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Abstract. Generalized variational inequalities of a new class are proved.
The best constants in some classical variational inequalities are obtained.
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The Perm Seminar on functional differential equations has elaborated
new methods of investigation of non-classical variational problems (see, for
example, [1, 3]). These methods allow to prove many known variational
inequalities in a more effective way. Moreover, we now can obtain new vari-
ational inequalities, in particular, for functionals with deviating arguments.
Here we give some of such results. Generalized variational inequalities of
a new class are proved. The best constants in some classical variational
inequalities are obtained.

Let Ly denote the space of real square integrable on [0,1] functions,
W be the space of real absolutely continuous on [0, 1] functions with the
derivative from Ly and such that z(0) = 0.

Our methods of the investigation of variational inequalities are based on
the reduction to the problem on a minimum for the quadratic functional in
the space Lo:

/ (2(8) = (K2)(£))2(t) dt — min, (1)
0

where K : Ly — Ly is a self-adjoint bounded operator.

It is known (see, for example, [1]) that the problem (1) is solvable if and
only if the maximum of the spectrum of the operator K : Lo — Lo is not
greater than 1. Moreover, the following assertion is valid ([4]).

1
Theorem 1. Let [(Kz)(t)z(t)dt > 0 for every non-negative function z €

0
Lo. Then the problem (1) is solvable if and only if the norm of the operator
K s less than or equal to 1.

The conditions of Theorem 1 will be always fulfilled in this paper. So, the
question on the solvability of the problem (1) is reduced to computing or
estimating the spectral radius, which is equal to the norm, of the self-adjoint
operator K.

§ 1. In the paper [9] W. Troy estimated the values v for which the
inequality

1

/ (6 dt > / Ple@z@ld, >0, p>-1, @)
0 0

holds for all continuously differentiable functions z such that z(0) = 0. Only
for the case p = 0 the best constant was known: v = 2 (P. R. Beesack [2]).

Note that the functional of the variational problem, which corresponds
to the inequality (2), is non-quadratic and non-differentiable at zero.
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We consider the generalized inequality

1
2 (t fy/tp|x t))| dt,
/ J ©

2(0)=0, (6= 0 if £¢[0.1]

where the function h : [_ 0,1
Define the function A : |

[
_ . |h@) if K@) €lo,1],
) = {0 if h(t) ¢ [0,1].

By ¥, denote the the maximal constant -y for which the inequality (3) is
valid for any z € Wy. In the case h(t) = ¢t we can compute 7,, and in the
general case we will estimate 7,.

Lemma 1. The inequality (3) holds for every x € Wy if and only if the
variational problem

z) = / (gﬁ (t) — fytpg'c(t)x(ﬁ(t)))dt ~ min,
0
z(0)=0

has the solution x = 0.

Proof. If z = 0 is not a solution to the variational problem (4), then the
functional 7 is negative for some function 9 € Wy. Therefore

1 1
[ @0 - 2#lsa@ab@)it < [ (@30 -1tz @za(hie) de <0
0 0
and the inequality (3) is not fulfilled for the function zg.
If for some function z; € Wy the inequality (3) does not hold, then
J(z2) < 0 for the function zs(t f |£1(s)| ds. Indeed, Z2(t) = |£1(8)],
T2 (t) > |21 (t)], z2(h(t)) > |z1 (h(t ))| t € [0,1], and therefore

T(x2) = [ (#5(8) — viPlaa(B)z2(R(D)]) dt <

IN

o O

(23 (t) — vtP|21 ()21 (R(2))]) dt <0. O

Thus the inequality (3) is valid if and only if the variational problem (4)
is solvable.
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¢
The substitution z(t) = [ z(s) ds reduces the problem (4) to the problem

0
(1), where the kernel of the self-adjoint integral operator K : Lo — Lg
admits the representation

K(t,5) = 3 (x(t 8)t° + x(5,0)5"),

X(t,s):{1 if 0<s<hl) <, )

0 otherwise.

For p > —1 the operator K is completely continuous, and its norm is
equal to the maximum module of the eigenvalues. By theorem 1 it follows

Theorem 2. Let p > —1. The inequality (3) is valid for any function

z € Wy if and only if v < 7p, where 7, is the smallest value v for which
the Cauchy problem

x(s,8)s°(s) ds),

8
~~
oot

|
N2
~~

-

S

8
—~

o>
~~
Nt
p—

+

O\H

z(0)=0
has a non-zero solution.

1

Proof. After the substitution z = [ z(s) ds we see that % is the maximal
0

eigenvalue of the completely continuous operator K. Then by Theorem 1

the problem (1) is solvable if and only if vy < 4,. O

We can solve the problem (6) and find the exact constant 4, only in
single cases. In the general case we can, in particular, use the well-known
estimate of the norm for an integral operator K in the space Lg:

L
2n

1Kl < //mwmmMMt , (7)
0 0

n=1,2,..., where K{" (¢, s) is the kernel of the integral operator K.

Moreover, for any completely continuous self-adjoint integral operator K
in Lo with a non-negative kernel the following assertion is valid (see, for
example, [5]):

if v(t)>0 and pv(t) > (Kv)(#), t €[0,1], then || K[| <p. (8)

The inequality (7) for n = 1 and Theorem 1 give the following results.
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Corollary 1. Lete(t) = {s € [0,1]: s < h(t) and t < h(s)}. Then for any
function © € Wy the inequality (3) holds if

V2
\/ fl (t%Ph(t) +t» [ sPds)dt

0 e(t)

IN

Y

In the Volterra case h(t) < t on [0, 1] the measure of the set e(t) is equal
to zero for every t € [0,1]. So, we have

Corollary 2. Let h(t) <t on [0,1] and
V2

A / f t2Ph(t)dt
0

Then for any function x € Wy the inequality (3) is valid.

<

Note that in the case h(t) =t Corollary 2 implies the estimate

7P>2Vp+17 (9)

which was obtained in [9].
Corollary 3. Let
V2

\/f t)tr( tP+—hP( )) dt

<

[

0

Then for any function x € Wy the inequality (3) is valid.

Now consider the case h(t) = t in detail. We show that the best constant
¥p is expressed by the first zero of some Bessel function.

Let p> —1.

For p > 0 let 8, be the smallest positive root of the modified Bessel
function I_ Lz

For p < 0 let 6, be the smallest positive root of the Bessel function
J_142p.
1+p
Theorem 3. Let h(t) =t, p # 0. The inequality (2) holds for all z € Wy
if and only if

(p+ 1)%62
Y<Ap = —Fr

2|p|
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Proof. In this case the problem (6) has the form

() =

o |2

(#Pa(t) + / Pi(s)ds), te[0,1], z(0)=0.  (10)
t

Therefore
#(t) = %ptp—lx(t), t € [0,1],
z(0) = 0.
The general solution to this problem is the function
it (V)
if p > 0, and the function

C\/EJ; ( _Qrthin)

1\ p+1

if p < 0, where ¢ is an arbitrary constant. This solution is a solution to the
problem (10) if and only if #(1) = F#(1). After elementary transformations
we see that the smallest constant v such that there exists a non-zero solution
to the problem (10) is equal to 4,. So, the assertion of the Theorem follows

from Theorem 2. [

Thus
. (p+1)%6
")/ = ————-->:
? 2p|
is the unimprovable estimate of v in the inequality (2).
In some cases we are able to compute 8, in the explicit form:
#, is the positive solution to the equation
6+1
26
= 11
=, (1)
which implies 4; = 2.878457679781 to the last decimal place;
0_1 is the smallest positive solution to the equation

%
cos(f) =0,

_ 2
hence Y= &

0_% is the smallest positive solution to the equation

sin(8) = 0,

hence ¥_s = %;
. 5 “, . . .
#_s is the smallest positive solution to the equation

tg(d) =0,

—3
7
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hence Yoz = %GQ_Q = 1.153755918 to the last decimal place.
7

Since the Bessel functions can be expressed by the elementary functions
only in the case p+ 1 = ﬁ, where m is an integer, we can conclude that
only in exceptional cases is it possible to obtain the exact values of the zeros
6,. Therefore, the question on estimates of 7, arises.

Estimating || K|| by (7) for n = 1,2, 3,4, we have respectively:

1) % =22+v/p+1 def 71(,1) (it coincides with W.Troy’s estimate (9));

(p+1)(p+2) (2p+3>)1/4 et (2),
tef (),

2) 4, =2
)717/ ( p+6

s ((4+3p> (5+4p) (2p+3) (p+2)° (p+1>)1/"' ),

3
) 6p3 + 100 p% + 292 p + 240

_ def
4) p?’YI(;l) =

aety ((T+69) (6+5p) (p+1) (0+2)* (2p+3)* (5 +4p) (4 +3p) ) /°
180 p° + 5431 p* + 31882 p® + 74652 p? + 77832 p + 30240 ’

Estimating || K|| with (8) for

d 1 1
v(t)=(1- —— ) —— +*T1 te]0,1],
) ( p+2)1—u 0,1]
where

(p+1)(p+2)
V8 +1)3+9(p+1)2—2p—1+3p+4

p=4

we obtain
5) %p = 1) = 2u for p > 0.
Estimating || K|| with (8) for
o(t) =t712*¢, te0,1],

where € > 0 is small enough, we get

11
6) 7p > 1) = = = for pe (-1,-1/2).

2 |p|
We have
71()1) <71(J2) <’Y§;3) <’Y§4)

for all p > —1 except zero. So, the estimate 1), obtained in [9], is not exact
anywhere besides the known case p =0 [2].
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Now, in particular, for p = 1 the exact constants are known. The above
obtained estimates give
AU = 2.8284271;
2 = 2.8776356;
¥ = 2.8784392;
A = 2.8784572;
¥ = 2.8784577

within the last digit.

Note that

a) 7,(,4) < 7,(,5) for p > 50.1, hence the estimate 7,(,5) gives the best result
for large values of p;

b) estimate 6) is the best one for all small p.

In the singular case p = —1 the operator K is not completely continuous,
but from the just now obtained estimate 6) we can conclude that

[#@de>; [ ewewl,
0

0

for any z € Wy.
Moreover, we have

_ 1
Y-1= 3

§ 2. In [6] the variational inequality

1 1
/ P dt > / P2 (t) dt,
0 0

8

0) =0

was investigated for integer p > —2.
For all real p > —2 we consider the generalized inequality

0/ B2ty dt > 6 0/ Plo()z(h()| dt, )

2(0) =0, x(§)=0if{¢[0,1],

where h : [0,1] — (—o00, 00) is a measurable function.
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Note that the inequality (12) is valid for any € Wy if and only if the

inequality
1 1
/ @2t dt >4 / tPz(t)z(h(t)) dt,
0 0

is valid for any z € W.
By 0, denote the maximal constant  for which the inequality (12) is
valid for any z € Wy. In the case h(t) = t we can compute J;, and in the

general case we estimate Jp.
¢

The substitution z(t) = [ 2(s) ds reduces the inequality (12) to the prob-
0

lem (1), where the kernel of the self-adjoint integral operator K : Ly — Lo
admits the representation

1

(t/x TpdT+/X( )TpdT),

8

where the function x is defined by (5).
Similarly to section 1 we have

Theorem 4. The inequality (12) is valid for any function x € Wy if and
only if § < b,, where b, is the smallest value § for which the Cauchy problem

1 1
/s”x h(s )ds+/x(s,t)spx(s) ds), (13)
t 0

z(0) =
has a non-zero solution.

From this it follows

Corollary 4. Let
2

ST

f(fx 7,8 TPdT+fX 7,0 TPdT)ds
0
Then for any function x € Wy the inequality (12) holds.
Note that for h(t) = ¢ from this Corollary we have &, > p + 2.

Let g : [0,1] [0,1] be a continuous function such that if x(¢,s) = 1,
then 0 < g(s) <t < 1.



ON A CLASS OF GENERALIZED VARIATIONAL INEQUALITIES

53
Corollary 5. Let

5 < 2(f+1)(p+2)

2 +3— (p+2) / @+ (s) ds — (p + 1)g*+2(0)
0

Then for any function © € Wy the inequality (12) holds.

Estimating the norm of the operator K by (7) for n = 1, we obtain
Corollary 6. Let p > —2 and

2
52 g 22 £33 +2)
dp+ 7
Then for any function © € Wy the inequality (12) holds.

Consider the classical case h(t) = t in detail. Similarly to Theorem 3 we
have.

By ¢, denote the minimal positive root of the Bessel function of the first
kind J_p41.
p+2

Theorem 5. Let h(t) = ¢

The inequality (12) is valid for any function
x € Wy if and only if

_ +2)2¢2
5<5p:w_

4
Corollary 7. Let h(t) =t. Then

2
- s - s -
(SOZZ, (S_%:g, (5_%:

where 19% is equal to the smallest positive solution to the equation tgh = 6.

?

53
©|m|wl\3

Estimating the norm of the operator K by (7) for n = 1, we obtain
Corollary 8. Let h(t) =1t and

def c(1
§<V2+p)B+p) =6V (14)
Then the inequality (12) is valid for any function x € Wy.

Estimating the norm of the operator K by (7) for n = 2, we obtain
Corollary 9. Let h(t) =t and

5< 4/ @TPIB+D)?*(5+20)(7T+3p) def 52y
= 17 + 6p P

Then the inequality (12) is valid for any function x € Wy.
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Let us remark that the inequality (14) follows from (15). For example,

to the last decimal place we have

5% 5 = 1.0540,
5 /3 = 10955,
6_4/5 = 1.0966;

8" = 2.4495,

89 = 2.4673,

8o = 2.4674.
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