_{3}\right)\left(1-x_{2}\right) & \text { for } t \in[6,7]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$.
This example shows that the strict inequality (1.3) in Theorem 1.1 cannot be replaced by the nonstrict one.

Example 3.2. Let $\lambda \in[0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that (3.1) holds and

$$
\left(1-x_{1}-x_{2}-\lambda x_{3}\right)\left(1+y_{2}\right)=\lambda-y_{1}-\lambda y_{3} .
$$

Let, moreover, $a=0, b=7, p \in L([a, b] ; R)$ be defined by (3.2), and

$$
\tau(t)=\left\{\begin{array}{lll}
2 & \text { for } & t \in[4,5[\\
3 & \text { for } & t \in[1,3[\cup[5,6[\\
4 & \text { for } & t \in[0,1[\cup[3,4[\cup[6,7]
\end{array} .\right.
$$

Obviously, $\tau_{0}=2, \tau_{1}=4$, and (3.3) is fulfilled.

On the other hand, the function

$$
u(t)= \begin{cases}y_{1}(1-t)+1+y_{2}-\left(x_{1}+x_{2}\right)\left(1+y_{2}\right) & \text { for } t \in[0,1[\\ x_{1}\left(1+y_{2}\right)(t-2)+1+y_{2}-x_{2}\left(1+y_{2}\right) & \text { for } t \in[1,2[\\ x_{2}\left(1+y_{2}\right)(t-3)+1+y_{2} & \text { for } t \in[2,3[\\ y_{2}(4-t)+1 & \text { for } t \in[3,4[\\ 1 & \text { for } t \in[4,5[\\ x_{3}\left(1+y_{2}\right)(t-5)+1 & \text { for } t \in[5,6[\\ y_{3}(7-t)+1-y_{3}+x_{3}\left(1+y_{2}\right) & \text { for } t \in[6,7]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$.
This example shows that the strict inequality (1.4) in Theorem 1.1 cannot be replaced by the nonstrict one.

Example 3.3. Let $\lambda \in[0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that (3.1) holds and

$$
\begin{gathered}
y_{1}+\lambda y_{3}<\lambda+\sqrt{1-x_{1}-x_{2}-\lambda x_{3}} \\
y_{1}+y_{2}+\lambda y_{3} \geq 1+\lambda+2 \sqrt{1-x_{1}-x_{2}-\lambda x_{3}} .
\end{gathered}
$$

Put $\alpha=\sqrt{1-x_{1}-x_{2}-\lambda x_{3}}$ and $k=\lambda+\alpha-y_{1}-\lambda y_{3}$. Obviously, $k>0$ and $y_{2} \geq 1+\alpha+k$. Let, moreover, $a=0, b=10$,

$$
p(t)= \begin{cases}-y_{1} & \text { for } t \in[0,1[\tag{3.4}\\ x_{1} & \text { for } t \in[1,2[\\ x_{2} & \text { for } t \in[2,3[\\ -k & \text { for } t \in[3,4[\\ -1 & \text { for } t \in[4,5[\\ -\left(y_{2}-1-\alpha-k\right) & \text { for } t \in[5,6[\\ -\alpha & \text { for } t \in[6,7[\\ 0 & \text { for } t \in[7,8[\\ x_{3} & \text { for } t \in[8,9[\\ -y_{3} & \text { for } t \in[9,10]\end{cases}
$$

and

$$
\tau(t)=\left\{\begin{array}{lll}
7 & \text { for } & t \in[0,1[\cup[3,4[\cup[9,10] \tag{3.5}\\
4 & \text { for } & t \in[1,3[\cup[4,5[\cup[6,7[\cup[8,9[\\
5 & \text { for } & t \in[5,6[\\
2 & \text { for } & t \in[7,8[
\end{array}\right.
$$

Obviously, $\tau_{0}=2, \tau_{1}=7$, and (3.3) is satisfied.

On the other hand, the function

$$
u(t)= \begin{cases}\alpha y_{1}(1-t)+\alpha k+x_{1}+x_{2}-1 & \text { for } t \in[0,1[\tag{3.6}\\ x_{1}(2-t)+\alpha k+x_{2}-1 & \text { for } t \in[1,2[\\ x_{2}(3-t)+\alpha k-1 & \text { for } t \in[2,3[\\ \alpha k(4-t)-1 & \text { for } t \in[3,4[\\ t-5 & \text { for } t \in[4,5[\\ 0 & \text { for } t \in[5,6[\\ \alpha(t-6) & \text { for } t \in[6,7[\\ \alpha & \text { for } t \in[7,8[\\ x_{3}(8-t)+\alpha & \text { for } t \in[8,9[\\ \alpha y_{3}(10-t)+\alpha-x_{3}-\alpha y_{3} & \text { for } t \in[9,10]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$.
In the sequel, let $\lambda \in\left[0,1\left[\right.\right.$ and $x_{i}=0(i=1,2,3)$. Put

$$
\begin{equation*}
\gamma(t)=\delta+\int_{a}^{t}[p(s)]_{-} d s \quad \text { for } \quad t \in[a, b] \tag{3.7}
\end{equation*}
$$

where $\delta>\frac{\lambda}{1-\lambda}\left(y_{1}+y_{2}+y_{3}\right)$ and $p \in L([a, b] ; R)$ is defined by (3.4). Obviously, γ satisfies (1.23) with $\tau \in \mathcal{M}_{a b}$ given by (3.5), (1.24), and

$$
\begin{equation*}
\gamma\left(\tau_{0}\right)-\gamma(a)=y_{1}, \quad \gamma\left(\tau_{1}\right)-\gamma\left(\tau_{0}\right)=y_{2}, \quad \gamma(b)-\gamma\left(\tau_{1}\right)=y_{3} \tag{3.8}
\end{equation*}
$$

Thus, (1.25) is fulfilled and

$$
\lambda\left(\gamma(b)-\gamma\left(\tau_{1}\right)\right)+\gamma\left(\tau_{1}\right)-\gamma(a)=y_{1}+y_{2}+\lambda y_{3} \geq 3+\lambda
$$

On the other hand, as we have shown, the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$ has a nontrivial solution u given by (3.6).

This example shows that the strict inequalities (1.6) in Theorem 1.1 and (1.26) in Theorem 1.4 cannot be replaced by the nonstrict ones.

Example 3.4. Let $\lambda \in[0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that (3.1) holds and

$$
\begin{gathered}
y_{1}+\lambda y_{3} \geq \lambda+\sqrt{1-x_{1}-x_{2}-\lambda x_{3}}, \\
y_{2} \geq 1+\frac{1-x_{1}-x_{2}-\lambda x_{3}}{y_{1}+\lambda y_{3}-\lambda} .
\end{gathered}
$$

Put $\alpha=1-x_{1}-x_{2}-\lambda x_{3}$ and $\beta=y_{1}+\lambda y_{3}-\lambda$. Obviously, $\alpha>0, \beta>0$, and $y_{2} \geq 1+\frac{\alpha}{\beta}$. Let, moreover, $a=0, b=9$,

$$
p(t)= \begin{cases}x_{1} & \text { for } t \in[0,1[\tag{3.9}\\ -y_{1} & \text { for } t \in[1,2[\\ x_{2} & \text { for } t \in[2,3[\\ -1 & \text { for } t \in[3,4[\\ -\left(y_{2}-1-\frac{\alpha}{\beta}\right) & \text { for } t \in[4,5[\\ -\frac{\alpha}{\beta} & \text { for } t \in[5,6[\\ 0 & \text { for } t \in[6,7[\\ -y_{3} & \text { for } t \in[7,8[\\ x_{3} & \text { for } t \in[8,9]\end{cases}
$$

and

$$
\tau(t)=\left\{\begin{array}{lll}
3 & \text { for } & t \in[0,1[\cup[2,4[\cup[5,6[\cup[8,9] \tag{3.10}\\
6 & \text { for } & t \in[1,2[\cup[7,8[\\
4 & \text { for } & t \in[4,5] \\
2 & \text { for } & t \in[6,7[
\end{array} .\right.
$$

Obviously, $\tau_{0}=2, \tau_{1}=6$, and (3.3) is satisfied.
On the other hand, the function

$$
u(t)= \begin{cases}\beta x_{1}(1-t)+y_{1} \alpha-\left(1-x_{2}\right) \beta & \text { for } t \in[0,1[\tag{3.11}\\ \alpha y_{1}(2-t)-\left(1-x_{2}\right) \beta & \text { for } t \in[1,2[\\ \beta x_{2}(3-t)-\beta & \text { for } t \in[2,3[\\ \beta(t-4) & \text { for } t \in[3,4[\\ 0 & \text { for } t \in[4,5[\\ \alpha(t-5) & \text { for } t \in[5,6[\\ \alpha & \text { for } t \in[6,7[\\ \alpha y_{3}(7-t)+\alpha & \text { for } t \in[7,8[\\ \beta x_{3}(9-t)+\alpha\left(1-y_{3}\right)-\beta x_{3} & \text { for } t \in[8,9]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$.
In the sequel, let $\lambda \in\left[0,1\left[\right.\right.$ and $x_{i}=0(i=1,2,3)$. Define the function $\gamma \in \widetilde{C}([a, b] ;] 0,+\infty[)$ by (3.7), where $\delta>\frac{\lambda}{1-\lambda}\left(y_{1}+y_{2}+y_{3}\right)$ and $p \in L([a, b] ; R)$ is given by (3.9). Obviously, γ satisfies (1.23) with $\tau \in \mathcal{M}_{a b}$ given by (3.10), (1.24), and (3.8). Thus, (1.27) is fulfilled and

$$
\gamma\left(\tau_{1}\right)-\gamma\left(\tau_{0}\right)=y_{2} \geq 1+\frac{\alpha}{\beta}=1+\frac{1}{\gamma\left(\tau_{0}\right)-\gamma(a)+\lambda\left(\gamma(b)-\gamma\left(\tau_{1}\right)\right)-\lambda}
$$

On the other hand, as we have shown, the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$ has a nontrivial solution u given by (3.11).

This example shows that the strict inequalities (1.8) in Theorem 1.1 and (1.28) in Theorem 1.4 cannot be replaced by the nonstrict ones.

Example 3.5. Let $\lambda \in] 0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that

$$
\begin{equation*}
y_{1}+y_{2}+\lambda y_{3}<\lambda \tag{3.12}
\end{equation*}
$$

and

$$
\left(\lambda-y_{1}-y_{2}-\lambda y_{3}\right)\left(1+x_{2}\right)=1-x_{1}-\lambda x_{3} .
$$

Let, moreover, $a=0, b=7$,

$$
p(t)=\left\{\begin{array}{lll}
-y_{1} & \text { for } & t \in[0,1[\tag{3.13}\\
x_{1} & \text { for } & t \in[1,2[\\
0 & \text { for } & t \in[2,3[\\
-y_{2} & \text { for } & t \in[3,4[, \\
x_{2} & \text { for } & t \in[4,5[\\
x_{3} & \text { for } & t \in[5,6[\\
-y_{3} & \text { for } & t \in[6,7]
\end{array}\right.
$$

and

$$
\tau(t)=\left\{\begin{array}{ll}
5 & \text { for } \quad t \in[0,1[\cup[3,4[\cup[6,7] \\
4 & \text { for } \quad t \in[1,2[\cup[4,6[\\
3 & \text { for } \quad t \in[2,3[
\end{array} .\right.
$$

Obviously, $\tau_{0}=3, \tau_{1}=5$, and (3.3) is fulfilled.
On the other hand, the function

$$
u(t)= \begin{cases}y_{1}\left(1+x_{2}\right)(1-t)+1-x_{1}+y_{2}\left(1+x_{2}\right) & \text { for } t \in[0,1[\\ x_{1}(t-2)+1+y_{2}\left(1+x_{2}\right) & \text { for } t \in[1,2[\\ 1+y_{2}\left(1+x_{2}\right) & \text { for } t \in[2,3[\\ y_{2}\left(1+x_{2}\right)(4-t)+1 & \text { for } t \in[3,4[\\ x_{2}(t-5)+1+x_{2} & \text { for } t \in[4,5[\\ x_{3}(t-5)+1+x_{2} & \text { for } t \in[5,6[\\ y_{3}\left(1+x_{2}\right)(7-t)+1+x_{2}+x_{3}-y_{3}\left(1+x_{2}\right) & \text { for } t \in[6,7]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$.
This example shows that the strict inequality (1.13) in Theorem 1.2 cannot be replaced by the nonstrict one.

Example 3.6. Let $\lambda \in] 0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that (3.12) holds and

$$
\left(x_{1}+\lambda x_{2}+\lambda x_{3}\right)\left(1-y_{2}\right)=1-\lambda+y_{1}+\lambda\left(y_{2}+y_{3}\right) .
$$

Let, moreover, $a=0, b=7, p \in L([a, b] ; R)$ be defined by (3.13), and

$$
\tau(t)=\left\{\begin{array}{lll}
3 & \text { for } & t \in[0,1[\cup[3,4[\cup[6,7] \\
4 & \text { for } & t \in[1,2[\cup[4,6[\\
5 & \text { for } \quad t \in[2,3[
\end{array} .\right.
$$

Obviously, $\tau_{0}=3, \tau_{1}=5$, and (3.3) is fulfilled.

On the other hand, the function

$$
u(t)= \begin{cases}y_{1}(1-t)+1-x_{1}\left(1-y_{2}\right) & \text { for } t \in[0,1[\\ x_{1}\left(1-y_{2}\right)(t-2)+1 & \text { for } t \in[1,2[\\ 1 & \text { for } t \in[2,3[\\ y_{2}(3-t)+1 & \text { for } t \in[3,4[\\ x_{2}\left(1-y_{2}\right)(t-4)+1-y_{2} & \text { for } t \in[4,5] \\ x_{3}\left(1-y_{2}\right)(t-5)+1-y_{2}+x_{2}\left(1-y_{2}\right) & \text { for } t \in[5,6[\\ y_{3}(7-t)+1-y_{2}-y_{3}+\left(x_{2}+x_{3}\right)\left(1-y_{2}\right) & \text { for } t \in[6,7]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$.
This example shows that the strict inequality (1.2) in Theorem 1.2 cannot be replaced by the nonstrict one.

Example 3.7. Let $\lambda \in] 0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that (3.12) holds and

$$
\begin{gathered}
x_{1}+\lambda x_{3}<1+\sqrt{\lambda-y_{1}-y_{2}-\lambda y_{3}} \\
x_{1}+x_{2}+\lambda x_{3} \geq 2+2 \sqrt{\lambda-y_{1}-y_{2}-\lambda y_{3}}
\end{gathered}
$$

Put $\alpha=\sqrt{\lambda-y_{1}-y_{2}-\lambda y_{3}}$ and $k=1+\alpha-x_{1}-\lambda x_{3}$. Obviously, $k>0$ and $x_{2} \geq 1+\alpha+k$. Let, moreover, $a=0, b=10$,

$$
p(t)= \begin{cases}x_{1} & \text { for } t \in[0,1[\\ -y_{1} & \text { for } t \in[1,2[\\ -y_{2} & \text { for } t \in[2,3[\\ k & \text { for } t \in[3,4[\\ \alpha & \text { for } t \in[4,5[\\ x_{2}-1-\alpha-k & \text { for } t \in[5,6[\\ 1 & \text { for } t \in[6,7[\\ 0 & \text { for } t \in[7,8[\\ x_{3} & \text { for } t \in[8,9[\\ -y_{3} & \text { for } t \in[9,10]\end{cases}
$$

and

$$
\tau(t)=\left\{\begin{array}{lll}
4 & \text { for } & t \in[0,1[\cup[3,4[\cup[8,9[\\
7 & \text { for } & t \in[1,3[\cup[4,5[\cup[6,7[\cup[9,10] \\
5 & \text { for } & t \in[5,6[\\
2 & \text { for } & t \in[7,8[
\end{array} .\right.
$$

Obviously, $\tau_{0}=2, \tau_{1}=7$, and (3.3) is satisfied.

On the other hand, the function

$$
u(t)= \begin{cases}\alpha x_{1}(1-t)+y_{1}+y_{2}+\alpha(k-1) & \text { for } \quad t \in[0,1[\\ y_{1}(2-t)+y_{2}+\alpha(k-1) & \text { for } \quad t \in[1,2[\\ y_{2}(3-t)+\alpha(k-1) & \text { for } \quad t \in[2,3[\\ \alpha k(4-t)-\alpha & \text { for } \quad t \in[3,4[\\ \alpha(t-5) & \text { for } t \in[4,5[\\ 0 & \text { for } t \in[5,6[\\ t-6 & \text { for } t \in[6,7[\\ 1 & \text { for } t \in[7,8[\\ \alpha x_{3}(8-t)+1 & \text { for } t \in[8,9[\\ y_{3}(10-t)+1-y_{3}-\alpha x_{3} & \text { for } t \in[9,10]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$.
This example shows that the strict inequality (1.16) in Theorem 1.2 cannot be replaced by the nonstrict one.

Example 3.8. Let $\lambda \in] 0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that (3.12) holds and

$$
\begin{gathered}
x_{1}+\lambda x_{3} \geq 1+\sqrt{\lambda-y_{1}-y_{2}-\lambda y_{3}}, \\
x_{2} \geq 1+\frac{\lambda-y_{1}-y_{2}-\lambda y_{3}}{x_{1}+\lambda x_{3}-1} .
\end{gathered}
$$

Put $\alpha=\lambda-y_{1}-y_{2}-\lambda y_{3}$ and $\beta=x_{1}+\lambda x_{3}-1$. Obviously, $\alpha>0, \beta>0$, and $x_{2} \geq 1+\frac{\alpha}{\beta}$. Let, moreover, $a=0, b=9$,

$$
p(t)=\left\{\begin{array}{lll}
x_{1} & \text { for } t \in[0,1[\\
-y_{1} & \text { for } t \in[1,2[\\
-y_{2} & \text { for } t \in[2,3[\\
\frac{\alpha}{\beta} & \text { for } t \in[3,4[\\
x_{2}-1-\frac{\alpha}{\beta} & \text { for } t \in[4,5[\\
1 & \text { for } t \in[5,6[\\
0 & \text { for } t \in[6,7[\\
-y_{3} & \text { for } t \in[7,8[\\
x_{3} & \text { for } t \in[8,9]
\end{array}\right.
$$

and

$$
\tau(t)= \begin{cases}3 & \text { for } \quad t \in[0,1[\cup[8,9] \\ 6 & \text { for } \quad t \in[1,4[\cup[5,6[\cup[7,8[\\ 4 & \text { for } t \in[4,5[\\ 2 & \text { for } \quad t \in[6,7[\end{cases}
$$

Obviously, $\tau_{0}=2, \tau_{1}=6$, and (3.3) is satisfied.

On the other hand, the function

$$
u(t)= \begin{cases}\alpha x_{1}(1-t)+\beta\left(y_{1}+y_{2}\right)-\alpha & \text { for } t \in[0,1[\\ \beta y_{1}(2-t)+\beta y_{2}-\alpha & \text { for } t \in[1,2[\\ \beta y_{2}(3-t)-\alpha & \text { for } t \in[2,3[\\ \alpha(t-4) & \text { for } t \in[3,4[\\ 0 & \text { for } t \in[4,5[\\ \beta(t-5) & \text { for } t \in[5,6[\\ \beta & \text { for } t \in[6,7[\\ \beta y_{3}(7-t)+\beta & \text { for } t \in[7,8[\\ \alpha x_{3}(9-t)+\beta\left(1-y_{3}\right)-\alpha x_{3} & \text { for } t \in[8,9]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$.
This example shows that the strict inequality (1.18) in Theorem 1.2 cannot be replaced by the nonstrict one.

Example 3.9. Let $\lambda \in] 0,1]$ (for the case $\lambda=0$ see Example 3.11), $k \in] 0,1[$, and $\varepsilon \geq 0$. Choose $m>0$ such that

$$
m \leq \min \left\{\lambda, \frac{\lambda(1-k) k}{\lambda(1-k)+\varepsilon k}\right\}
$$

and put $a=0, b=3$, and

$$
p(t)=\left\{\begin{array}{lll}
-\frac{\lambda-m}{m} & \text { for } & t \in[0,1[\\
\frac{k-m}{k} & \text { for } & t \in\left[1,2\left[, \quad \tau(t)=\left\{\begin{array}{ll}
1 & \text { for } \\
2 & \text { for } t \in[0,1[\\
\frac{\lambda(1-k)+\varepsilon k}{\lambda k} & \text { for } \\
t \in[2,3]
\end{array} \quad \text { for } t \in[2,3]\right.\right.\right.
\end{array}\right.
$$

where

$$
t^{*}=\left\{\begin{array}{ll}
1+\frac{1}{k-m}\left(\frac{\lambda(1-k) k}{\lambda(1-k)+\varepsilon k}-m\right) & \text { if } m \neq k \\
2 & \text { if } m=k
\end{array} .\right.
$$

It is not difficult to verify that $\tau_{0}=1, \tau_{1}=2$, and

$$
\begin{gathered}
\int_{a}^{\tau_{1}}[p(s)]_{+} d s=\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s=\frac{k-m}{k}, \quad \int_{\tau_{1}}^{b}[p(s)]_{+} d s=\frac{\lambda(1-k)+\varepsilon k}{\lambda k} \\
\int_{a}^{\tau_{0}}[p(s)]_{-} d s=\frac{\lambda-m}{m}, \quad \int_{\tau_{0}}^{b}[p(s)]_{-} d s=\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s=0
\end{gathered}
$$

Thus, the condition (1.19) holds, $T=\frac{k-m}{k}$, and

$$
\begin{gathered}
\int_{a}^{\tau_{1}}[p(s)]_{+} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s- \\
-\left(\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{0}}^{b}[p(s)]_{-} d s\right)(1-T)=1-\lambda+\varepsilon
\end{gathered}
$$

On the other hand, the function

$$
u(t)=\left\{\begin{array}{lll}
\lambda-(\lambda-m) t & \text { for } t \in[0,1[\\
(k-m)(t-1)+m & \text { for } t \in[1,2[\\
(1-k)(t-3)+1 & \text { for } t \in[2,3]
\end{array}\right.
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$.
This example shows that the strict inequality (1.20) in Theorem 1.3 cannot be replaced by the nonstrict one.

Example 3.10. Let $\lambda \in[0,1], k>1$, and $\varepsilon \in\left[0,1\left[\right.\right.$. Choose $M \geq \frac{k+\lambda}{1-\varepsilon}$ and put $a=0, b=4$, and

$$
p(t)=\left\{\begin{array}{lll}
\frac{M-\lambda-\varepsilon M}{k} & \text { for } & t \in[0,1[\\
-\frac{M-k}{M} & \text { for } & t \in[1,2[\\
-\frac{k-1}{M} & \text { for } & t \in[2,3[\\
0 & \text { for } & t \in[3,4]
\end{array}, \quad \tau(t)= \begin{cases}t^{*} & \text { for } t \in[0,1[\\
1 & \text { for } t \in[1,3[\\
2 & \text { for } \\
t \in[3,4]\end{cases}\right.
$$

where

$$
t^{*}=\left\{\begin{array}{lll}
2-\frac{\varepsilon M k}{(M-k)(M-\lambda-\varepsilon M)} & \text { if } & M \neq k \\
2 & \text { if } & M=k
\end{array} .\right.
$$

It is not difficult to verify that $\tau_{0}=1, \tau_{1}=2$, and

$$
\begin{aligned}
\int_{a}^{\tau_{0}}[p(s)]_{+} d s & =\frac{M-\lambda-\varepsilon M}{k}, \quad \int_{\tau_{0}}^{b}[p(s)]_{+} d s=\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s=0, \\
\int_{a}^{\tau_{1}}[p(s)]_{-} d s & =\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s=\frac{M-k}{M}, \quad \int_{\tau_{1}}^{b}[p(s)]_{-} d s=\frac{k-1}{M} .
\end{aligned}
$$

Thus, the condition (1.19) holds, $T=\frac{M-k}{M}$, and

$$
\begin{gathered}
\left(\int_{a}^{\tau_{0}}[p(s)]_{+} d s+\lambda \int_{\tau_{0}}^{b}[p(s)]_{+} d s\right)(1-T)- \\
-\int_{a}^{\tau_{1}}[p(s)]_{-} d s-\lambda \int_{\tau_{1}}^{b}[p(s)]_{-} d s=(1-\lambda)(1-T)-\varepsilon .
\end{gathered}
$$

On the other hand, the function

$$
u(t)=\left\{\begin{array}{lll}
\lambda+(M-\lambda) t & \text { for } & t \in[0,1[\\
(M-k)(2-t)+k & \text { for } & t \in[1,2[\\
(k-1)(3-t)+1 & \text { for } & t \in[2,3[\\
1 & \text { for } & t \in[3,4]
\end{array}\right.
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.2_{0}\right)$.
This example shows that the strict inequality (1.21) in Theorem 1.3 cannot be replaced by the nonstrict one.

Example 3.11. Let $\lambda \in[0,+\infty[, k>1$, and $\varepsilon \geq 0$. Choose $m>0$ such that

$$
m \leq \min \left\{1, \frac{k(k+\lambda)}{k+\lambda+\varepsilon k}\right\}
$$

and put $a=0, b=3$, and

$$
p(t)= \begin{cases}\frac{k+\lambda}{k}+\varepsilon & \text { for } \quad t \in[0,1[\\
-\frac{k-m}{k} & \text { for } t \in\left[1,2\left[, \quad \tau(t)=\left\{\begin{array}{ll}
t^{*} & \text { for } t \in[0,1[\\
1 & \text { for } t \in[1,2[\\
\frac{1-m}{m} & \text { for } \\
t \in[2,3]
\end{array}, \text { for } t \in[2,3]\right.\right.\right.\end{cases}
$$

where

$$
t^{*}= \begin{cases}2-\frac{1}{k-m}\left(\frac{k(k+\lambda)}{k+\lambda+\varepsilon k}-m\right) & \text { if } \quad m \neq k \\ 1 & \text { if } m=k\end{cases}
$$

It is not difficult to verify that $\tau_{0}=1, \tau_{1}=2$, and

$$
\begin{gathered}
\int_{a}^{\tau_{1}}[p(s)]_{+} d s=\frac{k+\lambda}{k}+\varepsilon, \quad \int_{\tau_{1}}^{b}[p(s)]_{+} d s=\frac{1-m}{m}, \quad \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s=0 \\
\int_{a}^{\tau_{0}}[p(s)]_{-} d s=0, \quad \int_{\tau_{0}}^{b}[p(s)]_{-} d s=\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s=\frac{k-m}{k}
\end{gathered}
$$

Thus, the condition (1.19) holds, $T=\frac{k-m}{k}$, and

$$
\begin{gathered}
\int_{a}^{\tau_{1}}[p(s)]_{+} d s+\lambda \int_{\tau_{0}}^{b}[p(s)]_{-} d s- \\
-\left(\int_{a}^{\tau_{0}}[p(s)]_{-} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{+} d s\right)(1-T)=1+\lambda+\varepsilon .
\end{gathered}
$$

On the other hand, the function

$$
u(t)= \begin{cases}(k+\lambda) t-\lambda & \text { for } \quad t \in[0,1[\\ (k-m)(2-t)+m & \text { for } \quad t \in[1,2[\\ (1-m)(t-3)+1 & \text { for } \quad t \in[2,3]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.3_{0}\right)$.
This example shows that the strict inequality (2.1) in Theorem 2.1 cannot be replaced by the nonstrict one.

Example 3.12. Let $\lambda \in] 0,+\infty[$ (for the case $\lambda=0$ see Example 3.10), $k \in] 0, \lambda\left[\right.$, and $\varepsilon \in\left[0, \frac{\lambda-k}{k}\left[\right.\right.$. Choose $M \geq \frac{k(\lambda-k)}{\lambda-k-\varepsilon k}$ and put $a=0, b=3$, and
$p(t)= \begin{cases}-\left(\frac{\lambda-k}{M}+\varepsilon\right) & \text { for } \quad t \in[0,1[\\ \frac{M-k}{M} & \text { for } \quad t \in\left[1,2\left[, \quad \tau(t)=\left\{\begin{array}{ll}t^{*} & \text { for } t \in[0,1[\\ 2 & \text { for } t \in[1,2[, \\ -\frac{M+1}{k} & \text { for } \quad t \in[2,3]\end{array} \quad \text { for } t \in[2,3]\right.\right.\right.\end{cases}$
where

$$
t^{*}=\left\{\begin{array}{ll}
1+\frac{1}{M-k}\left(\frac{M(\lambda-k)}{\lambda-k+\varepsilon M}-k\right) & \text { if } \quad M \neq k \\
2 & \text { if } \quad M=k
\end{array} .\right.
$$

It is not difficult to verify that $\tau_{0}=1, \tau_{1}=2$, and

$$
\begin{gathered}
\int_{a}^{\tau_{0}}[p(s)]_{+} d s=0, \quad \int_{\tau_{0}}^{b}[p(s)]_{+} d s=\int_{\tau_{0}}^{\tau_{1}}[p(s)]_{+} d s=\frac{M-k}{M}, \\
\int_{a}^{\tau_{1}}[p(s)]_{-} d s=\frac{\lambda-k}{M}+\varepsilon, \quad \int_{\tau_{0}}^{\tau_{1}}[p(s)]_{-} d s=0, \quad \int_{\tau_{1}}^{b}[p(s)]_{-} d s=\frac{M+1}{k} .
\end{gathered}
$$

Thus, the condition (1.19) holds, $T=\frac{M-k}{M}$, and

$$
\begin{gathered}
\left(\int_{a}^{\tau_{0}}[p(s)]_{+} d s+\lambda \int_{\tau_{1}}^{b}[p(s)]_{-} d s\right)(1-T)- \\
-\int_{a}^{\tau_{1}}[p(s)]_{-} d s-\lambda \int_{\tau_{0}}^{b}[p(s)]_{+} d s=(1+\lambda)(1-T)-\varepsilon .
\end{gathered}
$$

On the other hand, the function

$$
u(t)=\left\{\begin{array}{lll}
\lambda-(\lambda-k) t & \text { for } & t \in[0,1[\\
(M-k)(t-1)+k & \text { for } & t \in[1,2[\\
(M+1)(3-t)-1 & \text { for } & t \in[2,3]
\end{array}\right.
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.3_{0}\right)$.
This example shows that the strict inequality (2.2) in Theorem 2.1 cannot be replaced by the nonstrict one.

Example 3.13. Let $\lambda \in[0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that

$$
x_{2} \geq 1
$$

and

$$
x_{1}+x_{2}+\lambda\left(y_{2}+y_{3}\right)+\left(y_{1}+\lambda x_{3}\right)\left(x_{2}-1\right)=1+\lambda
$$

Let, moreover, $a=0, b=8$,

$$
p(t)=\left\{\begin{array}{lll}
-y_{1} & \text { for } & t \in[0,1[\\
x_{1} & \text { for } & t \in[1,2[\\
x_{2}-1 & \text { for } & t \in[2,3[\\
0 & \text { for } & t \in[3,4[\\
1 & \text { for } t \in[4,5[\\
-y_{2} & \text { for } t \in[5,6[\\
-y_{3} & \text { for } t \in[6,7[\\
x_{3} & \text { for } t \in[7,8]
\end{array}\right.
$$

and

$$
\tau(t)= \begin{cases}2 & \text { for } \quad t \in[0,1[\cup[7,8] \\ 5 & \text { for } \quad t \in[1,3[\cup[4,7[\\ 6 & \text { for } \quad t \in[3,4[\end{cases}
$$

Obviously, $\tau_{0}=2, \tau_{1}=6$, and (3.3) is satisfied.
On the other hand, the function

$$
u(t)= \begin{cases}y_{1}\left(x_{2}-1\right)(t-1)+1-x_{2}-x_{1} & \text { for } t \in[0,1[\\ x_{1}(t-2)+1-x_{2} & \text { for } t \in[1,2[\\ \left(x_{2}-1\right)(t-3) & \text { for } t \in[2,3[\\ 0 & \text { for } t \in[3,4[\\ t-4 & \text { for } t \in[4,5[\\ y_{2}(5-t)+1 & \text { for } t \in[5,6[\\ y_{3}(6-t)+1-y_{2} & \text { for } t \in[6,7[\\ x_{3}\left(x_{2}-1\right)(7-t)+1-y_{2}-y_{3} & \text { for } t \in[7,8]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.3_{0}\right)$.
This example shows that the strict inequality (2.5) in Theorem 2.2 cannot be replaced by the nonstrict one.

Example 3.14. Let $\lambda \in[0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that

$$
y_{2} \geq 1, \quad x_{1}+x_{2}+\lambda y_{3} \geq 1-\lambda^{2}
$$

and

$$
x_{1}+x_{2}+\lambda\left(y_{2}+y_{3}\right)+\left(y_{1}+\lambda x_{3}\right)\left(y_{2}-1\right)=1+\lambda .
$$

Let, moreover, $a=0, b=8$,

$$
p(t)=\left\{\begin{array}{lll}
x_{1} & \text { for } \quad t \in[0,1[\\
-y_{1} & \text { for } & t \in[1,2[\\
x_{2} & \text { for } & t \in[2,3[\\
-1 & \text { for } & t \in[3,4[\\
0 & \text { for } & t \in[4,5[\\
-\left(y_{2}-1\right) & \text { for } & t \in[5,6[\\
x_{3} & \text { for } t \in[6,7[\\
-y_{3} & \text { for } t \in[7,8]
\end{array}\right.
$$

and

$$
\tau(t)=\left\{\begin{array}{lll}
3 & \text { for } & t \in[0,1[\cup[2,4[\cup[5,6[\cup[7,8] \\
6 & \text { for } & t \in[1,2[\cup[6,7[\\
2 & \text { for } \quad t \in[4,5[
\end{array} .\right.
$$

Obviously, $\tau_{0}=2, \tau_{1}=6$, and (3.3) is satisfied.

On the other hand, the function

$$
u(t)= \begin{cases}x_{1}(t-1)+1-x_{2}-y_{1}\left(y_{2}-1\right) & \text { for } t \in[0,1[\\ y_{1}\left(y_{2}-1\right)(t-2)+1-x_{2} & \text { for } t \in[1,2[\\ x_{2}(t-3)+1 & \text { for } t \in[2,3[\\ 4-t & \text { for } t \in[3,4[\\ 0 & \text { for } t \in[4,5[\\ \left(y_{2}-1\right)(6-t)+1-y_{2} & \text { for } t \in[5,6[\\ x_{3}\left(y_{2}-1\right)(7-t)+1-y_{2}-x_{3}\left(y_{2}-1\right) & \text { for } t \in[6,7[\\ y_{3}(8-t)+1-y_{2}-x_{3}\left(y_{2}-1\right)-y_{3} & \text { for } t \in[7,8]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.3_{0}\right)$.
This example shows that the strict inequality (2.8) in the assumption b) of Theorem 2.2 cannot be replaced by the nonstrict one.

Example 3.15. Let $\lambda \in[0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that

$$
\begin{gather*}
y_{2} \geq 1, \quad x_{1}+x_{2}+\lambda y_{3}<1-\lambda^{2} \tag{3.14}\\
y_{1}+\lambda x_{3}<-\lambda+\sqrt{1-x_{1}-x_{2}-\lambda y_{3}} \\
y_{1}+y_{2}+\lambda x_{3} \geq 1-\lambda+2 \sqrt{1-x_{1}-x_{2}-\lambda y_{3}} .
\end{gather*}
$$

Put $\alpha=\sqrt{1-x_{1}-x_{2}-\lambda y_{3}}$ and $k=\alpha-\lambda-y_{1}-\lambda x_{3}$. Obviously, $k>0$ and $y_{2} \geq 1+\alpha+k$. Let, moreover, $a=0, b=10, p \in L([a, b] ; R)$ be defined by (3.4), and

$$
\tau(t)=\left\{\begin{array}{lll}
8 & \text { for } & t \in[0,1[\cup[3,4[\cup[8,9[\\
4 & \text { for } & t \in[1,3[\cup[4,5[\cup[6,7[\cup[9,10] \\
5 & \text { for } & t \in[5,6[\\
2 & \text { for } & t \in[7,8[
\end{array} .\right.
$$

Obviously, $\tau_{0}=2, \tau_{1}=8$, and (3.3) is satisfied.
On the other hand, the function

$$
u(t)= \begin{cases}\alpha y_{1}(1-t)+x_{1}+x_{2}+k \alpha-1 & \text { for } t \in[0,1[\\ x_{1}(2-t)+x_{2}+k \alpha-1 & \text { for } t \in[1,2[\\ x_{2}(3-t)+k \alpha-1 & \text { for } t \in[2,3[\\ k \alpha(4-t)-1 & \text { for } t \in[3,4[\\ t-5 & \text { for } t \in[4,5[\\ 0 & \text { for } t \in[5,6[\\ \alpha(t-6) & \text { for } t \in[6,7[\\ \alpha & \text { for } t \in[7,8[\\ \alpha x_{3}(t-8)+\alpha & \text { for } t \in[8,9[\\ y_{3}(t-9)+\alpha+\alpha x_{3} & \text { for } t \in[9,10]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.3_{0}\right)$.
This example shows that the strict inequality (2.11) in Theorem 2.2 cannot be replaced by the nonstrict one.

Example 3.16. Let $\lambda \in[0,1]$ and let $x_{i}, y_{i} \in R_{+}(i=1,2,3)$ be such that (3.14) holds and

$$
\begin{gathered}
y_{1}+\lambda x_{3} \geq-\lambda+\sqrt{1-x_{1}-x_{2}-\lambda y_{3}} \\
x_{1}+x_{2}+\lambda\left(y_{2}+y_{3}\right)+\left(y_{1}+\lambda x_{3}\right)\left(y_{2}-1\right) \geq 1+\lambda .
\end{gathered}
$$

Put $\alpha=1-x_{1}-x_{2}-\lambda y_{3}$ and $\beta=y_{1}+\lambda x_{3}+\lambda$. Obviously, $\alpha>0, \beta>0$, and $y_{2} \geq 1+\frac{\alpha}{\beta}$. Let, moreover, $a=0, b=9, p \in L([a, b] ; R)$ be defined by (3.9), and

$$
\tau(t)=\left\{\begin{array}{lll}
3 & \text { for } & t \in[0,1[\cup[2,4[\cup[5,6[\cup[7,8[\\
7 & \text { for } & t \in[1,2[\cup[8,9] \\
4 & \text { for } & t \in[4,5[\\
2 & \text { for } & t \in[6,7[
\end{array} .\right.
$$

Obviously, $\tau_{0}=2, \tau_{1}=7$, and (3.3) is satisfied.
On the other hand, the function

$$
u(t)= \begin{cases}x_{1} \beta(1-t)+y_{1} \alpha+x_{2} \beta-\beta & \text { for } t \in[0,1[\\ y_{1} \alpha(2-t)+x_{2} \beta-\beta & \text { for } t \in[1,2[\\ x_{2} \beta(3-t)-\beta & \text { for } t \in[2,3[\\ \beta(t-4) & \text { for } t \in[3,4[\\ 0 & \text { for } t \in[4,5[\\ \alpha(t-5) & \text { for } t \in[5,6[\\ \alpha & \text { for } t \in[6,7[\\ y_{3} \beta(t-7)+\alpha & \text { for } t \in[7,8[\\ x_{3} \alpha(t-8)+\alpha+y_{3} \beta & \text { for } t \in[8,9]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.1_{0}\right),\left(0.3_{0}\right)$.
This example shows that the strict inequality (2.8) in the assumption c) of Theorem 2.2 cannot be replaced by the nonstrict one.

Acknowledgement

This work was supported by the RI No. J07/98:143100001.

References

1. N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, ntroduction to the theory of functional differential equations. (Russian) Nauka, Moscow, 1991.
2. N. V. Azbelev and L. F. Rakhmatullina, Theory of linear abstract functional differential equations and applications. Mem. Differential Equations Math. Phys. 8(1996), 1-102.
3. E. Bravyi, A note on the Fredholm property of boundary value problems for linear functional differential equations. Mem. Differential Equations Math. Phys. 20(2000), 133-135.
4. R. Hakl and A. Lomtatidze, A note on the Cauchy problem for first order linear differential equations with a deviating argument. Arch. Math. (Brno) 38(2002), No. 1, 61-71.
5. R. Hakl, A. Lomtatidze, and J. Šremr, On a periodic type boundary value problem for first order linear functional differential equations. Nonlinear Oscillations $\mathbf{5}(2002)$, No. 3, 416-432.
6. R. Hakl, A. Lomtatidze, and J. Šremr, On an antiperiodic type boundary value problem for first order linear functional differential equations. Arch. Math. (Brno) 38(2002), No. 2, 149-160.
7. R. Hakl, A. Lomtatidze, and J. Šremr, On nonnegative solutions of a periodic type boundary value problem for first order scalar functional differential equations. Adv. Differential Equations (submitted).
8. R. Hakl, A. Lomtatidze, and J. Šremr, Solvability and unique solvability of a periodic type boundary value problem for first order scalar functional differential equations. Georgian Math. J. 9(2002), No. 3, 525-547.
9. J. Hale, Theory of functional differential equations. Second edition. Applied Mathematical Sciences, 3. Springer-Verlag, New York-Heidelberg, 1977.
10. I. Kiguradze and B. PŮŽa, On boundary value problems for systems of linear functional differential equations. Czechoslovak Math. J. 47(1997), No. 2, 341-373.
11. V. Kolmanovskii and A. Myshkis, Introduction to the theory and applications of functional differential equations. Mathematics and its Applications, 463. Kluwer Academic Publishers, Dordrecht, 1999.
12. Š. Schwabik, M. Tvrdý, and O. Vejvoda, Differential and integral equations. Boundary value problems and adjoints. D. Reidel Publishing Co., Dordrecht-Boston, Mass.-London, in co-ed. with Academia, Publishing House of the Czechoslovak Academy of Sciences, Praha, 1979.
(Received 14.04.2003)
Authors' addresses:

J. Šremr
Mathematical Institute, Czech Academy of Sciences
Žižkova 22, 61662 Brno
Czech Republic
E-mail: sremr@ipm.cz
P. Šremr
VOŠ a SPŠ Rychnov nad Kněžnou
U Stadionu 1166, 51601 Rychnov nad Kněžnou
Czech Republic
E-mail: sremr@vosrk.cz

