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Optimal problems with variable delays in phase coordinates and controls are consid-
ered. Without commensurability conditions for delays in controls (incommensurability),
necessary conditions of optimality are obtained: in the form of the linearized integral
maximum principle for initial function and control, in the form of equalities and inequal-
ities for initial and final moments.

Let J = [a, b] be a finite interval; O ⊂ Rn, G ⊂ Rn be open sets and let the function
f : J ×Os ×Gν → Rn satisfies the following conditions:

1. for a fixed t ∈ J , the function f(t, x1, . . . , xs, u1, . . . , uν) is continuously differ-
entiable with respect to (x1, . . . , xs, u1, . . . , uν) ⊂ Os ×Gν ;

2. for a fixed (x1, . . . , xs, u1, . . . , uν) ⊂ Os×Gν , the functions f , fxi
, i = 1, . . . , s,

fuj
, j = 1, . . . , ν, are measurable with respect to t. For arbitrary compacts

K ⊂ O, V ⊂ G, there exists a function m
K,V

(·) ∈ L(J , R+
0 ), R+

0 = [0,∞),

such that for almost all t ∈ J and ∀(x1, . . . , xs, u1, . . . , uν) ∈ Ks × V ν ,

|f(t, x1, . . . , xs, u1, . . . , uν)|+
s∑

i=1

|fxi
(·)|+

ν∑

j=1

|fuj
(·)| ≤ m

K,V
(t).

Let now τi(t), i = 1, . . . , s, θj(t), j = 1, . . . , ν, t ∈ J , are absolutely continuous

functions satisfying the conditions: τi(t) ≤ t, τ̇i(t) > 0, θj(t) ≤ t, θ̇j(t) ≥ 0; ∆ be a set
of continuous functions ϕ : [τ, b] → M , τ = min{τ1(a), . . . , τs(a)}, M ⊂ O is a convex
set; Ω be a set of measurable functions u : J2 = [θ, b] → U , θ = min{θ1(a), . . . , θν(a)}
satisfying the conditions cl{u(t), t ∈ J2} is compact lying in G, U ⊂ G is a convex set;
qi(t0, t1, x0, x1), i = 0, . . . , l, (t0 , t1, x0, x1) ∈ J 2 × O2, are continuously differentiable
scalar functions.

We consider the differential equation in Rn

ẋ(t) = f(t, x(τ1(t)), . . . , x(τs(t)), u(θ1(t)), . . . , u(θν(t))), (1)

with the continuous condition

x(t) = ϕ(t), t ∈ [τ, t0]. (2)

Definition 1. The function x(t) = x(t, σ) ⊂ O, σ = (t0 , t1, ϕ(·), u(·)) ∈ A =
J 2×∆×Ω, t0 < t1, defined on the interval [τ, t1], is said to be a solution corresponding
to the element σ ∈ A if on the interval [τ, t0] it satisfies the condition (2), while on
the interval [t0, t1] the trajectory x(t) is absolutely continuous and almost everywhere
satisfies the equation (1).
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Definition 2. The element σ ∈ A is said to be admissible if the corresponding solution
x(t) satisfies the conditions

qi(t0 , t1, x(t0), x(t1)) = 0, i = 1, . . . , l.

The set of admissible elements will be denoted by A0.

Definition 3. The element σ̃ = (t̃0, t̃1, ϕ̃(·), ũ(·)) ∈ A0 is said to be optimal if for an
arbitrary element σ ∈ A0 the inequality

q0(t̃0 , t̃1, x̃(t̃0), x̃(t̃1)) ≤ q0(t0 , t1, x(t0), x(t1)), x̃(t) = x(t, σ̃),

holds.

The problem of optimal control consists in finding an optimal element.
In order to formulate the main results, consider the following notation:

ω = (t, x1, . . . , xs) ∈ J ×Os, ω0 = (t̃0, x̃(τ1(t̃0)), . . . , x̃(τs(t̃0))),

ω1 = (t̃1 , x̃(τ1(t̃1)), . . . , x̃(τs(t̃1))), γi(t) = τ−1
i (t),

f̃ [ω] = f(t, x1, . . . , xs, ũ(θ1(t)), . . . , ũ(θν(t))),

f̃xi
[t] = fxi

(t, x̃(τ1(t)), . . . , x̃(τs(t)), ũ(θ1(t)), . . . , ũ(θν(t))),

f̃uj
[t] = fuj

(t, x̃(τ1(t)), . . . , x̃(τs(t)), ũ(θ1(t)), . . . , ũ(θν(t))),

R−t = (−∞, t].

Theorem 1. Let σ̃ ∈ A0 be an optimal element, t̃0 ∈ (a, b), t̃1 ∈ (a, b] and the

following conditions hold:

a) the function ϕ̃(t) is absolutely continuous in some left semi-neighborhood of the

point t̃0;

b) there exist the finite limits:

ϕ̇− = ˙̃ϕ(t̃−0 );

lim
ω→ω0

f̃ [ω] = f−0 , ω ∈ R−
t̃0
×Os; lim

ω→ω1

f̃ [ω] = f−1 , ω ∈ R−
t̃1
×Os.

Then there exists a non-zero vector π = (π0, . . . , πl), π0 ≤ 0, and a solution ψ(t),

t ∈ [t̃0, γ], γ = max(γ1(b), . . . , γs(b)), of the equation

ψ̇(t) = −
s∑

i=1

ψ(γi(t))f̃xi
[γi(t)]γ̇i(t), t ∈ [t̃0, t̃1], (3)

ψ(t) = 0, t ∈ (t̃1, γ],

such that the following conditions are fulfilled

s∑

i=1

t̃0∫

τi(t̃0)

ψ(t)f̃xi
[γi(t)]γ̇i(t)ϕ̃(t) dt ≥

≥
s∑

i=1

t̃0∫

τi(t̃0)

ψ(t)f̃xi
[γi(t)]γ̇i(t)ϕ(t) dt, ∀ϕ(·) ∈ ∆; (4)

(
πQ̃x0

+ ψ(t̃0)
)
ϕ̃(t̃0) ≥

(
πQ̃x0

+ ψ(t̃0)
)
ϕ, ∀ϕ ∈M ; (5)

ν∑

j=1

t̃1∫

t̃0

ψ(t)f̃uj
[t]ũ(θj(t)) dt ≥

ν∑

j=1

t̃1∫

t̃0

ψ(t)f̃uj
[t]u(θj(t)) dt, ∀u(·) ∈ Ω; (6)

πQ̃t1 ≥ −ψ(t̃1)f−1 ;

π(Q̃t0 + Q̃x0
ϕ̇−) ≥ ψ(t̃0)(f−0 − ϕ̇−).
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Here the tilde over Q = (q0, . . . , ql)> means the the corresponding gradient is calculated

at the point (t̃0 , t̃1, x̃(t̃0), x̃(t̃1)).

Theorem 2. Let σ̃ ∈ A0 be an optimal element, t̃0 ∈ [a, b), t̃1 ∈ (a, b) and the

following conditions hold:

c) the function ϕ̃(t) is absolutely continuous in some right semi-neighborhood of the

point t̃0;

d) there exist the finite limits:

ϕ̇+ = ˙̃ϕ(t̃+0 );

lim
ω→ω0

f̃ [ω] = f+
0 , ω ∈ R+

t̃0
×Os; lim

ω→ω1

f̃ [ω] = f+
1 , ω ∈ R+

t̃1
×Os.

Then there exists a non-zero vector π = (π0, . . . , πl), π0 ≤ 0, and a solution ψ(t) of the

equation (3) such that (4)–(6) are fulfilled. Moreover,

πQ̃t1 ≤ −ψ(t̃1)f+
1 ; π(Q̃t0 + Q̃x0

ϕ̇+) ≤ ψ(t̃0)(f+
0 − ϕ̇+).

Theorem 3. Let σ̃ ∈ A0 be an optimal element, t̃0, t̃1 ∈ (a, b) and the assumptions

of Theorems 1, 2 hold. Let, besides,

e) ϕ̇− = ϕ̇+ = ϕ̇, f−0 = f+
0 = f0;

f) f−1 = f+
1 = f1.

Then there exists a non-zero vector π = (π0, . . . , πl), π0 ≤ 0, and a solution ψ(t) of the

equation (3) such that (4)–(6) are fulfilled. Moreover,

πQ̃t1 = −ψ(t̃1)f1; π(Q̃t0 + Q̃x0
ϕ̇) = ψ(t̃0)(f0 − ϕ̇).

We would note that if rank(Q̃t0 , Q̃t1 , Q̃x0
, Q̃x1

) = 1+ l, then in Theorem 3 ψ(t) 6≡ 0.
Optimal problems of various classes with commensurable and incommensurable delays

in control are considered in [1]–[6].
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