
Memoirs on Differential Equations and Mathematical Physics

Volume 29, 2003, 31–45

V. Kokilashvili, A. Meskhi, and S. Samko

ON THE INVERSION AND CHARACTERIZATION

OF THE RIESZ POTENTIALS

IN THE WEIGHTED LEBESGUE SPACES



Abstract. The method of approximative inverse operators is applied to
the inversion problem for the Riesz potentials f = Iαϕ, 0 < Reα < n, and
the characterization of the range Iα(Lp

w) with densities ϕ in the Lebesgue
spaces Lp

w(Rn) and a Muckenhoupt weight w. The general situation is
considered when potentials f ∈ Lq

v(R
n), 1 < p < ∞, and q ≥ p and

Muckenhoupt weights w and v are independent, being related to each other
only by integral conditions.
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1. Introduction

We consider the Riesz potential operator

f(x) = Iαϕ(x) =
1

γ(α)

∫

Rn

ϕ(y)

|x− y|n−α
dy, (1.1)

where, as usual,

γ(α) =
2απ

n
2 Γ
(

α
2

)

Γ
(

n−α
2

) , (1.2)

as acting from a weighted Lebesgue space Lp
w(Rn) into another such space

Lq
v(R

n) with q > p > 1 and the general weight functions w and v of the
Muckenhoupt type.

We admit complex values of α and assume that 0 < Reα < n.
It is known ([18], Ch. 3 and Ch. 7; [19], Section 27) that in the case

of real α, the operator (left) inverse to Iα has the form of a hypersingular
operator

ϕ(x) = (Iα)−1f(x) = D
αf(x) : =

1

dn,l(α)

∫

Rn

(∆l
yf)(x)

|y|n+α
dy, (1.3)

known also as the Riesz fractional derivative, where (∆`
yf)(x) is either a

centered or non-centered finite difference of f of order ` (` > α or ` > 2
[

α
2

]

depending on the type of the finite difference), and the integral in (1.3) is
treated as convergent in the norm of the space of functions ϕ. This also
works for complex α with 0 < Reα < 2 and ` = 1 (see [18] and [19] for
details). The inversion of the potential Iα with densities ϕ ∈ Lp(Rn) and
description of the range Iα[Lp(Rn)] in terms of the construction (1.3) was
given in [15] (see also [18], Theorems 3.22, 7.9 and 7.11). Similar results for
the weighted spaces Lp

w(Rn) with the Muckenhoupt weight w were obtained
in [13] and [12] (see [18], Theorem 7.36).

A modification of the method of hypersingular operators which works
for all complex α with 0 < Reα < n, but requires the generalized finite
differences, may be found in [18], p. 83.

There exists also an alternative approach to the inversion of the Riesz
potential operator based on the method of approximative inverse operators
(AIO) which works well for all complex α in the strip 0 < Reα < n. This
approach, realized in [16] (see also [18], Ch. 11) for non-weighted spaces
Lp(Rn), provides the construction of the inverse operator in the form

D
αf(x) = lim

ε→0
(Lp)

Tα
ε f, 0 < Reα < n, 1 < p <

n

Reα
, (1.4)

where

Tα
ε f = ε−n

∫

Rn

hα(y)f(x− εy) dy (1.5)
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and the kernel hα(y) ∈ L1(Rn) has the property that its Fourier transform
has the form

ĥα(ξ) = |ξ|αk̂(ξ) (1.6)

with k(x) any function such that

k(x) ∈ L1(Rn)
⋂

Iα(L1) (1.7)

(see also a similar approach for the realization of fractional powers of opera-
tors in [17]). An extension of this alternative inversion of [16] to the case of
weighted spaces with Muckenhoupt weight was given in [14]. Observe that
relation (1.7) means that

hα(x) ∈ L1(Rn) and hα(x) = D
αk(x), k ∈ L1(Rn), (1.8)

so that

hα(x) ∈ L1(Rn) and Iαhα(x) ∈ L1(Rn). (1.9)

Some examples of functions k(x) and hα(x) satisfying the conditions
(1.6)–(1.8) were given in [16] (see also [18], Sections 1.4–1.5 of Ch. 11).

The results obtained in [16] provide a characterization of the range
Iα(Lp

w), in particular, in terms of its imbedding into the space Lq
v(R

n) with
the Sobolev exponent q = np

n−αp
(which assumes that p < n

α
) and weight

v = w
q
p .

Meanwhile, it is actual to obtain a more general result for the densities
ϕ ∈ Lp

w(Rn) and potentials f ∈ Lq
v(R

n), when 1 < p < ∞ (not only
1 < p < n

Re α
) and q ≥ p (not only q = np

n−Re αp
) and the weights w and

v are independent, being related to each other only by integral inequalities
(two-weight approach, see [5], [3], [4], [2]).

This goal is realized in this paper.

Notation:

x = (x1, . . . , xn) ∈ R
n;

for E ⊂ R
n, by |E| we denote the Lebesgue measure of E;

B(x, r) is the ball of radius r centered at the point x;
Fϕ(ξ) = ϕ̂(ξ) =

∫

Rn

eiξyϕ(y) dy;

F−1f(x) = f̂(x) = 1
(2π)n

∫

Rn

e−ixξf(ξ) dξ;

〈f, ω〉 =
∫

Rn

f(x)ω(x) dx;

S = S(Rn) is the Schwartz space of rapidly decreasing functions.

2. Preliminaries

a) On weights and weighted spaces. Let w be a locally integrable
almost everywhere positive function called a weight on R

n. As usual, by
Lp

w(Rn) we denote the weighted Lebesgue space of all measurable functions
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f : R
n → R

1 with the finite norm

‖f‖L
p
w

=

(
∫

Rn

|f(x)|pw(x) dx

)
1
p

, 1 ≤ p <∞.

Definition 2.1. Let 1 < p <∞. We say that a weight w belongs to Ap,
if

sup

(

1

|B|

∫

B

w(x) dx

)(

1

|B|

∫

B

w1−p′(x) dx

)p−1

<∞, p′ =
p

p− 1
,

where the supremum is taken over all balls B,B ⊂ R
n.

As is well known ([11], [1]), the Hardy–Littlewood maximal operator

Mf(x) = sup
B3x

∫

B

|f(y)| dy

is bounded in the space Lp
w(Rn) if and only if w ∈ Ap.

It is known that

Lp
w(Rn) ⊂ L1

ρ(R
n), ρ(x) = (1 + |x|)−n (2.1)

for any weight w ∈ Ap and

w ∈ Ap ⇔ w1−p′ ∈ Ap′ (2.2)

for all 1 < p <∞.

We remind the definition of the Lizorkin class

Φ = {ϕ ∈ S : ϕ̂ ∈ Ψ}, where Ψ = {ψ ∈ S : Dkψ(0) = 0, |k| = 0, 1, 2, . . .}

([7], [8], [9], see also [18], p.39), which is invariant with respect to the Riesz
potential operator Iα.

The Riesz potential operator I iθ of purely imaginary order iθ is defined
by its Fourier multiplier m(ξ) = |ξ|iθ :

I iθϕ = F−1|ξ|iθFϕ, ϕ ∈ Φ, θ ∈ R
1, (2.3)

which is well suited for the space Lp
w(Rn), w ∈ Ap, according to Theorem

C given below.

Lemma 2.2. The operator I iθ is bounded in the space Lp
w(Rn), 1 < p <∞

for all w ∈ Ap

The statement of the lemma is obtained by direct verification of the
Mikhlin–Hörmander condition

sup
R>0

(

Rs|j|−n

∫

R<|ξ|<2R

|Djm(ξ)|s dξ

)

<∞, |j| ≤ n,

where 1 < s ≤ 2, which is sufficient for m(ξ) to be a Fourier multiplier in
the weighted space Lp

w(Rn), 1 < p < ∞, with w ∈ Ap, see [6], Theorem
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2 (one may choose any s ∈ (1, 2] different from n
n−1 ,

n
n−2 , . . . ,

n
n−k

, k ≤ n
2 ,

when checking this condition for m(ξ) = |ξ|iθ).

Definition 2.3. Let µ be a measure on R
n. We say that µ satisfies

the doubling condition if there exists a positive constant b such that the
inequality

µB(x, 2r) ≤ bµB(x, r)

holds for all the balls B(x, r).

Definition 2.4. A measure µ on R
n satisfies the reverse doubling con-

dition if there exists positive constants η1 > 1 and η2 > 1 such that

µB(x, η1r) ≥ η2µB(x, r)

holds for all the balls B(x, r).

The following statement is well known (see [21], page 11, Lemma 20).

Proposition A. Let µ satisfy the doubling condition. Then µ satisfies
the reverse doubling condition.

In the sequel we denote wE =
∫

E

w(x) dx for any measurable set E ⊂ R
n,

where w is a weight. Note that this measure satisfies the reverse doubling
condition if w ∈ Ap.

We will base ourselves on the following theorems.

Theorem A (see [4], p.116). Let 1 < p <∞, 0 < α < n, and let w and

v be weights on R
n. Let the weights v and w1−p′ satisfy the reverse doubling

condition. Then the operator Iα is bounded from Lp
w(Rn) into Lq

v(R
n) if and

only if

sup |B|
α
n
−1

(
∫

B

v(x) dx

)
1
q
(
∫

B

w1−p′ (x) dx

)
1
p′

<∞ (2.4)

where the supremum is taken over all the balls B ⊂ R
n.

Remark 2.5. Let 1 < p < ∞, let α be complex with 0 < Reα < n

and let the weights v and w1−p′ satisfy the reverse doubling condition. The
operator Iα is bounded in the space Lp

w(Rn) if and only if the condition

(2.4) is satisfied with |B|
α
n
−1 replaced by |B|

Re α
n
−1.

Indeed, it suffices to observe that Iαϕ = I iθIRe αϕ for ϕ ∈ Φ, where
Φ is dense in Lp

w(Rn) by Theorem C given below and the operator I iθ is
boundedly invertible in Lp

w(Rn).

For the dilatation kernels

kε(x) =
1

εn
k
(x

ε

)

,

the following extension of Stein’s theorem to weighted spaces was given in
[12] (see also [18], Theorem 7.31).
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Theorem B. a) Let k(x) have a non-increasing radial dominant b(|x|) ∈
L1(R

n) and f ∈ Lp
w, w ∈ Ap. Then

sup
ε>0

|(kε ∗ f)(x)| ≤ c‖b‖1(Mf)(x), (2.5)

where (Mf)(x) is the Hardy–Littlewood maximal function.
b) If in addition

∫

Rn

k(x)dx = 1, then

(kε ∗ f)(x) → f(x)

as ε→ 0 in the Lp
w-norm and almost everywhere.

Theorem C ([18], Theorem 7.34 and [13], Theorem 4.3). The Lizorkin
class Φ is dense in the weighted space Lp

w(Rn) for any weight w ∈ Ap, 1 <
p <∞.

Theorem D ([10], [22]). Let 1 < p < ∞ and 0 < α < n
p
. The operator

Iα is bounded from Lp(Rn) to Lp
v(R

n) if and only if Iαv ∈ Lp′

loc and

Iα[Iαv]p
′

(x) ≤ cIαv(x) almost everywhere. (2.6)

Remark 2.6. Theorem D is also valid for complex α with 0 < Reα < n,
if condition (2.6) is replaced by

IRe α[IRe αv]p
′

(x) ≤ cIRe αv(x) almost everywhere (2.7)

(see the arguments in the proof of Corollary 2.5).

We will also need the condition dual to (2.7), namely

IRe α[IRe αw1−p′ ]p(x) ≤ cIRe αw1−p′ (x) almost everywhere. (2.8)

Let 1 < p < q < p∗, where p∗ = np
n−αp

and α < min
{

n
p
, n

q

}

. Then a

simple example of weight functions w ∈ Ap and v ∈ Ap for which condition
(2.4) holds, is that of power functions:

w(x) = |x|β , v(x) = |x|γ , (2.9)

where

αp− n < β < n(p− 1), γ = q

(

n

p
+
β

p
− α

)

− n (2.10)

(see Appendix). As to the conditions (2.7) and (2.8), they are valid for

v(x) = |x|−Re αp ∈ Ap, 0 < Reα <
n

p
, and

w(x) = |x|Re αp ∈ Ap, 0 < Reα <
n

p′
,

(2.11)

respectively
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c) Appropriate kernels.

Definition 2.7. A kernel hα(x) ∈ L1(Rn), 0 < Reα < n, is called
appropriate if it satisfies the assumption in (1.9),

∫

Rn

(Iαhα)(x) dx = 1,

and both hα(x) and Iαhα(x) have integrable non-increasing radial domi-
nants.

It is known that the following functions are examples of appropriate ker-
nels:

1) hα(x) = F−1(|ξ|αe−|ξ|) =

=
Γ(n+ α)

2n−1π
n
2 Γ
(

n
2

)F

(

n+ α

2
,
n+ α+ 1

2
;
n

2
;−|x|2

)

, (2.12)

where F
(

n+α
2 , n+α+1

2 ; n
2 ; z
)

is the Gauss hypergeometric function, and

2) hα(x) =
(−1)m

γn(2m− α)
∆m

(

1

(1 + |x|2)
n+α

2 −m

)

=

=
1

γn(−α)

[

1

(1 + |x|2)
n+α

2

+

n
∑

k=1

(−1)kcm,k

(1 + |x|2)
n+α

2 +k

]

, (2.13)

where cm,k =
(m

k

) (n+1
2 )

k

( α
2−m+1)

k

and m is any integer such that m > Re α
2 , α 6=

2, 4, 6, . . . (see [18], Lemmas 11.7–11.8 and 11.13).
Obviously, the set of appropriate kernels is rich enough. Indeed, if hα(x)

is an appropriate kernel, then any convolution

K ∗ hα(x) =

∫

Rn

K(x − y)hα(y) dy

with K ∈ L1(Rn) and
∫

Rn

K(y) dy = 1, is also an appropriate kernel.

3. Statement of the Main Results

Our first theorem provides the following two-weighted result on the in-
version of the Riesz potential operator.

Theorem 3.1. Let 1 < p <∞, 0 < Reα < n and w ∈ Ap. Assume that
there exist q, p < q <∞ and a weight function v ∈ Aq such that (2.4) holds.
Then the equality

f = Iαϕ with ϕ ∈ Lp
w(Rn) (3.1)
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implies

ϕ = lim
ε→0

Tα
ε f = lim

ε→0
ε−n

∫

Rn

hα(y)f(x− εy) dy, (3.2)

where hα(y) is any appropriate kernel (see Definition 2.7) and the limit in
(3.2) is taken in Lp

w-norm or almost everywhere.

The next theorem gives the two-weighted description of the range of the
Riesz potential.

Theorem 3.2. Let 1 < p < ∞, 0 < Reα < n, w ∈ Ap, and let there
exist q, p < q < ∞ and v ∈ Aq such that (2.4) holds. A function f belongs
to the range Iα(Lp

w) if and only if

i) f ∈ Lq
v(R

n),
ii) one of the following two conditions is fulfilled:

a) lim
ε→0

Tα
ε f ∈ Lp

w(Rn) where Tα
ε is the operator (1.5) with any

appropriate kernel hα(x) and the limit is taken with respect to
the Lp

w(Rn)-norm;
b) sup

ε>0
‖Tα

ε f‖L
p
w
<∞.

The following theorem presents the corresponding inversion statement
for the Riesz potential operators in the case where 1 < p < n

Re α
and w ≡ 1.

It is based on Theorem D.

Theorem 3.3. Let 1 < p <∞, 0 < Reα < n
p

and v ∈ Ap. Suppose that

(2.6) holds. A function f belongs to the range Iα(Lp) if and only if

i) f ∈ Lp
v(R

n),
ii) one of the following two conditions is fulfilled:

a) lim
ε→0

Tα
ε f ∈ Lp(Rn) with any appropriate kernel hα(x) in the

operator Tα
ε , the limit being taken with respect to the Lp(Rn)-

norm;
b) sup

ε>0
‖Tα

ε f‖Lp <∞.

Finally, the last two theorems give some statements dual to the situation
considered in Theorem 3.3 and provide both the inversion statement and
the characterization of the range.

Theorem 3.4. Let 1 < p < ∞, 0 < Reα < n
p′

and w ∈ Ap. Suppose

that Iα(w1−p′) ∈ Lp
loc and (2.8) holds. If f = Iαϕ with ϕ ∈ Lp

w(Rn), then

ϕ = lim
ε→0

Tα
ε f = lim

ε→0
ε−n

∫

Rn

hα(y)f(x− εy) dy, (3.3)

where hα(y) is any appropriate kernel and the limit is taken in Lp
w-norm or

almost everywhere.

Theorem 3.5. Let 1 < p < ∞, 0 < Reα < n
p′

and w ∈ Ap. Suppose

that Iα(w1−p′) ∈ Lp
loc and (2.8) holds. Then f ∈ Iα(Lp

w) if and only if



40 V. Kokilashvili, A. Meskhi, and S. Samko

i) f ∈ Lp(Rn),
ii) one of the following two conditions is fulfilled:

a) lim
ε→0

Tα
ε f ∈ Lp

w(Rn) where lim
ε→0

Tα
ε is the same as in (3.3) with

any appropriate kernel hα(x) and the limit being taken in the
Lp

w(Rn)-norm;
b) sup

ε>0
‖Tα

ε f‖L
p
w
<∞.

4. Proofs

The proofs of Theorems 3.1 and 3.2 represent a modification of the proofs
of Theorems 3.1 and 3.2 from [14].

Proof of Theorem 3.1. For ϕ ∈ Φ there holds the equality

(Tα
ε I

αϕ)(x) =
1

εn
k
(x

ε

)

∗ ϕ with k(x) ∈ L1(Rn), (4.1)

which follows via Fourier transforms from (1.5)–(1.7). Let us show that
this relation remains valid for all ϕ ∈ Lp

w(Rn). Let ε be fixed and let
ϕ0 ∈ Lp

w(Rn). To show that (4.1) is valid for ϕ0, we pass to the limit in
(4.1) as Φ 3 ϕ → ϕ0, but do this in different norms for the left-hand and
right-hand sides of (4.1).

By Theorem C, there exists a sequence ϕm ∈ Φ such that ϕm → ϕ0 in
the Lp

w-norm. The left-hand side operator

Aε = Tα
ε I

α

is bounded from Lp
w(Rn) into Lq

v(R
n) by Theorem A (with Remark 2.5

taken into account), Theorem B, Proposition A and the fact that w ∈ Ap

and v ∈ Aq . Therefore,

Aεϕm → Aεϕ0 in Lq
v(R

n). (4.2)

On the other hand, the right-hand side operator

Bε =
1

εn
k
(x

ε

)

∗ ϕ

is bounded in the space Lp
w(Rn) by Theorem B and the fact that w ∈ Ap.

Therefore,

Bεϕm → Bεϕ0 in Lp
w(Rn). (4.3)

From (4.2)–(4.3) it follows that there exists a subsequence ϕmk
such that

Aεϕmk
→ Aεϕ0 and Aεϕmk

→ Aεϕ0 almost everywhere

and we arrive at (4.1) for ϕ0 ∈ L
p
w(Rn).

It remains to observe that by Theorem C and the condition w ∈ Ap, we
have that 1

εn k
(

x
ε

)

∗ϕ converges in Lp
w(Rn) as ε→ 0. Therefore, passing to

the limit in (4.1) as ε→ 0, we obtain the desired relation (3.2).

Proof of Theorem 3.2. Necessity follows from Theorems A (with Remark
2.5 taken into account) and B, and the relation (4.1) proved for f ∈ Lp

w(Rn).
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Let us prove the sufficiency. Let f ∈ Lq
v(R

n) and suppose that the
condition a) of our theorem is satisfied. Let ϕ = lim

ε→0
Tα

ε f , the limit being

taken in the Lp
w(Rn)-norm. The following relation is valid:

〈f, ψ〉 = 〈Iαϕ, ψ〉 , ψ ∈ Φ. (4.4)

Indeed, for ϕ ∈ Φ we have

〈Iαϕ, ψ〉 = 〈ϕ, Iαψ〉 =

〈

lim
ε→0
(L

p
w)

Tα
ε f, I

αψ

〉

= lim
ε→0

〈Tα
ε f, I

αψ〉 =

= lim
ε→0

〈f, Tα
ε I

αψ〉 = lim
ε→0

〈

f,
1

εn
k
(x

ε

)

∗ ψ

〉

= 〈f, ϕ〉 .

Here the first equality follows from Fubini theorem which is justified with
the aid of the Hölder inequality

| 〈Iαϕ, ψ〉 | ≤ ‖Iαϕ‖L
q
v
‖ψ‖

L
q′

v1−q′
<∞

since Iαϕ ∈ Lq
v(R

n) by Theorem A. The third equality is obvious as the
convergence in Lp

w(Rn) implies that in the space Φ′. The fourth equality
follows from the Fubini theorem:

| 〈f, Tα
ε I

αψ〉 | ≤ ‖f‖L
q
v
‖Tα

ε I
αψ‖

L
q′

v1−q′
<∞

(note that Iαψ ∈ Φ and by Theorem B Tα
ε I

αψ ∈ L
q′

v1−q′ because v1−q′ ∈

Aq′). The fifth equality, that is, the equality (4.1) has already been justi-
fied. The last equality is justified with the aid of the Hölder inequality and
Theorem B since 1

εn k
(

x
ε

)

∗ ψ → ψ almost everywhere and
∣

∣

∣

∣

〈

f,
1

εn
k
(x

ε

)

∗ ψ

〉∣

∣

∣

∣

≤ ‖f‖L
q
v

∥

∥

∥

∥

1

εn
k
(x

ε

)

∗ ψ

∥

∥

∥

∥

L
q′

v1−q′

≤ c‖f‖L
q
v
.

From (4.4) it follows that

f(x) = (Iαϕ)(x) + P (x),

where P (x) is a polynomial. By (2.1) we obtain that P (x) ≡ 0. Hence
f ∈ Iα(Lp

w).
Now let f ∈ Lq

v(R
n) and suppose that the condition b) is satisfied. Since

the space Lp
w(Rn) is reflexive, we have that the set {T α

ε f}ε>0 is weakly com-

pact. Hence there exists a subsequence
{

Tα
εk
f
}∞

k=1
which weakly converges

in Lp
w(Rn) to a function ϕ ∈ Lp

w(Rn). Arguing as above, we easily obtain
that f(x) = (Iαϕ)(x).

Proof of Theorem 3.3 is obtained by repeating the arguments of the proof
of Theorem 3.2, but with reference to Theorems B,C and D this time.

Proof of Theorem 3.4 is similar to that of Theorem 3.1. We only note
that, using duality arguments, by Theorem D (with Remark 2.6 taken into
account) the operator Iα is bounded from Lp

w(Rn) to Lp(Rn) if and only if

Iαw1−p′ ∈ Lp
loc and (2.8) holds.
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Proof of Theorem 3.5 is similar to that of Theorem 3.1.

5. Appendix

Let us prove that the pair of weights from (2.9) governs two-weight in-
equality for the Riesz potentials.

Proposition 5.1. Let 1 < p ≤ q < p∗, where p∗ = np
n−αp

and α < n
q
.

Suppose that αp − n < β < n(p − 1) and γ = q
(

n
p

+ β
p
− α

)

− n. Then

−n < γ < q(n− α) < n(q − 1) and the following inequality holds

(
∫

Rn

|x|γ |Iαf(x)|q dx

)
1
q

≤ c

(
∫

Rn

|x|β |f(x)|p dx

)
1
p

. (5.1)

Proof. Let f ≥ 0. We have

‖Iαf(x)‖L
q

|x|γ
≤ c(I1 + I2 + I3),

where

I1 =

(
∫

Rn

|x|γ
(

∫

|y|≤ |x|
2

f(y)

|x− y|n−α
dy

)q

dx

)
1
q

,

I2 =

(
∫

Rn

|x|γ
(

∫

|x|
2 <|y|<2|x|

f(y)

|x− y|n−α
dy

)q

dx

)
1
q

and

I3 =

(
∫

Rn

|x|γ
(

∫

|y|>2|x|

f(y)

|x− y|n−α
dy

)q

dx

)
1
q

.

If |y| ≤ 1
2 |x|, then |x|

2 ≤ |x − y|. Therefore using Hardy’s two-weight
inequality, we get

I1 ≤ c

(
∫

Rn

|x|γ+(α−n)q

(
∫

|y|≤|x|

f(y) dy

)q

dx

)
1
q

≤ c‖f‖L
q

|x|β

since
(
∫

|x|>t

|x|γ+(α−n)q dx

)
1
q
(
∫

|x|<t

|x|β(1−p′) dx

)
1
p′

=

= c

(

∞
∫

t

τγ+(α−n)q+n−1 dτ

)
1
q
(

t
∫

0

τβ(1−p′)+n−1 dτ

)
1
p′

=
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= c t
γ+(α−n)q+n

q · t
β(1−p′)+n

p′ = c.

For I3 we apply two-weight inequality for the operator adjoint to the Hardy
operator. We have

I3 ≤ c

(
∫

Rn

|x|γ
(

∫

|y|>2|x|

f(y)

|y|n−α
dy

)q

dx

)
1
q

≤ ‖f‖L
p

|x|β
.

The last inequality holds because
(
∫

|x|<t

|x|γ dx

)
1
q
(
∫

|x|>t

|x|β(1−p′)+(α−n)p′ dx

)
1
p′

=

= c

(

t
∫

0

τγ+n−1 dτ

)
1
q
(

∞
∫

t

τβ(1−p′)+(α−n)p′+n−1 dτ

)
1
p′

=

= c t
γ+n

q
− β

p
+α−n+ n

p′ = c.

Then, as q < p∗, we have p∗

q
> 1. Applying Hölder’s inequality with the

exponent p∗

q
, we obtain

I2 =

∫

Rn

|x|γ
(

∫

|x|
2 <|y|<2|x|

f(y)|x− y|α−n dy

)q

dx =

=
∑

k

∫

2k<|x|<2k+1

|x|γ
(

∫

|x|
2 <|y|<2|x|

f(y)|x− y|α−n dy

)q

dx ≤

=
∑

k

(
∫

2k<|x|<2k+1

|x|γ
p∗

p∗−q dx

)

p∗−q

p∗

×

×

(
∫

2k<|x|<2k+1

(
∫

|x|
2 <|y|<2|x|

f(y)

|x− y|n−α
dy

)p∗

dx

)

p

p∗

=

=
∑

k

(
∫

2k<|x|<2k+1

|x|γ
p∗

p∗−q dx

)

p∗−q

p∗

×

×

(
∫

2k<|x|<2k+1

(
∫

Rn

f(y)χ2k−1<|y|<2k+1

|x− y|n−α
dy

)p∗

dx

)

q

p∗

.

Applying Sobolev’s inequality for the second factor, we obtain the estimate

I
q
2 ≤ c

∑

k

2k(γ+
(p∗−q)n

p∗
)

(
∫

2k−1<|y|<2k+1

(

f(y)
)p
dy

)

q
p

=
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= c
∑

k

2
kβq

p

(
∫

2k−1<|y|<2k+1

(

f(y)
)p
dy

)

q
p

≤

≤ c
∑

k

(
∫

2k−1<|y|<2k+1

(

f(y)
)p
|y|β dy

)

q
p

≤ c

(
∫

Rn

(

f(y)
)p
|y|β dy

)

q
p

.

Here the following implications were used:

γ +
p∗ − q

p∗
· n = β

q

p
⇐⇒ γ + n−

q(n− αp)n

np
= β

q

p
⇐⇒

⇐⇒ γ + n
qn

p
+ qα = β

q

p
⇐⇒ γ = q

(β

p
+
n

p
α
)

.
�

The inequality (5.1) was proved in [20], but for completeness we give its
proof (different from that given in [20]).
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