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Abstract. Nonimprovable effective sufficient conditions are established
for the existence and uniqueness of a nonnegative solution of the problem

u′(t) = `(u)(t) + q(t), u(a) = c (u(b) = c),

where ` : C([a, b];R) → L([a, b];R) is a linear bounded operator, q ∈
L([a, b];R+) (q ∈ L([a, b];R−)) and c ∈ R+.
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Introduction

The following notation is used throughout.
R is the set of all real numbers, R+ = [0,+∞[.
C([a, b];R) is the Banach space of continuous functions u : [a, b] → R

with the norm ‖u‖C = max{|u(t)| : a ≤ t ≤ b}.
C([a, b];R+) = {u ∈ C([a, b];R) : u(t) ≥ 0 for t ∈ [a, b]}.
Ct0([a, b];R+) = {u ∈ C([a, b];R+) : u(t0) = 0}, where t0 ∈ [a, b].

C̃([a, b];D), where D ⊆ R, is the set of absolutely continuous functions
u : [a, b] → D.

L([a, b];R) is the Banach space of Lebesgue integrable functions p :

[a, b] → R with the norm ‖p‖L =
b∫
a

|p(s)|ds.

L([a, b];D), where D ⊆ R, is the set of Lebesgue integrable functions
p : [a, b] → D.
Mab is the set of measurable functions τ : [a, b] → [a, b].

L̃ab is the set of linear bounded operators ` : C([a, b];R) → L([a, b];R).

Pab is the set of linear operators ` ∈ L̃ab transforming the set C([a, b];R+)
into the set L([a, b];R+).

We will say that ` ∈ L̃ab is a t0−Volterra operator, where t0 ∈ [a, b], if
for arbitrary a1 ∈ [a, t0], b1 ∈ [t0, b], a1 6= b1, and v ∈ C([a, b];R) satisfying
the condition

v(t) = 0 for t ∈ [a1, b1],

we have

`(v)(t) = 0 for t ∈ [a1, b1].

[x]+ = 1
2 (|x|+ x), [x]− = 1

2 (|x| − x).
By a solution of the equation

u′(t) = `(u)(t) + q(t), (0.1)

where ` ∈ L̃ab and q ∈ L([a, b];R), we understand a function u ∈ C̃([a, b];R)
satisfying the equation (0.1) almost everywhere in [a, b]. The special case
of the equation (0.1) is the differential equation with deviating arguments

u′(t) = p(t)u(τ(t)) − g(t)u(µ(t)) + q(t), (0.2)

where p, g ∈ L([a, b];R+), q ∈ L([a, b];R), τ, µ ∈ Mab.
Consider the problem on the existence and uniqueness of a nonnegative

solution u of (0.1) satisfying the initial condition

u(a) = c, (0.3)

resp.

u(b) = c, (0.4)
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where q ∈ L([a, b];R+), resp. q ∈ L([a, b];R−), c ∈ R+. This problem is
equivalent to the problem on the validity of the classical theorem on differ-
ential inequalities, i.e., whenever u, v ∈ C̃([a, b];R) satisfy the inequalities

u′(t) ≤ `(u)(t) + q(t), v′(t) ≥ `(v)(t) + q(t),

u(a) ≤ v(a), resp. u(b) ≥ v(b),

then the inequality u(t) ≤ v(t), resp. u(t) ≥ v(t) for t ∈ [a, b] is fulfilled.
Along with the equation (0.1), resp. (0.2), and the condition (0.3), resp.

(0.4), consider the corresponding homogeneous equation

u′(t) = `(u)(t), (0.10)

resp.

u′(t) = p(t)u(τ(t)) − g(t)u(µ(t)), (0.20)

and the corresponding homogeneous condition

u(a) = 0, (0.30)

resp.

u(b) = 0. (0.40)

In [3] there are established effective optimal criteria guaranteeing the va-
lidity of a theorem on differential inequalities for the monotone operators,
i.e., when ` ∈ Pab, resp. −` ∈ Pab. In the present paper, these results are
formulated more precisely, and, moreover, there are established conditions
guaranteeing the validity of a theorem on differential inequalities for a gen-
eral linear operator ` ∈ L̃ab. This makes the results in [3] more complete
(see also [5]).

From the general theory of linear boundary value problems for functional
differential equations, the following result is well–known (see, e.g., [2,10,13]).

Theorem 0.1. The problem (0.1), (0.3), resp. (0.1), (0.4) is uniquely solv-

able iff the corresponding homogeneous problem (0.5), (0.5), resp. (0.5),
(0.5) has only the trivial solution.

Definition 0.1. We will say that an operator ` ∈ L̃ab belongs to the set
Sab(a), resp. Sab(b), if the homogeneous problem (0.5), (0.5), resp. (0.5),
(0.5) has only the trivial solution, and for arbitrary q ∈ L([a, b];R+), resp.
q ∈ L([a, b];R−) and c ∈ R+, the solution of the problem (0.1), (0.3), resp.
(0.1), (0.4) is nonnegative.

Remark 0.1. According to Theorem 0.1, if ` ∈ Sab(a), resp. ` ∈ Sab(b),
then for every c ∈ R+ and q ∈ L([a, b];R+), resp. q ∈ L([a, b];R−), the
problem (0.1), (0.3), resp. (0.1), (0.4) has a unique solution, and this solu-
tion is nonnegative.
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Remark 0.2. From Definition 0.1 it immediately follows that ` ∈ Sab(a),
resp. ` ∈ Sab(b), iff for the equation (0.1) the classical theorem on differential

inequalities holds (see, e.g., [8]), i.e., whenever u, v ∈ C̃([a, b];R) satisfy the
inequalities

u′(t) ≤ `(u)(t) + q(t), v′(t) ≥ `(v)(t) + q(t) for t ∈ [a, b],

u(a) ≤ v(a), resp. u(b) ≥ v(b),

then

u(t) ≤ v(t), resp. u(t) ≥ v(t) for t ∈ [a, b].

Thus the theorems formulated below, in fact, are theorems on differential
inequalities. On the other hand, due to Theorem 0.1, it is clear that if
` ∈ Sab(a), resp. ` ∈ Sab(b), then the problem (0.1), (0.3), resp. (0.1),
(0.4) is uniquely solvable for any c ∈ R and q ∈ L([a, b];R). For other
effective conditions for the solvability of the Cauchy problem see, e.g.,
[3,5,6,7,10,11,12].

Remark 0.3. If ` ∈ Pab, resp. −` ∈ Pab, then the inclusion ` ∈ Sab(a),
resp. ` ∈ Sab(b), holds iff the problem

u′(t) ≤ `(u)(t), u(a) = 0, (0.5)

resp.

u′(t) ≥ `(u)(t), u(b) = 0, (0.6)

has no nontrivial nonnegative solution.

1. Theorems on Differential Inequalities

1.1. Main results.

Theorem 1.1. Let ` ∈ Pab. Then ` ∈ Sab(a) iff there exists γ ∈ C̃([a, b];
]0,+∞[) satisfying the inequality

γ′(t) ≥ `(γ)(t) for t ∈ [a, b]. (1.1)

Corollary 1.1. Let ` ∈ Pab and at least one of the following items be

fulfilled:

a) ` is an a−Volterra operator;

b) there exist a nonnegative integer k, a natural number m > k, and a

constant α ∈ ]0, 1[ such that

ρm(t) ≤ αρk(t) for t ∈ [a, b], (1.2)

where

ρ0(t)
def
= 1, ρi+1(t)

def
=

t∫

a

`(ρi)(s)ds for t ∈ [a, b] (i=0, 1, . . . ); (1.3)
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c) there exists ` ∈ Pab such that

b∫

a

`(1)(s) exp

( b∫

s

`(1)(ξ)dξ

)
ds < 1 (1.4)

and on the set Ca([a, b];R+) the inequality

`(ϑ(v))(t) − `(1)(t)ϑ(v)(t) ≤ `(v)(t) for t ∈ [a, b] (1.5)

holds, where

ϑ(v)(t) =

t∫

a

`(v)(s)ds for t ∈ [a, b].

Then ` ∈ Sab(a).

Remark 1.1. From Corollary 1.1 b) (for k = 0 and m = 1) it follows that

if ` ∈ Pab and
b∫

a

`(1)(s)ds < 1, then ` ∈ Sab(a). Note also that if ` ∈ Pab,

b∫
a

`(1)(s)ds = 1 and the problem (0.5), (0.5) has only the trivial solution,

then ` ∈ Sab(a) again (see On Remark 1.1 below).
Nevertheless, the assumptions in Corollary 1.1 are nonimprovable. More

precisely, the condition α ∈]0, 1[ cannot be replaced by the condition α ∈
]0, 1], and the strict inequality in (1.4) cannot be replaced by the nonstrict
one (see Examples 4.1 and 4.2).

Theorem 1.2. Let −` ∈ Pab, ` be an a−Volterra operator, and there exist

a function γ ∈ C̃([a, b];R+) such that

γ(t) > 0, for t ∈ [a, b[, (1.6)

γ′(t) ≤ `(γ)(t) for t ∈ [a, b]. (1.7)

Then ` ∈ Sab(a).

Theorem 1.3. Let −` ∈ Pab, ` be an a−Volterra operator, and

b∫

a

|`(1)(s)|ds ≤ 1. (1.8)

Then ` ∈ Sab(a).

Corollary 1.2. Let −` ∈ Pab, ` be an a−Volterra operator, and

b∫

a

|˜̀(1)(s)| exp

( s∫

a

|`(1)(ξ)|dξ

)
ds ≤ 1, (1.9)
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where

˜̀= `(θ̃(v))(t) − `(1)(t)θ̃(v)(t) for t ∈ [a, b],

θ̃(v)(t)=

t∫

a

`(ṽ)(s)ds, ṽ(t)=v(t) exp

( t∫

a

`(1)(s)ds

)
for t ∈ [a, b].

(1.10)

Then ` ∈ Sab(a).

Remark 1.2. Theorems 1.2 and 1.3, and Corollary 1.2 are nonimprovable.
More precisely, the condition (1.6) cannot be replaced by the condition

γ(t) > 0 for t ∈ [a, b1[,

where b1 ∈]a, b[, the condition (1.8) cannot be replaced by the condition

b∫

a

|`(1)(s)|ds ≤ 1 + ε,

no matter how small ε > 0 would be, and the condition (1.9) cannot be
replaced by the condition

b∫

a

|˜̀(1)(s)| exp

( s∫

a

|`(1)(ξ)|dξ

)
ds ≤ 1 + ε,

no matter how small ε > 0 would be (see Examples 4.3 and 4.4).

Remark 1.3. In [4] there is proved that the condition in Theorems 1.2
and 1.3 on an operator ` to be a−Volterra’s type is necessary for ` to belong
to the set Sab(a).

Theorem 1.4. Let ` = `0 − `1, where `0, `1 ∈ Pab, `0 ∈ Sab(a), −`1 ∈
Sab(a). Then ` ∈ Sab(a).

Remark 1.4. Theorem 1.4 is nonimprovable in the sense that the assump-
tion

`0 ∈ Sab(a), −`1 ∈ Sab(a)

cannot be replaced neither by the assumption

(1− ε)`0 ∈ Sab(a), −`1 ∈ Sab(a),

nor by the assumption

`0 ∈ Sab(a), −(1− ε)`1 ∈ Sab(a),

no matter how small ε > 0 would be (see Examples 4.5 and 4.6).



58

Remark 1.5. Let ` ∈ L̃ab. Put

̂̀(v)(t) def
= −ψ(`(ϕ(v)))(t),

where ψ : L([a, b];R) → L([a, b];R) is an operator defined by

ψ(v)(t)
def
= v(a+ b− t),

and ϕ is a restriction of the operator ψ into the space C([a, b];R).

It is clear that if u ∈ C̃([a, b];R) satisfies the inequality

u′(t) ≤ `(u)(t) (u′(t) ≥ `(u)(t) ) for t ∈ [a, b], (1.11)

then the function v(t) = ϕ(u)(t) for t ∈ [a, b] satisfies the inequality

v′(t) ≥ ̂̀(v)(t) ( v′(t) ≤ ̂̀(v)(t) ) for t ∈ [a, b], (1.12)

and vice versa, if v ∈ C̃([a, b];R) satisfies the inequality (1.12), then the
function u(t) = ϕ(v)(t) for t ∈ [a, b] satisfies the inequality (1.11). There-

fore, ` ∈ Sab(a) (` ∈ Sab(b)) iff ̂̀∈ Sab(b) (̂̀∈ Sab(a)).

According to Remark 1.5, from Theorems 1.1-1.4 and Corollaries 1.1 and
1.2 it immediately follows

Theorem 1.5. Let −` ∈ Pab. Then ` ∈ Sab(b) iff there exists γ ∈ C̃([a, b];
]0,+∞[) satisfying the inequality

γ′(t) ≤ `(γ)(t) for t ∈ [a, b].

Corollary 1.3. Let −` ∈ Pab and at least one of the following items be

fulfilled:

a) ` is a b−Volterra operator;

b) there exist a nonnegative integer k, a natural number m > k, and a

constant α ∈ ]0, 1[ such that

ρm(t) ≤ αρk(t) for t ∈ [a, b],

where

ρ0(t)
def
= 1, ρi+1(t)

def
= −

b∫

t

`(ρi)(s)ds for t ∈ [a, b] (i = 0, 1, . . . );

c) there exists ` ∈ Pab such that

b∫

a

`(1)(s) exp




s∫

a

|`(1)(ξ)|dξ


 ds < 1

and on the set Cb([a, b];R+) the inequality

`(1)(t)ϑ(v)(t) − `(ϑ(v))(t) ≤ `(v)(t) for t ∈ [a, b]
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holds, where

ϑ(v)(t) = −

b∫

t

`(v)(s)ds for t ∈ [a, b].

Then ` ∈ Sab(b).

Theorem 1.6. Let ` ∈ Pab, ` be a b−Volterra operator, and there exist a

function γ ∈ C̃([a, b];R+) such that

γ(t) > 0, for t ∈]a, b],

γ′(t) ≥ `(γ)(t) for t ∈ [a, b].

Then ` ∈ Sab(b).

Theorem 1.7. Let ` ∈ Pab, ` be a b−Volterra operator, and

b∫

a

`(1)(s)ds ≤ 1.

Then ` ∈ Sab(b).

Corollary 1.4. Let ` ∈ Pab, ` be a b−Volterra operator, and

b∫

a

˜̀(1)(s) exp

( b∫

s

`(1)(ξ)dξ

)
ds ≤ 1,

where

˜̀= `(θ̃(v))(t) − `(1)(t)θ̃(v)(t) for t ∈ [a, b],

θ̃(v)(t) = −

b∫

t

`(ṽ)(s)ds, ṽ(t) = v(t) exp

(
−

b∫

t

`(1)(s)ds

)
for t ∈ [a, b].

Then ` ∈ Sab(b).

Theorem 1.8. Let ` = `0 − `1, where `0, `1 ∈ Pab, `0 ∈ Sab(b), −`1 ∈
Sab(b). Then ` ∈ Sab(b).

Remark 1.6. The nonimprovability of the conditions of Theorems 1.6–1.8
and Corollaries 1.3 and 1.4 follows from Remarks 1.1, 1.2, 1.4 and 1.5.

1.2. Equations with deviating arguments. Theorems 1.1–1.8 imply the
following assertions for differential equations with deviating arguments.
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Theorem 1.9. Let p ∈ L([a, b];R+), τ ∈ Mab, and at least one of the

following items be fulfilled:

a)
t∫

a

p(s)

τ(s)∫

a

p(ξ)dξds ≤ α

t∫

a

p(s)ds for t ∈ [a, b], (1.13)

where α ∈]0, 1[;

b)
b∫

a

p(s)σ(s)

( τ(s)∫

s

p(ξ)dξ

)
exp

[ b∫

s

p(η)dη

]
ds < 1, (1.14)

where σ(t) = 1
2 (1 + sgn(τ(t) − t)) for t ∈ [a, b];

c)
τ∗∫
a

p(s)ds 6= 0 and

ess sup

{ τ(t)∫

t

p(s)ds : t ∈ [a, b]

}
< λ∗, (1.15)

where

λ∗ = sup

{
1

x
ln

(
x+

x

exp
(
x

τ∗∫
a

p(s)ds
)
− 1

)
: x > 0

}
,

τ∗ = ess sup{τ(t) : t ∈ [a, b]}.

Then the operator ` defined by

`(v)(t)
def
= p(t)v(τ(t)) (1.16)

belongs to the set Sab(a).

Remark 1.7. The assumptions a) and b) in Theorem 1.9 are nonimprov-
able. More precisely, the condition α ∈]0, 1[ cannot be replaced by the
condition α ∈]0, 1], and the strict inequality in (1.14) cannot be replaced by
the nonstrict one (see Examples 4.1 and 4.2).

Theorem 1.10. Let g ∈ L([a, b];R+), µ ∈Mab, µ(t) ≤ t for t ∈ [a, b], and

either

b∫

a

g(s)ds ≤ 1 (1.17)
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or

b∫

a

g(s)

( s∫

µ(s)

g(ξ) exp

[ s∫

µ(ξ)

g(η)dη

]
dξ

)
ds ≤ 1, (1.18)

or g 6≡ 0 and

ess sup

{ t∫

µ(t)

g(s)ds : t ∈ [a, b]

}
< η∗, (1.19)

where

η∗ = sup

{
1

x
ln

(
x+

x

exp
(
x

b∫
a

g(s)ds
)
− 1

)
: x > 0

}
.

Then the operator ` defined by

`(v)(t)
def
= −g(t)v(µ(t)) (1.20)

belongs to the set Sab(a).

Remark 1.8. The condition (1.17), resp. (1.18) in Theorem 1.10 cannot
be replaced by the condition

b∫

a

g(s)ds ≤ 1 + ε,

resp.
b∫

a

g(s)

( s∫

µ(s)

g(ξ) exp

[ s∫

µ(ξ)

g(η)dη

]
dξ

)
ds ≤ 1 + ε,

no matter how small ε > 0 would be (see Example 4.4).

Theorem 1.11. Let p, g ∈ L([a, b];R+), τ, µ ∈ Mab, µ(t) ≤ t for t ∈ [a, b],
and the functions p, τ satisfy at least one of the conditions a), b), c) in

Theorem 1.9, while the functions g, µ satisfy either (1.17) or (1.18), or

(1.19) in Theorem 1.10. Then the operator ` defined by

`(v)(t)
def
= p(t)v(τ(t)) − g(t)v(µ(t)) (1.21)

belongs to the set Sab(a).

Remark 1.9. Theorem 1.11 is nonimprovable in a certain sense (see Ex-
amples 4.5 and 4.6).
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Theorem 1.12. Let g ∈ L([a, b];R+), µ ∈ Mab, and at least one of the

following items be fulfilled:

a)

b∫

t

g(s)

b∫

µ(s)

g(ξ)dξds ≤ α

b∫

t

g(s)ds for t ∈ [a, b],

where α ∈]0, 1[;

b)

b∫

a

g(s)σ(s)

( s∫

µ(s)

g(ξ)dξ

)
exp

[ s∫

a

g(η)dη

]
ds < 1,

where σ(t) = 1
2 (1 + sgn(t− µ(t))) for t ∈ [a, b];

c)

b∫

µ∗

g(s)ds 6= 0 and ess sup

{ t∫

µ(t)

g(s)ds : t ∈ [a, b]

}
< ϑ∗,

where

ϑ∗ = sup

{
1

x
ln

(
x+

x

exp
(
x

b∫
µ∗

g(s)ds
)
− 1

)
: x > 0

}
,

µ∗ = ess inf{µ(t) : t ∈ [a, b]}.

Then the operator ` defined by (1.20) belongs to the set Sab(b).

Theorem 1.13. Let p ∈ L([a, b];R+), τ ∈Mab, τ(t) ≥ t for t ∈ [a, b], and

either

b∫

a

p(s)ds ≤ 1 (1.22)

or

b∫

a

p(s)

( τ(s)∫

s

p(ξ) exp

[ τ(ξ)∫

s

p(η)dη

]
dξ

)
ds ≤ 1, (1.23)

or p 6≡ 0 and

ess sup

{ τ(t)∫

t

p(s)ds : t ∈ [a, b]

}
< κ∗, (1.24)

where

κ∗ = sup

{
1

x
ln

(
x+

x

exp
(
x

b∫
a

p(s)ds
)
− 1

)
: x > 0

}
.

Then the operator ` defined by (1.16) belongs to the set Sab(b).
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Theorem 1.14. Let p, g ∈ L([a, b];R+), τ, µ ∈Mab, τ(t) ≥ t for t ∈ [a, b],
and the functions g, µ satisfy at least one of the conditions a), b), c) in

Theorem 1.12, while the functions p, τ satisfy either (1.22) or (1.23), or

(1.24) in Theorem 1.13. Then the operator ` defined by (1.21) belongs to

the set Sab(b).

Remark 1.10. The nonimprovability of the conditions of Theorems 1.12–
1.14 follows from Remarks 1.7–1.9 and 1.5.

2. On Positive Solutions of the Homogeneous Equation

In this section we shall consider the problem on the existence of a sign
constant solution of the homogeneous equation (0.5). As we will see below,
this problem is quite close to the problem on the validity of a theorem on
differential inequalities. Moreover, for some cases they are equivalent.

Definition 2.1. We will say that an operator ` ∈ L̃ab belongs to the set
S̃ab, if the homogeneous equation (0.5) has at least one positive solution.

Remark 2.1. Let ` ∈ L̃ab be a t0−Volterra operator, where t0 ∈ [a, b],

and ` ∈ S̃ab. Evidently, for any a1 ∈ [a, t0] and b1 ∈ [t0, b], a1 6= b1, the

inclusion ` ∈ S̃a1b1 holds as well.

2.1. Main results.

Theorem 2.1. Let ` = `0 − `1, where `0, `1 ∈ Pab, `0 ∈ Sab(a), −`1 ∈

Sab(b), and `1 be an a−Volterra operator. Then ` ∈ S̃ab.

Remark 2.2. Theorem 2.1 is nonimprovable in the sense that the assump-
tion

`0 ∈ Sab(a), −`1 ∈ Sab(b)

cannot be replaced neither by the assumption

(1− ε)`0 ∈ Sab(a), −`1 ∈ Sab(b),

nor by the assumption

`0 ∈ Sab(a), −(1− ε)`1 ∈ Sab(b),

no matter how small ε > 0 would be (see Examples 4.5 and 4.6).

Moreover, the assumption on the operator `1 to be a−Volterra’s type in
Theorem 2.1 is important and cannot be omitted (see Example 4.7).

Nevertheless, in Theorem 2.2 and Corollary 2.1, there are established
conditions guaranteeing the inclusion ` ∈ S̃ab, without the assumption on
`1 to be a−Volterra’s type.
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Theorem 2.2. Let ` = `0−`1, where `0, `1 ∈ Pab, and there exist functions

α, β ∈ C̃([a, b];R+) satisfying the inequalities

β′(t) ≤ −`1(β)(t) + `0(α)(t) for t ∈ [a, b], (2.1)

α′(t) ≥ −`1(α)(t) + `0(β)(t) for t ∈ [a, b], (2.2)

α(t) ≤ β(t) for t ∈ [a, b]. (2.3)

Let, moreover, one of the following conditions hold:

α(t) > 0 for t ∈ [a, b]; (2.4)

α(t) > 0 for t ∈]a, b], α(a) = 0, and `0 ∈ Sab(a); (2.5)

α(t) > 0 for t ∈ [a, b[, α(b) = 0, and − `1 ∈ Sab(b). (2.6)

Then ` ∈ S̃ab.

Corollary 2.1. Let ` = `0 − `1, where `0, `1 ∈ Pab, and there exist a

function β ∈ C̃([a, b]; ]0,+∞[) satisfying the inequalities

β′(t) ≤ −`1(β)(t) for t ∈ [a, b], (2.7)

β(a)

b∫

a

`0(1)(s)ds < β(b). (2.8)

Then ` ∈ S̃ab.

According to Remark 1.5, Theorems 2.1, 2.2 and Corollary 2.1 imply

Theorem 2.3. Let ` = `0 − `1, where `0, `1 ∈ Pab, `0 ∈ Sab(a), −`1 ∈

Sab(b), and `0 be a b−Volterra operator. Then ` ∈ S̃ab.

Remark 2.3. The nonimprovability of the conditions of Theorem 2.3 fol-
lows from Remarks 2.2 and 1.5.

Theorem 2.4. Let ` = `0−`1, where `0, `1 ∈ Pab, and there exist functions

α, β ∈ C̃([a, b];R+) satisfying the inequality (2.3) and

β′(t) ≥ `0(β)(t) − `1(α)(t) for t ∈ [a, b],

α′(t) ≤ `0(α)(t) − `1(β)(t) for t ∈ [a, b].

Let, moreover, at least one of the conditions (2.4), (2.5), (2.6) be fulfilled.

Then ` ∈ S̃ab.

Corollary 2.2. Let ` = `0 − `1, where `0, `1 ∈ Pab, and there exist a

function β ∈ C̃([a, b]; ]0,+∞[) satisfying the inequalities

β′(t) ≥ `0(β)(t) for t ∈ [a, b], β(b)

b∫

a

`1(1)(s)ds < β(a).

Then ` ∈ S̃ab.
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2.2. Equations with deviating arguments. From the above theorems we im-
mediately get the following assertions for differential equations with devi-
ating arguments.

Theorem 2.5. Let p, g ∈ L([a, b];R+), τ, µ ∈ Mab, µ(t) ≤ t for t ∈ [a, b],
and the functions p, τ satisfy one of the items a), b), c) in Theorem 1.9,
while the functions g, µ satisfy one of the items a), b), c) in Theorem 1.12.

Then the operator ` defined by (1.21) belongs to the set S̃ab.

Theorem 2.6. Let p, g ∈ L([a, b];R+), τ, µ ∈ Mab, the functions g, µ

satisfy the item a), resp. c) in Theorem 1.12, and

(
(1− α)

(
1 +

b∫

a

g(s)ds

)
+

b∫

a

g(s)

b∫

µ(s)

g(ξ)dξds

) b∫

a

p(s)ds < 1− α,

resp.

(
exp

(
x0

b∫

a

g(s)ds

)
− 1 + δ

) b∫

a

p(s)ds < δ,

where x0 > 0 and δ ∈]0, 1[ are such that

t∫

µ(t)

g(s)ds <
1

x0
ln

(
x0 +

x0(1− δ)

exp
(
x0

b∫
µ∗
g(s)ds

)
− (1− δ)

)
for t ∈ [a, b].

Then the operator ` defined by (1.21) belongs to the set S̃ab.

Theorem 2.7. Let p, g ∈ L([a, b];R+), τ, µ ∈ Mab, τ(t) ≥ t for t ∈ [a, b],
and the functions p, τ satisfy one of the items a), b), c) in Theorem 1.9,
while the functions g, µ satisfy one of the items a), b), c) in Theorem 1.12.

Then the operator ` defined by (1.21) belongs to the set S̃ab.

Theorem 2.8. Let p, g ∈ L([a, b];R+), τ, µ ∈ Mab, the functions p, τ

satisfy the item a), resp. c) in Theorem 1.9, and

(
(1− α)

(
1 +

b∫

a

p(s)ds

)
+

b∫

a

p(s)

τ(s)∫

a

p(ξ)dξds

) b∫

a

g(s)ds < 1− α,

resp.

(
exp

(
x0

b∫

a

p(s)ds

)
− 1 + δ

) b∫

a

g(s)ds < δ,
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where x0 > 0 and δ ∈]0, 1[ are such that

τ(t)∫

t

p(s)ds <
1

x0
ln

(
x0 +

x0(1− δ)

exp
(
x0

τ∗∫
a

p(s)ds
)
− (1− δ)

)
for t ∈ [a, b].

Then the operator ` defined by (1.21) belongs to the set S̃ab.

3. Proofs

3.1. Proofs of the theorems on differential inequalities.

Proof of Theorem 1.1. In [3] there is proved that if ` ∈ Pab and there exists

a function γ ∈ C̃([a, b]; ]0,+∞[) satisfying (1.1), then ` ∈ Sab(a). The
opposite implication is trivial.

Proof of Corollary 1.1. a) It is not difficult to verify that the function

γ(t) = exp

( t∫

a

`(1)(s)ds

)
for t ∈ [a, b]

satisfies the assumptions of Theorem 1.1.
b) Put

γ(t) = (1− α)

k∑

j=0

ρj(t) +

m∑

j=k+1

ρj(t) for t ∈ [a, b].

Then by virtue of (1.2) and (1.3) the assumptions of Theorem 1.1 are fulfilled
and so ` ∈ Sab(a).

c) According to (1.4), we can choose ε > 0 such that

b∫

a

`(1)(s) exp

( b∫

s

`(1)(ξ)dξ

)
ds < 1− ε exp

( b∫

a

`(1)(ξ)dξ

)
.

Put

γ(t)=ε exp

( t∫

a

`(1)(ξ)dξ

)
+

t∫

a

`(1)(s) exp

( t∫

s

`(1)(ξ)dξ

)
ds for t ∈ [a, b].

Obviously, γ ∈ C̃([a, b]; ]0,+∞[), γ(t) < 1 for t ∈ [a, b], and since ` ∈ Pab,

γ′(t) = `(1)(t)γ(t) + `(1)(t) ≥ `(1)(t)γ(t) + `(γ)(t) for t ∈ [a, b].

Consequently, according to Theorem 1.1,

˜̀∈ Sab(a), (3.1)
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where

˜̀(v)(t) def
= `(1)(t)v(t) + `(v)(t) for t ∈ [a, b]. (3.2)

By Remark 0.3, it is sufficient to show that the problem (0.5) has no non-

trivial nonnegative solution. Let the function u ∈ C̃([a, b];R+) satisfy (0.5).
Put

w(t) = ϑ(u)(t) for t ∈ [a, b]. (3.3)

Obviously, w′(t) = `(u)(t) for t ∈ [a, b], and

0 ≤ u(t) ≤ w(t), w(a) = 0. (3.4)

On the other hand, by (1.5), (3.3), (3.4), and the condition ` ∈ Pab,

w′(t) = `(u)(t) ≤ `(w)(t) =

= `(1)(t)w(t) + `(w)(t) − `(1)(t)w(t) ≤ `(1)(t)w(t) + `(u)(t).

However, ` ∈ Pab, and so by (3.4) and (3.2),

w′(t) ≤ `(1)(t)w(t) + `(w)(t) = ˜̀(w)(t).

This together with (3.1), (3.4), and Remark 0.3, results in w ≡ 0, and
consequently, u ≡ 0.

Proof of Theorem 1.2. It is known (see, e.g., [10, Theorem 1.2′]) that if ` is
an a−Volterra operator, then the problem (0.5), (0.5) has only the trivial
solution. Consequently, according to Theorem 0.1, the problem (0.1), (0.3)
is uniquely solvable.

Let u be a solution of the problem (0.1), (0.3) with q ∈ L([a, b];R+) and
c ∈ R+. We show

u(t) ≥ 0 for t ∈ [a, b]. (3.5)

Note that if c = 0 and q 6≡ 0, then u cannot be still nonpositive in [a, b].
Indeed, if u(t) ≤ 0 for t ∈ [a, b], then by the condition −` ∈ Pab, from (0.1)
we get u′(t) ≥ 0, and so u(t) ≥ 0 for t ∈ [a, b], which is a contradiction.
Thus in any case we have

max{u(t) : t ∈ [a, b]} > 0.

Assume that (3.5) is violated. Then there exists t0 ∈]a, b[ such that

u(t0) < 0. (3.6)

Put

v(t) = λγ(t)− u(t) for t ∈ [a, b],

where

λ = max

{
u(t)

γ(t)
: t ∈ [a, t0]

}
.
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Analogously as above, since ` is an a−Volterra operator, on account of
−` ∈ Pab, we get max{u(t) : t ∈ [a, t0]} > 0, and so 0 < λ < +∞.
Obviously, there exists t1 ∈ [a, t0[ such that

v(t1) = 0. (3.7)

It is also clear that

v(t) ≥ 0 for t ∈ [a, t0]. (3.8)

By virtue of (0.1) and (1.7) we have

v′(t) ≤ `(v)(t) − q(t) for t ∈ [a, b].

Hence, taking into account (3.8), the condition −` ∈ Pab, and the fact that
` is an a−Volterra operator, we obtain

v′(t) ≤ 0 for t ∈ [a, t0].

On account of (3.7),
v(t) ≤ 0 for t ∈ [t1, t0],

whence, in view of (1.6) and (3.6), we get a contradiction 0 < v(t0) ≤ 0.

Proof of Theorem 1.3. It is known (see, e.g., [10, Theorem 1.2′]) that if ` is
an a−Volterra operator, then the problem (0.5), (0.5) has only the trivial
solution. Consequently, according to Theorem 0.1, the problem (0.1), (0.3)
is uniquely solvable.

Let u be a solution of the problem (0.1), (0.3) with q ∈ L([a, b];R+) and
c ∈ R+. Show that (3.5) is fulfilled. Assume the contrary that there exists
t∗ ∈]a, b] such that

u(t∗) < 0. (3.9)

Note also, as in the proof of Theorem 1.2, that

max{u(t) : t ∈ [a, t∗]} > 0. (3.10)

Choose t∗ ∈ [a, t∗[ such that

u(t∗) = max{u(t) : t ∈ [a, t∗]}. (3.11)

The integration of (0.1) from t∗ to t∗, on account of (1.8), (3.10), (3.11),
the assumptions −` ∈ Pab, q ∈ L([a, b];R+), and the fact that ` is an
a−Volterra operator, results in

u(t∗)− u(t∗) = −

t∗∫

t∗

`(u)(s)ds−

t∗∫

t∗

q(s)ds ≤ u(t∗)

b∫

a

|`(1)(s)|ds ≤ u(t∗).

However, the last inequality contradicts (3.9).

Proof of Corollary 1.2. It is known that if ` is an a−Volterra operator,
then the problem (0.5), (0.5) has only the trivial solution. Consequently,
according to Theorem 0.1, the problem (0.1), (0.3) is uniquely solvable.
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Let u be a solution of the problem (0.1), (0.3) with q ∈ L([a, b];R+) and
c ∈ R+. Show that (3.5) is fulfilled. From (0.1) we get

u′(t) = `(1)(t)u(t) + `(u)(t)− `(1)(t)u(t) + q(t) for t ∈ [a, b]. (3.12)

On the other hand, the integration of (0.1) from a to t, on account of (0.3),
yields

u(t) = c+

t∫

a

`(u)(s)ds+

t∫

a

q(s)ds for t ∈ [a, b]. (3.13)

By virtue of (3.13), from (3.12) we obtain

u′(t)=`(1)(t)u(t) + `(θ(u))(t)− `(1)(t)θ(u)(t) + q0(t) for t ∈ [a, b], (3.14)

where

q0(t) = `(q∗)(t)− `(1)(t)q∗(t) + q(t) for t ∈ [a, b],

θ(v)(t) =

t∫

a

`(v)(s)ds, q∗(t) = c+

t∫

a

q(s)ds for t ∈ [a, b].
(3.15)

In view of the condition −` ∈ Pab and the fact that ` is an a−Volterra
operator, we have

`(q∗)(t)− `(1)(t)q∗(t) ≥ 0 for t ∈ [a, b].

Thus, due to q ∈ L([a, b];R+), (3.15) yields

q0(t) ≥ 0 for t ∈ [a, b]. (3.16)

Put

w(t) = u(t) exp

(
−

t∫

a

`(1)(s)ds

)
for t ∈ [a, b]. (3.17)

Then w(a) = c, and (3.14) results in

w′(t) = exp

(
−

t∫

a

`(1)(s)ds

)
˜̀(w)(t) + q̃(t) for t ∈ [a, b], (3.18)

where

˜̀(v)(t) = `(θ̃(v))(t) − `(1)(t)θ̃(v)(t) for t ∈ [a, b],

θ̃(v)(t) = θ(ṽ)(t), ṽ(t) = v(t) exp




t∫

a

`(1)(s)ds


 for t ∈ [a, b],
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q̃(t) = q0(t) exp


−

t∫

a

`(1)(s)ds


 for t ∈ [a, b]. (3.19)

It is easy to verify that −˜̀ ∈ Pab and ˜̀ is an a−Volterra operator. By
virtue of (1.9), Theorem 1.3, and (3.16), (3.18), (3.19), we have w(t) ≥ 0
for t ∈ [a, b]. Consequently, in view of (3.17), u(t) ≥ 0 for t ∈ [a, b].

Proof of Theorem 1.4. Let u be a solution of the problem (0.1), (0.3), where
q ∈ L([a, b];R+) and c ∈ R+, and let v be a solution of the problem

v′(t) = −`1(v)(t) − `0([u]−)(t), v(a) = 0. (3.20)

Since −`1 ∈ Sab(a) and `0 ∈ Pab,

v(t) ≤ 0 for t ∈ [a, b]. (3.21)

Moreover, in view of the assumptions q ∈ L([a, b];R+) and `0 ∈ Pab, the
equality (3.20) results in

v′(t) ≤ −`1(v)(t) + `0(u)(t) + q(t) for t ∈ [a, b].

Therefore, according to Remark 0.2, by virtue of the assumption −`1 ∈
Sab(a),

v(t) ≤ u(t) for t ∈ [a, b]. (3.22)

Now (3.22) and (3.21) imply

v(t) ≤ −[u(t)]− for t ∈ [a, b]. (3.23)

On the other hand, due to (3.20), (3.23), and the condition `0 ∈ Pab, we
have

v′(t) ≥ `0(v)(t)− `1(v)(t) for t ∈ [a, b].

Hence, in view of `1 ∈ Pab, (3.21) and Remark 0.2, the inclusion `0 ∈ Sab(a)
yields

v(t) ≥ 0 for t ∈ [a, b],

and, consequently, according to (3.22), the inequality (3.5) holds.
We have proved that if u is a solution of (0.1), (0.3) with q ∈ L([a, b];R+)

and c ∈ R+, then the inequality (3.5) is fulfilled. Now show that the
homogeneous problem (0.5), (0.5) has only the trivial solution. Indeed, let
u be a solution of (0.5), (0.5). Since −u is also a solution of (0.5), (0.5), it
follows from the above that

u(t) ≥ 0, −u(t) ≥ 0 for t ∈ [a, b],

and, consequently, u ≡ 0.

Theorems 1.5–1.8 and Corollaries 1.3 and 1.4 follow from Theorems 1.1–
1.4, Corollaries 1.1 and 1.2, and Remark 1.5 .
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Proof of Theorem 1.9. a) According to (1.13) we have

ρ2(t) ≤ αρ1(t) for t ∈ [a, b],

where

ρ1(t) =

t∫

a

p(s)ds =

t∫

a

`(1)(s)ds for t ∈ [a, b],

ρ2(t) =

t∫

a

p(s)

τ(s)∫

a

p(ξ)dξds =

t∫

a

`(ρ1)(s)ds for t ∈ [a, b].

Thus for m = 2, k = 1 the condition (1.2) in Corollary 1.1 b) is fulfilled.
b) Let ` be an operator defined by

`(v)(t)
def
= p(t)σ(t)

τ(t)∫

t

p(s)v(τ(s))ds. (3.24)

Obviously, ` ∈ Pab, and for any v ∈ Ca([a, b];R+),

`(ϑ(v))(t) − `(1)(t)ϑ(v)(t)=p(t)

τ(t)∫

t

p(s)v(τ(s))ds≤`(v)(t) for t ∈ [a, b],

where

ϑ(v)(t) =

t∫

a

`(v)(s)ds for t ∈ [a, b].

On the other hand, from (1.14) it follows the inequality (1.4), and the
assumptions of Corollary 1.1 c) are fulfilled.

c) According to (1.15), there exists ε > 0 such that

τ(t)∫

t

p(s)ds < λ∗ − ε for t ∈ [a, b]. (3.25)

Choose x0 > 0 and δ ∈]0, 1[ such that

1

x0
ln

(
x0 +

x0(1− δ)

exp
(
x0

τ∗∫
a

p(s)ds
)
− (1− δ)

)
> λ∗ − ε, (3.26)

and put

γ(t) = exp

(
x0

t∫

a

p(s)ds

)
− 1 + δ for t ∈ [a, b].



72

It can be easily verified that on account of (3.25) and (3.26), the inequlaity
(1.1) is fulfilled, and so the assumptions of Theorem 1.1 are satisfied.

Proof of Theorem 1.10. Obviously, if (1.17) holds, then the operator `
defined by (1.20) satisfies the condition (1.8) and, according to Theorem 1.3,
` ∈ Sab(a).

If (1.18) holds, then the operator ` defined by (1.20) satisfies the con-

dition (1.9), where ˜̀ is defined by (1.10), and, according to Corollary 1.2,
` ∈ Sab(a).

Now assume that the inequality (1.19) holds. Then there exists ε > 0
such that

t∫

µ(t)

g(s)ds < η∗ − ε for t ∈ [a, b]. (3.27)

Choose x0 > 0 and δ ∈]0, 1[ such that

1

x0
ln

(
x0 +

x0(1− δ)

exp
(
x0

b∫
a

g(s)ds
)
− (1− δ)

)
> η∗ − ε, (3.28)

and put

γ(t) = exp

(
x0

b∫

t

g(s)ds

)
− 1 + δ for t ∈ [a, b].

It can be easily verified that by virtue of (3.27) and (3.28), the inequlaities
(1.6) and (1.7) are fulfilled, and so the assumptions of Theorem 1.2 are
satisfied.

Theorem 1.11 immediately follows from Theorems 1.4, 1.9 and 1.10. The-
orems 1.12–1.14 follow from Theorems 1.9–1.11 and Remark 1.5.

3.2. Proofs of the theorems on positive solutions of the homogeneous equa-

tion. To prove Theorems 2.1 and 2.2 we will need some auxiliary proposi-
tions.

Proposition 3.1. Pab ∩ S̃ab = Pab ∩ Sab(a).

Proof. Let ` ∈ Pab ∩ Sab(a), and let u be a solution of

u′(t) = `(u)(t), u(a) = 1. (3.29)

Since ` ∈ Sab(a), we have u(t) ≥ 0 for t ∈ [a, b]. By virtue of ` ∈ Pab,
from (3.29) we get u′(t) ≥ 0 for t ∈ [a, b], and, consequently, u(t) > 0 for

t ∈ [a, b]. Therefore, Pab ∩ Sab(a) ⊆ Pab ∩ S̃ab.

Suppose now ` ∈ Pab∩S̃ab. According to Definition 2.1, the equation (0.5)
has a positive solution γ. So, from Theorem 1.1 it follows that ` ∈ Sab(a).

Therefore, Pab ∩ S̃ab ⊆ Pab ∩ Sab(a).
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Proposition 3.2. Let ` be a b−Volterra operator, ` ∈ Pab ∩ S̃ab. Then

` ∈ Sab(b).

Proof. Since ` is a b−Volterra operator, the problem (0.5), (0.5) has only
the trivial solution. Let u be a solution of (0.1), (0.4) with c ∈ R+, q ∈
L([a, b];R−). Put

vε = ε+ u(t) for t ∈ [a, b], (3.30)

where ε > 0, and show that

vε(t) > 0 for t ∈ [a, b]. (3.31)

Indeed, if (3.31) does not hold, then, in view of vε(b) > 0, there exists
tε ∈ [a, b[ such that

vε(t) > 0 for t ∈]tε, b], vε(tε) = 0. (3.32)

Obviously,

v′ε(t) = `(vε)(t) + q(t)− ε`(1)(t) for t ∈ [a, b],

and by virtue of the assumptions q ∈ L([a, b];R−), ` ∈ Pab, ε > 0,

v′ε(t) ≤ `(vε)(t) for t ∈ [a, b]. (3.33)

Since ` is a b−Volterra operator, due to (3.32), (3.33), Remark 0.3 and

Proposition 3.1, we have ` 6∈ S̃tεb. Hence, according to Remark 2.1, we get

a contradiction with the assumption ` ∈ S̃ab.
Now, in view of arbitrariness of ε > 0, (3.30) and (3.31) result in

u(t) ≥ 0 for t ∈ [a, b],

and consequently, ` ∈ Sab(b).
According to Remark 1.5, Propositions 3.1 and 3.2 imply

Proposition 3.3. (−Pab) ∩ S̃ab = (−Pab) ∩ Sab(b), where −Pab = {` ∈

L̃ab : −` ∈ Pab}.

Proposition 3.4. Let ` be an a−Volterra operator, ` ∈ (−Pab)∩S̃ab. Then

` ∈ Sab(a).

It is clear that Proposition 3.2, resp. Proposition 3.4, in view of Propo-
sition 3.1, resp. Proposition 3.3, can be formulated in an equivalent form.

Proposition 3.5. Let ` be a b−Volterra operator, ` ∈ Pab ∩ Sab(a). Then

` ∈ Sab(b).

Proposition 3.6. Let ` be an a−Volterra operator, ` ∈ (−Pab) ∩ Sab(b).
Then ` ∈ Sab(a).



74

Lemma 3.1. Let ` = `0 − `1, where `0, `1 ∈ Pab, and let there exist func-

tions α, β ∈ C̃([a, b];R+) satisfying the inequalities (2.3), and

β′(t) ≥ `0(β)(t) − `1(α)(t) + q(t) for t ∈ [a, b],

α′(t) ≤ `0(α)(t) − `1(β)(t) + q(t) for t ∈ [a, b],
(3.34)

resp.

β′(t) ≤ −`1(β)(t) + `0(α)(t) + q(t) for t ∈ [a, b],

α′(t) ≥ −`1(α)(t) + `0(β)(t) + q(t) for t ∈ [a, b].
(3.35)

Then for every c ∈ [α(a), β(a)], resp. c ∈ [α(b), β(b)], the equation (0.1)
has at least one solution u satisfying the initial condition (0.3), resp. (0.4),
and inequalities

α(t) ≤ u(t) ≤ β(t) for t ∈ [a, b]. (3.36)

Proof. Define operator χ : C([a, b];R) → C([a, b];R) by

χ(v)(t)
def
=

1

2

(
|v(t) − α(t)| − |v(t)− β(t)| + α(t) + β(t)

)
. (3.37)

Obviously,

α(t) ≤ χ(v)(t) ≤ β(t) for t ∈ [a, b], v ∈ C([a, b];R). (3.38)

Let T : C([a, b];R) → C([a, b];R) be an operator defined by

T (v)(t)
def
= c+

t∫

a

(̂̀0(v)(s) − ̂̀1(v)(s))ds +

t∫

a

q(s)ds, (3.39)

resp.

T (v)(t)
def
= c−

b∫

t

(̂̀0(v)(s) − ̂̀1(v)(s))ds −
b∫

t

q(s)ds, (3.40)

where

̂̀
0(v)(t)

def
= `0(χ(v))(t), ̂̀

1(v)(t)
def
= `1(χ(v))(t).

By virtue of (3.38), and the assumptions `0, `1 ∈ Pab, we have that for each

v ∈ C([a, b];R), the function T (v) belongs to the set C̃([a, b];R) and

|T (v)(t)| ≤M for t ∈ [a, b], (3.41)

`0(α)(t) − `1(β)(t) + q(t) ≤
d

dt
T (v)(t) ≤

≤ `0(β)(t) − `1(α)(t) + q(t) for t ∈ [a, b], (3.42)
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where

M = |c|+

b∫

a

(
`0(|α|+ |β|)(s) + `1(|α|+ |β|)(s) + |q(s)|

)
ds.

According to (3.41), (3.42), and the Arzelà–Ascoli lemma, it is clear that
the operator T transforms the space C([a, b];R) into its relatively compact
subset. Therefore, by Schauder’s fixed point theorem, there exists u ∈
C([a, b];R) such that

u(t) = T (u)(t) for t ∈ [a, b]. (3.43)

Evidently, u ∈ C̃([a, b];R), and u(a) = c, resp. u(b) = c, i.e.,

u(a)− β(a) ≤ 0, resp. u(b)− β(b) ≤ 0. (3.44)

In view of (3.42), (3.43), and (3.34), resp. (3.35), we obtain

(u(t)− β(t))′ =
d

dt
T (u)(t)− β′(t) ≤ `0(β)(t) − `1(α)(t) + q(t)− β′(t) ≤ 0

for t ∈ [a, b],

resp.

(u(t)− β(t))′ =
d

dt
T (u)(t)− β′(t) ≥ `0(α)(t) − `1(β)(t) + q(t)− β′(t) ≥ 0

for t ∈ [a, b].

Thus on account of (3.44) we have u(t) ≤ β(t) for t ∈ [a, b]. Analogously
one can prove u(t) ≥ α(t) for t ∈ [a, b], and so (3.36) is fulfilled.

According to (3.36), (3.37), and (3.39), resp. (3.40), from (3.43) it follows
that

u(t) = c+

t∫

a

(`0(u)(s)− `1(u)(s))ds+

t∫

a

q(s)ds for t ∈ [a, b],

resp.

u(t) = c−

b∫

t

(`0(u)(s)− `1(u)(s))ds−

b∫

t

q(s)ds for t ∈ [a, b],

i.e., u is a solution of (0.1) satisfying (0.3), resp. (0.4).

Proof of Theorem 2.1. According to Proposition 3.6, we have −`1 ∈ Sab(a),
and therefore Theorem 1.4 implies ` ∈ Sab(a). By Definition 0.1, the homo-
geneous problem (0.5), (0.5) has only the trivial solution, and consequently,
the problem (3.29) has a unique solution.
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Let u be a solution of (3.29). Then in view of the condition ` ∈ Sab(a)
we have

u(t) ≥ 0 for t ∈ [a, b]. (3.45)

Therefore, by virtue of the assumption `0 ∈ Pab,

u′(t) ≥ −`1(u)(t) for t ∈ [a, b]. (3.46)

Suppose that there exists b1 ∈]a, b] such that

u(b1) = 0.

Then since `1 is an a−Volterra operator, on account of (3.45) and (3.46),

from Remark 0.3 and Proposition 3.3 it follows that −`1 6∈ S̃ab1 . But this, in

view of Remark 2.1, contradicts the assumption −`1 ∈ S̃ab. Consequently,
u is a positive solution of (0.5), i.e., ` ∈ S̃ab.

Proof of Theorem 2.2. According to (2.1)–(2.3), from Lemma 3.1 it follows
that (0.5) has a solution u satisfying the initial condition u(b) = β(b), and

u(t) ≥ α(t) for t ∈ [a, b]. (3.47)

Assume that (2.4) is fulfilled. Then from (3.47) it follows that u is a positive

solution of (0.5), and consequently ` ∈ S̃ab.
Now assume that (2.5), resp. (2.6) is fulfilled. Then from (3.47) it follows

that

u(t) > 0 for t ∈]a, b], resp. for t ∈ [a, b[. (3.48)

By virtue of (3.48), the condition `1 ∈ Pab, resp. the condition `0 ∈ Pab,
from (0.5) we get

u′(t) ≤ `0(u)(t), resp. u′(t) ≥ `1(u)(t) for t ∈ [a, b].

Thus due to `0 ∈ Sab(a), resp. −`1 ∈ Sab(b), and Remark 0.3, we have
u(a) 6= 0, resp. u(b) 6= 0. Therefore, on account of (3.48), u is a positive

solution of (0.5), and consequently, ` ∈ S̃ab.

Proof of Corollary 2.1. According to (2.8), there exists ε > 0 such that

ε+ β(a)

b∫

a

`0(1)(s)ds ≤ β(b). (3.49)

Put

α(t) = ε+ β(a)

t∫

a

`0(1)(s)ds for t ∈ [a, b].

From (2.7) it follows that β is nondecreasing, i.e.,

β(b) ≤ β(t) ≤ β(a) for t ∈ [a, b]. (3.50)
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Consequently, it is obvious that the inequalities (2.1), (2.2), and (2.4) hold.

On the other hand, by (3.49) and (3.50) we have

α(t) ≤ ε+ β(a)

b∫

a

`0(1)(s)ds ≤ β(b) ≤ β(t) for t ∈ [a, b].

Thus the assumptions of Theorem 2.2 are fulfilled, and therefore ` ∈ S̃ab.

Theorems 2.3 and 2.4, and Corollary 2.2 follow from Theorems 2.1 and
2.2, Corollary 2.1, and Remark 1.5. Theorems 2.5 and 2.7 follow from
Theorems 1.9, 1.12, 2.1 and 2.3.

Proof of Theorem 2.6. Put

β(t) = (1− α)

(
1 +

b∫

t

g(s)ds

)
+

b∫

t

g(s)

b∫

µ(s)

g(ξ)dξds,

resp.

β(t) = exp

(
x0

b∫

t

g(s)ds

)
− 1 + δ.

It is not difficult to verify that the function β satisfies the assumptions of
Corollary 2.1.

Theorem 2.8 follows from Theorem 2.6 and Remark 1.5.

4. Examples

On Remark 1.1. If (0.5), (0.5) has only the trivial solution, then accord-
ing to the Fredholm property, the problem (3.29) has a unique solution u.
Suppose that u assumes negative values. Put

m = max{−u(t) : t ∈ [a, b]},

and choose t0 ∈ [a, b] such that u(t0) = −m. The integration of (0.5) from
a to t0 yields

m+ 1 = −

t0∫

a

`(u)(s)ds ≤ m

b∫

a

`(1)(s)ds.

On account of the assumption
b∫

a

`(1)(s)ds = 1, we get a contradiction m <

m. Consequently, u(t) ≥ 0 for t ∈ [a, b], and in view of the assumption
` ∈ Pab, from (3.29) it follows that u(t) > 0 for t ∈ [a, b]. Thus, according
to Theorem 1.1, we have ` ∈ Sab(a).
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Example 4.1. Let τ ≡ b and p ∈ L([a, b];R+) be such that

b∫

a

p(s)ds = 1.

Obviously, for α = 1 the condition (1.13) is fulfilled, and for every m > k

the condition (1.2) is satisfied, where ` is defined by (1.16). Furthermore,

b∫

a

p(s)σ(s)

τ(s)∫

s

p(ξ)dξ exp

( b∫

s

p(η)dη

)
ds = 1,

i.e.,
b∫

a

`(1)(s) exp

( b∫

s

`(1)(η)dη

)
ds = 1,

where ` is an operator defined by (3.24), and the inequality (1.5) is fulfilled.
On the other hand, the function

u(t) =

t∫

a

p(s)ds for t ∈ [a, b]

is a nontrivial solution of the problem (0.5), (0.5). Therefore, according to
Definition 0.1, ` 6∈ Sab(a).

This example shows that the condition α ∈]0, 1[ in Corollary 1.1 b) and
in Theorem 1.9 a) cannot be replaced by the condition α ∈]0, 1]. Also the
strict inequalities (1.4) and (1.14) in Corollary 1.1 c) and Theorem 1.9 b)
cannot be replaced by the nonstrict ones.

Example 4.2. Let τ ≡ b and p ∈ L([a, b];R+) be such that

b∫

a

p(s)ds = 1 + ε,

where ε > 0. Then for α = 1 + ε the condition (1.13) is fulfilled, and for a
natural number m and k = m − 1, the condition (1.2) is satisfied, where `
is an operator defined by (1.16). Furthermore,

b∫

a

p(s)σ(s)

τ(s)∫

s

p(ξ)dξ exp

( b∫

s

p(η)dη

)
ds = 1 + δ,

i.e.,
b∫

a

`(1)(s) exp

( b∫

s

`(1)(η)dη

)
ds = 1 + δ,
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where δ = εe1+ε, ` is defined by (3.24), and the inequality (1.5) is fulfilled.
On the other hand, the problem

u′(t) = p(t)u(τ(t)), u(a) = 0 (4.1)

has only the trivial solution. Indeed, the integration of (4.1) from a to b

yields u(b) = (1 + ε)u(b), i.e., u(b) = 0, and so u′(t) = 0 for t ∈ [a, b], which
together with u(a) = 0 results in u ≡ 0.

However,

u(t) = 1−
1

ε

t∫

a

p(s)ds

is a solution of (3.29) with ` defined by (1.16), and u(b) = − 1
ε
< 0. There-

fore, ` 6∈ Sab(a).

This example shows that if ` ∈ Pab satisfies

b∫

a

`(1)(s)ds > 1

and the problem (0.5), (0.5) has only the trivial solution, then it may happen
that the operator ` does not belong to the set Sab(a).

Example 4.3. Let b1 ∈]a, b[ and ε ∈]0, 2[. Choose g ∈ L([a, b];R+) such
that

b1∫

a

g(s)ds =
ε

2
,

b∫

b1

g(s)ds = 1 +
ε

2
.

Put

µ(t) =

{
a for t ∈ [a, b1[

b1 for t ∈ [b1, b]
, γ(t) =





ε
2 −

t∫
a

g(s)ds for t ∈ [a, b1[

0 for t ∈ [b1, b]

.

Obviously, all the assumptions of Theorem 1.2 are fulfilled except of (1.6),
where ` is defined by (1.20).

On the other hand, since ` is an a−Volterra operator, the function

u(t) =





1−
t∫

a

g(s)ds for t ∈ [a, b1[

(1− ε
2 )
(
1−

t∫
b1

g(s)ds
)

for t ∈ [b1, b]

is a unique solution of (3.29), and u(b) = − ε
2 (1 − ε

2 ) < 0. Consequently,
` 6∈ Sab(a).

This example shows that the condition (1.6) cannot be replaced by

γ(t) > 0 for t ∈ [a, b1[,
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where b1 ∈]a, b[ is an arbitrarily fixed point.

Example 4.4. Let ε > 0, µ ≡ a, and g ∈ L([a, b];R+) be such that

b∫

a

g(s)ds = 1 + ε.

It is clear that the operator ` defined by (1.20) satisfies

b∫

a

|`(1)(s)|ds ≤ 1 + ε. (4.2)

Obviously, since ` is an a−Volterra operator, the function

u(t) = 1−

t∫

a

g(s)ds for t ∈ [a, b]

is a unique solution of (3.29). On the other hand, u(b) = −ε < 0. Therefore,
` 6∈ Sab(a).

This example shows that the condition (1.8), resp. (1.17) in Theorem 1.3,
resp. in Theorem 1.10, cannot be replaced by the condition (4.2), resp.

b∫

a

g(s)ds ≤ 1 + ε,

no matter how small ε > 0 would be.
This example also shows that the condition (1.9), resp. (1.18) in Corol-

lary 1.2, resp. in Theorem 1.10 cannot be replaced by the condition

b∫

a

|˜̀(1)(s)| exp

( s∫

a

|`(1)(ξ)|dξ

)
ds ≤ 1 + ε,

resp.
b∫

a

g(s)

( s∫

µ(s)

g(ξ) exp

[ s∫

µ(ξ)

g(η)dη

]
dξ

)
ds ≤ 1 + ε,

no matter how small ε > 0 would be.

Example 4.5. Let ε > 0, τ ≡ b, µ ≡ a, and p, g ∈ L([a, b];R+) be such
that

b∫

a

p(s)ds = 1 + ε,

b∫

a

g(s)ds < 1.
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Obviously, (1− ε)`0 ∈ Sab(a) and −`1 ∈ Sab(a), where

`0(v)(t)
def
= p(t)v(τ(t)), `1(v)(t)

def
= g(t)v(µ(t)). (4.3)

Note also that the problem (0.5), (0.5) has only the trivial solution. Indeed,
the integration of (0.5) from a to b yields u(b) = (1 + ε)u(b), whence we
get εu(b) = 0, i.e., u(b) = 0. Consequently, u′(t) = 0, which together with
u(a) = 0 results in u ≡ 0. Therefore, the problem (3.29) with ` = `0 − `1
has a unique solution u.

On the other hand, the integration of (3.29) from a to b yields

u(b)− 1 = u(b)(1 + ε)−

b∫

a

g(s)ds,

whence we get

εu(b) =

b∫

a

g(s)ds− 1 < 0,

i.e., u(b) < 0. Therefore, ` 6∈ Sab(a).

Example 4.6. Let ε > 0, τ ≡ b, µ ≡ a, and p, g ∈ L([a, b];R+) be such
that

b∫

a

p(s)ds < 1,

b∫

a

g(s)ds = 1 + ε.

Obviously, `0 ∈ Sab(a) and −(1− ε)`1 ∈ Sab(a), where `0 and `1 are defined
by (4.3). Note also that the problem (0.5), (0.5) has only the trivial solution.
Therefore, the problem (3.29) with ` = `0 − `1 has a unique solution u.

On the other hand, the integration of (3.29) from a to b yields

u(b)− 1 = u(b)

b∫

a

p(s)ds− (1 + ε),

whence we get

ε = u(b)

( b∫

a

p(s)ds− 1

)
,

i.e., u(b) < 0. Therefore, ` 6∈ Sab(a).

Examples 4.5 and 4.6 show that the assumptions

`0 ∈ Sab(a), −`1 ∈ Sab(a)

in Theorem 1.4 can be replaced neither by

(1− ε)`0 ∈ Sab(a), −`1 ∈ Sab(a),
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nor by

`0 ∈ Sab(a), −(1− ε)`1 ∈ Sab(a),

no matter how small ε > 0 would be.
Moreover, these examples show, that the assumptions

`0 ∈ Sab(a), −`1 ∈ Sab(b)

in Theorem 2.1 can be replaced neither by

(1− ε)`0 ∈ Sab(a), −`1 ∈ Sab(b),

nor by

`0 ∈ Sab(a), −(1− ε)`1 ∈ Sab(b),

no matter how small ε > 0 would be.

Example 4.7. Let τ ≡ a, µ ≡ b, c ∈]a, b[, and choose p, g ∈ L([a, b];R+)
such that

c∫

a

p(s)ds = 0,

b∫

c

p(s)ds = 1,

c∫

a

g(s)ds = 1,

b∫

c

g(s)ds = 0.

Obviously, `0 ∈ Sab(a), −`1 ∈ Sab(b), where `0 and `1 are defined by (4.3),
since `0, resp. `1 is an a−Volterra operator, resp. a b−Volterra operator
(see Corollary 1.1 a) and Corollary 1.3 a)).

Now suppose that u is a solution of (0.5), where ` = `0 − `1. Then the
integration of (0.5) from a to c and from c to b yields

u(c)− u(a) = −u(b),

u(b)− u(c) = u(a).

Hence we obtain u(c) = 0, i.e., every solution of (0.5) has a zero at the

point c. Consequently, ` 6∈ S̃ab.
This example shows that the assumption on the operator `1, resp. `0, in

Theorem 2.1, resp. in Theorem 2.3, to be an a−Volterra operator, resp. a
b−Volterra operator, cannot be omitted.

5. Further Remarks

From theorems on differential inequalities follows the theorems on inte-
gral inequalities.

Theorem 5.1. Let ` ∈ Pab ∩ Sab(a), c ∈ R, q ∈ L([a, b];R), and w ∈
C([a, b];R) be such that

w(t) ≤ c+

t∫

a

(
`(w)(s) + q(s)

)
ds for t ∈ [a, b]. (5.1)
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Then the inequality

w(t) ≤ u(t) for t ∈ [a, b] (5.2)

holds, where u is a solution of the problem (0.1), (0.3).

Proof. Put

v(t) = c+

t∫

a

(
`(w)(s) + q(s)

)
ds for t ∈ [a, b]. (5.3)

Obviously, v ∈ C̃([a, b];R).
In view of (5.1), (5.3), and the condition ` ∈ Pab we have

v′(t) = `(w)(t) + q(t) ≤ `(v)(t) + q(t) for t ∈ [a, b], v(a) = c.

According to Remark 0.2, on account of the condition ` ∈ Sab(a), we have

v(t) ≤ u(t) for t ∈ [a, b].

The last inequality, by virtue of (5.1) and (5.3), yields (5.2).

According to Remark 1.5, Theorem 5.1 implies

Theorem 5.2. Let −` ∈ Pab, ` ∈ Sab(b), c ∈ R, q ∈ L([a, b];R), and

w ∈ C([a, b];R) be such that

w(t) ≤ c−

b∫

t

(
`(w)(s) + q(s)

)
ds for t ∈ [a, b].

Then the inequality (5.2) holds, where u is a solution of the problem (0.1),
(0.4).

Remark 5.1. For the case where `(u)(t) = p(t)u(t), Theorems 5.1 and 5.2
coincide with the well–known Gronwall–Belman lemma (see, e.g., [8]).
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11. I. Kiguradze and B. Půža, Conti–Opial type theorems for systems

of functional differential equations. (Russian) Differentsial’nye Uravneniya

33(1997), No. 2, 185–194.
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