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Let l, m and n ≥ 2 be natural numbers, 0 < b < +∞ and I ⊂ R be a compact interval
containing zero. In the rectangle Ω = I × (0, b) consider the hyperbolic system

γn(y)u(m,n) =

n−1∑

k=0

γk(y)Pmk(x, y)u(m,k)+

+

m−1∑

j=0

n∑

k=0

γk(y)Pjk(x, y)u(j,k) + q(x, y) (1)

with the initial–boundary conditions

u(j,0)(0, y) = ϕj(y) (j = 0, . . . ,m− 1),

hk(u(m,0)(x, ·))(x) = ψk(x) (k = 1, . . . , n),
(2)

where

u(j,k)(x, y) =
∂j+ku(x, y)

∂xj∂yk
(j = 0, . . . ,m; k = 0, . . . , n),

γk(y) = yk(b − y)k (k = 0, . . . , n− 1), γn(y) = γn−1(y).

Everywhere below it will be assumed that Pjk : Ω → R
l×l (j = 0, . . . ,m; k = 0, . . . , n; j+

k < m + n) are continuous and bounded matrix functions, q : Ω → R
l and ψk : I → R

l

(k = 1, . . . , n) are continuous and bounded vector functions, ϕj : (0, b) → R
l (j =

0, . . . ,m− 1) are n–times continuously differentiable vector functions such that

sup
{
γk(y)

∥∥ϕ(k)
j (y)

∥∥ : 0 < y < b
}
< +∞ (j = 0, . . . ,m− 1; k = 0, . . . , n),

and hk : C([0, b]; R
l) → C(I; R

l) (k = 1, . . . , n) are bounded linear operators.
System (1) degenerates along the intervals y = 0 and y = b. These degeneration is

removable only when Pjk and q admit the representation

Pjk(x, y) =
γn(y)

γk(y)
P̃jk(x, y) (j = 0, . . . ,m; k = 1, . . . , n), q(x, y) = γn(y)q̃(x, y),

i.e., when system (1) has the form

u(m,n) =

n−1∑

k=0

P̃mk(x, y)u(m,k) +

m−1∑

j=0

n∑

k=0

P̃jk(x, y)u(j,k) + q̃(x, y),

where P̃jk : Ω → R
l×l (j = 0, . . . ,m; k = 0, . . . , n; j + k < m + n) and q̃ : Ω → R

l

are continuous matrix and vector functions. In this case the criterion of well–posedness
of problem (1),(2) is established in [3]. However, in the case, where degeneration is not
removable (e.g., when lim supy→0 ‖Pjk(x, y)‖ > 0, or lim supy→b ‖Pjk(x, y)‖ > 0 for
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some x ∈ I and j ∈ {0, . . . ,m}) the question of well–posedness of problem (1),(2) was
opened. The results formulated below concern this case namely.

Throughout the paper we will use the following notation:
R = (−∞,+∞);
R

l is the space of column–vectors z = (zi)l
i=1 with the real components zi ∈ R

(i = 1, . . . , l) and the norm ‖z‖ = max{|z1|, . . . , |zl|};
R

l×l is the space of l × l matrices Z = (zik)l
i,k=1 with the components zik ∈ R

(i, k = 1, . . . , l) and the norm

‖Z‖ = max
{ l∑

k=1

|zik| : i = 1, . . . , l
}
;

If z = (zi)
l
i=1 ∈ R

l and Z = (zik)l
i,k=1 ∈ R

l×l, then

|z| = (|zi|)
l
i=1, |Z| = (|zik|)

l
i,k=1;

Z−1 is the matrix reciprocal to a nonsingular matrix Z ∈ R
l×l;

r(Z) is the spectral radius of a matrix Z ∈ R
l×l;

C(I; R
l) and C(Ω; R

l) are the spaces of continuous and bounded vector functions
ϕ : I → R

l and z : Ω → R
l with the norms

‖ϕ‖C(I;Rl) = sup{‖ϕ(s)‖ : s ∈ I}, ‖z‖C(Ω;Rl) = sup{‖z(x, y)‖ : (x, y) ∈ Ω};

Sn((0, b); R
l) is the space of n–times continuously differentiable functions ϕ : (0, b) →

R
l such that

‖ϕ‖Sn((0,b);Rl) = sup
{ n∑

k=0

γk(y)‖ϕ(k)(y)‖ : 0 < y < b
}
< +∞;

Sm,n(Ω; R
l) is the space of functions u : Ω → R

l having the continuous partial

derivatives u(j,k) (j = 0, . . . ,m; k = 0, . . . , n) such that

‖u‖Sm,n(Ω;Rl) = sup
{ m∑

j=0

n∑

k=0

γk(y)‖u(j,k)(x, y)‖ : (x, y) ∈ Ω
}
< +∞;

If ϕ ∈ Sn((0, b); R
l) and u ∈ Sm,n(Ω; R

l), then there exist the limits

lim
y→0

ϕ(y), lim
y→b

ϕ(y), lim
y→0

u(j,0)(x, y), lim
y→b

u(j,0)(x, y) (j = 0, . . . ,m),

which are denoted by ϕ(0), ϕ(b), u(j,0)(x, 0), u(j,0)(x, b) (j = 0, . . . ,m).
By a solution of problem (1),(2) we understand a vector function u ∈ Sm,n(Ω; R

l)
satisfying system (1) and conditions (2) in Ω.

Definition. Problem (1),(2) is called well–posed if it is uniquely solvable for arbitrary
q ∈ C(Ω; R

l), ϕj ∈ Sn((0, b); R
l) (j = 0, . . . ,m− 1), ψk ∈ C(I; R

l) (k = 1, . . . , n) and for
an arbitrary interval J ⊂ I containing zero the restriction of a solution of this problem
on J × (0, b) admits the estimate

‖u‖Sm,n(J×(0,b);Rl) ≤ρ
( m−1∑

j=0

‖ϕj‖Sn((0,b);Rl)+

+
n∑

k=1

‖ψk‖C(J;Rl) + ‖q‖C(J×(0,b);Rl)

)
, (3)

where ρ is a positive constant independent of q, ϕj , ψk (j = 0, . . . ,m − 1; k = 1, . . . , n)
and J .



143

For an arbitrarily fixed x ∈ I in the interval (0, b) consider the system of ordinary
differential equations

γn(y)
dnv

dyn
=

n−1∑

k=0

γk(y)Pmk(x, y)
dkv

dyk
(4)

with the homogeneous boundary conditions

hk(v)(x) = 0 (k = 1, . . . , n). (5)

We will seek for a solution of problem (4),(5) in the class of vector functions z : [0, b] →
R

l continuous on [0, b] and n–times continuously differentiable in (0, b).

Theorem. Problem (1), (2) is well–posed if and only if for any x ∈ I problem (3), (4)
has only a trivial solution.

To prove the Theorem we need to give two auxiliary propositions. The first of them
concerns continuity with respect to x of a solution of the problem

γn(y)
dnv

dyn
=

n−1∑

k=0

γk(y)Pmk(x, y)
dkv

dyk
+ q0(y), (6)

hk(v)(x) = ck (k = 1, . . . , n). (7)

Lemma 1. Let for any x ∈ I problem (4), (5) have only a trivial solution. Then

for an arbitrary q0 ∈ C((0, b); R
l), ck ∈ R

l (k = 1, . . . , n) and x ∈ I problem (6), (7)
has a unique solution v(x, ·) which is continuous with respect to x. Moreover, the vector

functions v(0,k) : Ω → R
l (k = 0, . . . , n − 1) are continuous and there exists a positive

constant ρ0, independent of q0 and ck (k = 1, . . . , n), such that the inequality

n∑

k=0

γk(y)‖v(0,k)(x, y)‖ ≤ ρ0

( n∑

k=1

‖ck‖+ ‖q0‖C((0,b);Rl)

)

holds in Ω.

This lemma follows from Theorem 1.1 from [2].
The following lemma concerns the operator equation

u(x, y) = g(u)(x, y) + f(x, y), (8)

where g : Sm,n(Ω; R
l) → Sm,n(Ω; R

l) is a linear bounded operator and f ∈ Sm,n(Ω; R
l).

For an arbitrary i ∈ {0, . . . ,m} and z ∈ Cm,n(Ω; R
l) set

‖z(i,0)(x, ·)‖Sn((0,b);Rl) = sup
{ n∑

k=0

γk(y)‖z(i,k)(x, y)‖ : 0 < y < b
}
.

Lemma 2. Let there exist a positive number ρ1 such that for any z ∈ Sm,n(Ω; R
l)

the inequality

m∑

i=0

∥∥∥
∂ig(z)(x, ·)

∂xi

∥∥∥
Sn((0,b);Rl)

≤ ρ1

m∑

i=0

∣∣∣
x∫

0

∥∥z(i,0)(ξ, ·)
∥∥

Sn((0,b);Rl)
dξ

∣∣∣ (9)

holds in I. Then equation (8) has a unique solution u in the space Sm,n(Ω; R
l) and

m∑

i=0

∥∥u(i,0)(x, ·)
∥∥

Sn((0,b);Rl)
≤ ρ1 exp(|x|)

m∑

i=0

∥∥f(i,0)(x, ·)
∥∥

Sn((0,b);Rl)
for x ∈ I. (10)

This lemma can be proved similarly to Lemma 2.3 from [3].

Proof of the Theorem. We will prove the sufficiency since the necessity can be proved by
the method applied in [3] for proving Theorem 1.1.

By Lemma 1, there exists a linear bounded operator

g0 : R
l × C((0, b); R

l) → S0,n(Ω; R
l)
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such that if x ∈ I, ck ∈ R
l (k = 1, . . . , n) and q0 ∈ C((0, b); R

l), then the vector function
v(x, ·) : (0, b) → R

l is a solution of problem (6),(7) if and only if

v(x, y) = g0(c1, . . . , cl, q0)(x, y) for 0 < y < b.

For an arbitrary z ∈ Sm,n(Ω; R
l) set

w(z)(x, y) =

m−1∑

j=0

n∑

k=0

γk(y)

(m− j − 1)!
Pjk(x, y)

x∫

0

(x− s)m−j−1z(m,k)(s, y) ds, (11)

g(z)(x, y) =
1

(m − 1)!

x∫

0

(x− s)m−1g0(0, . . . , 0, w(z)(s, ·))(s, y) ds. (12)

Furthermore, introduce the vector functions

w0(x, y) =

m−1∑

j=0

n∑

k=0

γk(y)Pjk(x, y)

m−1∑

i=j

xi−j

(i − j)!
ϕ

(k)
i

(y) + q(x, y), (13)

f(x, y) =
1

(m− 1)!

x∫

0

(x− s)m−1g0(ψ1(s), . . . , ψl(s), w0(s, ·))(s, y) ds. (14)

In view of notation (11)–(14) it is not difficult to see that problem (1),(2) is equivalent
to equation (8), i.e., every solution of problem (1),(2) is a solution of equation (8) and
vice versa. Therefore to prove the theorem it is sufficient to show that in the space
Sm,n(Ω; R

l) equation (8) has a unique solution admitting estimate (3) on every interval
J ⊂ I containing zero, where ρ is a positive constant independent of q, ϕj , ψk (j =
0, . . . ,m− 1; k = 1, . . . , n) and J .

By Lemma 1, there exists a positive constant ρ0 such that for arbitrary cj ∈ R
l

(j = 1, . . . , l) and q0 ∈ C((0, b); R
l) the inequality

n∑

k=0

γk(y)
∣∣∣
∂k

∂yk
g0(c1, . . . , cl, q0)(x, y)

∣∣∣ ≤ ρ0

( n∑

k=1

‖ck‖+ ‖q0‖C((0,b);Rl)

)
(15)

holds in the rectangle Ω. According to equalities (11),(13) and boundedness of the matrix
functions Pjk (j = 0, . . . ,m− 1; k = 0, . . . , n), without loss of generality we may assume
that the inequalities

‖w(z)(x, ·)‖C((0,b);Rl) ≤ ρ0

∣∣∣
x∫

0

∥∥z(m,0)(s, ·)
∥∥

Sn((0,b);Rl)
ds

∣∣∣, (16)

‖w0(x, ·)‖C((0,b);Rl) ≤ ρ0

( m−1∑

j=0

‖ϕj‖Sn((0,b);Rl) + ‖q(x, ·)‖C((0,b);Rl)

)
(17)

hold on I.
In view of conditions (15) and (16), inequality (9) follows from (12), where

ρ1 = ρ20

m∑

i=0

1

(m− i)!
|I|m−i

and |I| is the length of the interval I. On the other hand, by (15) and (17), it follows
from (14) that for an arbitrary interval J ⊂ I the function f admits the estimate

‖f‖Sm,n(J×(0,b);Rl) ≤ρ1
( m−1∑

j=0

‖ϕj‖Sn((0,b);Rl)+

+
n∑

k=1

‖ψk‖C(J;Rl) + ‖q‖C(J×(0,b);Rl)

)
. (18)
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By Lemma 2, in the space Sm,n(Ω; R
l) equation (8) has a unique solution admitting

estimate (10). However, estimate (3) follows from (10) and (18), where ρ = ρ2
1 exp(|I|) is

a positive constant independent of q, ϕj , ψk (j = 0, . . . ,m−1; k = 1, . . . , n) and J . �

The initial–boundary conditions

u(j,0)(0, y) = ϕj(y) (j = 0, . . . ,m− 1), u(m,0)(x, yk(x)) = ψk(x) (k = 1, . . . , n) (19)

are the particular case of (2), where yk : I → R (k = 1, . . . , n) are continuous functions
satisfying the inequalities

0 ≤ y1(x) < y2(x) ≤ · · · < yn(x) ≤ b for x ∈ I.

Let g(·, ·;x) : [y1(x), yn(x)]× [y1(x), yn(x)] → R be the Green’s function of the differ-

ential equation
dnv

dyn
= 0

with multi–point boundary conditions

v(yk(x)) = 0 (k = 1, . . . , n). (20)

Then by Lemma 8.5 from [1], we have

µnj (x)
def
= sup

{γj(y)

γn(t)

∣∣∣
∂jg(y, t; x)

∂yj

∣∣∣ : y1(x) < y, t < yn(x), y 6= t
}
<

< +∞ for x ∈ I (j = 0, . . . , n− 1). (21)

Corollary. If

r
( n−1∑

k=0

µnk(x)

yn(x)∫

y1(x)

|Pmk(x, t)| dt
)
< 1 for x ∈ I, (22)

then problem (1), (19) is well–posed.

Proof. Let v = (vi)
l
i=1 be a solution of problem (4),(20) for an arbitrarily fixed x ∈ I.

By the above proved theorem, to prove the Corollary we need to show that v(y) ≡ 0.
It is easy to see

wi = sup
{ γk(y)

µnk(x)
|v

(k)
l

(y)| : 0 < y < b; k = 0, . . . , n− 1
}
< +∞ (i = 1, . . . , l).

Set w = (wi)l
i=1. Then taking into account (21) from the equalities

γj(y)v
(j)(y)=

yn(x)∫

y1(x)

γj(y)

γn(t)

∂jg(y, t; x)

∂yj

( n−1∑

k=0

Pmk(x, t)γk(t)v(k)(t)
)
dt (j = 0, . . . , n− 1)

we find

w ≤
( m−1∑

k=0

µmk(x)

yn(x)∫

y1(x)

|Pmk(x, t)| dt
)
w.

Hence in view of conditions (22) and nonnegativity of the vector w we get w = 0.
Consequently v(y) ≡ 0. �

Remark 1. Condition (22) is nonimprovable in the sense that it cannot be replaced by
the condition

r
( n−1∑

k=0

µnk(x)

yn(x)∫

y1(x)

|Pmk(x, t)| dt
)
< 1 + ε

for arbitrarily small ε > 0.
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Remark 2. It immediately follows from (21) that

µ20(x) =
1

y2(x)− y1(x)
, µ21(x) = 1 for x ∈ I.

Therefore in the case, where n = 2 condition (2) coincides with the condition of unique
solvability of two–point problem (4),(20) given in [4].
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