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Abstract. In this article there are presented the criteria for existence,
and there are also considered the questions of number, multiplicity and
stability of limit cycles of the two-dimensional dynamic systems associated
with a specific inversion of the Bendixson-Dulac criterion about the absence
of closed trajectories in dynamic systems, and with the proposed by the
author classification of limit cycles, based on the properties of the divergence
of the vector field and the regularity conditions of cycles..
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Introduction

As it is known, in the initial period of the development of the theory of
differential equations the main task was to develop methods and techniques
for integrating motion equations of dynamic systems in so called closed
form, when for the description of the motions it was necessary to obtain an
analytic formula whose application supposed the action of a finite number
of known operations over the known elementary functions.

However, after the French mathematician J. Liouville proved in 1841 that
motion equations can be integrated in the closed form only in seldom cases,
the efforts of mathematicians and mechanical scientists were directed for
research of various properties of motions according to the known properties
of motion equations themselves.

The fact is that even if during the process of integrating motion equations
one uses infinite series of this or that form, then, even in this case, in
spite of the possibility to solve significantly more equations than if we had
solved them in closed form, it very often happens so that most essential
and interesting properties of motions can be by no means detected from the
form of the series obtained.

Moreover, if one chances to have integrated motion equations in closed
form, then, it is far from always that such a motion can have been analyzed
because the obtained dependence between different parameters often
appears to be greatly and greatly complicated.

Thus, the necessity for techniques and methods that could enable one,
without integrating motion equations themselves, however, to get necessary
information about these or those properties of motions according to the
known properties of an initial dynamic system has become evident.

One of the most important problems, in this respect, is the development
of the effective methods of solving the problems of existence, the number
and stability of periodic motions of dynamic systems.

As H. Poincaré [1, p. 75] noted “. . . the specific importance of these pe-
riodic solutions is the fact that they are the only bridge through which we
could attempt to penetrate into the domain that hasn’t been considered to
be obtainable”.

Herewith, one should take into account that already while considering the
dynamic systems with the two-dimensional phase space there is a significant
difference between periodic motions, to which on the phase plane there
corresponds the continuum of closed trajectories completely filling some
domain, and that it is possible both for the case of linear motion equations
and for the case of nonlinear ones; and periodic motions, to which on the
phase plane there corresponds an isolated closed trajectory (a limit cycle),
and that it is possible only for the case of nonlinear motion equations.

Considering the case of non-constant periodic motions of two-dimensional
dynamic systems to which on the phase plane there correspond limit cycles,
note, that in spite of the very variable nature of such motions they are united
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by one common property, with respect to which A.A. Andronov [2, p. 32]
wrote: “There exists a number of arrangements, being able to generate
non-damped oscillations for the account of non-periodic sources of energy.
However, so far there hasn’t been a sufficiently strict and general theory
of such auto-oscillations. Herewith, there exists an adequate mathematical
construction created without any connection with the theory of oscillations,
making it possible to establish general viewpoint for all similar processes,
for the case of one degree of freedom. This construction is the Poincaré
“limit cycles” theory”.

In 1929 A.A. Andronov published an important article concerned with
the investigations of Van der Pol on the radio theory, which concerned the
description of the established oscillations with a constant amplitude in a
triode vacuum tube.

In this article it was, for the first time, shown that a stable periodic
solution of the differential equation obtained by Van der Pol, corresponds
on the phase plane to a stable limit cycle. It should be noted that in the
radio theory this limit cycle corresponds to those transferring radio signals
that appear in electronic generators.

The oscillations of the above mentioned type often appear both in me-
chanical and acoustical systems, and, besides, in the systems that are, gen-
erally speaking, the subject of research of that part of non-linear mechanics
that is associated with one of its sections, namely, the theory of oscillations.

The significance of studying limit cycles is confirmed, as well, by the fact
that the problem about the maximum number of limit cycles and their lo-
cation was included by D. Hilbert, as the 16th point, into the number of 23,
mentioned by him in 1900, most important problems, requiring their solu-
tion. This problem hasn’t been solved yet despite it having been attacked
by many well-known scientists.

Discussing auto-oscillations it is necessary also to note that circumstance
that limit cycles corresponding to them belong to the so called singular tra-
jectories of dynamic systems. And, as the investigations of A.A. Andronov
and E.A. Leontovich showed, singular trajectories of the dynamic systems
of the second order, i.e., the equilibrium states, separatricies and limit cy-
cles, determine that “skeleton” that enables one to build the qualitative
picture of the behaviour of the phase trajectories over all the phase space.
Herewith, if for the studying of the separatricies and the behaviour of the
trajectories in the neighbourhood of the equilibrium states of the dynamic
systems there are available reliable methods, then for the studying of limit
cycles there aren’t reliable available any regular methods.

The fact is that the theory of limit cycles belongs to that domain of
the qualitative theory of differential equations that is associated with the
brightly expressed global problem, when solving this problem there appear
difficulties of the principal character due to the fact that it is not possible
to directly use mathematical apparatus of differential calculus according to
its very idea provided for solving local questions.
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In this article there are presented the criteria for existence, and there
are also considered the questions of number, multiplicity and stability of
limit cycles of the two-dimensional dynamic systems associated with a spe-
cific inversion of the Bendixson-Dulac criterion about the absence of closed
trajectories in dynamic systems, and, with the proposed by the author clas-
sification of limit cycles, based on the properties of the divergence of the
vector field and the regularity conditions of cycles.

1. Divergent Closed Trajectories

Consider differential systems

dx

dt
= X(x, y),

dy

dt
= Y (x, y) (1.1)

and
dx

dt
= X(x, y)B(x, y),

dy

dt
= Y (x, y)B(x, y), (1.2)

where x, y and t are scalar real variables, and X, Y and B are real functions,
having continuous partial derivatives in some domain G (we shall further
call such differential systems dynamic systems [3]). Remind that if Z is a
vector field determined by the system (1.1), that is, if

Z = X(x, y)
∂

∂x
+ Y (x, y)

∂

∂y
,

then div Z is the divergence of the vector field Z giving the volume - dilation
rate for the corresponding flow which is given by the following equality

div Z =
∂X(x, y)

∂x
+
∂Y (x, y)

∂y

Definition 1.1 ([4]). The closed trajectory Γ : γ(x, y) = 0 of the dynamic
system (1.1) is said to be a divergent closed trajectory of the system (1.1),
if along this trajectory the divergence of the vector field, determined by
the system (1.1), preserves its constant meaning, that is, if there holds the
equality div Z

∣

∣

γ(x,y)=0
= λ, where the constant λ ∈ R. A divergent closed

trajectory may be both an isolated closed trajectory (a limit cycle) and may
be a curve belonging to the set of curves forming some continuum.

For example, the dynamic system

dx

dt
= −y + x(x2 + y2 − 1)(x2 + y2 − 2)(x2 + y2 − 3)2,

dy

dt
= x+ y(x2 + y2 − 1)(x2 + y2 − 2)(x2 + y2 − 3)2

has divergent limit cycles defined by the equations γ1(x, y) ≡ x2+y2−1 = 0,
γ2(x, y) ≡ x2 + y2 − 2 = 0, γ3(x, y) ≡ x2 + y2 − 3 = 0. That fact that the
relations γi(x, y) = x2 + y2 − i = 0, i = 1, 2, 3, define limit cycles, may
be easily shown by the transition in the system considered to the polar
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coordinates. The divergency of these cycles may be just directly verified. In
this case div Z = 2(x2+y2−1)[5(x2+y2)3−31(x2+y2)2+56(x2+y2)−22]−8

The latter equality may be rewritten in the form div Z = 2(x2 + y2 −
−2)[5(x2 +y2)3−26(x2 +y2)2 +35(x2 +y2)−8]+4 or in the form div Z =
= 2(x2 + y2 − 3)[5(x2 + y2)3 − 21(x2 + y2)2 + 24(x2 + y2)− 6]. And then

div Z
∣

∣

γ1(x,y)=0
= −8, div Z

∣

∣

γ2(x,y)=0
= 4, div Z

∣

∣

γ3(x,y)=0
= 0.

As another example, consider the dynamic system

dx/dt = y, dy/dt = −x+ xy(x2 + y2 − 1)2.

The vector field determined by this system is symmetric with respect to
the axis of the ordinates of the phase plane. The system has in the finite
part of the phase plane the only critical point O(0, 0), being the centre.

Here div Z = x(x2 + y2 − 1)(x2 + 5y2 − 1), and the divergent closed
trajectory x2 + y2 − 1 = 0 is a curve belonging to the set of the centre
trajectories.

Theorem 1.1 ([5]). Let the functions X(x, y) and Y (x, y) belong to the
class Ck, k = 1, 2, 3, . . . , in any finite domain of the phase plane R

2. Then,
if the dynamic system (1.1) has a closed trajectory Γ, then there exist a
constant λ ∈ R and a nonzero function B : R

2 → R
+ of the class Ck such

that the equation div BZ = λ∗ defines a curve† having a finite real branch
coinciding with the trajectory Γ.

The proof of this theorem, in fact, coincides with the proof of the lemma
from [6].

Remark 1.1. The function B, and, hence, the constant λ, being present
in the Theorem 1.1, generally speaking, are not the only ones.

Thus, for example, consider the dynamic system

dx/dt = y(x2 − xy + y2)− 2x(x2 + y2 − 1), dy/dt = −x(x2 − xy + y2),

having the closed trajectory (a stable limit cycle), the equation for which
is x2 + y2 = 1. For the latter system the divergence of the vector field is
defined by the relation div Z = 2− 5x2 − 3y2.

It can be easily verified that with either real λ the equation 2 − 5x2 −
−3y2 = λ does not define the trajectory of the initial dynamic system.

Herewith, if the function B is determined by the equality B(x, y) =
= 3x2− 4xy+ 7y2 + 3 then div BZ = (x2 + y2− 1)(−23x2 + 16xy− 25y2−
−20) − 14 and the equation div BZ = −14 defines the curve whose real
branch x2 + y2 = 1 turns out the divergent closed trajectory.

Besides the above mentioned function B, one may also consider, for ex-
ample, the polynomial B(x, y) = 1

7 (23x2 − 20xy + 43y2 + 7).

∗
div BZ is the divergence of the vector field, determined by the dynamic system (1.2)
†The fact that the equation div BZ = λ defines a curve imposes on the right-hand

side of the considered dynamic system definite restrictions. We shall assume them to be
valid always when considering those or some other curves
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In this case div BZ = (x2 +y2−1)(−187x2 +80xy−149y2−84)/7−10.
Here, the desired divergent branch x2 + y2 − 1 = 0 is already defined by
the equation div BZ = −10. Note, further, that, taking into account the
definition 1.1, the theorem 1.1 may be reformulated as follows.

Theorem 1.2 ([5]). Let functions X(x, y) and Y (x, y) belong to the class
Ck, k = 1, 2, 3, . . . , in any finite domain of the phase plane R

2. Then, if the
dynamic system (1.1) has a closed trajectory Γ, then there exists a nonzero
function B : R

2 → R of the class Ck such that for the dynamic system (1.2)
the curve Γ will be a divergent closed trajectory.

Thus, with the exactness to the transformation of time, any closed trajec-
tory of dynamic system (1.1) may be always considered as a divergent closed
trajectory. This result is substantial for the theory of periodic motions of
monodromic dynamic systems of the second order.

Taking into account the properties of the Poincaré function and coincid-
ence of the phase portraits of the dynamic system (1.1) and (1.2) (with a
nonzero function B) one can prove that there holds

Theorem 1.3 ([5]). Let the functions X(x, y) and Y (x, y) belong to
the class Ck, k = 1, 2, 3, . . . , in any finite domain of the phase plane R

2.
Then, for the dynamic system (1.1) to have a rough (unrough) limit cycle,
the existence of a nonzero function B : R

2 → R
+ of the class Ck, such that

the dynamic system (1.2) have a rough (unrough) divergent limit cycle, is
necessary and sufficient.

Consider now along with the dynamic system (1.1), the real dynamic
system of the form

dx

dt
= P (x, y),

dy

dt
= Q(x, y) (1.3)

supposing that the functions P , Q, as well as the functions X, Y, are the
functions of the class Ck , k = 1, 2, 3, . . . , in any finite domain of the phase
plane R

2.
Denote as E the function defined by the equality E(x, y) = X(x, y) ×

×Q(x, y) − Y (x, y)P (x, y) and satisfying the condition E ′
x
2

+ E′
y
2 6= 0 on

the set
{(x, y)

∣

∣E(x, y) = 0}. (1.4)

The condition (1.4) means, in particular, that the equation

E(x, y) = 0 (1.5)

defines on the phase plane R
2 some curve.

With the above mentioned assumptions we shall formulate a simple, ho-
wever useful for the qualitative analysis of the dynamic systems, statement.

Theorem 1.4 ([4]). For the trajectory Γ : γ(x, y) = 0 of the dynamic
system (1.1) to be the trajectory of the dynamic system (1.3), it is necessary
and sufficient that the curve, defined by the equation (1.5), have a coinciding
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with the curve Γ real branch, not containing critical points of the system
(1.3).

Corollary 1.1. For the trajectory Γ : γ(x, y) = 0 of the dynamic system
(1.1) to be the trajectory of the dynamic system (1.3), it is necessary and
sufficient that along the curve Γ the equalities

P (x, y)
∣

∣

γ=0
= X(x, y)

∣

∣

γ=0
· B(x, y),

Q(x, y)
∣

∣

γ=0
= Y (x, y)

∣

∣

γ=0
· B(x, y)

hold, where B is a nonzero on the curve Γ function of the class Ck .

Remark 1.2. The condition of the absence of critical points of the dynamic
system (1.3) on the closed branch of the curve, defined by the equation
(1.5), being present in the theorem 1.4, is substantial. Indeed, consider the
dynamic systems

dx

dt
= −y + x(x2 + y2 − 1),

dy

dt
= x+ y(x2 + y2 − 1) (1.6)

and
dx

dt
= x2 + y2 − 1,

dy

dt
= x2 + y2 − 1. (1.7)

The equation (1.5) is, in this case, of the form

(x2 + y2 − 1)[2x+ (y − x)(x2 + y2 − 1)] = 0. (1.8)

The branch x2 + y2 − 1 = 0 of the curve, defined by the equation (1.8),
is for the system (1.6) a trajectory (a limit cycle).

It should be noted that for the system (1.7) the above mentioned branch
has already been a singular closed trajectory fully consisting of critical
points of the system.

Theorem 1.5 ([4]). If the dynamic system (1.1) has the closed trajectory
Γ : γ(x, y) = 0, then there exist the functions P and Q of the class Ck

k = 1, 2, 3, . . . , in R
2 such that for the dynamic system (1.3) the curve Γ

will be a divergent closed trajectory.

Remark 1.3. From the theorem 1.5 follows, in particular, that there exist
infinitely great deals of the dynamic systems of the form (1.1) that have the
same closed trajectories (in whose neighbourhood, however, the behaviour
of the trajectories may be different).

Theorem 1.6 ([4]). If the dynamic system (1.1) has the closed trajectories
Γ1, Γ2, . . . , Γm, then there exist the functions P and Q of the class Ck,
k = 1, 2, 3, . . . , in R

2 such that for the dynamic system (1.3) the curves Γ1,
Γ2, . . . , Γm will be divergent closed trajectories.
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2. Divergent and Generalized–Strict Limit Cycles

Turning to the investigation of divergent limit cycles note that if in the
definition (1.1) the closed trajectory Γ is isolated, and if a constant λ is a
nonzero constant, then Γ is a limit cycle, which will, evidently, be a rough
(simple, one-multiple, hyperbolic) divergent limit cycle. It should be taken
into consideration, that it will be stable, if λ < 0, and unstable, if λ > 0.
If, however, λ = 0, then a cycle Γ will be an unrough (multiple, compound)
divergent limit cycle.

Theorem 2.1 ([5]). Let the functions X(x, y) and Y (x, y) belong to
the class Ck, k = 1, 2, 3, . . . , in any finite domain of the phase plane R

2.
Then, for the dynamic system (1.1) to have a rough divergent limit cycle,
the existence of a nonzero constant λ ∈ R

−(R+) such that the curve defined
by the equation divZ = λ have a finite real branch, being a closed trajectory
of the system (1.1), is necessary and sufficient.

From the theorems 1.3 and 2.1 follows

Theorem 2.2 ([5]). Let the functions X(x, y) and Y (x, y) belong to the
class Ck, k = 1, 2, 3, . . . , in any finite domain of the phase plane R

2. Then,
for the dynamic system (1.1) to have a rough limit cycle, the existence of
a nonzero constant λ ∈ R

−(R+) and a nonzero function B : R
2 → R

+ of
the class Ck such, that the equation div BZ = λ define the curve, having a
finite real branch, being a closed trajectory of the system (1.2), is necessary
and sufficient.

Theorem 2.3 ([5]). Let the functions X(x, y) and Y (x, y) belong to the
class Ck, k = 2, 3, . . . , in any finite domain of the phase plane R

2. Then,
for the dynamic system (1.1) to have a rough limit cycle, the existence of
a nonzero constant λ ∈ R

−(R+) and a nonzero function B : R
2 → R

+ of
the class Ck such, that the the curve, defined by the equation div BZ = λ,
have a finite real branch Γp, being a p-multiple, without critical points of
the system (1.1), simple closed curve of the class Ck+1, that would coincide
with q-multiple (p ≤ q)‡ branch of Γq of the curve defined by the equation

D
(1.2)
t div BZ = 0 (2.1)

where the symbol D
(1.2)
t denotes the differentiation operator with respect to

t due to the system (1.2), is necessary and sufficient.

Proof. Let the dynamic system (1.1) have a rough limit cycle. Then, ac-
cording to the theorem 2.2, there exist a nonzero constant λ ∈ R

−(R+)
and a nonzero function B : R

2 → R
+ of the class Ck such that the equa-

tion div BZ = λ will define a curve having a finite real p-multiple branch

‡The coinciding p-multiple Γp and the q-multiple Γq branches of the corresponding
curves are defined by the equations ϕp(x, y) = 0 and ϕq(x, y) = 0, where ϕ(x, y) is a non-
factorable function, and the natural numbers p and q are the indicies of the ϕp and ϕq .
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Γp : γ(x, y) = 0 being a divergent closed trajectory of the system (1.2). Ow-
ing to the fact that the curve Γp is a trajectory of the system (1.2), we come

to the conclusion that D
(1.2)
t γ(x, y) = F (γ(x, y), x, y), where F (o, x, y) = 0.

The latter fact, taking into account the divergency of Γp, just means that
the curve, defined by the equation (2.1), has a q-multiple (p ≤ q) branch,
coinciding with the branch Γp without critical points of the system (1.1).
And, vice versa, since from the conditions of the theorem it follows that the
dynamic system (1.2) has a divergent closed trajectory, then the reference
for the preceding theorem just completes the proof. �

One of the examples, illustrating the theorem 2.3, is the dynamic system

dx

dt
= −y + x(x2 + y2 − 1),

dy

dt
= x+ y(x2 + y2 − 1). (2.2)

For this system div Z = 4(x2 +y2−1)+2, D
(2.2)
t div Z = (x2 +y2)(x2 +

y2−1) and, thus, the system (2.2) has a rough (unstable) limit cycle, defined
by the equation x2 + y2 = 1 (here λ = 2).

The geometric interpretation of the theorem 2.3 is the following.

Theorem 2.4. Let the functions X(x, y) and Y (x, y) belong to the class
Ck, k = 2, 3, . . . , in any finite domain of the phase plane R

2. Then, for
the dynamic system (1.1) to have a rough limit cycle, the existence of a
nonzero function B : R

2 → R
+ of the class Ck such, that the equation

div BZ = Λ where Λ is a real parameter, changing on some interval I ⊂
⊂ R

−(R+), define a topographical system, whose contact curve would have
a q-multiple finite real branch, coinciding with one of the p-multiple (p ≤ q)
curves of the same topographical system, is necessary and sufficient.

Here, saying about a topographical system of the curves, defined by the
equation of the form Φ(x, y) = C, where C is a real parameter, we shall
understand a family of non-intersecting and embracing each other of the
class Ck+1 simple closed curves, surrounding one or some critical points of
the system (1.1), and completely filling some two-connected domain without
critical points of the system (1.1).

From the theorem 2.3 follows

Theorem 2.5 ([5]). Let the functions X(x, y) and Y (x, y) belong to the
class Ck, k = 2, 3, . . . , in any finite domain of the phase plane R

2. Then,
for the dynamic system (1.1) to have a rough limit cycle, the existence of a
nonzero constant λ ∈ R

−(R+) and a nonzero function B : R
2 → R

+ of the
class Ck such, that the equation

D
(1.2)
t div BZ + div BZ = λ (2.3)

define a curve, having a finite real branch, being a simple without critical
points of the system (1.1) closed curve of the class Ck+1, whose multiplicity
is equal to its multiplicity, when regarded as a divergent curve of the system
(1.2), is necessary and sufficient.
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Remark 2.1. The theorem 2.5 shows not only the qualitative aspect of the
problem but also defines the technique for finding the required function B
that not obligatorily must be the solution of the equation (2.3). But if we
are able to find the function B as a solution of the equation (2.3) in some
domain D, then, by this, we are be able to find all rough limit cycles of the
system (1.1)(if such ones exist), located in D. In particular, if polynomial
systems are considered, then for to find the function B it is possible to use
the known results of the theory of ovals of planar algebraic curves.

Thus, the introduction of divergent limit cycles allowed to deduce the
necessary and sufficient conditions for the existence of rough limit cycles
belonging to the dynamic systems of the general form (1.1).

What other useful possibilities does the introduction of divergent limit
cycles provide? First of all, it is the possibility to get the upper estimate
for the number of rough divergent limit cycles of polynomial dynamic sys-
tems (such cycles are always strict limit cycles, i.e., the cycles, along which
the divergence of the vector field, given by the dynamic system, is strictly
negative or strictly positive).

Theorem 2.6 ([5]). Let X(x, y) and Y (x, y) be polynomials of the degree
not higher than n ≥ 3. Then:

1) the general number of strict limit cycles of the dynamic system (1.1)

does not exceed the number N = 1
2

k
∑

ν=1
(mν−1)(mν−2)+k, where

k
∑

ν=1
mν =

= n− s− p− 1, mν is the order of the non-reducible branch fν(x, y) = 0 of
the reducible curve, defined by the equation

div Z = f1(x, y) · · · fν(x, y) · · · fk(x, y) · fs(x) · fp(y) = 0

and s and p are the degrees of the polynomials fs(x) and fp(y) (generally
speaking, reducible) correspondingly;

2) the general number of strict limit cycles of the dynamic system (1.1),
forming a nest (a set of embedded, successively, into each other, ovals) and
surrounding one critical point of the system (1.1), does not exceed the num-

ber N =
[

n−s−p−k
2

]

, where [·] is a whole part of a number.

The idea of the proof of the theorem 2.6 is to show that to each strict limit
cycle of the polynomial system (1.1) there corresponds, at least, one ”its”
closed finite real branch of the algebraic curve, defined by the equation
div Z = 0 (theorem 7 [8]). And then the general number of strict limit
cycles of the system considered will not exceed the general number of the
closed finite real branches of the curve div Z = 0 or, what is the same, the
general number of the domains of the constance of the sign of the divergence.
But, in this case, taking into account all the non- reducible branches of
the curve div Z = 0, which may define closed curves, and, basing on the
Harnack theorem [9], stating that a real non-reducible non-singular algebraic
curve of the order p cannot have more than (p− 1)(p− 2)/2+ 1 real cycles,
we, indeed, obtain the estimate of the maximum number of the domains of
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the constance of the sign of the divergence, and, hence, the upper estimate
of the number of strict limit cycles of the polynomial dynamic systems of
the form (1.1).

Theorem 2.6 generalizes and strengthens the S.P. Diliberto theorem 7 [8].
The generalization and the strengthening of the S.P. Diliberto result is the
fact that, first of all, the theorem 2.6 considers rather polynomial dynamic
systems of the general form than only those, which have only strict limit
cycles as it is assumed by S.P. Diliberto.

Secondly, the theorem 2.6 gives, in the general case, the upper estimate of
the number of limit cycles substantially more exact than the S.P. Diliberto
theorem 7. These estimates coincide in the case when the curve, defined by
the equation div Z = 0, turns out to be a non-reducible curve.

Thus, consider, for example, the dynamic system

dx

dt
= −y+x(1+y2)m(x2+y2−1),

dy

dt
= x+y(1+y2)m(x2+y2−1) (2.4)

with the only critical point O(0, 0) and m ∈ N. For this system

div Z = 2(1 + y2)m−1{(x2 + y2 − 1)[1 + (m+ 1)y2] + (x2 + y2)(1 + y2)}
and thus, n = 2m+ 3, s = 0, p = 2m− 2, k = 1.

According to S.P. Diliberto theorem the general number of strict limit
cycles of the system (2.4) does not exceed the number m(2m+1)+1 for an
arbitrary m and, according to the theorem 2.6, the number of the indicated
cycles, for an arbitrary m, does not exceed 4. If, however, one considers
strict limit cycles of the system (2.4), forming a nest, then, according to
S.P. Diliberto theorem, their number does not exceed the number m + 1,
and, as we see, again the upper estimate of the number of strict limit cycles
depends upon the number m.

However, according to the theorem 2.6, the number of strict limit cycles,
forming a nest, does not exceed, in this case, 2 (and does not depend upon
the number m). When m = 1, i.e., when the curve, defined by the equation
div Z = 0, turns out to be non-reducible, the upper estimate of the num-
ber of strict limit cycles, obtained in the theorem 2.6, coincides with the
S.P. Diliberto estimate.

Let us turn now to the consideration of unrough divergent limit cycles.
Here, let us note, first of all, the following result.

Theorem 2.7 ([5]). Let the functions X(x, y) and Y (x, y) belong to the
class Ck, k = 1, 2, 3, . . . , in any finite domain of the phase plane R

2. Then,
if the dynamic system (1.1) has an unrough limit cycle Γ and, if there exists
the function B(x, y) of the class Ck such that in some neighbourhood of
Γ the function div BZ is the function of the sign-constant, then Γ is an
unrough divergent limit cycle of the system (1.2).

The theorem 2.7 is, in fact, a reformulation of the theorem 2 of the work
[10]. The pointed out result may be made more exact. That is, the evident
discussions allow to come to the following conclusion: an unrough divergent
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limit cycle of the system (1.2), discussed in the theorem 2.7, is odd-multiple,
it being stable or unstable, in dependence of the fact, whether div BZ is
non-positive or non-negative in some neighbourhood of Γ. Thus, consider,
for example, the dynamic system

dx

dt
= −y + x(x2 + y2 − 1)3,

dy

dt
= x+ y(x2 + y2 − 1)3. (2.5)

This system has a three-multiple unstable divergent limit cycle, defined by
the equation x2 + y2 = 1, in whose sufficiently small neighbourhood

divZ = 2(x2 + y2 − 1)2[4(x2 + y2)− 1] (2.6)

is a sign-positive function.
As for the even-multiple divergent limit cycles (and that means, semi-

stable ones), it should be noted that in the neighbourhood of such cycles
the divergence of the vector field of the corresponding dynamic system will
necessarily change sign, changing it in the very arbitrary way.

Indeed, consider the dynamic system

dx

dt
= y + xy2(x2 + y2 − 1)2,

dy

dt
= −x

with an unrough divergent two-multiple limit cycle, defined by the equation
x2 + y2 = 1. In this case divZ = y2(x2 + y2 − 1)[5x2 + y2 − 1] and, as
we see, in the outer half-neighbourhood of the limit cycle, the divergence is
non-negative, and in its inner half-neighbourhood it changes sign.

Turn now to the dynamic system

dx

dt
= −y + x(x2 + y2 − 1)2,

dy

dt
= x+ y(x2 + y2 − 1)2

which also has an unrough divergent two-multiple cycle defined by the equa-
tion x2 + y2 = 1. Here,

divZ = 2(x2 + y2 − 1)[3(x2 + y2)− 1],

and in the outer half-neighbourhood of the limit cycle the divergence is
positive, and in the inner one it is negative.

Without further considering all possible cases of the divergence changing
sign in the neighbourhood of a limit cycle, we note only that there also exist
such dynamic systems with unrough divergent limit cycles in whose outer
and inner half-neighbourhoods the divergence of the vector field changes
sign.

As an example of such a dynamic system is the system

dx

dt
= y + x(y − 1/2)(y + 1/2)(x2 + y2 − 1)2,

dy

dt
= −x

with the same limit cycle as in the preceding two cases, and

divZ = (y − 1/2)(y + 1/2)(x2 + y2 − 1)(5x2 + y2 − 1).
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Theorem 2.8 ([5]). Let the functions X(x, y) and Y (x, y) be holomorphic
in any finite domain of the phase plane R

2, and let, with some nonzero
function B : R

2 → R
+ of the class C∞, the curve, defined by the equation

div BZ = 0, have a finite real branch Γ, being a closed trajectory of the
system (1.2). Then, if in an outer or an inner half-neighbourhood of Γ the
function div BZ is the sign-constant one, then Γ is an unrough divergent
limit cycle of the system (1.2).

The validity of the theorem 2.8 follows from the Dulac criterion for a
two-connected domain , from the holomorphy of the functions X(x, y) and
Y (x, y), and from the properties of the Poincaré function.

Theorem 2.9 ([5]). Let the functions X(x, y) and Y (x, y) be holomorphic,
and the nonzero function B : R

2 → R
+ belong to the class C∞ in any finite

domain of the phase plane R
2. Then, if the curve, defined by the equation

div BZ = 0, has a finite real branch Γp, being a p-multiple simple without
critical points of the system (1.2) analytic closed curve, coinciding with a
q-multiple (p ≤ q) branch of the curve, defined by the equation (2.1), and
if in an outer or an inner half-neighbourhood of this branch the function
div BZ is the sign-constant one, then the dynamic system (1.1) has an
unrough limit cycle.

The validity of the theorem 2.9 follows from the coincidence of the bran-
ches Γp and Γq , turning out the divergent closed trajectories of the dynamic
system (1.2), from the positivity of the function B, and from the theorem
2.8.

Remark 2.2. Pay attention to the fact that the multiplicities of the
coinciding branches of the curves , discussed in the theorems 2.3 and 2.9,
generally speaking, are not necessarily the same, as well as they are not
necessarily to coincide with the multiplicity of the limit cycle itself either.

Thus, for example, consider the dynamic system (2.5) with a triple limit

cycle. For this systemD
(2.5)
t divZ = 24(x2+y2−1)4[2(x2+y2−1)2+3(x2+

+y2 − 1) + 1] and, thus, the coinciding branch x2 + y2 = 1 of the curves
defined by the equations div Z = 0, where div Z is of the form (2.6), and

D
(2.5)
t div Z = 0, has the multiplicities 2 and 4, correspondingly.
The dynamic system

dx

dt
=4y + x(x2 + y2 − 2)(x2 + y2 − 1),

dy

dt
=−4x+ y(x2 + y2 − 2)(x2 + y2 − 1),

(2.7)

as well as in the previous case, has a limit cycle, defined by the equation
x2 + y2 = 1. This limit cycle is a rough divergent stable limit cycle. Here

div Z = 6(x2+y2−1)2, D
(2.7)
t div Z = 12(x2+y2)(x2+y2−2)(x2+y2−1)2.
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As we see, the double branch x2 + y2 = 1 of the curves, defined by the

equations div Z = 0 and D
(2.7)
t div Z = 0 is, in this case, a limit cycle of

multiplicity one.
Consider, now, the dynamic system

dx

dt
= y + x(x2 + y2 − 1)2,

dy

dt
= −x, (2.8)

having an unrough double divergent limit cycle, namely, a unit circle with
the centre in the origin of coordinates of the phase plane. Here divZ =
= (x2 + y2 − 1)(5x2 + y2 − 1) and

D
(2.8)
t divZ = 4x(x2 + y2 − 1)[2y + x(x2 + y2 − 1)(5x2 + 3y2 − 3)]

and, thus, the coinciding one-multiple branch x2 + y2 = 1 of the curves,

defined by the equations divZ = 0 and D
(2.8)
t div Z = 0, is a limit cycle

of multiplicity two.

Remark 2.3. The above obtained results, concerning the existence of
limit cycles, are a specific inversion of the Bendixon-Dulac criterion about
the absence of closed trajectories in the dynamic system (1.1).

Definition 2.1 ([11]). A limit cycle Γ of the dynamic system (1.1) is said
to be a generalized-strictly stable (unstable) limit cycle if the divergence of
the vector field, determined by the system (1.1), not vanishing identically
on Γ, satisfies, on this cycle, the condition div Z ≤ 0 (≥ 0).

As follows from the definition 2.1, the concept of a generalized-strict limit
cycle, generalizes the concept of a strict limit cycle, introduced by the S.P.
Diliberto. According to this contents this generalization is essential, since
in contrast to the case of strict limit cycles in the case of generalized-strict
limit cycles, their transversal intersection and tangency by various branches
of a reducible curve, defined by the equation div Z = 0, are allowed.

Thus, consider the dynamic system

dx

dt
= −y + xy2(1− x2 − y2),

dy

dt
= x,

having in the origin of coordinates of the phase plane an unstable focus. For
this system, the curve, defined by the equation x2 +y2 = 1, is a generalized-
strictly stable limit cycle. In this situation, div /, Z = y2(1−3x2−y2), and,
as it is easily seen, at the points M1(0; 1), M2(0;−1), M3(1; 0), M4(−1; 0)
of a limit cycle the divergence vanishes, and is negative at its other points.
Herewith, at the points M1, M2 there takes place tangency of a limit cycle
with one of the branches of the curve, defined by the equation div, Z =
= 0, and at the points M3, M4 there takes place transversal intersection of
a cycle with other branch of the above mentioned curve.

The generalized-strict limit cycles play an important role in the qualita-
tive theory of rough limit cycles. The foundation for this statement is
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Theorem 2.10 ([11]). Let the functions X(x, y) and Y (x, y) belong to
the class Ck, k = 1, 2, 3, . . . , in any finite domain of the phase plane R

2.
Then, if the dynamic system (1.1) has a rough stable (unstable) limit cycle
Γ, then there exists a nonzero function B : R

2 → R
+ of the class Ck such

that for the dynamic system (1.2) the cycle Γ will be a generalized-strictly
stable (unstable) limit cycle.

The proof of this theorem is similar to the proof of the lemma from the
article [6].

3. Classification of Limit Cycles

The further proposed classification of limit cycles is based on the concepts
of a strict and regular (monotonic) limit cycles.

Remind that the concept of a strict limit cycle is connected with the
properties of the divergence of the vector field of the dynamic system (1.1).
As for the concept of a regular or monotonic limit cycle introduced in the
work [12], it is formally connected with the properties of the operator Dk,
such that

DkS(x, y) =

[

−Y (x, y)
∂

∂x
+X(x, y)

∂

∂y

]k

S(x, y) =

=
∂kS(x, y)

∂xk
(−Y (x, y))k + C1

k

∂kS(x, y)

∂xk−1∂y
(−Y (x, y))k−1X(x, y) + · · ·+

+Cr
k

∂kS(x, y)

∂xk−r∂yr
(−Y (x, y))k−rXr(x, y) + · · ·+ ∂kS(x, y)

∂yk
Xk(x, y), (3.1)

gather where X(x, y) and Y (x, y) are the right-hand sides of the dynamic
system (1.1), Cr

k is the number of r-combinations of k elements, and the
foundation for this being the further stated theorem 3.1.

The geometrical interpretation of a regular limit cycle is that, beginning
at some time, t = t0, the distance from the representative point, moving on
a spiral in the neighbourhood of a regular limit cycle, to the limit cycle, is
strictly monotonic for increasing or decreasing t.

Herewith, substantial is the fact that for the calculation of the multipli-
city of a regular limit cycle it is not necessary to calculate the multiplicity of
the root of the Poincaré function (in general this is a transcendental prob-
lem), and it is sufficient only to verify satisfiability of a number of conditions
expressed in the terms of the right-hand sides of the dynamic system (1.1)
(see the theorem 3.1).

But before turning to the theorem 3.1 let us pay attention to some con-
siderations concerned with the definition of a regular cycle.

So, let
x = f(t), y = g(t), (3.2)

where f and g are periodic functions of t with the period ω, be the paramet-
ric equations of a negatively oriented limit cycle Γ of the dynamic system
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(1.1). As for the functions X and Y, we suppose them to have continuous
partial derivatives of any required order.

Introduce now a new, so called universal curvilinear-coordinate system,
with the parameter t in equations Γ replaced by the length s of the cycle
measured from a fixed point on Γ, and with positive direction clockwise.
Then a change in the direction of s to the positive direction corresponds to
a change of t = τ(s) also in the positive direction.

Let l be the arc length of one passage around the limit cycle, and let

x = f(τ(s)) = ϕ(s), y = g(τ(s)) = ψ(s) (3.3)

where 0 ≤ s ≤ l, be the parametric equations of the limit cycle (3.2).
Then, in the universal curvilinear-coordinate system (s,n), the following

relations hold [12]:

x = ϕ(s)− nψ′(s), y = ψ(s) + nϕ(s), (3.4)

where

ϕ′(s) =
X(ϕ(s), ψ(s))

√

X2(ϕ(s), ψ(s)) + Y 2(ϕ(s), ψ(s))
,

ψ′(s) =
Y (ϕ(s), ψ(s))

√

X2(ϕ(s), ψ(s)) + Y 2(ϕ(s), ψ(s))
.

We note that, if a point B of the limit cycle has rectangular coordinates
(ϕ(s), ψ(s)), then the formulae (3.4) uniquely relate the rectangular coor-
dinates (x, y) of a point A on the directed normal in through B to its
curvilinear coordinates.

By virtue of the formulae (3.4) we can write the differential equation of
trajectories of the system (1.1) in curvilinear coordinates, in the neighbour-
hood of a limit cycle:

dn

ds
=
Y ϕ′ −Xψ′ − n(Xϕ′′ + Y ψ′′)

Xϕ′ + Y ψ′
= F (s,n). (3.5)

With the use of the equation (3.5), in the work [12] the following definition
of a regular cycle is introduced: a limit cycle Γ of the dynamic system (1.1)
is said to be a regular limit cycle, if the function F (s,n) has constant sign
in each of the semicircles n > 0 and n < 0.

Herewith, as it follows from the further context of the work [12], the
function F (s,n) cannot vanish.

Such definition became generally accepted, and was usually applied in
the works on limit cycles.

Along with this, it should be noted that, if to take into consideration
geometrical sense of regular limit cycles, then to such cycles there also belong
limit cycles, in whose neighbourhood the function F (s,n) does not change
sign, but can vanish, for example, at the isolated points of each of the
curves n = const, and that completely agrees with the criterion of a strict
monotony of a function (see, e.g., [13, p. 102]).
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Taking into account the above mentioned considerations, the
P.N. Papush definition [12] does not cover all the class of regular limit
cycles, formulating only the sufficient regularity condition. On this account
a number of results on the theory of regular limit cycles have to be made
more exact. For instance, the V.A. Krasnogorov theorems about the fact
that:

1) a holomorphic dynamic system

dx

dt
= X(y),

dy

dt
= Y (x, y)

cannot have regular limit cycles [14];
2) regular limit cycles of the holomorphic dynamic system (1.1) cannot

have common points with an isocline of the differential equation

dy

dx
=
Y (x, y)

X(x, y)
,

which is ortogonal to its integral curves [15].
Keeping in mind the mentioned above considerations, we use, in the

sequel, the following sharpened definition of a regular limit cycle.

Definition 3.1. A limit cycle Γ of the dynamic system (2.1) will be
said to be a regular (monotonic) limit cycle, if the transition to universal
curvilinear-coordinate system yields a differential equation (3.5) such that
in each of certain half-neighbourhoods 0 < n < n0 and −n0 < n < 0 of the
cycle Γ, the function F (s,n) has constant sign (F (s,n) ≤ 0 (≥ 0)) and does
not vanish identically on open arcs of curves n = const .

Theorem 3.1. For a limit cycle Γ of a holomorphic system (1.1) to be
k-tuple regular limit cycle, it is necessary and sufficient that along the curve
Γ there hold the following conditions:

σi ≡ X(x, y)DiY (x, y)− Y (x, y)DiX(x, y) = 0, (3.6)

i = 1, 2, . . . , k − 1, but

σk ≡ X(x, y)DkY (x, y)− Y (x, y)DkX(x, y) ≤ 0 (≥ 0), (3.7)

where the operator Ds is given by the formula (3.1), and equality is attained
in (3.7) only at isolated points of the cycle. For odd k the limit cycle is
stable (unstable), while for even k it is semistable.

The validity of the theorem practically follows from the reasoning, when
the theorem 3[16] is being proved, the definition of the multiplicity of a limit
cycle, and a criterion for a function to be strictly monotonic.

Remark 3.1. The functions σi, determined in the operator form by the
equalities (3.6), are given in an explicit form by the right-hand sides of the
dynamic system (2.1) as follows:

σi =

i+1
∑

ν=0

(−1)νX i+1−νY

(

Cν
i Yxνyi−ν + Cν−1

i Yxν−1yi−ν+1

)

,
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where Cr
i is the number of r-combinations of i elements, C i+1

i = 0, C−1
i = 0.

With the use of the theorem 3.1, it may be shown, for instance, that the
dynamic system

dx

dt
= y + x(x2 + y2 − 1)2,

dy

dt
= −x (3.8)

has the semistable double regular limit cycle, defined by the equation x2 +
+y2 = 1.

The fact , that the indicated curve is a trajectory of the system (3.8),
follows from the analytical test of a particular integral. And the fact, that
the circle x2 + y2 = 1 is a limit cycle, not belonging to the family of the
curves of the centre, results from the Bendixson criterion. Further, the
calculations show that in the given case σ1 = 0 along a limit cycle. As for
as σ2 is concerned, note that at the points M1(0, 1), M2(0,−1) of a limit
cycle σ2 = 0, and at its other points the inequality σ2 > 0 holds.

Turning to the classification of limit cycles, introduce two new concepts.

Definition 3.2. A limit cycle of the dynamic system (2.1) is said to be
a nonstrict limit cycle, if along this limit cycle the divergence of the vector
field, given by the system (2.1), changes sign.

We use, in the sequel, the symbol div z
∼

, meaning that the divergence

of the vector field, given by the system (1.1), changes sign along the field
considered. If, however, it appears that the divergence has constant sign or
constant meaning, or if it vanishes along a limit cycle, then, in these cases,
we use, correspondingly, the symbols div z

≤0(≥0)
(div z
<0(>0)

), div z
const

, div z
=0

, with the

vanishing in the first case being allowed only at isolated points of the cycle.

Definition 3.3. A limit cycle of the dynamic system (1.1) is said to be a
non-regular limit cycle, if along this cycle there is k such that the conditions
(3.6) hold, but σk changes sign.

Herewith, if, already, σ1 changes sign, then a limit cycle will be said to
be a non-regular limit cycle of the first kind; otherwise it will be said to be
a non-regular limit cycle of the second kind.

Further, similarly to the symbols div z
∼

, div z
≤0(≥0)

, div z
<0(>0)

, div z
const

, div z
=0

we

will use also the symbols σk
∼

, σk
≤0(≥0)

, σk
<0(>0)

, σk
const

, σk
=0

in order to indicate

that, on Γ, σk changes sign, has constant sign, has a constant nonzero value,
and vanishes.

Moreover, unless otherwise stated, we consider, for simplicity, generaliz-
ed-strict (div z

≤0(≥0)
), strict in the sense of S.P. Diliberto (div z

<0(>0)
), and rough

divergent limit cycles (div z
const

) as strict limit cycles. As for the general sym-

bol, we use, in this case the symbol of a generalized-strict limit cycle.
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And then, if to consider, first, a case of rough limit cycles, then, taking
into account, that along of a limit cycle there holds the equality

ω
∫

0

σ1

σ0
dt =

ω
∫

0

div zdt,

where σ0 = X2(x, y)+Y 2(x, y), we logically deduce a scheme, represented in
the Fig. 3.1. The scheme shows that rough limit cycles may be subdivided
into the following four classes:

1) nonstrict non-regular limit cycles;
2) nonstrict regular limit cycles;
3) strict non-regular limit cycles;
4) strict regular limit cycles.

Rough limit cycles

σ1

div z
≤0(≥0)

ω
∫

0

σ1

σ0
dt =

ω
∫

0

div z dt < 0 (> 0)

σ1
≤0(≥0)

div z
≤0(≥0)

σ1
∼

div
∼

z

σ1
≤0(≥0)

div
∼

z
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Fig. 3.1

Examples show that each of the four types is realized in practice. In
particular, there are types of rough limit cycles that can occur in the division
of classes 2)—4) into subclasses, by using the existence of divergence limit
cycles (div z

const
) and the existence of regular limit cycles on which σ1 is a

nonvanishing constant ( σ1
const

).

Turn now to consideration of unrough limit cycles. Here we logically
deduce a scheme, represented in the Fig. 3.2:
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Unrough limit cycles

σ1
∼

div z
=0

ω
∫

0

σ1

σ0
dt =

ω
∫

0

div z dt = 0

σ1
=0

div z
=0
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∼
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∼

z
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Fig. 3.2

If, however, to separate now regular limit cycles from non-regular limit
cycles, then, finally, we obtain the following scheme (Fig. 3.3):

Unrough limit cycles

ω
∫

0

σ1

σ0
dt =

ω
∫

0

div z dt = 0

Fig. 3.3

σ1
∼

σ1
=0
, . . . , σk−1

=0
, σk

∼

div z
=0

σ1
∼

σ1
=0
, . . . , σk−1

=0
, σk

∼

div z
∼
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σ1
=0
, . . . , σk−1

=0
, σk
≤0(≥0)

div
=0

z

σ1
=0
, . . . , σk−1

=0
, σk
≤0(≥0)

div z
∼

So, we have four classes of unrough limit cycles. They are:
1) nonstrict non-regular limit cycles of the first or second kind;
2) nonstrict regular limit cycles;
3) divergent non-regular limit cycles of the first or second kind;
4) divergent regular limit cycles.
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As in the case of rough limit cycles, each of these classes is realized in
practice.

Turn now to the proof of the result, principal for the above carried out
classification of limit cycles, whose contensive part is the fact that qualita-
tive research of limit cycles in the general case of the holomorphic dynamic
systems of the form (1.1) may be always reduced to the investigation of
regular divergent limit cycles. Hereby note, that the theorem 3.2, to be
further proved, gives, also, mathematical foundation for a new approach to
the definition of multiplicity of any limit cycle. This approach is directly
concerned with the reducibility problem (regarding this see also [17]).

Theorem 3.2. Let the functions X(x, y) and Y (x, y) be holomorphic in
any finite domain of the phase plane R

2. Then, if the dynamic system (1.1)
has a limit cycle Γ, whose parametric equations are as in (3.2), then there
is a variable change

x = f(t) +
∞
∑

i=1

γi(t)ν
i, y = g(t) +

∞
∑

i=1

ηi(t)ν
i, (3.9)

where γi and ηi are ω-periodic functions, transforming the differential equa-
tion of trajectories, of the system (1.1), in the neighbourhood of Γ, into a
differential equation

dν

dt
= h1ν + h2ν

2 + · · ·+ hkν
k + · · · (3.10)

with constant coefficients, i.e., into a differential equation with a regular
trivial solution corresponding to the cycle Γ.

Proof. As it was noted above, the differential equation of trajectories of
the dynamic system (1.1), in the neighbourhood of a limit cycle Γ, is, in
curvilinear coordinates (s,n), of the form (3.5). In virtue of holomorphicity
of the right-hand sides of the system (1.1), the function F in (3.5) is a
holomorphic function of n. And then, it being expanded in a series with
respect of integer degrees of n in the neighbourhood of a limit cycle, the
equation (3.5) may be rewritten in the form

dn

ds
= F ′

n
(s, 0)n +

1

2!
F ′′

n
2(s, 0)n2 + · · ·+ 1

k!
F

(k)

n
k (s, 0)nk + · · · . (3.11)

Now, if as parametric equations of a cycle Γ to keep in mind rather the

equations (3.2) than the equations (3.3), then the coefficients F
(k)

n
k (s, 0) of

the series in the right-hand side of the equation (3.11) will be ω-periodic
functions of t. Hence, taking into consideration, for example, [18, § 26], we
come to the conclusion that the differential equation (3.11) for the unknown
function n with coefficients that are ω-periodic functions of t, is reduced by
ω-periodic, with respect of t, variable change

n = a1(t)ν + a2(t)ν
2 + · · ·+ ak(t)νk + · · · (3.12)
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to the differential equation with constant coefficients of the form (3.10).
Taking into account, however, the fact that universal curvilinear-coordinate
system (s,n) is given, in this case, by the equalities

x = f(t)− ng′(t), y = g(t) + nf ′(t),

we come to the conclusion that there exists a coordinate change

x = f(t)− [a1(t)ν + a2(t)ν
2 + · · ·+ ak(t)νk + · · · ]g′(t),

y = g(t) + [a1(t)ν + a2(t)ν
2 + · · ·+ ak(t)νk + · · · ]f ′(t),

i.e., a coordinate change of the form (3.9), transforming the differential
equation of trajectories of the system (1.1), in the neighbourhood of Γ, into
an equation (3.10) with constant coefficients. �

Remark 3.2. From the theorems 1.1 and 3.2 it follows that in the quali-
tative investigation of the holomorphic dynamic systems of the form (1.1),
any limit cycle can be assumed to be a regular divergent limit cycle.

Remark 3.3. The multiplicity of a limit cycle of the dynamic system (1.1)
is the same as the multiplicity of the regular trivial solution of the differential
equation (3.10); this follows from the form of the Poincaré function and
the form of the phase-coordinate transformation, and the multiplicity is
determined by the index j of the first nonvanishing coefficient hj in the
differential equation (3.10).

Thus, the theorem 3.2 is the mathematical foundation of the new ap-
proach to the determination of multiplicity of a limit cycle Γ of the holo-
morphic dynamic system (1.1), concerned with reduction of a differential
equation of the trajectories of the original dynamic system in the neigh-
bourhood of a limit cycle to a special form.

Remark 3.4. As it is shown above, the given classification of limit cycles
is based on the properties of the divergence of the system (1.1) and on the
condition of the regularity of a cycle, that is, such characteristics of limit
cycles that, from the qualitative point of view, completely characterize any
limit cycle of the system (1.1).

4. Multiplicity and Stability of Limit Cycles

As it is known, the multiplicity of limit cycles is determined as the mul-
tiplicity of a zero of the Poincaré function. With this in mind, in the work
[16] there was undertaken an attempt to obtain the conditions of the mul-
tiplicity of a limit cycle of the analytic system of the form (1.1). However,
obtained formulae in [16] turned out to be too unwieldy and practically un-
readable due to the fact that the connection between each of the conditions
deduced hasn’t been detected.

Basing on the new approach, proposed in Section 3, we deduce recurrent
formulae for the definition of multiplicity of limit cycles, further solving, in
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particular, simultaneously the problems of stability, unstability and semi-
stability of limit cycles.

But before to deduce the pointed out recurrent formulae clear up how the

coefficients F
(k)

n
k of the Taylor series for the function F (t,n) in the equation

(3.5) through the functions X and Y of the right-hand sides of the system
(2.1) are expressed.

With this aim in view, we use the formula for presenting dn/dt in (3.5),
obtained in the work [19] in the form

dn

dt
=

√

X2 + Y 2(1 + k̃n)

[

(XDY − YDX) +
1

2!
(XD2Y − YD2X)n2+

+
1

3!
(XD3Y − YD3X)n3 + · · ·

][

(X2 + Y 2) + (XDX + YDY )n+

+
1

2!
(XD2X + YD2Y )n2 +

1

3!
(XD3X + YD3Y )n3 + · · ·

]−1

, (4.1)

where k̃ = k̃(t)

(

Y
dX

dt
− X

dY

dt

)

(X2 + Y 2)−3/2, and the operator Dk =

=

(

− Y√
X2 + Y 2

∂

∂x
+

X√
X2 + Y 2

∂

∂y

)k

, where the functions X and Y are

considered along a cycle Γ with the parametric equations (3.2), is acting as
well as the operator Dk (see the formula (3.1)).

Our further reasoning will be connected with the representation of the

expression from the second bracket of (4.1) in the form of the series
∞
∑

k=0

αkn
k.

For the sake of abbreviation of the writing we introduce the following
notations:

X2 + Y 2 = b0,
√

X2 + Y 2 = β0,
XDjX + YDjY

j!
= bj ,

XDiY − YDiX

i!
=gi (i, j=1, 2, 3, . . .),

(

Y
dX

dt
−X

dY

dt

)/

b0 =β1.

(4.2)

Then, by virtue of the notations

1

b0 + b1n + b2n2 + b3n3 + · · · =
∞
∑

k=o

αkn
k (4.3)

and, thus,

b0α0 = 1,
b1α0 + b0α1 = 0,
b2α0 + b1α1 + b0α2 = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bkα0 + bk−1α1 + · · ·+ b1αk−1 + b0αk = 0 (k = 3, 4, 5, . . .).
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Taking now into account that in the neighbourhood of a limit cycle b0 6= 0,
we find

α0 =
1

b0
,

α1 = − 1

b20
,

α2 = − 1

b0
(b2α0 + b1α1) =

b21
b30
− b2
b20
, (4.4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αk = − 1

b0
(bkα0 + bk−1α1 + · · · + b1αk−1) (k = 3, 4, 5, . . .).

Hence
∞
∑

k=0

αkn
k =

1

b0
− b1
b20

n +

(

b21
b30
− b2
b20

)

n2 + · · · = 1

X2 + Y 2
−

−XDX+YDY
(X2+Y 2)2

n+

[

(XDX+YDY )2

(X2+Y 2)3
− 1

2

XD2X+YD2Y

X2+Y 2

]

n2 + · · · (4.5)

Keeping now in view the formulae (4.5) and (4.3), the equality (4.1) may
be rewritten in the form

dn

dt
=

√

X2 + Y 2

[

1 +

(

Y
dX

dt
−X

dY

dt

)

(X2 + Y 2)−3/2n

]

×

×
[

(XDY − YDX)n +
1

2!
(XD2Y − YD2X)n2 + · · ·

]

×

×
{

1

X2 + Y 2
− XDX + YDY

(X2 + Y 2)2
n +

[

(XDX + YDY )2

(X2 + Y 2)3
−

− 1

2!

XD2X + YD2Y

(X2 + Y 2)2

]

n2 + · · ·
}

= (β0 + β1n)(g1n + g2n
2+

+g3n
3 + · · · )(α0 + α1n + α2n

2 + α3n
3 + · · · ) = (β0 + β1n)×

×
∞
∑

i=1

gin
i
∞
∑

j=0

αjn
j = β0

∞
∑

i=1

gi

∞
∑

j=0

αjn
i+j + β1

∞
∑

l=1

gl

∞
∑

s=0

αsn
l+s+1. (4.6)

Putting now in (3.11) s = t and turning to the representation (4.6) we
find finally that

F
(k)

n
k (t, 0) = k!

[

β0

k
∑

i=1

gi

k
∑

j=0

αj + β1

k
∑

l=1

gl

k
∑

s=0

αs

]

, (4.7)

where i + j = l + s + 1 = k and b0, bj , gi, β0, β1 and α1 are expressed,
correspondingly, by the formulae (4.2) and (4.4).

Turn now to the deduction of recurrent formulae for the definition of
multiplicity of a limit cycle. For this, first of all, we differentiate with
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respect to t the relation (3.12). Then

dn

dt
=(ȧ1+h1a1)ν+(ȧ2+h2a1+2h1a2)ν

2+(ȧ3+h3a1+2h2a2+3h1a3)ν
3+

+ · · ·+ (ȧl + hla1 + 2hl−1a2 + 3hl−2a3 + · · ·+ lh1al)ν
l + · · · (4.8)

On the other hand, using (3.12), we find that

dn

dt
= F ′

n
(t, 0)n +

1

2!
F ′′

n
2(t, 0)n2 + · · ·+ 1

k!
F

(k)

n
(k)(t, 0)nk + · · · = F1a1ν+

+(F1a2 + F2a
2
1)ν

2 + (F1a3 + 2F2a1a2 + F3a
3
1)ν

3 + · · ·+
( k

∑

j=2

Fj×

×
∑

s1+···+sk−1=j

j!

s1!s2! · · · sk−1!
as1
1 a

s2
2 · · ·ask−1

k−1 + F1ak

)

νk + · · · , (4.9)

where
s1 + 2s2 + 3s3 + · · ·+ (k − 1)sk−1 = k, (4.10)

si ≥ 0, si ∈ Z and

F1 = F ′
n
, F2 =

1

2!
F ′′

n
2 , F3 =

1

3!
F ′′′

n
3 , · · · Fk =

1

k!
F

(k)

n
k .

The condition (4.10) results from the considerations that

(a1ν + a2ν
2 + · · ·+ alν

l)m =
∑

s1+s2+···+sl=m

m!

s1!s2! · · · sl!
(a1ν)

s1 (a2ν
2)s2×

× · · · (alν
l)sl =

∑

s1+s2+···+sl=m

m!

s1!s2! · · · sl!
as1
1 a

s2
2 · · · asl

l ν
s1ν2s2 · · · νlsl =

=
∑

s1+s2+···+sl=m

m!

s1!s2! · · · sl!
as1
1 a

s2
2 · · · asl

l ν
s1+2s2+···+lsl .

Equating now the coefficients under the equal degrees of ν in the right-
hand sides of the equalities (4.8), (4.9), we obtain the system of ordinary
differential equations

ȧ1 + (h1 − F1)a1 = 0,

ȧ2 + (2h1 − F1)a2 = F2a
2
1 − h2a1,

ȧ3 + (3h1 − F1)a3 = F3a
3
1 + 2F2a1a2 − h3a1 − 2h2a2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.11)

ȧk + (kh1 − F1)ak =
k
∑

j=2

Fj

∑

s1+···+sk−1=j

j!

s1!s2! · · · sk−1!
as1
1 a

s2
2 · · ·ask−1

k−1 −

−hka1 − 2hk−1a2 − 3hk−2a3 − · · · − (k − 1)h2ak−1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where, remind, the condition (4.10) holds.
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Turn, first, to the first equation of the system (4.11). As it is not difficult
to see, the solution of this equation is the function a1, given by the equality

a1(t) = exp

t
∫

0

(F1 − h1)dτ.

Then, taking into consideration, that the coordinate change (3.12) is ω-
periodic with respect to t, we come to the conclusion that a1(ω) = α1(0),
and therefore

exp

ω
∫

0

(F1 − h1)dτ = 1

and, thus,

h1 =
1

ω

ω
∫

0

F1dτ =
1

ω

ω
∫

0

F ′
ndτ.

If a limit cycle is unrough, then h1 = 0, and in this case

a1(t) = exp

t
∫

0

F ′
ndτ.

And then, if h1 = 0, the solution of the second equation of the system (4.11)
may be determined by the equality

a2(t) = a1(t)

t
∫

0

(F2a1 − h2)dτ.

Using ω-periodicity of the function a2(t), obtain that

h2 =
1

ω

ω
∫

0

F2

(

exp

t
∫

0

F1dτ

)

dt.

Now, if h1 = h2 = 0, then

a2(t) =
1

2!
exp

t
∫

0

F ′
ndτ

[

t
∫

0

(F ′′
n

2

(

exp

τ
∫

0

F ′
nds

)

dτ

]

,

or

a2(t) =
1

2!
a1

t
∫

0

F ′′
n

2a1dτ.

Further, with the account that h1 = h2 = 0, we find

a3(t) = exp

t
∫

0

F1dτ

[

t
∫

0

(2F2a2 + F3a
2
1 − h3)dτ

]

.
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The condition of the ω-periodicity of a3(t) yields

h3 =
1

ω

ω
∫

0

{

F2 exp

t
∫

0

F1dτ

[

2F2

(

exp

τ
∫

0

F1ds

)

dτ + F3 exp 2

t
∫

0

F1dτ

]}

dt.

Simplifying the latter expression we, finally, obtain

h3 =
1

3!ω

ω
∫

0

F ′′′
n

3 exp 2

(

t
∫

0

F ′
ndτ

)

dt.

And, then, if h1 = h2 = h3 = 0, then

a3(t) =
1

3!
a1

t
∫

0

F ′′′
n

3a2
1dτ + a1

t
∫

0

F ′′
n

2a2dτ.

Deduce now the formula for the representation of hk, supposing a1, a2, . . . ,
ak−1 to be known, and h1 = h2 = . . . = hk−1 = 0. With these assumptions,
as one can easily see, as the solution of the k − th equation of the system
(4.11) one may take

ak(t) = a1

t
∫

0

( k
∑

j=2

F
(j)
n

j

∑

s1+···+sk−1=j

as1−1
1 as2

2 · · ·ask−1

k−1

s1!s2! · · · sk−1!
− hk

)

dτ.

And then, keeping in mind the condition of ω-periodicity, we find that

hk =
1

ω

ω
∫

0

k
∑

j=2

F
(j)
n

j

∑

s1+···+sk−1=j

as1−1
1 as2

2 · · ·ask−1

k−1

s1!s2! · · · sk−1!
dt, (4.12)

where s1, s2, . . . , sk−1 satisfy the condition (4.10), and the functions F j
n

j

are determined by the formulae (4.7).
Formula (4.12) is just the recurrent formula for the calculation of hk.
Thus, we come to the conclusion that if h1 = h2 = . . . = hk−1 = 0,

hk 6= 0, then a limit cycle Γ of the holomorphic dynamic system (1.1) will
be a k-tuple limit cycle. Herewith, if k is odd, then for hk < 0 (> 0), a
limit cycle will be stable (unstable), and if k is even, a limit cycle will be
semistable.

The pointed out conditions are necessary and sufficient conditions of
k-tuplicity, stability (unstability) and semistability of a limit cycle Γ, cor-
respondingly.

Further, as it is seen from the analytic representation of constants hi,
the simplification in their calculation may be achieved both on the score of

simpler, than (4.7), representation of the functions F
(j)
n

j and on the score of
decreasing the number of integrals in (4.12) because some number of them
may vanish along the trajectory Γ.



QUALITATIVE AND QUANTITATIVE CHARACTERISTICS OF LIMIT CYCLES 73

So, in the work [20] it was proved that if to introduce into the considera-
tion the functions

H1(s,n) = X ′
x(x(s,n), y(s,n)) + Y ′

y(x(s,n), y(s,n)),

H2(s,n) =
∂

∂y

(

XH1

b0

)

− ∂

∂x

(

Y H1

b1

)

,

H3(s,n) =
∂

∂y

(

XH2

b0

)

− ∂

∂x

(

Y H2

b0

)

,

H4(s,n) =
∂

∂y

(

XH3

b0

)

− ∂

∂x

(

Y H3

b0

)

,

δ=exp δ1, δ2 =
t
∫

0

H2(s(τ), 0)δdτ, where δ1 =
t
∫

0

H1(s(τ), 0)dτ, then there holds

Theorem 4.1 ([20]). If: (i) k = 2 and along the closed trajectory Γ of
the system (1.1)

h̄1 =

ω
∫

0

H1(s(t), 0)dt = 0, h̄2 =

ω
∫

0

H2(s(t), 0)δdt 6= 0,

then Γ is a double semistable limit cycle of the system (1.1); (ii) k = 3 and

along Γ h̄1 = h̄2 = 0, h̄3 =
ω
∫

0

H3(s(t), 0)δ2dt < 0 (> 0), then Γ is a triple

stable (unstable) limit cycle of the system (1.1);

(iii) k = 4 and along Γ h̄1 = h̄2 = h̄3 = 0, h̄4 =
ω
∫

0

H4(s(t), 0)δ3dt+

+2
ω
∫

0

H3(s(t), 0)δ2δ2dt 6= 0, then Γ is a fourfold semistable limit cycle of the

system (1.1).

In conclusion note that if to introduce into consideration the function

H5(s,n) =
∂

∂y

(

XH4

b0

)

− ∂

∂x

(

Y H4

b0

)

,

then the following statement may be also proved.

Theorem 4.2 ([21]). If k = 5 and along the closed trajectory Γ of the sys-

tem (1.1) h̄1 = h̄2 = h̄3 = h̄4 = 0, h̄5 =
ω
∫

0

H5(s(t), 0)δ4dt+

+5
ω
∫

0

H4(s(t), 0)δ3δ2dt + 5
ω
∫

0

H3(s(t), 0)δ2δ22dt < 0 (> 0), then Γ is a five-

multiple stable (unstable) limit cycle of the system (1.1).
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