Mem. Differential Equations Math. Phys. 28(2003), 141-146

T. Kiguradze

ON INITIAL-BOUNDARY VALUE PROBLEMS FOR DEGENERATE LINEAR HYPERBOLIC SYSTEMS

(Reported on September 23, 2002)
Let l, m and $n \geq 2$ be natural numbers, $0<b<+\infty$ and $I \subset \mathbb{R}$ be a compact interval containing zero. In the rectangle $\Omega=I \times(0, b)$ consider the hyperbolic system

$$
\begin{align*}
\gamma_{n}(y) u^{(m, n)}= & \sum_{k=0}^{n-1} \gamma_{k}(y) P_{m k}(x, y) u^{(m, k)}+ \\
& +\sum_{j=0}^{m-1} \sum_{k=0}^{n} \gamma_{k}(y) P_{j k}(x, y) u^{(j, k)}+q(x, y) \tag{1}
\end{align*}
$$

with the initial-boundary conditions

$$
\begin{align*}
& u^{(j, 0)}(0, y)=\varphi_{j}(y)(j=0, \ldots, m-1) \tag{2}\\
& h_{k}\left(u^{(m, 0)}(x, \cdot)\right)(x)=\psi_{k}(x)(k=1, \ldots, n)
\end{align*}
$$

where

$$
\begin{gathered}
u^{(j, k)}(x, y)=\frac{\partial^{j+k} u(x, y)}{\partial x^{j} \partial y^{k}}(j=0, \ldots, m ; k=0, \ldots, n), \\
\gamma_{k}(y)=y^{k}(b-y)^{k} \quad(k=0, \ldots, n-1), \quad \gamma_{n}(y)=\gamma_{n-1}(y) .
\end{gathered}
$$

Everywhere below it will be assumed that $P_{j k}: \Omega \rightarrow \mathbb{R}^{l \times l}(j=0, \ldots, m ; k=0, \ldots, n ; j+$ $k<m+n)$ are continuous and bounded matrix functions, $q: \Omega \rightarrow \mathbb{R}^{l}$ and $\psi_{k}: I \rightarrow \mathbb{R}^{l}$ $(k=1, \ldots, n)$ are continuous and bounded vector functions, $\varphi_{j}:(0, b) \rightarrow \mathbb{R}^{l}(j=$ $0, \ldots, m-1$) are n-times continuously differentiable vector functions such that

$$
\sup \left\{\gamma_{k}(y)\left\|\varphi_{j}^{(k)}(y)\right\|: 0<y<b\right\}<+\infty \quad(j=0, \ldots, m-1 ; k=0, \ldots, n)
$$

and $h_{k}: C\left([0, b] ; \mathbb{R}^{l}\right) \rightarrow C\left(I ; \mathbb{R}^{l}\right)(k=1, \ldots, n)$ are bounded linear operators.
System (1) degenerates along the intervals $y=0$ and $y=b$. These degeneration is removable only when $P_{j k}$ and q admit the representation

$$
P_{j k}(x, y)=\frac{\gamma_{n}(y)}{\gamma_{k}(y)} \widetilde{P}_{j k}(x, y) \quad(j=0, \ldots, m ; k=1, \ldots, n), \quad q(x, y)=\gamma_{n}(y) \widetilde{q}(x, y)
$$

i.e., when system (1) has the form

$$
u^{(m, n)}=\sum_{k=0}^{n-1} \widetilde{P}_{m k}(x, y) u^{(m, k)}+\sum_{j=0}^{m-1} \sum_{k=0}^{n} \widetilde{P}_{j k}(x, y) u^{(j, k)}+\widetilde{q}(x, y)
$$

where $\widetilde{P}_{j k}: \bar{\Omega} \rightarrow \mathbb{R}^{l \times l}(j=0, \ldots, m ; k=0, \ldots, n ; j+k<m+n)$ and $\widetilde{q}: \bar{\Omega} \rightarrow \mathbb{R}^{l}$ are continuous matrix and vector functions. In this case the criterion of well-posedness of problem (1),(2) is established in [3]. However, in the case, where degeneration is not removable (e.g., when $\limsup _{y \rightarrow 0}\left\|P_{j k}(x, y)\right\|>0$, or $\lim _{\sup }^{y \rightarrow b}$ $\left\|P_{j k}(x, y)\right\|>0$ for

2000 Mathematics Subject Classification. 35L35.
Key words and phrases. Linear degenerate hyperbolic system.
some $x \in I$ and $j \in\{0, \ldots, m\}$) the question of well-posedness of problem (1),(2) was opened. The results formulated below concern this case namely.

Throughout the paper we will use the following notation:
$\mathbb{R}=(-\infty,+\infty)$;
\mathbb{R}^{l} is the space of column-vectors $z=\left(z_{i}\right)_{i=1}^{l}$ with the real components $z_{i} \in \mathbb{R}$ $(i=1, \ldots, l)$ and the norm $\|z\|=\max \left\{\left|z_{1}\right|, \ldots,\left|z_{l}\right|\right\}$;
$\mathbb{R}^{l \times l}$ is the space of $l \times l$ matrices $Z=\left(z_{i k}\right)_{i, k=1}^{l}$ with the components $z_{i k} \in \mathbb{R}$ $(i, k=1, \ldots, l)$ and the norm

$$
\|Z\|=\max \left\{\sum_{k=1}^{l}\left|z_{i k}\right|: i=1, \ldots, l\right\}
$$

If $z=\left(z_{i}\right)_{i=1}^{l} \in \mathbb{R}^{l}$ and $Z=\left(z_{i k}\right)_{i, k=1}^{l} \in \mathbb{R}^{l \times l}$, then

$$
|z|=\left(\left|z_{i}\right|\right)_{i=1}^{l}, \quad|Z|=\left(\left|z_{i k}\right|\right)_{i, k=1}^{l} ;
$$

Z^{-1} is the matrix reciprocal to a nonsingular matrix $Z \in \mathbb{R}^{l \times l}$;
$r(Z)$ is the spectral radius of a matrix $Z \in \mathbb{R}^{l \times l}$;
$C\left(I ; \mathbb{R}^{l}\right)$ and $C\left(\Omega ; \mathbb{R}^{l}\right)$ are the spaces of continuous and bounded vector functions $\varphi: I \rightarrow \mathbb{R}^{l}$ and $z: \Omega \rightarrow \mathbb{R}^{l}$ with the norms

$$
\|\varphi\|_{C\left(I ; \mathbb{R}^{l}\right)}=\sup \{\|\varphi(s)\|: s \in I\}, \quad\|z\|_{C\left(\Omega ; \mathbb{R}^{l}\right)}=\sup \{\|z(x, y)\|:(x, y) \in \Omega\}
$$

$S^{n}\left((0, b) ; \mathbb{R}^{l}\right)$ is the space of n-times continuously differentiable functions $\varphi:(0, b) \rightarrow$ \mathbb{R}^{l} such that

$$
\|\varphi\|_{S^{n}\left((0, b) ; \mathbb{R}^{l}\right)}=\sup \left\{\sum_{k=0}^{n} \gamma_{k}(y)\left\|\varphi^{(k)}(y)\right\|: 0<y<b\right\}<+\infty
$$

$S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)$ is the space of functions $u: \Omega \rightarrow \mathbb{R}^{l}$ having the continuous partial derivatives $u^{(j, k)}(j=0, \ldots, m ; k=0, \ldots, n)$ such that

$$
\|u\|_{S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)}=\sup \left\{\sum_{j=0}^{m} \sum_{k=0}^{n} \gamma_{k}(y)\left\|u^{(j, k)}(x, y)\right\|:(x, y) \in \Omega\right\}<+\infty
$$

If $\varphi \in S^{n}\left((0, b) ; \mathbb{R}^{l}\right)$ and $u \in S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)$, then there exist the limits

$$
\lim _{y \rightarrow 0} \varphi(y), \quad \lim _{y \rightarrow b} \varphi(y), \quad \lim _{y \rightarrow 0} u^{(j, 0)}(x, y), \quad \lim _{y \rightarrow b} u^{(j, 0)}(x, y) \quad(j=0, \ldots, m),
$$

which are denoted by $\varphi(0), \varphi(b), u^{(j, 0)}(x, 0), u^{(j, 0)}(x, b)(j=0, \ldots, m)$.
By a solution of problem (1),(2) we understand a vector function $u \in S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)$ satisfying system (1) and conditions (2) in Ω.

Definition. Problem (1),(2) is called well-posed if it is uniquely solvable for arbitrary $q \in C\left(\Omega ; \mathbb{R}^{l}\right), \varphi_{j} \in S^{n}\left((0, b) ; \mathbb{R}^{l}\right)(j=0, \ldots, m-1), \psi_{k} \in C\left(I ; \mathbb{R}^{l}\right)(k=1, \ldots, n)$ and for an arbitrary interval $J \subset I$ containing zero the restriction of a solution of this problem on $J \times(0, b)$ admits the estimate

$$
\begin{align*}
\|u\|_{S^{m, n}\left(J \times(0, b) ; \mathbb{R}^{l}\right)} & \leq \rho\left(\sum_{j=0}^{m-1}\left\|\varphi_{j}\right\|_{S^{n}\left((0, b) ; \mathbb{R}^{l}\right)}+\right. \\
& \left.+\sum_{k=1}^{n}\left\|\psi_{k}\right\|_{C\left(J ; \mathbb{R}^{l}\right)}+\|q\|_{C\left(J \times(0, b) ; \mathbb{R}^{l}\right)}\right), \tag{3}
\end{align*}
$$

where ρ is a positive constant independent of $q, \varphi_{j}, \psi_{k}(j=0, \ldots, m-1 ; k=1, \ldots, n)$ and J.

For an arbitrarily fixed $x \in I$ in the interval $(0, b)$ consider the system of ordinary differential equations

$$
\begin{equation*}
\gamma_{n}(y) \frac{d^{n} v}{d y^{n}}=\sum_{k=0}^{n-1} \gamma_{k}(y) P_{m k}(x, y) \frac{d^{k} v}{d y^{k}} \tag{4}
\end{equation*}
$$

with the homogeneous boundary conditions

$$
\begin{equation*}
h_{k}(v)(x)=0 \quad(k=1, \ldots, n) \tag{5}
\end{equation*}
$$

We will seek for a solution of problem (4),(5) in the class of vector functions $z:[0, b] \rightarrow$ \mathbb{R}^{l} continuous on $[0, b]$ and n-times continuously differentiable in $(0, b)$.

Theorem. Problem (1), (2) is well-posed if and only if for any $x \in I$ problem (3), (4) has only a trivial solution.

To prove the Theorem we need to give two auxiliary propositions. The first of them concerns continuity with respect to x of a solution of the problem

$$
\begin{gather*}
\gamma_{n}(y) \frac{d^{n} v}{d y^{n}}=\sum_{k=0}^{n-1} \gamma_{k}(y) P_{m k}(x, y) \frac{d^{k} v}{d y^{k}}+q_{0}(y) \tag{6}\\
h_{k}(v)(x)=c_{k} \quad(k=1, \ldots, n) \tag{7}
\end{gather*}
$$

Lemma 1. Let for any $x \in I$ problem (4), (5) have only a trivial solution. Then for an arbitrary $q_{0} \in C\left((0, b) ; \mathbb{R}^{l}\right), c_{k} \in \mathbb{R}^{l}(k=1, \ldots, n)$ and $x \in I$ problem (6), (7) has a unique solution $v(x, \cdot)$ which is continuous with respect to x. Moreover, the vector functions $v^{(0, k)}: \Omega \rightarrow \mathbb{R}^{l}(k=0, \ldots, n-1)$ are continuous and there exists a positive constant ρ_{0}, independent of q_{0} and $c_{k}(k=1, \ldots, n)$, such that the inequality

$$
\sum_{k=0}^{n} \gamma_{k}(y)\left\|v^{(0, k)}(x, y)\right\| \leq \rho_{0}\left(\sum_{k=1}^{n}\left\|c_{k}\right\|+\left\|q_{0}\right\|_{C\left((0, b) ; \mathbb{R}^{l}\right)}\right)
$$

holds in Ω.
This lemma follows from Theorem 1.1 from [2].
The following lemma concerns the operator equation

$$
\begin{equation*}
u(x, y)=g(u)(x, y)+f(x, y) \tag{8}
\end{equation*}
$$

where $g: S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right) \rightarrow S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)$ is a linear bounded operator and $f \in S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)$.
For an arbitrary $i \in\{0, \ldots, m\}$ and $z \in C^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)$ set

$$
\left\|z^{(i, 0)}(x, \cdot)\right\|_{S^{n}\left((0, b) ; \mathbb{R}^{l}\right)}=\sup \left\{\sum_{k=0}^{n} \gamma_{k}(y)\left\|z^{(i, k)}(x, y)\right\|: 0<y<b\right\}
$$

Lemma 2. Let there exist a positive number ρ_{1} such that for any $z \in S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)$ the inequality

$$
\begin{equation*}
\sum_{i=0}^{m}\left\|\frac{\partial^{i} g(z)(x, \cdot)}{\partial x^{i}}\right\|_{S^{n}\left((0, b) ; \mathbb{R}^{l}\right)} \leq \rho_{1} \sum_{i=0}^{m}\left|\int_{0}^{x}\left\|z^{(i, 0)}(\xi, \cdot)\right\|_{S^{n}\left((0, b) ; \mathbb{R}^{l}\right)} d \xi\right| \tag{9}
\end{equation*}
$$

holds in I. Then equation (8) has a unique solution u in the space $S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)$ and

$$
\begin{equation*}
\sum_{i=0}^{m}\left\|u^{(i, 0)}(x, \cdot)\right\|_{S^{n}\left((0, b) ; \mathbb{R}^{l}\right)} \leq \rho_{1} \exp (|x|) \sum_{i=0}^{m}\left\|f^{(i, 0)}(x, \cdot)\right\|_{S^{n}\left((0, b) ; \mathbb{R}^{l}\right)} \quad \text { for } \quad x \in I \tag{10}
\end{equation*}
$$

This lemma can be proved similarly to Lemma 2.3 from [3].
Proof of the Theorem. We will prove the sufficiency since the necessity can be proved by the method applied in [3] for proving Theorem 1.1.

By Lemma 1, there exists a linear bounded operator

$$
g_{0}: \mathbb{R}^{l} \times C\left((0, b) ; \mathbb{R}^{l}\right) \rightarrow S^{0, n}\left(\Omega ; \mathbb{R}^{l}\right)
$$

such that if $x \in I, c_{k} \in \mathbb{R}^{l}(k=1, \ldots, n)$ and $q_{0} \in C\left((0, b) ; \mathbb{R}^{l}\right)$, then the vector function $v(x, \cdot):(0, b) \rightarrow \mathbb{R}^{l}$ is a solution of problem (6),(7) if and only if

$$
v(x, y)=g_{0}\left(c_{1}, \ldots, c_{l}, q_{0}\right)(x, y) \text { for } 0<y<b
$$

For an arbitrary $z \in S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)$ set

$$
\begin{gather*}
w(z)(x, y)=\sum_{j=0}^{m-1} \sum_{k=0}^{n} \frac{\gamma_{k}(y)}{(m-j-1)!} P_{j k}(x, y) \int_{0}^{x}(x-s)^{m-j-1} z^{(m, k)}(s, y) d s \tag{11}\\
g(z)(x, y)=\frac{1}{(m-1)!} \int_{0}^{x}(x-s)^{m-1} g_{0}(0, \ldots, 0, w(z)(s, \cdot))(s, y) d s \tag{12}
\end{gather*}
$$

Furthermore, introduce the vector functions

$$
\begin{gather*}
w_{0}(x, y)=\sum_{j=0}^{m-1} \sum_{k=0}^{n} \gamma_{k}(y) P_{j k}(x, y) \sum_{i=j}^{m-1} \frac{x^{i-j}}{(i-j)!} \varphi_{i}^{(k)}(y)+q(x, y) \tag{13}\\
f(x, y)=\frac{1}{(m-1)!} \int_{0}^{x}(x-s)^{m-1} g_{0}\left(\psi_{1}(s), \ldots, \psi_{l}(s), w_{0}(s, \cdot)\right)(s, y) d s \tag{14}
\end{gather*}
$$

In view of notation (11)-(14) it is not difficult to see that problem (1),(2) is equivalent to equation (8), i.e., every solution of problem $(1),(2)$ is a solution of equation (8) and vice versa. Therefore to prove the theorem it is sufficient to show that in the space $S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)$ equation (8) has a unique solution admitting estimate (3) on every interval $J \subset I$ containing zero, where ρ is a positive constant independent of $q, \varphi_{j}, \psi_{k}(j=$ $0, \ldots, m-1 ; k=1, \ldots, n)$ and J.

By Lemma 1, there exists a positive constant ρ_{0} such that for arbitrary $c_{j} \in \mathbb{R}^{l}$ $(j=1, \ldots, l)$ and $q_{0} \in C\left((0, b) ; \mathbb{R}^{l}\right)$ the inequality

$$
\begin{equation*}
\sum_{k=0}^{n} \gamma_{k}(y)\left|\frac{\partial^{k}}{\partial y^{k}} g_{0}\left(c_{1}, \ldots, c_{l}, q_{0}\right)(x, y)\right| \leq \rho_{0}\left(\sum_{k=1}^{n}\left\|c_{k}\right\|+\left\|q_{0}\right\|_{C\left((0, b) ; \mathbb{R}^{l}\right)}\right) \tag{15}
\end{equation*}
$$

holds in the rectangle Ω. According to equalities (11),(13) and boundedness of the matrix functions $P_{j k}(j=0, \ldots, m-1 ; k=0, \ldots, n)$, without loss of generality we may assume that the inequalities

$$
\begin{gather*}
\|w(z)(x, \cdot)\|_{C\left((0, b) ; \mathbb{R}^{l}\right)} \leq \rho_{0}\left|\int_{0}^{x}\left\|z^{(m, 0)}(s, \cdot)\right\|_{S^{n}\left((0, b) ; \mathbb{R}^{l}\right)} d s\right| \tag{16}\\
\left\|w_{0}(x, \cdot)\right\|_{C\left((0, b) ; \mathbb{R}^{l}\right)} \leq \rho_{0}\left(\sum_{j=0}^{m-1}\left\|\varphi_{j}\right\|_{S^{n}\left((0, b) ; \mathbb{R}^{l}\right)}+\|q(x, \cdot)\|_{C\left((0, b) ; \mathbb{R}^{l}\right)}\right) \tag{17}
\end{gather*}
$$

hold on I.
In view of conditions (15) and (16), inequality (9) follows from (12), where

$$
\rho_{1}=\rho_{0}^{2} \sum_{i=0}^{m} \frac{1}{(m-i)!}|I|^{m-i}
$$

and $|I|$ is the length of the interval I. On the other hand, by (15) and (17), it follows from (14) that for an arbitrary interval $J \subset I$ the function f admits the estimate

$$
\begin{align*}
\|f\|_{S^{m, n}\left(J \times(0, b) ; \mathbb{R}^{l}\right)} & \leq \rho_{1}\left(\sum_{j=0}^{m-1}\left\|\varphi_{j}\right\|_{S^{n}\left((0, b) ; \mathbb{R}^{l}\right)}+\right. \\
& \left.+\sum_{k=1}^{n}\left\|\psi_{k}\right\|_{C\left(J ; \mathbb{R}^{l}\right)}+\|q\|_{C\left(J \times(0, b) ; \mathbb{R}^{l}\right)}\right) . \tag{18}
\end{align*}
$$

By Lemma 2, in the space $S^{m, n}\left(\Omega ; \mathbb{R}^{l}\right)$ equation (8) has a unique solution admitting estimate (10). However, estimate (3) follows from (10) and (18), where $\rho=\rho_{1}^{2} \exp (|I|)$ is a positive constant independent of $q, \varphi_{j}, \psi_{k}(j=0, \ldots, m-1 ; k=1, \ldots, n)$ and J.

The initial-boundary conditions

$$
\begin{equation*}
u^{(j, 0)}(0, y)=\varphi_{j}(y) \quad(j=0, \ldots, m-1), \quad u^{(m, 0)}\left(x, y_{k}(x)\right)=\psi_{k}(x) \quad(k=1, \ldots, n) \tag{19}
\end{equation*}
$$ are the particular case of (2), where $y_{k}: I \rightarrow \mathbb{R}(k=1, \ldots, n)$ are continuous functions satisfying the inequalities

$$
0 \leq y_{1}(x)<y_{2}(x) \leq \cdots<y_{n}(x) \leq b \text { for } \quad x \in I
$$

Let $g(\cdot, \cdot ; x):\left[y_{1}(x), y_{n}(x)\right] \times\left[y_{1}(x), y_{n}(x)\right] \rightarrow \mathbb{R}$ be the Green's function of the differential equation

$$
\frac{d^{n} v}{d y^{n}}=0
$$

with multi-point boundary conditions

$$
\begin{equation*}
v\left(y_{k}(x)\right)=0 \quad(k=1, \ldots, n) \tag{20}
\end{equation*}
$$

Then by Lemma 8.5 from [1], we have

$$
\begin{align*}
& \mu_{n j}(x) \stackrel{\text { def }}{=} \sup \left\{\frac{\gamma_{j}(y)}{\gamma_{n}(t)}\left|\frac{\partial^{j} g(y, t ; x)}{\partial y^{j}}\right|: y_{1}(x)<y, t<y_{n}(x), y \neq t\right\}< \\
&<+\infty \text { for } x \in I \quad(j=0, \ldots, n-1) \tag{21}
\end{align*}
$$

Corollary. If

$$
\begin{equation*}
r\left(\sum_{k=0}^{n-1} \mu_{n k}(x) \int_{y_{1}(x)}^{y_{n}(x)}\left|P_{m k}(x, t)\right| d t\right)<1 \quad \text { for } \quad x \in I \tag{22}
\end{equation*}
$$

then problem (1), (19) is well-posed.
Proof. Let $v=\left(v_{i}\right)_{i=1}^{l}$ be a solution of problem (4),(20) for an arbitrarily fixed $x \in I$. By the above proved theorem, to prove the Corollary we need to show that $v(y) \equiv 0$.

It is easy to see

$$
w_{i}=\sup \left\{\frac{\gamma_{k}(y)}{\mu_{n k}(x)}\left|v_{l}^{(k)}(y)\right|: 0<y<b ; k=0, \ldots, n-1\right\}<+\infty \quad(i=1, \ldots, l)
$$

Set $w=\left(w_{i}\right)_{i=1}^{l}$. Then taking into account (21) from the equalities

$$
\gamma_{j}(y) v^{(j)}(y)=\int_{y_{1}(x)}^{y_{n}(x)} \frac{\gamma_{j}(y)}{\gamma_{n}(t)} \frac{\partial^{j} g(y, t ; x)}{\partial y^{j}}\left(\sum_{k=0}^{n-1} P_{m k}(x, t) \gamma_{k}(t) v^{(k)}(t)\right) d t(j=0, \ldots, n-1)
$$

we find

$$
w \leq\left(\sum_{k=0}^{m-1} \mu_{m k}(x) \int_{y_{1}(x)}^{y_{n}(x)}\left|P_{m k}(x, t)\right| d t\right) w
$$

Hence in view of conditions (22) and nonnegativity of the vector w we get $w=0$. Consequently $v(y) \equiv 0$.

Remark 1. Condition (22) is nonimprovable in the sense that it cannot be replaced by the condition

$$
r\left(\sum_{k=0}^{n-1} \mu_{n k}(x) \int_{y_{1}(x)}^{y_{n}(x)}\left|P_{m k}(x, t)\right| d t\right)<1+\varepsilon
$$

for arbitrarily small $\varepsilon>0$.

Remark 2. It immediately follows from (21) that

$$
\mu_{20}(x)=\frac{1}{y_{2}(x)-y_{1}(x)}, \quad \mu_{21}(x)=1 \quad \text { for } \quad x \in I
$$

Therefore in the case, where $n=2$ condition (2) coincides with the condition of unique solvability of two-point problem (4),(20) given in [4].

Acknowledgment

This work was supported by INTAS (grant No 00136).

References

1. I. Kiguradze, Some singular boundary value problems for ordinary differential equations. (Russian) Tbilisi University Press, Tbilisi, 1975.
2. I. Kiguradze, B. Půz̆a and I. P. Stavroulakis, On singular boundary value problems for functional differential equations of higher order. Georgian Math. J. 8(2000), No. 4, 791-814.
3. T. Kiguradze and T. Kusano, On well-posedness of initial-boundary value problems for higher order linear hyperbolic equations with two independent variables. Differentsial'nye Uravneniya 39(2003), No. 3.
4. B. PƯZ̆a and A. Rabbimov, On a weighted boundary value problem for a system of singular functional differential equations. Mem. Differential Equations Math. Phys. 21 (2000), 125-130.

Author's address:
Faculty of Physics
I. Javakhishvili Tbilisi State University

3, Chavchavadze Ave., Tbilisi 380028
Georgia
E-mail: tkig@rmi.acnet.ge

