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A MAXIMUM PRINCIPLE AND THE
IMPLICIT SIGNORINI PROBLEM



Abstract. In the present paper is given the analogue of the maximum
principle for a scalar, linear eliptic equation, in coercive case (Lemma 1.4).
The result is applied to locate the set of coincidence in the classical prob-
lem of Signorini for some concrete cases (Corollaries 1.6–1.8) and also, for
the formulation of the maximum principle for the same problem (Theorem
1.5). An implicit Signorini problem was studied earlier by Bensoussan and
Lions. They investigated the mentioned problem, proved existence, but the
uniqueness result was still open. From the above mentioned results are
derived uniqueness of a solution under asserted conditions. If some of as-
serted conditions is missing, the existence might fail; in particular, there
are found a system of data, under which the problem has no solution at
all. Next we state more general Siniorini’s Implicit problem. In some cases,
there is proved uniqueness of solution and is given a sufficient condition
of solvability of the problem (Theorem 3.1). Further, is consider the im-
plicit Signorini problem in elasticity with the Diriclet and the Neumann
boundary conditions (Problem (4.20)–(4.21)). Existence of solution and, in
some cases, also uniqueness is proved (Theorem 4.4). In general, unique-
ness of solution, can equivalently be reduced to some assumption, similar
to “maximum principle” (Lemma 1.4), of the theory of elasticity.
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1. A Maximum Principle in the Classical Signorini Problem

Let Ω be a bounded domain in R
n, Γ be the boundary of Ω : Γ = ∂Ω,

Γ ∈ C2, ν be the outward normal to Ω; and Hs(Ω) and Hs(Γ) be real
Sobolev spaces. The norm in these spaces will be denoted by ‖ · ‖s,Ω and
‖ · ‖s,Γ, respectively. Define the bilinear form on the space H1(Ω)×H1(Ω)
as follows:

a(u, v) =

n∑

i,j=1

∫

Ω

aij(u, v)
∂u

∂xi

∂v

∂xj
dx+

n∑

i=1

∫

Ω

ai
∂u

∂xi
dx+

∫

Ω

a0uvdx,

aij , ai, a0 ∈ L
∞(Rn),

n∑

i,j=1

aijξiξj ≥ α0|ξ|
2,

a0(x) ≥ a0, a0 = const > 0.

(1.1)

Suppose that the form a(u, v) is coercive:

a(u, u) ≥ α||u||21,Ω, u ∈ H1(Ω). (1.2)

Define the following operators:

A(x, ∂) = −
n∑

ij=1

∂

∂xj

(
aij

∂

∂xi

)
+

n∑

i=1

ai
∂

∂xi
+ a0,

∂

∂νA
=

n∑

ij=1

aijνj
∂

∂xi
.

(1.3)

As it is known, if u ∈ H1(Ω), Au ∈ L2(Ω), then
∂u

∂νA
∈ H

− 1
2 (Γ) and the

following Green formula is true:

a(u, v) =
〈 ∂u

∂νA
, v

〉
Γ

+

∫

Ω

Auvdx. (1.4)

Here 〈· , ·〉
Γ

is the relation of duality between H
1
2 (Γ) and H

− 1
2 (Γ).

Let us now formulate some definitions.

Let F ∈H
− 1

2 (Γ) and Γ0⊂Γ be any measurable subset of the boundary,
mesΓ0>0.

Definition. (i) We say that F |Γ0
≥ 0 if

〈F, ϕ〉Γ ≥ 0, ϕ ∈ H
1
2 (Γ), ϕ ≥ 0, ϕ|

Γ\Γ0
= 0.

In the sequel we will write F ≥ 0 when Γ = Γ0.
(ii) We say F |

Γ0
= 0 if

〈F, ϕ〉Γ = 0, ϕ ∈ H
1
2 (Γ), ϕ|

Γ\Γ0
= 0.



20

The classical Signorini problem is defined as follows: find u ∈ H1(Ω)
such that

Au = f, f ∈ L2(Ω);

u|
Γ
≥ h,

∂u

∂νA

∣∣∣∣
Γ

≥ 0, h ∈ H
1
2 (Γ);

〈 ∂u

∂νA
, u− h

〉

Γ

= 0.

(1.5)

This problem is known to be uniquely solvable in the space H1(Ω) (since
a(u, v) is coercive).

It is intersting to consider the problem: where the identity u = h holds?
To answer this and other questions, we give some lemmas.

Lemma 1.1. If u ∈ H1(Ω), then

(i)
∂u

∂xi

∣∣∣∣
D

= 0, 1 ≤ i ≤ n, where D = {x ∈ Ω, u(x) = 0}.

(ii) max(u, 0) ∈ H1(Ω) and

[max(u, 0)]xi
=

{
uxi

, {x ∈ Ω, u(x) > 0},

0, {x ∈ Ω, u(x) ≤ 0}.

Remark. All equalities and inequalities of this lemma are assumed to be
fulfilled almost everywhere.

For the proof of the lemma see [3].

Lemma 1.2. If u ∈ H1(Ω), then max(u, 0)|
Γ

= max(u|
Γ
, 0).

Proof. First we will show that if

uk ∈ H1(Ω), uk
H1(Ω)
−−−−→ u, then max(uk, 0)

H1(Ω)
−−−−→ max(u, 0), i.e.,

max(uk, 0)
L2(Ω)
−−−−→ max(u, 0) and [max(uk, 0)]xi

L2(Ω)
−−−−→ [max(u, 0)]xi

,

1 ≤ i ≤ n. We begin by proving the latter claim. Take

E={x∈Ω, uk(x)→u(x), ukxi
(x)→uxi

(x), 1 ≤i≤n} \

{x∈Ω, ∃i∈1, n, u(x)=0, uxi
(x) 6=0}.

By virtue of Lemma 1.1. (i) it is obvious that mesE = mes Ω. Show that if
x ∈ E, then

[max(uk, 0)]xi
(x) → [max(u, 0)]xi

(x).

Indeed, assume that u(x) > 0. Since x ∈ E, there exists k ∈ N such that if
k ≥ K, then uk(x) > 0. Now, due to (ii) of Lemma 1.1, for k ≥ K we have

[max(uk, 0)]xi
(x) = ukxi

(x) → uxi
(x) = [max(u, 0)]xi

(x), k →∞.
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Similarly, for u(x) < 0 there exists k ∈ N such that if k ≥ K, then uk(x) ≤ 0
and therefore by (ii) of Lemma 1.1 we obtain

0 = [max(uk, 0)]xi
(x) → [max(u, 0)]xi

(x) = 0, k ≥ K, k →∞.

When u(x) = 0, one can split the sequence uk(x) into two parts: up(x) > 0
and um(x) ≤ 0. Consider the case where these parts are infinite. Clearly,
[max(um, 0)]xi

(x) → [max(u, 0)]xi
(x)]. Show that the above reasoning holds

for the second sequence, too. Since x ∈ E, then, by Lemma 1.1,

[max(up, 0)]xi
(x) = upxi

(x) → uxi
(x) = 0 = [max(u, 0)]xi

(x),

i.e., [max(uk, 0)]xi
→ [max(u, 0)]xi

almost everywhere in the domain Ω. On
the other hand,

‖[max(uk, 0)]xi
‖

L2(Ω)
≤ ‖ukxi

‖
L2(Ω)

→ ‖uxi
‖

L2(Ω)
<∞.

By Lebesgue’s theorem

[max(uk, 0)]xi

L2(Ω)
−−−−→ [max(u, 0)]xi

.

Similarly, we can prove that

max(uk, 0)
L2(Ω)
−−−−→ max(u, 0).

Hence

max(uk, 0)
H1(Ω)
−−−−→ max(u, 0).

Returning to Lemma 1.2, if we take uk ∈ C1(Ω), uk
H1(Ω)
−−−−→ u, then

max(uk, 0)
H1(Ω)
−−−−→ max(u, 0) and, obviously,

max(uk|
Γ
, 0) = max(uk, 0)|

Γ

H

1
2

(Γ)
−−−−→ max(u, 0)|

Γ
.

Since uk|
Γ

H

1
2

(Γ)
−−−−→ u|

Γ
, we obtain max(uk|

Γ
, 0)

L2(Γ)
−−−→ max(u|

Γ
, 0), i.e.,

max(uk, 0)|
Γ

L2(Γ)
−−−→ max(u|

Γ
, 0) = max(u, 0)|

Γ
. �

Lemma 1.3. If F ∈ H
− 1

2 (Γ), ϕ ∈ H
1
2 (Γ), ϕ ≥ 0, F ≥ 0, 〈F, ϕ〉

Γ
= 0 and

Γd = {x ∈ Γ, ϕ(x) ≥ d}, d ∈ R, d > 0,

then F |
Γd

= 0.
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Proof. Let ψ ∈ H
1
2 (Γ), ψ|

Γ\Γd
= 0. Then, if |ψ| ≤ M , M ∈ R

+, we have

ϕ±
d

M
ψ ≥ 0 and

〈
F, ϕ ±

d

M
ψ

〉

Γ

= ±
d

M
〈F, ψ〉

Γ
≥ 0.

Let essupψ = ∞. Set

ψ± = max(±ψ, 0), Ψ ∈ H1(Ω), Ψ|
Γ

= ψ+, Ψk = min(Ψ, k).

Then it is clear that

ψ = ψ+ − ψ−, Ψk = (Ψ−max(Ψ− k, 0)) ∈ H1(Ω).

Let us show that Ψk
H1(Ω)
−−−−→ Ψ, k → ∞, i.e., max(Ψ − k, 0)

H1(Ω)
−−−−→ 0.

Since mesEk → 0, k → ∞, where Ek = {x ∈ Ω,Ψ(x) ≥ k}, then, by
(ii) of Lemma 1.1 and the property that the Lebesgue integral is absolutely
continuous, we obtain

‖max(Ψ− k, 0)‖2
L2(Ω)

=

∫

Ek

|Ψ− k|2dx ≤

∫

Ek

|Ψ|2dx→ 0,

‖[max(Ψ− k, 0)]
xi
‖2

L2(Ω)
=

∫

Ek

|[Ψ− k]
xi
|2dx =

∫

Ek

|Ψxi
|2dx→ 0,

i.e., Ψk
H1(Ω)
−−−−→ Ψ, k →∞. By virtue of Lemma 1.2 we have

min(ψ+, k) = ψ+ −max(ψ+ − k, 0) = Ψk|Γ
H

1
2 (Γ)

−−−−→ ψ+.

Since |min(ψ+, k)| ≤ k, from what has been proved above, it follows that

〈F, ψ+〉
Γ

= lim
k→∞

〈F,min(ψ+, k)〉
Γ

= 0.

Similarly, we obtain 〈F, ψ−〉Γ = 0.

Define a constant Mf of the form (1.1) as follows:

Mf = inf
x∈Ω

|f(x)|

a0(x)
, f ∈ L2(Ω).

Lemma 1.4 (An analogue of the week maximum principle).
Let u ∈ H1(Ω), Au ∈ L2(Ω),

(i) if Au ≤ 0,
∂u

∂ν
A

∣∣∣∣
Γ0

≤ 0, where Γ0 ⊂ Γ is any measurable subset

mesΓ0 > 0, and essup
Γ\Γ0

u = M . Then u ≤ max(M,−M
Au

), x ∈ Ω.

(ii) if Au ≥ 0,
∂u

∂ν
A

∣∣∣∣
Γ

≥ 0, then u ≥M
Au

, x ∈ Ω.
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Proof. Let

M ′ = max(M,−M
Au

), w = max(u−M ′, 0).

We have to show that w = 0. Due to (ii) of Lemma 1.1, we have the
following properties of the function w:

w ∈ H1(Ω),
∂w

∂xi

∂u

∂xj
=
∂w

∂xi

∂w

∂xj
,

∂u

∂xi
w =

∂w

∂xi
w,

u · w = w2 +M ′w.

(1.6)

Now, if we insert the function w into the form (1.1) and take into acount
(1.6), we obtain

a(u,w) = a(w,w) +M ′

∫

Ω

a0wdx. (1.7)

Since M ′ ≥M , by Lemma 1.2 we have w|
Γ\Γ0

= 0, whereas M ′ ≥ −M
Au

and Au ≤ 0 yield M ′a0 − Au ≥ 0, which, when combined with (1.7), (1.4)
and w ≥ 0, gives

0 ≥
〈 ∂u

∂ν
A

, w
〉

Γ

= −

∫

Ω

Auwdx + a(w,w) +M ′

∫

Ω

a0wdx ≥

≥

∫

Ω

(M ′a0 −Au)wdx + α‖w‖2
1,Ω.

Thus w = 0 and claim (i) of Lemma 1.4 is proved.
(ii) Let w = max(M

Au
−u, 0). Then, similarly to the above, we can show

that

a(u,w) = −a(w,w) +M
Au

∫

Ω

a0wdx,

and from (1.4) we get

0 ≤
〈 ∂u

∂ν
A

, w
〉

Γ

= −

∫

Ω

Auwdx − a(w,w) +M
Au

∫

Ω

a0wdx ≤

≤

∫

Ω

(M
Au
a0 −Au)wdx − α‖w‖2

1,Ω.

Since
∫
Ω

(M
Au
a0 −Au)wdx ≤ 0, then w = 0. This means that

u(x) ≥M
Au

, x ∈ Ω.

Theorem 1.5. If u is a solution of the Signorini problem (1.5), f ≤ 0 and

essup
Γ

h ≥ −M
f
, then

essup
Ω

u = essup
Γ

h. (1.8)
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Proof. Let us first assume that
∂u

∂ν
A

= 0. Then by virtue of (ii) of Lemma

1.4 we obtain u ≤ −M
f
, x ∈ Ω. Since u|

Γ
≥ h, we have −M

f
≥ essup

Γ
u ≥

essup
Γ

h ≥ −M
f
, i.e.,

essup
Ω

u = essup
Γ

h = −M
f
. (1.9)

Now let us consider the case
∂u

∂ν
A

6= 0. We have inf
Γ

(u−h) = 0. Clearly, if

u−h|
Γ
≥ d > 0, then because

∂u

∂ν
A

≥ 0, by Lemma 1.3 we obtain
∂u

∂ν
A

= 0,

i.e., inf
Γ

(u− h) = 0. Let

Γn =
{
x ∈ Γ, u(x)− h(x) ≥

1

n

}
, n ∈ N.

Then, provided that mesΓ\Γn > 0, by Lemma 1.3 we find that
∂u

∂ν
A

∣∣∣∣
Γn

= 0

holds for all n ∈ N . If there exists n ∈ N such that essup
Γ\Γn

u < −M
f
, then

due to (i) of Lemma 1.4 we have u ≤ −M
f
, x ∈ Ω, and, as it has been

shown above, we obtain (1.9). Let essup
Γ\Γn

u ≥ −M
f

for all n ∈ N . Then,

again using (i) of Lemma 1.4, we get

essup
Ω

u = essup
Γ\Γn

u ≤ essup
Γ

h+
1

n
, ∀n ∈ N,

which implies (1.8) when n→∞.

Corollary 1.6. If u is a solution of the problem (1.5) and f ≥ 0, then the

following inclusion takes the place:

{x ∈ Γ, u(x) = h(x)} ⊂ {x ∈ Γ, h(x) ≥M
f
}. (1.10)

Proof. Since
∂u

∂ν
A

≥ 0 and Au = f ≥ 0, by (ii) of Lemma 1.4 we have

u ≥M
f
, x ∈ Ω, i.e., (1.10) holds. Moreover, because M

f
≥ 0, we have

{x ∈ Γ, u(x) = h(x)} ⊂ {x ∈ Γ, h(x) ≥ 0}. �

Corollary 1.7. Let u be a solution of (1.5) and Γ0 be any measurable set

on the boundary Γ, mes Γ0 > 0.
(i) If

h ≤M, h|
Γ0

= M, M ≥ −M
f
,

then u|
Γ0

= h|
Γ0

.
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(ii) If there exists a function v ∈ H1(Ω), Av ∈ L2(Ω) and a number d,
d ∈ R, d ≥ 0, such that

Av ≥ f, 0 ≤
∂v

∂ν
A

≤
∂u

∂ν
A

, v|
Γ
≥ h− d, v|

Γ0
= h− d|

Γ0
,

then u = h|Γ0
.

Proof. (i) is trivial since Theorem 1.5 immediately implies essup
Ω

u = M ,

i.e., M ≥ u|
Γ0
≥ h|

Γ0
= M .

(ii) Let w = u− v. It is easy to show that

Aw = f −Av,
∂w

∂ν
A

≥ 0, w|
Γ
≥ h− v|

Γ
,

0 ≤
〈 ∂w

∂ν
A

, w − h+ v
〉

Γ

=
〈∂(u− v)

∂ν
A

, u− h
〉

Γ

= −
〈 ∂v

∂ν
A

, u− h
〉

Γ

≤ 0,

i.e.,
〈 ∂w

∂ν
A

, w − h + v
〉

Γ

= 0 and w is a solution of the classical Signorini

problem with the data (f −Av, h− v).

Since

f −Av ≤ 0, h− v|Γ ≤ d, (h− v)|Γ0
= d, d ≥ 0 ≥ −M

f−Av
,

by (i) we get w = (h− v)|
Γ0

, i.e., (u = h)|
Γ0

.

Corollary 1.8. If h ∈ H
3
2 (Γ) and the coefficients of the form (1.1) are

elements of the space C1(Ω), then, there exists fh ∈ L2(Ω) such that, for

any function f ∈ L2(Ω) with f ≤ fh, the solution of the classical Signorini

problem with the data (f, h) satisfies the condition (u = h)|
Γ
.

Proof. Since h ∈ H
3
2 (Γ) and the coeficients of the form (1.1) are in the

space C1(Ω), there exists a function v ∈ H2(Ω) such that

v|Γ = h,
∂v

∂ν
A

= 0,

cf. [4], [5]. Denote

fh = Av.

To prove Corollary 1.8, it is sufficient to take in Corollary 1.7

Γ0 = Γ, d = 0. �
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2. The Implicit Signorini Problem

Let us state the implicit Signorini problem for the operators (1.3). Find
such u ∈ H1(Ω), that

Au = f,

u|
Γ
≥ h−

〈 ∂u

∂ν
A

, ϕ
〉

Γ

,
∂u

∂ν
A

∣∣∣∣
Γ

≥ 0,

〈 ∂u

∂ν
A

, u− h+
〈 ∂u

∂ν
A

, ϕ
〉

Γ

〉

Γ

= 0,

(2.1)

where

f ∈ L2(Ω), h, ϕ ∈ H
1
2 (Γ), ϕ ≥ 0. (2.2)

This problem is considered in the monograph [1]. The existence of solutions
was proved, but the question as to the number of solutions remained open.
Using the results of §1, we will show that the problem (2.1) has a unique
solution. Let uλ for λ ≥ 0 be a solution of the following classical Signorini
problem:

Au
λ

= f, u
λ
∈ H1(Ω),

u
λ
|
Γ
≥ h− λ,

∂u
λ

∂ν
A

∣∣∣∣
Γ

≥ 0,

〈∂u
λ

∂ν
A

, uλ − h+ λ
〉

Γ

= 0,

(2.3)

where f and h are the data of the problem (2.1).

Define the mapping F : R+ → R+ as follows:

F (λ) =
〈∂u

λ

∂ν
A

, ϕ
〉

Γ

, λ ≥ 0. (2.4)

Clearly, if F (λ) = λ, then the corresponding u
λ

is a solution of the problem

(2.1). Conversely, if u is a solution of the problem (2.1), then for λ =
〈 ∂u

∂ν
A

,

ϕ
〉

Γ

we have uλ = u, i.e., the problem of solvability and the number of the

solutions of the problem (2.1) are reduced to defining the number of statical
points of the mapping (2.4). The continuity of the function F (λ) for a
more general case will be proved in §3 below. To prove the uniqueness of
a solution of the problem (2.1) with the conditions (2.2), it is sufficient to
show that F (λ) is a nonincreasing function, i.e.,

F (λ1)− F (λ2) =
〈∂(u

λ1
− u

λ2
)

∂ν
A

, ϕ
〉

Γ

≥ 0, 0 ≤ λ1 < λ2.
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Since ϕ ≥ 0 is an arbitrary function of the space H
1
2 (Γ) and

0 ≤ λ1 < λ2 are arbitrary numbers, we have to show that

∂(u0 − u
λ
)

∂ν
A

≥ 0, λ > 0, (2.5)

where u0 and u
λ

are the solutions of the problem (2.3) with data h and
h− λ, respectively.

Let

h0 = h− u
λ
|
Γ
. (2.6)

Clearly,

h0 ∈ H
1
2 (Γ), h0 ≤ λ. (2.7)

Let us consider the Signorini problem

Aw = 0, w ∈ H1(Ω).

w|
Γ
≥ h0,

∂w

∂ν
A

∣∣∣∣
Γ

≥ 0,

〈 ∂w

∂ν
A

, w − h0

〉

Γ

= 0.

(2.8)

If essup
Γ

h0 < 0, then w = 0. If essup
Γ

h0 ≥ 0, then, due to Theorem 1.5, we

have

essup
Ω

w = essup
Γ

h0,

i.e. (see (2.7)),

w ≤ λ, x ∈ Ω. (2.9)

Let

v = u
λ

+ w.

Let us show that v is a solution of the problem (2.3) when λ = 0, i.e.,
v = u0. Indeed, we have

Av = f,
∂v

∂ν
A

∣∣∣∣
Γ

≥ 0,

v|Γ = (u
λ

+ w)|Γ ≥ u
λ
|Γ + h0|Γ = h.

(2.10)

Now, by virtue of (2.6), (2.9) and (2.10), the problem (2.8) implies

0 ≤
〈 ∂v

∂ν
A

, v − h
〉

Γ

=
〈∂u

λ

∂ν
A

+
∂w

∂ν
A

, u
λ

+ w − h
〉

Γ

=

=
〈∂u

λ

∂ν
A

+
∂w

∂ν
A

, w − h0

〉

Γ

=
〈∂u

λ

∂ν
A

, w − h0

〉

Γ

≤
〈∂u

λ

∂ν
A

, λ+ u
λ
− h

〉

Γ

= 0,
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i.e.,
〈 ∂v

∂ν
A

, v − h
〉

Γ

= 0 and v = u0 because of the uniqueness of a solution

of the problem (2.3). Therefore

∂(u0 − u
λ
)

∂ν
A

=
∂w

∂ν
A

≥ 0.

Thus (2.5) is proved. Hence the function (2.4) is nonincreasing and contin-
uous and therefore has one statical point, which means that the problem
(2.1) under the conditions (2.2) has a unique solution.

In the monograph [1], the problem (2.1) is also considered when no re-
striction ϕ ≥ 0 is imposed on the data, and the following fact is proved:

sup
λ≥0

F (λ) < +∞,
F (λ)

λ
→

〈 ∂v

∂ν
A

, ϕ
〉

Γ

, λ→ −∞, (2.11)

where F (λ) is the function defined in (2.4) for all λ ∈ R and v ∈ H1(Ω) is
a solution of the problem

Av = 0;

v|
Γ
≤ −1,

∂v

∂ν
A

∣∣∣∣
Γ

≤ 0,

〈 ∂v

∂ν
A

, v + 1
〉

Γ

= 0.

(2.12)

Remark. Since −v is a solution of the Signorini problem with the data
f = 0, h = 1, by virtue of Corollary 1.7 v satisfies the problem

Av = 0, v|Γ = −1.

Due to (2.11) it is clear that when we have no restriction ϕ ≥ 0, for the
problem (2.1) to be solvable it is sufficient that

〈 ∂v

∂ν
A

, ϕ
〉

Γ

< 1. (2.13)

Show that if no restriction ϕ ≥ 0 is imposed, then the problem (2.1) may
have no solution. One can easily see that, for all f ∈ L2(Ω), it is possible

to choose functions h and ϕ from H
1
2 (Γ) such that for the data f , h, ϕ of

the implicit Signorini problem, the following conditions hold:

ϕ ≤ 0, u0|Γ = h,
〈∂u0

∂ν
A

, ϕ
〉

Γ

6= 0, (2.14)

〈 ∂v

∂ν
A

, ϕ
〉

Γ

≥ 1. (2.15)
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For f ≤ 0, by virtue of Theorem 1.5 and Lemma 1.3 we can write the
data h and ϕ in the conditions (2.14), (2.15), for example, as follows:

h = 1, ϕ ≤ d, d ∈ R−,
〈 ∂v

∂ν
A

, ϕ
〉

Γ

≥ 1.

Let us show that, if in (2.2) the conditions (2.14), (2.15) hold instead of
ϕ ≥ 0 then the problem (2.1) has no solution, i.e., that the function F (λ)
defined by (2.4) for all λ ∈ R has no stationary point. Since ϕ ≤ 0, F (λ) ≤ 0,
so, the mapping F : R→ R− may have a stationary point only on R−.

Let

w =
u

λ
− u0

λ
, λ < 0.

We will show that w satisfies the problem (2.12), i.e., w = v. Since
u0|Γ = h, the first three conditions are obvious by virtue of the problem
(2.3) and (2.5). Prove the fourth condition

0 ≤
〈 ∂w

∂ν
A

, w + 1
〉

Γ

=
1

λ2

〈∂(u
λ
− u0)

∂ν
A

, u
λ
− h+ λ

〉

Γ

=

=
1

λ2

〈
−
∂u0

∂ν
A

, u
λ
− h+ λ

〉

Γ

≤ 0.

Hence, w = v and thus

u
λ

= λv + u0, λ ≤ 0,

F (λ) =
〈 ∂v

∂ν
A

, ϕ
〉

Γ

λ+
〈 ∂u0

∂ν
A

, ϕ
〉

Γ

, λ ≤ 0,

i.e., F (λ) < λ, when λ ≤ 0. This implies that the mapping F has no
stationary point on R− (Fig. 1) and, as we have noted, does not have one

on R+ either. Thus, if f ∈ L
2
(Ω), ϕ, h ∈ H

1
2 (Γ) satisfy the conditions

(2.14), (2.15), then the problem (2.1) has no solution. Note that if the
conditions (2.14) hold for the problem (2.1) to be solvable, the condition
(2.13) is necessary and sufficent.

-

6
F

λ

F = λ

F = F (λ)
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Thus, we have proved the following

Theorem 2.1. The problem (2.1), has a unique solution under the condi-

tions (2.2), and it has no solution, when instead of ϕ ≥ 0 in the data, the

conditions (2.14), (2.15) hold.

3. Statement of the Implicit Signorini Problem in More

General Terms

The implicit Signorini problem can be stated for the operators (1.3) in
more general terms as follows: find such u ∈ H1(Ω), that

Au = f,

u|
Γ
≥ h−

〈 ∂u

∂ν
A

, ϕ
〉

Γ

ψ,
∂u

∂ν
A

∣∣∣∣
Γ

≥ 0,

〈 ∂u

∂ν
A

, u− h+
〈 ∂u

∂ν
A

, ϕ
〉

Γ

ψ
〉

Γ

= 0,

(3.1)

where

f ∈ L2(Ω), h, ϕ, ψ ∈ H
1
2 (Γ). (3.2)

Let u
λ

be a solution of the following classical Signorini problem for all
λ ∈ R:

Au
λ

= f, u
λ
∈ H1(Ω),

u
λ
|
Γ
≥ h− λψ,

∂u
λ

∂ν
A

∣∣∣∣
Γ

≥ 0,

〈∂u
λ

∂ν
A

, uλ − h+ λψ
〉

Γ

= 0,

(3.3)

where the functions f, h, ψ are the data of the problem (3.2). Define the
mapping F : R→ R as

F (λ) =
〈∂u

λ

∂ν
A

, ϕ
〉

Γ

, λ ∈ R. (3.4)

As in the case of the problem (2.1), the question of the number of solutions
of problem (3.1) is reduced to determining the number of stationary points

of the function F (λ). Let us consider this question. On the space H
1
2 (Γ),

define the norm as follows:

‖g‖ 1
2 ,Γ

= inf
G∈H1(Ω)
G|

Γ
=g

‖G‖1,Ω. (3.5)
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This is equivalent to the standard definition of the norm on this space. Fur-

ther, we use such a defined norm on the space H
1
2 (Γ). Define the constant

c for the bilinear form (1.1):

c = inf{d ∈ R, a(u, v) ≤ d‖u‖1,Ω‖v‖1,Ω, u, v ∈ H
1(Ω)}. (3.6)

Obviously c < +∞, because

c ≤ max
1≤i,j≤n

(‖aij‖L∞
, ‖ai‖L∞

, ‖a0‖L∞
).

Show the continuity of the function F (λ). For all λ1, λ2 ∈ R, from the
definitions of the functions u

λ1
, u

λ2
, we get:

〈∂u
λ1

∂ν
A

−
∂u

λ2

∂ν
A

, u
λ1
− u

λ2
+ (λ1 − λ2)ψ

〉

Γ

=

=
〈∂u

λ1

∂ν
A

−
∂u

λ2

∂ν
A

, u
λ1
− h+ λ1ψ − (u

λ2
− h+ λ2ψ)

〉

Γ

≤ 0. (3.7)

Using the Green formula (1.4) and the formulas (1.2), (3.6), (3.7), we obtain

α‖u
λ1
− u

λ2
‖2
1,Ω ≤ a(u

λ1
− u

λ2
, u

λ1
− u

λ2
) =

=
〈∂(u

λ1
− u

λ2
)

∂ν
A

, u
λ1
− u

λ2

〉

Γ

≤ (λ2 − λ1)
〈∂(u

λ1
− u

λ2
)

∂ν
A

, ψ
〉

Γ

=

= (λ2 − λ1)a(uλ1
− u

λ2
,Ψ) ≤ c|λ1 − λ2|‖uλ1

− u
λ2
‖1,Ω‖Ψ‖1,Ω, (3.8)

where c is the constant defined in (3.6) and Ψ ∈ H1(Ω) is an arbitrary
function with Ψ|

Γ
= ψ. Hence, by virtue of (3.5), from (3.8) we have

‖u
λ1
− u

λ2
‖1,Ω ≤ α−1c|λ1 − λ2| ‖ψ‖ 1

2 ,Γ
. (3.9)

By a reasoning similar to that we have used for the mates (3.8), from (3.9)
we have

|F (λ1)− F (λ2)| =

∣∣∣∣
〈∂(u

λ1
− u

λ2
)

∂ν
A

, ϕ
〉

Γ

∣∣∣∣ ≤

≤ c‖u
λ1
− u

λ2
‖1,Ω‖ϕ‖ 1

2 ,Γ
≤ c2α−1|λ1 − λ2|‖ψ‖ 1

2 ,Γ
‖ϕ‖ 1

2 ,Γ
. (3.10)

Thus, F (λ) belongs to the Lipschitz class and if

‖ψ‖ 1
2 ,Γ
‖ϕ‖ 1

2 ,Γ
<

α

c2
,

then F (λ) is a contractive mapping and has a unique stationary point.
Therefore, the problem (3.1) has a unique solution.

Let us consider the situation

φ = γψ, γ = const > 0.
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When λ1 < λ2, for some estimate given in (3.8), we get

F (λ1)− F (λ2) =
〈∂(u

λ1
− u

λ2
)

∂ν
A

, γψ
〉

Γ

≥ 0.

Thus the function F is nonincreasing and, as shown in (3.10), it is also
continuous and therefore has a unique stationary point. Thus the problem
(3.1) has a unique solution. Let us give sufficient conditions for the problem
(3.1) to be solvable. As it has been mentioned above, (2.11) is established
for the problem (2.1) in [1]. Repeating an analogous reasoning for any

ψ ∈ H
1
2 (Γ), we can show for the problem (3.1) that

F (λ)

λ
→

〈 ∂v

∂ν
A

, ϕ
〉

Γ

, λ→ −∞ (3.11)

F (λ)

λ
→

〈 ∂w

∂ν
A

, ϕ
〉

Γ

, λ→ +∞, (3.12)

where v ∈ H1(Ω) and w ∈ H1(Ω) are respectively solutions of the following
problems:

Av = 0,

v|
Γ
≤ −ψ,

∂v

∂ν
A

∣∣∣∣
Γ

≤ 0,

〈 ∂v

∂ν
A

, v + ψ
〉

Γ

= 0;

(3.13)

Aw = 0,

w|
Γ
≥ −ψ,

∂w

∂ν
A

∣∣∣∣
Γ

≥ 0,

〈 ∂w

∂ν
A

, w + ψ
〉

Γ

= 0.

(3.14)

Since the function F (λ) is continuous, (3.11) and (3.12) clearly imply that
each of the conditions

〈 ∂v

∂ν
A

, ϕ
〉

Γ

> 1,
〈 ∂w

∂ν
A

, ϕ
〉

Γ

> 1 (3.15)

or
〈 ∂v

∂ν
A

, ϕ
〉

Γ

< 1,
〈 ∂w

∂ν
A

, ϕ
〉

Γ

< 1. (3.16)

is sufficient for the problem (3.1) to be solvable
Obviously, if ψ ≥ 0, then w = 0, and if ψ ≤ 0, then v = 0. In these

cases, is each of the conditions is sufficient conditions of the solvability of
the problem (3.1) are

ψ ≤ 0,
〈 ∂w

∂ν
A

, ϕ
〉

Γ

< 1, (3.17)
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ψ ≥ 0,
〈 ∂v

∂ν
A

, ϕ
〉

Γ

< 1. (3.18)

(3.17), (3.18) hold in the following situations, each of which also represent
sufficient conditions for the problem (3.1) to be solvable:

ψ ≤ 0, ϕ ≤ 0.

ψ ≥ 0, ϕ ≥ 0.

Let us clarify the uniqueness problem. We will show that, when corre-
spoding F (λ) 6= const, for any data from (3.2) there exists α1, α2 ∈ R such
that the problem (3.1) with

^

f = f,
^

h = h+ α1ψ,
^
ϕ = α2ϕ,

^

ψ = ψ, (3.19)

has at least two solutions. Indeed, for any fixed α1, α2 ∈ R, we denote by
^
u

λ
a solution of the problem (3.3) stated in the data (3.19), and by

^

F (λ)
the corresponding mapping (3.4). Now it easily follows that

^
u

λ
= u

λ−α1
,

^

F (λ) = α2F (λ− α1), ∀α1, α2, λ ∈ R,

where u
λ

and F (λ) are defined by the initial data. Let us choose λ1, λ2 ∈ R
such that F (λ1) 6= F (λ2). If now we take

α2 =
λ2 − λ1

F (λ2)− F (λ1)
, α1 = α2F (λ1)− λ1, (3.20)

then, obviously, the stationary points of the function
^

F (λ) are α2F (λ1),
α2F (λ2), which means that, under data (3.19), the problem (3.1) has at
least two solutions.

Thus, we have proved the following theorem.

Theorem 3.1. The problem (3.1) with the conditions (3.2) has a unique

solution if

1) ‖ψ‖ 1
2 ,Γ
‖ϕ‖ 1

2 ,Γ
<

α

c2
,

where, α and c are the constants from (1.2) and (3.6), and ‖ ·‖ 1
2 ,Γ

is defined

in (3.5).

2) φ = γψ, γ = const > 0.

3) The problem (3.1) with the conditions (3.2) has a solution if one of

the pair of the following conditions

〈 ∂v

∂ν
A

, ϕ
〉

Γ

> 1,
〈 ∂w

∂ν
A

, ϕ
〉

Γ

> 1.

〈 ∂v

∂ν
A

, ϕ
〉

Γ

< 1,
〈 ∂w

∂ν
A

, ϕ
〉

Γ

< 1.
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holds, where v and w are solutions of the problems (3.13) and (3.14), respec-

tively. Therefore the following four pairs of conditions are also sufficient for

the problem (3.1) to be solvable:

ψ ≤ 0,
〈 ∂w

∂ν
A

, ϕ
〉

Γ

< 1,

ψ ≥ 0,
〈 ∂v

∂ν
A

, ϕ
〉

Γ

< 1,

ψ ≤ 0, ϕ ≤ 0,

ψ ≥ 0, ϕ ≥ 0.

4) For any data (3.2), where the corresponding function F (λ) 6= const,
there exist α1, α2 ∈ R such that the problem (3.1) under conditions

^

f = f,
^

h = h+ α1ψ,
^
ϕ = α2ϕ,

^

ψ = ψ,

has at least two solutions.

4. An implicit Signorini problem in the elasticity theory

Let Ω, Γ and ν be as in §1. Assume, that L2(Ω) = (L2(Ω))n, Hs(Ω) =
(Hs(Ω))n, Hs(Γ) = (Hs(Γ))n, s ∈ R, where Hs(Ω) and Hs(Γ) are real
Sobolev spaces. The norms in the spaces Hs(Ω) and Hs(Γ) will be denoted
by ‖ · ‖s,Ω and ‖ · ‖s,Γ. The norm ‖ · ‖ 1

2
,Γ

we understand to be defined by

means of (3.5). Let us define the matrix-diferential operators A(x, ∂) and
T (x, ∂, ν) and the bilinear form on the space H1(Ω)×H1(Ω) as follows:

A(x, ∂) = ‖Ajk(x, ∂)‖n×n,

Ajk(x, ∂) =
∂

∂xi

(
aijlk(x)

∂

∂xl

)
,

(4.1)

T (x, ∂, ν) = ‖Tjk(x, ∂, ν)‖n×n,

Tjk(x, ∂, ν) = aijlk(x)νi(x)
∂

∂xl
,

(4.2)

aijlk ∈ C
1(Ω), aijlk = ajilk = alkij ;

∀x ∈ Ω, ∀ξij ∈ R (ξij = ξji) : aijlk(x)ξijξlk ≥ βξijξij , β > 0;

B(u, v) =

∫

Ω

aijlk(x)
∂ui
∂xj

∂vl
∂xk

dx, ∀u, v ∈ H1(Ω). (4.3)

The operator (4.1) corresponds to the system of equilibrium equations of the
elasticity theory for a nonhomogenous body, while (4.2) is a stress operator.
It is clear that the form B has the following boundness property:

B(u, v) ≤ C‖u‖1,Ω‖v‖1,Ω, ∀u, v ∈ H1(Ω),

C = sup
x∈Ω

{
aijlk(x), i, j, l, k = 1, n

}
. (4.4)
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As it is known, if u ∈ H1(Ω), Au ∈ L2(Ω), then Tu ∈ H
− 1

2 (Γ) and the
following Green formula holds:

∫

Ω

Au · vdx = −B(u, v) + 〈Tu, v〉Γ , ∀v ∈ H1(Ω), (4.5)

where 〈· ·〉
Γ

is the duality relation between the spaces H
1
2 (Γ) and H

− 1
2 (Γ).

Let us define vν and vs, as the normal and tangential components for the

vector-function v ∈ H
1
2 (Γ), respectively, while (Tu)ν and (Tu)s be, re-

spectively normal and tangential components of stress. Then the following
formula is true

〈Tu, v〉
Γ

= 〈(Tu)ν , vν〉Γ + 〈(Tu)s, vs〉Γ , v ∈ H
1
2 (Γ). (4.6)

Let Γ0,Γ1,Γ2 6= ∅, be open sets on the boundary Γ such that

Γ0 ∪ Γ1 ∪ Γ2 = Γ, ∂Γ0 ∩ ∂Γ2 = ∅. (4.7)

Recall that, for s ≥ 0,

H̃
s

(Γ0) = {ϕ ∈ H
s

(Γ), ϕ|
Γ\Γ0

= 0},

while H
s

(Γ0) is the space of restrictions on Γ0 of H
s

(Γ)-functions, endowed
with the norm

‖ϕ‖Hs (Γ0) = inf
ψ|

Γ0
=ϕ

‖ψ‖Hs (Γ).

Define

H
−s

(Γ0) = (H̃
s

(Γ0))
′, H̃

−s

(Γ0) = (H
s

(Γ0))
′,

where ( · )′ means the self-adjointness of spaces. Analogously we define the

spaces H
±s

(Γ0) and H̃
±s

(Γ0).
We will use the notation

H1
∗(Ω) = {v ∈ H1(Ω), v|

Γ2
= 0}. (4.8)

Let us state several lemmas:

Lemma 4.1. (i) If the functions F and ϕ are nonnegative on Ω and f ∈

H
− 1

2 (Ω) ∩ L2
loc(Ω) and ϕ ∈ H

1
2 (Ω), then fϕ ∈ L1(Ω).

(ii) If u ∈ H
− 1

2 (Ω) ∩ L2
loc(Ω), v ∈ H

1
2 (Ω), and uv ∈ L1(Ω), then

〈u, v〉Ω =

∫

Ω

uvdx.

The proof see in [3].

Lemma 4.2. Let f ∈ H
− 1

2 (Ω) ∩ L2
loc(Ω), and f ≥ 0 as the functional on

the space H
− 1

2 (Ω), in the sense of §1. Then f≥0 almost everywhere on Ω.



36

Proof. Assume, there exists the set Ω′ ⊂ Ω with positive measure where
f < 0. Then it is possible to find such a closed set Ω′′ ⊂ Ω′ and a closed
core B, that if we take Ω0 = B ∩ Ω′′ d = dist(∂Ω, B), then

mesΩ0 > 0, d > 0.

Let Ωk := Ω0
εk

, where Ω0
εk

is the εk-neighbourhood of the set Ω0. Let us
show that we can choose such sequence εk, that

mesΩk −→ mes Ω0. (4.9)

In fact, since Ω0 is a closed, and therefore measurable set, there exist open
sets Ωk, such that ∩

k
Ωk = Ω0, and mes Ωk −→ mesΩ0. There can be found

such εk that Ωk ⊂ Ωk for each k ∈ N. Indeed, if dist(∂Ωk,Ω0) = 0 for
some k, then there exist such sequences {xm} ⊂ Ω0 and {ym} ⊂ ∂Ωk, that
xm − ym → 0. Then it can be found such x, that for some sabsequences
x′m and y′m of {xm} and {ym}, there hold lim

m→∞
x′m = lim

m→∞
y′m = x. So

x ∈ Ω0 ∩ ∂Ωk, which is the contradiction. Hence dist(Ω0 ∩ ∂Ωk) > 0, which
implies Ωk ⊂ Ωk for each k ∈ N. thus, there exists such sequence εk that
(4.9) holds.

Let us choose the sequence εk in terms (4.9) and χk, such that

0 < εk < d/2, εk > εk+1, χk ∈ C
∞
0 (Ωk), 0 ≤ χk ≤ 1, χk|Ωk+1

= 1.

So

〈f, χk〉Ω =

∫

Ωk

fχkdx =

∫

Ω0

fdx+

∫

Ωk\Ω0

fχkdx.

From (4.9) it follows that
∫

Ωk\Ω0

fχkdx ≤

∫

Ωk\Ω0

|f |dx −→ 0.

Since f |Ω0
< 0, we can find χk ≥ 0 such that 〈f, χk〉Ω < 0, which contradicts

to our assumption.

Lemma 4.3. Let F ∈ H
− 1

2 (Γ), Γ0,Γ1,Γ2 satisfy the conditions (4.7) and

there exist a functional F1 such that

F1|Γ1
= F |

Γ1
, F1 ∈ H̃

− 1
2 (Γ1 ∪ Γ2).

Then there exists a functional F0 such that

F0|Γ0
= F |

Γ0
, F0 ∈ H̃

− 1
2 (Γ0 ∪ Γ2),

and

〈F, ϕ〉
Γ

= 〈F1, ϕ〉Γ1
+ 〈F0, ϕ〉Γ0

, ϕ ∈ H
1
2 (Γ), ϕ|

Γ2
= 0.



37

Proof. Define the functional F0 on the space H
1
2 (Γ) as follows:

〈F0, ϕ〉Γ = 〈F, ϕ〉
Γ
− 〈F1, ϕ〉

Γ1∪Γ2
, ϕ ∈ H

1
2 (Γ).

It is clear that the functional F0 possesses the following properties:

〈F0, ϕ〉Γ ≤ c0‖ϕ‖ 1
2

,Γ
,

〈F0, ϕ〉Γ = 0, ϕ|
Γ0

= 0,

〈F0, ϕ〉Γ = 〈F, ϕ〉
Γ
, ϕ|

Γ\Γ0
= 0,

i.e.,

F |
Γ0

= F0|Γ0
, F0 ∈ H̃

− 1
2 (Γ0).

If we consider the functional F0 on {ϕ ∈ H
1
2 (Γ); ϕ|

Γ0
= 0}, the second

claim of Lemma will be fulfilled.

Now let us state the classical Signorini problem for the operator (4.1),
with Dirichlet and Neumann boundary conditions: find a displacement u ∈
H1(Ω), such that

Au = f,

u|Γ2
= ψ, Tu|Γ1

= P,

(Tu)s|Γ0
= 0; (Tu)ν |Γ0

≥ 0;

uν |Γ0
≥ h,

〈(Tu)ν , uν − h〉
Γ0

= 0;

(4.10)

f ∈ L2(Ω), P ∈ H̃
− 1

2 (Γ1 ∪ Γ2),

ψ ∈ H
1
2 (Γ2), h ∈ H

1
2 (Γ0).

(4.11)

Since (Tu)ν ∈ H
− 1

2 (Γ), we understand the inequality (Tu)ν |Γ0
≥ 0 in the

sense of §1, while the inequality uν |Γ0
≥ h is meant to be fulfilled almost

everywhere.

This problem expresses the following mechanical process: the volum force
f is acting on a body, on the part Γ1 the displacement is fixed, while on the
part Γ2 the force P acts. The mechanical sense of the last four conditions
can be interpreted in such a way: the body is placed into a rigid frame
by its part Γ0. Stresses on the part Γ0 are caused only by its interaction
with the frame, without friction. The problem (4.10) has a unique solution
under the conditions (4.11). Show that this problem is stable with respect
to the data ψ, p, h. State the same problem for the data ψk, Pk, hk, from
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the conditions (4.11):

Auk = f, uk ∈ H1(Ω);

uk|
Γ2

= ψk, Tuk|
Γ1

= Pk,

(Tuk)s|Γ0
= 0; (Tuk)ν |Γ0

≥ 0;

ukν |Γ0
≥ hk,

〈(Tuk)ν , u
k
ν − hk〉Γ0

= 0.

(4.12)

Show that when Pk
H
− 1

2 (Γ1)
−−−−−−→ P, ψk

H
1
2 (Γ2)

−−−−−→ ψ, hk
H

1
2 (Γ0)

−−−−−→ h, then

uk
H1(Ω)
−−−−→ u, where uk is the solution of the problem (4.11).

Let χ, φk and ψ̃k be functions with the properties:

χ ∈ C1(Ω), χ|Γ = ν,

Aψ̃k = 0, ψ̃k ∈ H
1(Ω).

ψ̃k|Γ2
= ψk − ψ, T ψ̃k|Γ1

= 0, ψ̃k|Γ0
= 0.

φk ∈ H
1(Ω), φk|Γ0

= hk − h, φk|Γ2
= 0,

‖φk‖1,Ω ≤ d‖hk − h‖ 1
2

,Γ0
for some constant d.

(4.13)

Remark. Such φk exist. To prove this, first of all we construct the trace
of φk on Γ. Extend hk−h from Γ0 to the whole Γ by its minimal norm and
multiply on χ0 with

χ0 ∈ C
∞(Γ), χ0|Γ0

= 1, χ0|Γ2
= 0.

Since the multiplication on a C∞(Γ)-function is a bounded operator in

H
1
2 (Γ), due to the definition of the norm in H

1
2 (Γ0), we obtain

‖φk‖ 1
2

,Γ
≤ d‖hk − h‖ 1

2
,Γ0
.

To complete the proof, we have to recall that ‖ · ‖ 1
2

,Γ
is understood as

(3.5).

Passing to the properties of u and uk, from the formulas (4.5) and (4.6),
due to Lemma4.3 we get

B(uk − u− ψ̃k, u
k − u− ψ̃k) =

= 〈(Tuk)ν − (Tu)ν , u
k
ν − hk − (uν − h) + hk − h〉

Γ0
−

−〈T ψ̃k, u
k
ν − uν)〉Γ0

+ 〈Pk − P, uk − u− ψ̃k〉Γ1
≤

≤ 〈(Tuk)ν − (Tu)ν , hk − h〉Γ0
− 〈T ψ̃k, u

k − u〉Γ0
+

+〈Pk − P, uk − u− ψ̃k〉Γ1
= B(uk − u− ψ̃k, φkχ)−

−〈T ψ̃k, u
k − u− φkχ〉Γ0

+ 〈Pk − P, uk − u− ψ̃k − φkχ〉Γ1
. (4.14)
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The form (4.3) is coercive on the space H1
∗(Ω) defined in (4.8) (see[2]),

B(u, u) ≥ α‖u‖2
1,Ω. (4.15)

Evidently, (uk −u− ψ̃k) ∈ H1
∗(Ω). From the estimates (4.14) and (4.15) we

have:

α‖uk − u− ψ̃k‖
2
1,Ω ≤ B(uk − u− ψ̃k, φkχ)−

−〈T ψ̃k, u
k − u− φkχ)〉

Γ0
+ 〈Pk − P, uk − u− ψ̃k − φkχ〉Γ1

≤

≤ C‖φkχ‖1,Ω‖u
k − u− ψ̃k‖1,Ω + ‖T ψ̃k‖

− 1
2

,Γ0
‖uk − u− φkχ‖ 1

2
,Γ0

+

+‖Pk − P‖
− 1

2
,Γ1
‖uk − u− ψ̃k − φkχ‖ 1

2
,Γ1
, (4.16)

where C is defined from (4.4).

Define the norm ‖ · ‖(C1(Γ))n and the constant C1 as follows:

‖g‖(C1(Γ))n = inf
G∈(C1(Ω))n

G|
Γ
=g

‖G‖(C1(Ω))n , C1 = ‖ν‖(C1(Γ))n . (4.17)

Since χ is any function from the conditions (4.13), then, we can choose it
such

‖φkχ‖1,Ω ≤ ‖χ‖(C1(Ω))n‖φk‖1,Ω ≤ C1d‖hk − h‖ 1
2

,Γ0
.

From the estimate (4.16) we get

α‖uk − u− ψ̃k‖
2
1,Ω ≤

(
CC1d‖hk − h‖ 1

2
,Γ0

+ ‖T ψ̃k‖
− 1

2
,Γ0

+

+‖Pk − P‖
− 1

2
,Γ1

)
‖uk − u− ψ̃k‖1,Ω + ‖T ψ̃k‖

− 1
2

,Γ0

(
‖ψ̃k‖ 1

2
,Γ0

+

+C1d‖hk − h‖ 1
2

,Γ0

)
C1d‖Pk − P‖

− 1
2

,Γ1
‖hk − h‖ 1

2
,Γ0
. (4.18)

Show that ψ̃k
H1(Ω)
−−−−→ 0, T ψ̃k

H
− 1

2 (Γ0)
−−−−−−→ 0. Since the form (4.3) is

coercive on the space {v ∈ H1(Ω), v|Γ0
= 0} (see[2]) and ψ̃k, which is

defined in (4.13), assignes minimal value to the functional B(v, v) on the
closed convex set Vk = {v ∈ H1(Ω), v|

Γ2
= ψk − ψ}, so

α1‖ψ̃k‖
2
H1(Ω) ≤ B(ψ̃k, ψ̃k) = inf

v∈Vk

B(v, v) ≤ C‖ψk − ψ‖2
1
2

,Γ2

,

which implies that ψ̃k
H1(Ω)
−−−−→ 0.

Let ϕ ∈ H
1
2 (Γ), v ∈ H1(Ω) and v|

Γ
= χ0ϕ, where χ0 is taken from the

remark of (4.13). Then, by the Green formula (4.5),

〈T ψ̃k, ϕ〉Γ0
= 〈T ψ̃k, χ0ϕ〉Γ = B(ψ̃k, v) ≤ C‖ψ̃k‖1,Ω‖v‖1,Ω.
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Due to the definition of norm ‖ · ‖ 1
2

,Γ0
and to the continuity of the operator

of multiplication on a C∞(Γ)- function in H
1
2 (Γ), the last inequality implies

〈T ψ̃k, ϕ〉Γ0
≤ Cd‖ψ̃k‖1,Ω‖ϕ‖ 1

2
,Γ0
,

so that

‖T ψ̃k‖
− 1

2
,Γ0

≤ Cd‖ψ̃k‖1,Ω

and T ψ̃k
H
− 1

2
(Γ0)

−−−−−−→ 0.

Based on these facts, we conclude from (4.18):

if Pk
H
− 1

2
Γ1)

−−−−−→ P, ψk
H

1
2

(Γ2)
−−−−−→ ψ, hk

H

1
2

(Γ0)
−−−−−→ h,

then uk
H1(Ω)
−−−−→ u, Tuk

H
− 1

2 (Γ)
−−−−−→ Tu. (4.19)

Analogously to the problem (2.1), let us formulate the implicit Signorini
problem for the operator (4.1), with Dirichlet and Neumann boundary con-
ditions: find a displacement u ∈ H1(Ω) such that

Au = f,

u|
Γ2

= ψ, Tu|
Γ1

= P,

(Tu)s|Γ0
= 0; (Tu)ν |Γ0

≥ 0;

uν |Γ0
≥ h− 〈(Tu)ν , ϕ〉Γ0

,

〈(Tu)ν , uν − h+ 〈(Tu)ν , ϕ〉Γ0
〉
Γ0

= 0;

(4.20)

f ∈ L2(Ω), P ∈ H̃
− 1

2 (Γ1 ∪ Γ2), ψ ∈ H
1
2 (Γ2),

h, ϕ ∈ H
1
2 (Γ0), ϕ ≥ 0.

(4.21)

In the mechanical process expressed by this problem, contrary to the
classical problem, the frame has some elastic properties and expands uni-
formly with constant 〈(Tu)ν , ϕ〉Γ0

. Show the solvability of the problem
(4.20) under the conditions (4.21) and examine the unequeness problem.

Let, for any number λ ≥ 0, uλ be a solution of the following classical
Signorini problem:

Auλ = f, uλ ∈ H1(Ω), (4.22)

uλ|
Γ2

= ψ, Tuλ|
Γ1

= P, (4.23)

(Tuλ)ν |Γ0
≥ 0; (Tuλ)s|Γ0

= 0, (4.24)

uλν |Γ0
≥ h− λ, (4.25)

〈(Tuλ)ν , u
λ
ν − h+ λ〉Γ0

= 0. (4.26)
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Here f, P, ψ, h are the data of the problem (4.20). Define the mapping
F : R

+ → R
+ for the problem (4.20):

F (λ) = 〈(Tuλ)ν , ϕ〉Γ0
, λ ≥ 0. (4.27)

Due to Lemma 4.3, such definition is correct. It is clear that F (λ) ≥ 0 and
if F (λ) = λ, then the corresponding uλ is the solution of the problem (4.20),
and vice versa, if u is a solution of (4.20), then λ = 〈(Tu)ν , ϕ〉Γ0

satisfies
the condition F (λ) = λ, i.e., the number of solutions of the problem (4.20)
coincides with the number of stationary points of the function F (λ). Show
that the problem (4.20) has a solution under the conditions (4.21), i.e., the
function F (λ) has at last one stationary point. First of all, we show the
boundedness of the function F (λ). From (4.24) and (4.26) we get

〈(Tuλ)ν , h− uλν 〉Γ0
= λ〈(Tuλ)ν , 1〉Γ0

≥ 0, λ ≥ 0.

Let the functions φ̃, ψ̃ ∈ H1(Ω) satisfy the following conditions:

Aψ̃ = f ;

ψ̃|Γ2
= ψ, T ψ̃|Γ1

= P ; (T ψ̃)ν |Γ0
= 0;

φ̃ν |Γ0
= h; φ̃|

Γ2
= ψ.

Then from the formula (4.5) and the conditions (4.22), (4.23)

B(uλ − ψ̃, φ̃− uλ) = 〈(Tuλ)ν , h− uλν 〉Γ0
≥ 0, λ ≥ 0. (4.28)

Evidently (uλ − ψ̃) ∈ H1
∗(Ω) and, as it was mentioned, for the form B(u, v)

(4.15) holds on the space H1
∗(Ω). Therefore, from the (4.28) we get:

α‖uλ − ψ̃‖2
1,Ω ≤ B(uλ − ψ̃, uλ − ψ̃) ≤ B(uλ − ψ̃, φ̃− ψ̃) ≤

≤ C‖uλ − ψ̃‖1,Ω‖φ̃− ψ̃‖1,Ω,

i.e.,

‖uλ − ψ̃‖1,Ω <∞.

Taking

Ψ ∈ H1(Ω), Ψ|
Γ0

= 1, Ψ|
Γ2

= 0,

Φ ∈ H1(Ω), Φ|
Γ0

= ϕ Φ|
Γ2

= 0,
(4.29)

from the formula (4.5), due to Lemma 4.3, we get

|F (λ)| = |〈(Tuλ)ν , ϕ〉Γ0
| = |B(uλ − ψ̃,Φχ)| ≤ C‖uλ − ψ̃‖1,Ω‖Φχ‖1,Ω <∞.

Show that the mapping (4.32) is continuous. Make the following replace-
ments in the problems (4.10) and (4.12):

h := h− λ1, hk := h− λ2, ψk := ψ, Pk := P. (4.30)
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Since the form (4.3), along with the property (4.4) and the symmetricity,
has the coercivity property (4.15) on the space H1

∗(Ω), therefore, it can be
considered as a scalar product on the space H1

∗(Ω) and, for this form the
Schwarz inequality is true. Thus, from (4.13),(4.14), in view of (4.29),(4.30),
we get:

B(uλ1 − uλ2 , uλ1 − uλ2) ≤ (λ2 − λ1)B(uλ1 − uλ2 ,Ψχ) ≤

≤ λ1 − λ2

√
B(uλ1 − uλ2 , uλ1 − uλ2)

√
B(Ψχ,Ψχ) ,

|F (λ1)− F (λ2)| = |B(uλ1 − uλ2 ,Φχ)| ≤

≤
√
B(uλ1 − uλ2 , uλ1 − uλ2)

√
B(Φχ,Φχ) ≤

≤ |λ1 − λ2|
√
B(Ψχ,Ψχ)

√
B(Φχ,Φχ) .

Since Φ and Ψ are arbitrary functions, from the conditions (4.30), analo-
gously to the above reasoning, we conclude:

|F (λ1)− F (λ2)| ≤ CC2
1 |λ1 − λ2| ‖1‖

H
1
2 (Γ0)

‖ϕ‖
H

1
2 (Γ0)

. (4.31)

Here, the constants C and C1 are defined in (4.4) and (4.17), respec-
tively. Thus, the function F (λ) is continuous. Since it is also bounded and
F (0)≥ 0, it has at least one stationary point. Therefore, the corresponding
problem (4.20) under the conditions (4.21) has a solution.

It is easy to see that

‖1‖
H

1
2 (Γ0)

≤ ‖1‖H1(Ω) = mes Ω.

Hence and from the estimate (4.31) we have

|F (λ1)− F (λ2)| ≤ CC2
1 mesΩ|λ1 − λ2| ‖ϕ‖

H
1
2 (Γ0)

.

It is clear, that if

‖ϕ‖
H

1
2 (Γ0)

<
1

CC2
1 mes Ω

,

then the function (4.27) is a contractive mapping and it has unique sta-
tionary point. Correspondingly, the problem (4.20) has a unique solution.
From the estimates in (4.14), taking into account (4.30), we have

(λ1 − λ2)〈(Tu
λ2)ν − (Tuλ1)ν , 1〉Γ0

= 〈(Tuk)ν − (Tu)ν , hk − h〉Γ0
≥ 0.

Hence, if ϕ = `, ` = const > 0, and λ1 < λ2, then

F (λ1)− F (λ2) = `〈(Tuλ1)ν − (Tuλ2)ν , 1〉Γ0
≥ 0.

Therefore, the function F (λ) is nonincreasing and we see that the problem
(4.20) has a unique solution in the case ϕ = const > 0 as well. Thus, we
have proved following
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Theorem 4.4. The implicit Signorini problem (4.20), under the conditions

(4.21), has a solution. This solution is unique if one of the following con-

ditions holds:

(i) ‖ϕ‖
H

1
2 (Γ0)

<
1

CC2
1 mesΩ

,

where C and C1 are constants defined by (4.4) and (4.17), respectively.

(ii) ϕ = `, ` = const > 0.

Consider the uniqueness question in general. Show that for the unique-
ness of the solution of the problem (4.20), under the conditions (4.21) it is
necessary and sufficient that the function defined by the equality (4.27) be
nonincreasing. The sufficiency is clear, show the necessity. Suppose that for
some data f , P, ψ, h, ϕ from the conditions (4.21) the nonincreaseness of
the corresponding function F (λ) is violated, i.e., let there exist nonnegative
numbers λ1, λ2, that

λ2 > λ1, F (λ2) > F (λ1).

Then, show that there exist constants α1,α2, α2 > 0 such that the problem
(4.20) for

f = f, P = P, ψ = ψ, h = h+ α1, ϕ = α2ϕ (4.32)

has at last two solutions. Indeed, denote by uλ the solution of the cor-
responding problem (4.22)–(4.26) with the data (4.32), and, by F (λ), the
corresponding mapping (4.27) for the data. Then it is easy to check the
validity of the following equalities:

uλ = uλ−α1 , F (λ) = α2F (λ− α1).

Here uλ and F (λ) are defined by the data f , P , ψ, h, ϕ. If we take

α2 =
λ2 − λ1

F (λ2)− F (λ1)
, α1 = α2F (λ1)− λ1,

then it is evident that α2 > 0, and the stationary points of the function
F (λ) are

α2F (λ1), α2F (λ2),

which means that the problem (4.20), under the conditions (4.32), has at
least two solutions. Hence, in order that this problem, in general, to have
the unique solution, it is necessary and sufficient that for any functions f ,
P , ψ, h, ϕ, from the conditions (4.21) and for any numbers λ2 > λ1 ≥ 0,
the following condition holds:

〈(Tuλ1)ν − (Tuλ2)ν , ϕ〉Γ0
≥ 0, ϕ ∈ H

1
2 (Γ0), ϕ ≥ 0.

Since the data ϕ have not participated in obtaining uλ, this condition is
equivalent to the following fact:

For any data from the conditions (4.11),
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((Tu0)ν − (Tuλ)ν)|Γ0
≥ 0. (4.33)

Here, uλ is the solution of the problem (4.22)–(4.26), while u0 satisfies the
problem

Au0 = f, u0 ∈ H1(Ω); (4.34)

u0|
Γ2

= ψ; Tu0|
Γ1

= P ; (4.35)

(Tu0)s|Γ0
= 0; (Tu0)ν |Γ0

≥ 0; (4.36)

u0
ν |Γ0

≥ h; (4.37)

〈(Tu0)ν , u
0
ν − h〉

Γ0
= 0, (4.38)

where the data are taken from the problem (4.20).

Prove the following

Theorem 4.5. In order that the problem (4.20) to have a unique solution

under the conditions (4.21), it is necessary and sufficient that the following

problem

Av = 0, v ∈ H1(Ω); (4.39)

v|Γ2
= 0; Tv|Γ1

= 0; (4.40)

(Tv)s|Γ0
= 0; (Tv)ν |Γ0

≥ 0; (4.41)

vν |Γ0
≥ g; (4.42)

〈(Tv)ν , vν − g〉
Γ0

= 0; (4.43)

vν |∼
Γ

= g (4.44)

has the solution under the following conditions: Γ0,Γ1,Γ2 satisfy the con-

ditions (4.7) and

∼

Γ ⊂ Γ0, mes
∼

Γ > 0, γ ∈ R, γ ≥ 0,

g ∈ H1
loc(Γ0) ∩H

1
2 (Γ0), g|

Γ0
≤ γ, g|∼

Γ

= γ.
(4.45)

Proof. Show that the solvability of the problem (4.39)–(4.44) is equivalent
to (4.33) when

f ∈ L2(Ω), ψ ∈ H
1

(Γ2), P ∈ L2(Γ1), h ∈ H1
loc(Γ0). (4.46)

Indeed, suppose that (4.33) holds for (4.46). Choose arbitrary
∼

Γ, g and
γ from the conditions (4.45) and take

f ∈ L2(Ω), ψ ∈ H
1

(Γ2), P ∈ L2(Γ1),

h = g + wν |Γ0
, λ = γ,

(4.47)
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where w satisfies the following conditions

Aw = f, w ∈ H1(Ω) ∪H1
loc(Γ1 ∪ Γ0);

w|
Γ2

= ψ, Tw|
Γ1

= P, Tw ∈ L2(Γ0),

(Tw)s|Γ0
= 0; (Tw)ν |∼

Γ

> 0, (Tw)ν |
Γ0\

∼
Γ

= 0.

(4.48)

Due to the regularization theorem (see[3]), there obviously exists such a
function w, and therefore, h ∈ H1

loc(Γ0).
Suppose that u0 and uλ are the solutions of the problems (4.34)–(4.38)

and (4.22)–(4.26), respectively, with the data (4.47),(4.48). Show, that
uλ = w. Indeed, it is clear that the conditions (4.22)–(4.25) are true for w.
Check the last condition (4.26). From (4.45),(4.47) and (4.48), we have

〈(Tw)ν , wν − h+ λ〉
Γ0

= 〈(Tw)ν , γ − g〉
Γ0

=

∫

Γ0

(Tw)ν(γ − g)dΓ = 0.

Hence, w is the solution of the problem (4.22)–(4.26) with the data (4.47)
and uλ = w. Thus

h = g + uλν |Γ0
. (4.49)

Show that Tu0 ∈ L2
loc(Γ0). First we prove the following general fact:

“If u ∈ H
3
2 (Ω), Au ∈ L2(Ω), then Tu ∈ L2(Γ)”.

Indeed, if u ∈ H
3
2
+ε

(Ω), ε > 0 and Au ∈ L2(Ω), then, in view of the form
(4.2) of the operator T (x, ∂, ν), we get Tu ∈ Hε(Γ). If u ∈ H1(Ω), Au ∈

L2(Ω), then Tu is defined from the formula (4.5) and Tu ∈ H
− 1

2 (Γ). Hence,

when s = 1, and s > 3
2 , then, Tu ∈ H

s− 3
2 (Γ), when u ∈ Hs(Ω), Au ∈ L2(Ω).

Due to the interpolation theorem (see[6]), the same is true when s ∈ [1, 3
2 ],

which proves the above mentioned fact. Due to the regularization theorem

for the Signorini problem of [3], from (4.47), (4.48) we have u0 ∈ H
3
2 (Ω′),

where Ω′ is any open set with Ω′ ⊂ Ω \ ∂Γ1, which, as it is already proved,
means that Tu0 ∈ L2

loc(Γ \ ∂Γ1). Hence,

Tu0 ∈ L2
loc(Γ0), Tuλ ∈ L2(Γ0). (4.50)

Show that the function v = u0 − uλ is a solution of the problem (4.39)–
(4.44). Indeed, due to the conditions (4.22)–(4.24), (4.34)–(4.36) and the
assumption (4.33), v satisfies the conditions (4.39)–(4.41). From (4.37) and
(4.49)

vν |Γ0
≥ h− uλν |Γ0

= g.

To prove (4.43), we note that from the already proved conditions (4.41),
(4.42) and (4.49), we have

0 ≤ 〈(Tv)ν , vν − g〉Γ0
= 〈(Tu0)ν − (Tuλ)ν , u

0
ν − h〉Γ0

=
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= −〈(Tuλ)ν , u
0
ν − h〉

Γ0
≤ 0,

i.e., 〈(Tv)ν , vν − g〉
Γ0

= 0.

Prove (4.44). As it was mentioned, the inequalities (Tu0)ν |Γ0
≥ 0 and

(Tuλ)ν |Γ0
≥ 0 have the same meaning as in section 1, but, by (4.50) and

by Lemma 4.2, these inequalities, as well as (4.25) and (4.37), hold almost
everywhere on the part Γ0 and so, due to Lemma 4.1 and (4.50), (4.26) and
(4.38), can be rewritten as follows

∫

Γ0

(Tuλ)ν(u
λ
ν − h+ λ)dΓ = 0,

∫

Γ0

(Tu0)ν(u
0
ν − h)dΓ = 0.

from these equalities and from (4.33), we have

(uλν − h+ λ)|
{(T uλ)ν >0}∩Γ0

= 0,

(u0
ν − h)|

{(T u0)ν >0}∩Γ0
= 0,

(Tu0)ν |
{(T uλ)ν >0}∩Γ0

> 0.

(4.51)

As we have shown, uλ = w. Then, from the conditions (4.48), we get:

∼

Γ = {x ∈ Γ0; (Tuλ)ν > 0}.

On the other hand, from (4.51) we have

(uλν − h+ λ)|∼
Γ

= 0, (u0
ν − h)|∼

Γ

= 0,

vν |∼
Γ

= (u0
ν − uλν )|∼

Γ

= λ = γ.

Thus, due to the assumption (4.33) under the conditions (4.46), the prob-
lem (4.39)–(4.44), has a solution under the conditions (4.45).

Show vice versa. Let the problem (4.39)–(4.44) have a solution under the
conditions (4.45) and f, P, ψ, h satisfy the conditions (4.46), u0 and uλ be
solutions of the problems (4.34)–(4.38) and (4.22)–(4.26), respectively, for
this data and for λ ≥ 0. Set

g = h− uλν |Γ0
, γ = λ,

∼

Γ = {x ∈ Γ0; (Tuλ)ν > 0}, (4.52)

Since the data f, P, ψ, h are taken from the conditions (4.46), by the reg-
ularization theorem, analogously to the above conducted reasoning, it is

easy to see that Tuλ ∈ L2
loc(Γ0), i.e.,

∼

Γ is defined within a set of measure

zero. Suppose, mes
∼

Γ = 0. This means that (Tuλ)ν = 0 and so, the con-

dition (4.33) is valid. Consider the case mes
∼

Γ > 0. Let us show that the

data g,
∼

Γ, γ, defined in (4.52), satisfy the conditions (4.45). Due to the
conditions (4.24)–(4.26) and Lemma 4.1, we get

g = h− uλν |Γ0
≤ λ = γ, (γ − g)|∼

Γ

= (uλν − h+ λ)|∼
Γ

= 0.
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Hence, g,
∼

Γ, γ satisfy the conditions (4.45) and the problem (4.39)–(4.44)
under the conditions (4.52) has a solution v. Let us show that v + uλ,
satisfies conditions of the problem (4.34)–(4.38). Indeed, in view of the
properties of the functions v and uλ, it is evident that v + uλ satisfies the
conditions (4.34)–(4.36). Due to (4.42) and (4.52) we have

(vν + uλν )|Γ0
≥ g + uλν |Γ0

= h.

Prove (4.38). From (4.43),(4.44) and (4.52)

〈(Tv)ν + (Tuλ)ν , vν + uλν − h〉
Γ0

= 〈(Tv)ν + (Tuλ)ν , vν − g〉
Γ0

=

=

∫

Γ0

(Tuλ)ν(vν − g)dΓ = 0,

i.e., v + uλ = u0 and (Tu0)ν − (Tuλ)ν = (Tv)ν ≥ 0.
Finally, we prove that the validity of (4.33) under the conditions (4.46)

is equivalent to the solvability of the problem (4.39)–(4.44) with the data
(4.45). If (4.33) holds in the conditions (4.46), then it is valid for any data
f, ψ, P, h, from (4.11). Indeed, let ψk, Pk and hk be taken from (4.46) such
that

Pk
H
− 1

2 (Γ1)
−−−−−−→ P, ψk

H
1
2 (Γ2)

−−−−−→ ψ, hk
H

1
2 (Γ0)

−−−−−→ h.

Then (4.33) yields for f, ψk, Pk, hk and for stability of the classical Sig-
norini’s problem, which is expressed in (4.19), it is valid also for the data
f, ψ, P, h. As we have mentioned, (4.33) is equivalent to the uniqueness of
solution of (4.20) under the conditions (4.21).

Let us formulate some assumption, similar to “maximum principle” (see
Lemma1.4), for the operator A(x, ∂):

Assumption M. If the function u satisfies the following conditions

Au = 0, u ∈ H1(Ω), Tu ∈ L2
loc(Γ0).

u|
Γ2

= 0, Tu|
Γ1

= 0,

(Tu)s|Γ0
= 0, (Tu)ν |Γ0

≥ 0, (Tu)ν |Γ0
6= 0,

(4.53)

where Γ0,Γ1,Γ2 satisfy the conditions (4.7), then

essup
Γ0∩{(T u)ν >0}

uν = essup
Γ

uν . (4.54)

From the conditions (4.53), Tu ∈ L2
loc(Γ0), mes{x ∈ Γ0; (Tu)ν > 0}

> 0. The mechanical meaning of this fact is the following: if the body is fixed
by its part Γ2 and on this body only surface forces act, which are directed
along the outer normal, then the normal component of displacement reachs
its maximal value on that part on Γ0, where the forces are nonzero.

Prove the following
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Theorem 4.6. For the solvability of the problem (4.39)–(4.44) under the

conditions (4.45), it is necessary and sufficient that the “Assumption M” is

fulfilled.

Proof. Assume that the “Assumption M” is fulfilled and v is the solution of
Signorini’s classical problem (4.39)–(4.43) with data (4.45). If γ = 0, then
v = 0 and (4.44) yields. Let γ > 0. From the regularization theorem and
from (4.43) we have

Tv ∈ L2
loc(Γ0), vν = g|

{x∈Γ0; (T v)ν >0}
.

It is clear that v satisfies the conditions (4.53) and from (4.42) and (4.54),
in view of the g|∼

Γ

= γ we obtain

essup
Γ

vν = essup
Γ0∩{(T v)ν >0}

g ≤ γ, vν |∼
Γ

≥ γ,

and vν |∼
Γ

= γ. So, v is a solution of the problem (4.39)–(4.44).

Let the “Assumption M” be false, i.e., there exist Γ0,Γ1,Γ2, satisfying
the conditions (4.7) and a function u from the conditions (4.53) such that

essup
Γ

uν > essup
Γ0∩{(Tu)ν>0}

uν = M.

Then there exist an open set Γ′0 and a number M ′ such that

Γ1 ∪ Γ0 ⊃ Γ
′

0 ⊃ Γ0, essup
Γ′0

uν = M ′, M ′ > M. (4.55)

Suppose M ≤ 0. Then from (4.53), applying Lemma 4.1, we have

0 ≥

∫

Γ0

(Tu)νuνdΓ = 〈Tu, u〉Γ = B(u, u) ≥ 0,

whence u = 0, which contradicts to the conditions (4.53), i.e., M > 0.
Consider the following data

Γ′0, Γ′1 = Γ0 ∪ Γ1 \ Γ
′

0, Γ′2 = Γ2,

∼

Γ
′

=
{
x ∈ Γ′0; uν >

M ′ +M

2

}
,

g′ = inf
(
uν |Γ′

0

,
M ′ +M

2

)
, γ =

M ′ +M

2
.

(4.56)

Due to Lemma1.1 (ii), since uν |Γ′
0

∈ H1
loc(Γ

′
0) and g′ = uν |Γ′

0

−max(uν |Γ′
0

−

M ′+M
2 , 0), we have g′ ∈ H1

loc(Γ0) and from (4.55) it is easy to see that the
data (4.56) satisfy the conditions (4.45). Consider the Signorini problem
(4.39)–(4.43) with the data (4.56). It has a unique solution. Show that this
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solution coincide with u. Indeed, it is evident, that u satisfies the conditions
(4.39)–(4.42). From (4.55) and (4.56),

g′ − uν |
Γ′
0
\
∼
Γ
′ = 0, (Tu)ν |∼

Γ
′ = 0; uν |∼

Γ
′ > γ.

Hence, from Lemma 4.1,

〈(Tu)ν , uν − h〉
Γ′
0

=

∫

Γ′0

(Tu)ν(uν − g′)dΓ = 0.

Therefore, u is the unique solution for the problem (4.39)–(4.43) with
the data (4.56), which does not satisfy the condition (4.44). This implies
that, if the “Assumption M” is not true, then, there can be constructed
such data in conditions (4.45), that the problem (4.39)–(4.44) will have no
solution.

Let us prove one more theorem.

Theorem 4.7. In order that the “Assumption M” to be true, it is necessary

and sufficient that for the solution u of the following classical Signorini

problem

Au = 0, u ∈ H1(Ω);

u|Γ2
= 0, Tu|Γ1

= 0,

(Tu)s|Γ0
= 0; (Tu)ν |Γ0

≥ 0;

uν |Γ0
≥ h, 〈(Tu)ν , uν − h〉Γ0

= 0

(4.57)

with

h ∈ H
1
2 (Γ0), essup

Γ0

h ≥ 0 (4.58)

and with Γ0,Γ1,Γ2 satisfying the conditions (4.7), the following assertion is

true

essup
Γ

uν = essup
Γ0

h. (4.59)

Proof. Let the “Assumption M” be true. Prove (4.59). Take the sequence
hk as follows:

hk ∈ H
1(Γ0), essup

Γ
hk ≥ 0, hk

H
1
2 (Γ0)

−−−−−→ h,

where h is any function from the conditions (4.58) and u, uk are the solutions
of the problem (4.57) with data h and hk, respactively. Then, due to the
regularization theorem, (Tuk)ν ∈ L2

loc(Γ0) and uk satisfies the conditions
(4.53), so

essup
Γ0∩{(Tuk)ν>0}

ukν = essup
Γ

ukν .



50

By Lemma 4.1, we have ukν = hk|
Γ0∩{(T uk)ν >0}

. Thus

essup
Γ

ukν = essup
Γ0

hk. (4.60)

For (4.19) we have ukν
H

1
2 (Γ)

−−−−→ uν , i.e., essup
Γ

ukν → essup
Γ

uν , essup
Γ0

hk →

essup
Γ0

h. Therefore, from the equality (4.60) we get (4.59). If the maximum

type principle fails, then in proof of Theorem 4.6, we have constructed such
data in the conditions (4.45), that for the unique solution v of the Signorini

problem (4.39)–(4.43) the condition essup
Γ

vν = M ′ > essup
Γ0

g = M ′+M
2

holds, which completes the proof.

Finally, due to Theorem 4.6 and Theorem 4.7, we have proved the fol-
lowing

Theorem 4.8. In order for the implicit Signorini problem (4.20), under

the conditions (4.21), to have a unique solution, it is necessary and suffi-

cient, that

(i) the “Assumption M” be true.

(ii) for the solution of the classical Signorini problem (4.57), under the

conditions (4.58), the equality (4.59) be valid.
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