N. Kekelia

SOME SUFFICIENT CONDITIONS FOR ξ-EXPONENTIALLY ASYMPTOTICALLY STABILITY OF LINEAR SYSTEMS OF GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

(Reported on March 26, 2001)

Consider a linear homogeneus system of generalized ordinary differential equations

$$
\begin{equation*}
d x(t)=d A(t) \cdot x(t) \tag{1}
\end{equation*}
$$

where $A:\left[0,+\infty\left[\rightarrow \mathbb{R}^{n \times n}\right.\right.$ is a real matrix-function with locally bounded variation components.

We give some sufficient conditions quaranteeing stability in the Liapunov sense of the system (1), which follow from the those given in [1].

The following notations an difinitions will be used in the paper: $\mathbb{R}=]-\infty,+\infty[$, $\mathbb{R}_{+}=[0,+\infty[;[a, b]$ and $] a, b[(a, b) \in \mathbb{R}$ are, respectively, a closed and open intervals;
$\mathbb{R}^{n \times m}$ is the space of all real $n \times m$-matrices $X=\left(x_{i j}\right)_{i, j=1}^{n, m}$ with the norm

$$
\|X\|=\max _{j=1, \ldots, m} \sum_{i=1}^{n}\left|x_{i j}\right| ; \quad|X|=\left(\left|x_{i j}\right|\right)_{i, j=1}^{n, m}
$$

$R^{n}=R^{n \times 1}$ is the space of all real column n-vectors $x=\left(x_{i}\right)_{i=1}^{n}$;
If $X \in \mathbb{R}^{n \times n}$, then X^{-1} and $\operatorname{det}(X)$ are, respectively, the matrix inverse to X and the determinant of $X ; I_{n}$ is the indentity $n \times n$-matrix.
$\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is the diagonal matrix with diagonal elements $\lambda_{1}, \ldots, \lambda_{n} ;$
$V_{0}^{+\infty}(X)=\sup _{b \in \mathbb{R}_{+}} V_{0}^{b}(X)$, where $V_{0}^{b}(X)$ is the sum of total variations on [0,b] of the components $x_{i j}(i=1, \ldots, n ; j=1, \ldots, m)$ of the matrix-function $X: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n \times m}$; $V(X)(t)=\left(v\left(x_{i j}\right)(t)\right)_{i, j=1}^{n, m}$, where $v\left(x_{i j}\right)(0)=0$ and $v\left(x_{i j}\right)(t)=V_{0}^{t}\left(x_{i j}\right)$ for $0<t<+\infty$ $(i=1, \ldots, n ; j=1, \ldots, m)$.
$\operatorname{Re} z$ and $\operatorname{Im} z$ are a real and an imaginary parts of the complex number z;
$X(t-)$ and $X(t+)$ are the left and the right limits of the matrix-function $X: \mathbb{R}_{+} \rightarrow$ $\mathbb{R}^{n \times m}$ at the point $t ; d_{1} X(t)=X(t)-X(t-), d_{2} X(t)=X(t+)-X(t) ;$
$B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n \times m}\right)$ is the set of all matrix-functions of bounded variations on every closed interval from \mathbb{R}_{+};
$s_{0}: B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}\right) \rightarrow B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}\right)$ is an operator defined by

$$
s_{0}(x)(t) \equiv x(t)-\sum_{0<\tau \leq t} d_{1} x(\tau)-\sum_{0 \leq \tau<t} d_{2} x(\tau)
$$

[^0]If $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a nondecreasing function, $x: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and $0 \leq s<t<+\infty$, then

$$
\begin{gathered}
\int_{s}^{t} x(\tau) d g(\tau)=\int_{] s, t[} x(\tau) d g_{1}(\tau)-\int_{] s, t[} x(\tau) d g_{2}(\tau)+ \\
+\sum_{s<\tau \leq t} x(\tau) d_{1} g(\tau)-\sum_{s \leq \tau<t} x(\tau) d_{2} g(\tau),
\end{gathered}
$$

where $g_{j}: \mathbb{R}_{+} \rightarrow \mathbb{R}(j=1,2)$ are continuons nondecreasing functions, such that $g_{1}(t)-$ $g_{2}(t) \equiv s_{0}(g)(t)$, and $\int_{] s, t[} x(\tau) d g_{j}(\tau)$ is Lebesgue-Stiltjes integral over the open interval]s, $\mathrm{t}\left[\right.$ with respect to the measure corresponding to the function $g_{j}(j=1,2)$ (if $s=t$, then $\left.\int_{s}^{t} x(\tau) d g(\tau)=0\right)$;

A matrix-function is said to be nondecreasing if each of its components is such.
If $G=\left(g_{i k}\right)_{i, k=1}^{l, n}: \mathbb{R}_{+} \rightarrow \mathbb{R}^{l \times n}$ is a nondecreasing matrix-function, $X=\left(x_{i k}\right)_{i, k=1}^{n, m}$: $\mathbb{R}_{+} \rightarrow \mathbb{R}^{n \times m}$, then

$$
\int_{s}^{t} d G(\tau) \cdot X(\tau)=\left(\sum_{k=1}^{n} \int_{s}^{t} x_{k j}(\tau) d g_{i k}(\tau)\right)_{i, j=1}^{l, m} \quad \text { for } \quad 0 \leq s \leq t<+\infty
$$

If $G_{j}: \mathbb{R}_{+} \rightarrow \mathbb{R}^{l \times n}(j=1,2)$ are nondecreasing matrix-functions, $G(t) \equiv G_{1}(t)-$ $G_{2}(t)$ and $X: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n \times m}$, then

$$
\int_{s}^{t} d G(\tau) \cdot X(\tau)=\int_{s}^{t} d G_{1}(\tau) \cdot X(\tau)-\int_{s}^{t} d G_{2}(\tau) \cdot X(\tau) \quad \text { for } \quad 0 \leq s \leq t<+\infty
$$

Under a solution of the system (1) we understand a vector-function $x \in B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n}\right)$ such that

$$
x(t)=x(s)+\int_{s}^{t} d A(\tau) \cdot x(\tau) \quad(0 \leq s \leq t<+\infty)
$$

We will assume that $A=\left(a_{i k}\right)_{i, k=1}^{n} \in B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n \times n}\right), A(0)=O_{n \times n}$ and

$$
\operatorname{det}\left(I_{n}+(-1)^{j} d_{j} A(t)\right) \neq 0 \quad \text { for } \quad t \in \mathbb{R}_{+} \quad(j=1,2)
$$

Let $x_{0} \in B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n}\right)$ be a solution of the system (1).
Definition 1. Let $\xi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a nondecreasing function such that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \xi(t)=+\infty \tag{2}
\end{equation*}
$$

The the solution x_{0} of the system (1) is called ξ-exponentially asymptotically stable, if there exists a positive number η such that for every $\varepsilon>0$ there exists a positive number $\delta=\delta(\varepsilon)$ such that an arbitrary solution x of the system (1), satisfying the inequality

$$
\left\|x\left(t_{0}\right)-x_{0}\left(t_{0}\right)\right\|<\delta
$$

for some $t_{0} \in \mathbb{R}_{+}$, admits the estimate

$$
\left\|x(t)-x_{0}(t)\right\|<\varepsilon \exp \left(-\eta\left(\xi(t)-\xi\left(t_{0}\right)\right)\right) \text { for } t \geq t_{0}
$$

Stability, uniformly stability and asymptotically stability of the solution x_{0} are defined analogously as for systems of ordinary differential equations (see [2]), i.e. in case
when $A(t)$ is the diagonal matrix-function with diagonal elements equal t. Note that exponentially asymptotically stable ([2]) is particular case of ξ-exponentially asymptotically stability if we assume $\xi(t) \equiv t$.

Definition 2. The system (1) is called stable (uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable) if every solution of this system is stable (uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable).

Definition 3. The matrix-function A is called stable (uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable) if the system (1) is stable (unformly stable, asymptotically stable or ξ-exponentially asymptotically stable).

If $X \in B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n \times n}\right)$, then $\mathcal{A}(X, \cdot): B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n \times m}\right) \rightarrow B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n \times m}\right)$ an operator defined by

$$
\begin{gathered}
\mathcal{A}(X, Y)(t)=Y(t)+\sum_{0<\tau \leq t} d_{1} X(\tau) \cdot\left(I_{n}-d_{1} X(\tau)\right)^{-1} \cdot d_{1} Y(\tau)- \\
\quad-\sum_{0 \leq \tau<t} d_{2} X(\tau) \cdot\left(I_{n}+d_{2} X(\tau)\right)^{-1} \cdot d_{2} Y(\tau) \text { for } t \in \mathbb{R}_{+} ;
\end{gathered}
$$

If $G \in B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n \times n}\right)$, then $\mathcal{B}(G, \cdot): B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n \times m}\right) \rightarrow B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n \times m}\right)$ is an operator difined by

$$
\mathcal{B}(G, X)(t)=G(t) X(t)-G(0) X(0)-\int_{0}^{t} d G(\tau) \cdot X(\tau) \quad \text { for } \quad t \in \mathbb{R}_{+}
$$

Moreover, if $\operatorname{det}(G(t)) \neq 0\left(t \in \mathbb{R}_{+}\right)$, then $\mathcal{L}(G, \cdot): B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n \times m}\right) \rightarrow B V_{\text {loc }}\left(\mathbb{R}_{+}\right.$, $\left.\mathbb{R}^{n \times m}\right)$ is an operator given by

$$
\mathcal{L}(G, X)(t)=\int_{0}^{t} d[G(\tau)+\mathcal{B}(G, X)(\tau)] \cdot G^{-1}(\tau) \quad \text { for } \quad t \in \mathbb{R}_{+}
$$

Theorem 1. Let $\xi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a continuous nondecreasing function satisfying the condition (2). Then the matrix-function A is ξ-exponentially asymptotically stable if and only if there exist a positive number η and a matrix-function $H \in B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n \times n}\right)$ such that the conditions

$$
\operatorname{det}(H(t)) \neq 0 \quad \text { for } \quad t \in \mathbb{R}_{+}, \quad \sup \left\{\left\|H^{-1}(t) H(s)\right\|: t \geq s \geq 0\right\}<+\infty
$$

and

$$
\left\|\int_{0}^{+\infty} d V(\mathcal{L}(H, A)+\eta \operatorname{diag}(\xi, \ldots, \xi))(t) \cdot|H(t)|\right\|<+\infty
$$

hold.

Theorem 2. Let the matrix-function $Q \in B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}^{n \times n}\right)$ be ξ-exponentially asymptotically stable,

$$
\operatorname{det}\left(I_{n}+(-1)^{j} d_{j} Q(t)\right) \neq 0 \quad \text { for } \quad t \in \mathbb{R}_{+}(j=1,2)
$$

Let, moreover, there exists a positive number η such that

$$
\left\|\int_{0}^{+\infty}\left|Z^{-1}(t)\right| d V(\mathcal{A}(Q, A-Q)+\eta \operatorname{diag}(\xi, \ldots, \xi))(t)\right\|<+\infty
$$

where $Z\left(Z(0)=I_{n}\right)$ is the fundamental matrix of the system

$$
d z(t)=d Q(t) \cdot z(t)
$$

and $\xi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is the continuons nondecreasing function satisfying the condition (2). Then the matrix-function A is ξ-exponentially asymptotically stable, as well.

Theorem 3. Let the constant matrix $P=\left(p_{i k}\right)_{i, k=1}^{n} \in \mathbb{R}^{n}$ be stable (asymptotically stable or ξ-exponentially asymptotically stable). Let, moreover, $\lambda_{1}, \ldots, \lambda_{n}\left(\lambda_{i} \neq \lambda_{j}\right.$ for $i \neq j$) be its eigenvalues with the multiplicities n_{1}, \ldots, n_{m}, respectively, and

$$
\int_{0}^{+\infty} t^{n_{l}-1} \exp \left(-t \operatorname{Re} \lambda_{l}\right) d v\left(b_{i k}\right)(t)<+\infty,(l=1, \ldots, m ; i, k=1, \ldots, n)
$$

where $\xi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is the continuouns nondecreasing function satisfying the condition (2), $b_{i k}(t) \equiv a_{i k}(t)-p_{i k} t, a_{i k} \in B V_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}\right),(i, k=1, \ldots, n)$. Then the matrixfunction $A=\left(a_{i k}\right)_{i, k=1}^{n}$ is uniformly stable (asymptotically stable or ξ-exponentially asymptotically stable) as well.

References

1. M. Ashordia and N. Kekelia, Criteria of stability for linear systems of generalized ordinary differential equations. Mem. differential equations Mat. Phys. 22(2000), 143146.
2. I. T. Kiguradze, Initial and boundary value problems for systems of ordinary differential equations. (Russian) Metsniereba, Tbilisi, 1997.

Author's address:
N. Kekelia

Sukhumi Branch of
Tbilisi State University
12, Djikia St., 380086 Tbilisi
Georgia

[^0]: 2000 Mathematics Subject Classification. 34B05.
 Key words and phrases. Stability in the Liapunov sense, linear homologeneous systems of generalized ordinary differential equations.

