Mem. Differential Equations Math. Phys. 23(2001), 155-158

N. Kekelia

SOME SUFFICIENT CONDITIONS FOR ξ -EXPONENTIALLY ASYMPTOTICALLY STABILITY OF LINEAR SYSTEMS OF GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

(Reported on March 26, 2001)

Consider a linear homogeneus system of generalized ordinary differential equations

$$dx(t) = dA(t) \cdot x(t), \tag{1}$$

where $A : [0, +\infty[\rightarrow \mathbb{R}^{n \times n} \text{ is a real matrix-function with locally bounded variation components.}$

We give some sufficient conditions quaranteeing stability in the Liapunov sense of the system (1), which follow from the those given in [1].

The following notations an difinitions will be used in the paper: $\mathbb{R} =] - \infty, +\infty[$, $\mathbb{R}_+ = [0, +\infty[; [a, b] \text{ and }]a, b[(a, b) \in \mathbb{R}$ are, respectively, a closed and open intervals; $\mathbb{R}^{n \times m}$ is the space of all real $n \times m$ -matrices $X = (x_{ij})_{i,j=1}^{n,m}$ with the norm

$$||X|| = \max_{j=1,...,m} \sum_{i=1}^{n} |x_{ij}|; \quad |X| = (|x_{ij}|)_{i,j=1}^{n,m};$$

 $R^n = R^{n \times 1}$ is the space of all real column *n*-vectors $x = (x_i)_{i=1}^n$;

If $X \in \mathbb{R}^{n \times n}$, then X^{-1} and det(X) are, respectively, the matrix inverse to X and the determinant of X; I_n is the indentity $n \times n$ -matrix.

 $\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$ is the diagonal matrix with diagonal elements $\lambda_1,\ldots,\lambda_n$;

 $V_0^{+\infty}(X) = \sup_{b \in \mathbb{R}_+} V_0^b(X), \text{ where } V_0^b(X) \text{ is the sum of total variations on } [0,b] \text{ of the components } x_{ij} \ (i = 1, \dots, n; j = 1, \dots, m) \text{ of the matrix-function } X : \mathbb{R}_+ \to \mathbb{R}^{n \times m}; V(X)(t) = (v(x_{ij})(t))_{i,j=1}^{n,m}, \text{ where } v(x_{ij})(0) = 0 \text{ and } v(x_{ij})(t) = V_0^t(x_{ij}) \text{ for } 0 < t < +\infty (i = 1, \dots, n; j = 1, \dots, m).$

 $\operatorname{Re} z$ and $\operatorname{Im} z$ are a real and an imaginary parts of the complex number z;

X(t-) and X(t+) are the left and the right limits of the matrix-function $X : \mathbb{R}_+ \to \mathbb{R}^{n \times m}$ at the point t; $d_1X(t) = X(t) - X(t-)$, $d_2X(t) = X(t+) - X(t)$;

 $BV_{loc}(\mathbb{R}_+, \mathbb{R}^{n \times m})$ is the set of all matrix-functions of bounded variations on every closed interval from \mathbb{R}_+ ;

 $s_0: BV_{\mathrm{loc}}(\mathbb{R}_+, \mathbb{R}) \to BV_{\mathrm{loc}}(\mathbb{R}_+, \mathbb{R})$ is an operator defined by

$$s_0(x)(t) \equiv x(t) - \sum_{0 < \tau \le t} d_1 x(\tau) - \sum_{0 \le \tau < t} d_2 x(\tau).$$

²⁰⁰⁰ Mathematics Subject Classification. 34B05.

Key words and phrases. Stability in the Liapunov sense, linear homologeneous systems of generalized ordinary differential equations.

If $g: \mathbb{R}_+ \to \mathbb{R}$ is a nondecreasing function, $x: \mathbb{R}_+ \to \mathbb{R}$ and $0 \le s < t < +\infty$, then

$$\int_{s}^{t} x(\tau) dg(\tau) = \int_{]s,t[} x(\tau) dg_1(\tau) - \int_{]s,t[} x(\tau) dg_2(\tau) + \sum_{s<\tau\leq t} x(\tau) d_1g(\tau) - \sum_{s\leq\tau< t} x(\tau) d_2g(\tau),$$

where $g_j : \mathbb{R}_+ \to \mathbb{R}$ (j = 1, 2) are continuous nondecreasing functions, such that $g_1(t) - g_2(t) \equiv s_0(g)(t)$, and $\int_{]s,t[} x(\tau) dg_j(\tau)$ is Lebesgue-Stiltjes integral over the open interval]s,t[with respect to the measure corresponding to the function g_j (j = 1, 2) (if s = t, then $\int_{s}^{t} x(\tau) dg(\tau) = 0$;

A matrix-function is said to be nondecreasing if each of its components is such. If $G = (g_{ik})_{i,k=1}^{l,n} : \mathbb{R}_+ \to \mathbb{R}^{l \times n}$ is a nondecreasing matrix-function, $X = (x_{ik})_{i,k=1}^{n,m}$: $\mathbb{R}_+ \to \mathbb{R}^{n \times m}$, then

$$\int_{s}^{t} dG(\tau) \cdot X(\tau) = \left(\sum_{k=1}^{n} \int_{s}^{t} x_{kj}(\tau) dg_{ik}(\tau)\right)_{i,j=1}^{l,m} \quad \text{for} \quad 0 \le s \le t < +\infty.$$

If $G_j : \mathbb{R}_+ \to \mathbb{R}^{l \times n}$ (j = 1, 2) are nondecreasing matrix-functions, $G(t) \equiv G_1(t) - G_2(t)$ and $X : \mathbb{R}_+ \to \mathbb{R}^{n \times m}$, then

$$\int_{s}^{t} dG(\tau) \cdot X(\tau) = \int_{s}^{t} dG_1(\tau) \cdot X(\tau) - \int_{s}^{t} dG_2(\tau) \cdot X(\tau) \quad \text{for} \quad 0 \le s \le t < +\infty.$$

Under a solution of the system (1) we understand a vector-function $x \in BV_{loc}(\mathbb{R}_+, \mathbb{R}^n)$ such that

$$x(t) = x(s) + \int_{s}^{t} dA(\tau) \cdot x(\tau) \quad (0 \le s \le t < +\infty).$$

We will assume that $A = (a_{ik})_{i,k=1}^n \in BV_{\text{loc}}(\mathbb{R}_+, \mathbb{R}^{n \times n}), A(0) = O_{n \times n}$ and

$$\det(I_n + (-1)^j d_j A(t)) \neq 0 \text{ for } t \in \mathbb{R}_+ \quad (j = 1, 2).$$

Let $x_0 \in BV_{loc}(\mathbb{R}_+, \mathbb{R}^n)$ be a solution of the system (1).

Definition 1. Let $\xi : \mathbb{R}_+ \to \mathbb{R}_+$ be a nondecreasing function such that

$$\lim_{t \to +\infty} \xi(t) = +\infty.$$
⁽²⁾

The the solution x_0 of the system (1) is called ξ -exponentially asymptotically stable, if there exists a positive number η such that for every $\varepsilon > 0$ there exists a positive number $\delta = \delta(\varepsilon)$ such that an arbitrary solution x of the system (1), satisfying the inequality

$$||x(t_0) - x_0(t_0)|| < \delta$$

for some $t_0 \in \mathbb{R}_+$, admits the estimate

$$||x(t) - x_0(t)|| < \varepsilon \exp(-\eta(\xi(t) - \xi(t_0)))$$
 for $t \ge t_0$.

Stability, uniformly stability and asymptotically stability of the solution x_0 are defined analogously as for systems of ordinary differential equations (see [2]), i.e. in case

156

when A(t) is the diagonal matrix-function with diagonal elements equal t. Note that exponentially asymptotically stable ([2]) is particular case of ξ -exponentially asymptotically stability if we assume $\xi(t) \equiv t$.

Definition 2. The system (1) is called stable (uniformly stable, asymptotically stable or ξ -exponentially asymptotically stable) if every solution of this system is stable (uniformly stable, asymptotically stable or ξ -exponentially asymptotically stable).

Definition 3. The matrix-function A is called stable (uniformly stable, asymptotically stable or ξ -exponentially asymptotically stable) if the system (1) is stable (unformly stable, asymptotically stable or ξ -exponentially asymptotically stable).

If $X \in BV_{loc}(\mathbb{R}_+, \mathbb{R}^{n \times n})$, then $\mathcal{A}(X, \cdot) : BV_{loc}(\mathbb{R}_+, \mathbb{R}^{n \times m}) \to BV_{loc}(\mathbb{R}_+, \mathbb{R}^{n \times m})$ an operator defined by

$$\mathcal{A}(X,Y)(t) = Y(t) + \sum_{0 < \tau \le t} d_1 X(\tau) \cdot (I_n - d_1 X(\tau))^{-1} \cdot d_1 Y(\tau) - \sum_{0 \le \tau < t} d_2 X(\tau) \cdot (I_n + d_2 X(\tau))^{-1} \cdot d_2 Y(\tau) \text{ for } t \in \mathbb{R}_+;$$

If $G \in BV_{\text{loc}}(\mathbb{R}_+, \mathbb{R}^{n \times n})$, then $\mathcal{B}(G, \cdot) : BV_{\text{loc}}(\mathbb{R}_+, \mathbb{R}^{n \times m}) \to BV_{\text{loc}}(\mathbb{R}_+, \mathbb{R}^{n \times m})$ is an operator difined by

$$\mathcal{B}(G,X)(t) = G(t)X(t) - G(0)X(0) - \int_{0}^{t} dG(\tau) \cdot X(\tau) \quad \text{for} \quad t \in \mathbb{R}_{+}.$$

Moreover, if $\det(G(t)) \neq 0$ $(t \in \mathbb{R}_+)$, then $\mathcal{L}(G, \cdot) : BV_{\text{loc}}(\mathbb{R}_+, \mathbb{R}^{n \times m}) \to BV_{\text{loc}}(\mathbb{R}_+, \mathbb{R}^{n \times m})$ is an operator given by

$$\mathcal{L}(G,X)(t) = \int_{0}^{t} d[G(\tau) + \mathcal{B}(G,X)(\tau)] \cdot G^{-1}(\tau) \quad \text{for} \quad t \in \mathbb{R}_{+}.$$

Theorem 1. Let $\xi : \mathbb{R}_+ \to \mathbb{R}_+$ be a continuous nondecreasing function satisfying the condition (2). Then the matrix-function A is ξ -exponentially asymptotically stable if and only if there exist a positive number η and a matrix-function $H \in BV_{loc}(\mathbb{R}_+, \mathbb{R}^{n \times n})$ such that the conditions

$$\det(H(t)) \neq 0 \quad for \quad t \in \mathbb{R}_+, \quad \sup\left\{ \|H^{-1}(t)H(s)\| : t \ge s \ge 0 \right\} < +\infty$$

and

$$\left\|\int_{0}^{+\infty} dV(\mathcal{L}(H,A) + \eta \operatorname{diag}(\xi,\ldots,\xi))(t) \cdot |H(t)|\right\| < +\infty$$

hold.

Theorem 2. Let the matrix-function $Q \in BV_{loc}(\mathbb{R}_+, \mathbb{R}^{n \times n})$ be ξ -exponentially asymptotically stable,

$$\det(I_n + (-1)^j d_j Q(t)) \neq 0 \quad for \ t \in \mathbb{R}_+ \ (j = 1, 2).$$

Let, moreover, there exists a positive number η such that

 $+\infty$

$$\left\|\int_{0}^{\infty} |Z^{-1}(t)| dV(\mathcal{A}(Q, A-Q) + \eta \operatorname{diag}(\xi, \dots, \xi))(t)|\right\| < +\infty$$

where $Z(Z(0) = I_n)$ is the fundamental matrix of the system

$$dz(t) = dQ(t) \cdot z(t),$$

and $\xi : \mathbb{R}_+ \to \mathbb{R}_+$ is the continuous nondecreasing function satisfying the condition (2). Then the matrix-function A is ξ -exponentially asymptotically stable, as well.

Theorem 3. Let the constant matrix $P = (p_{ik})_{i,k=1}^n \in \mathbb{R}^n$ be stable (asymptotically stable or ξ -exponentially asymptotically stable). Let, moreover, $\lambda_1, \ldots, \lambda_n$ ($\lambda_i \neq \lambda_j$ for $i \neq j$) be its eigenvalues with the multiplicities n_1, \ldots, n_m , respectively, and

$$\int_{0}^{+\infty} t^{n_{l}-1} \exp(-t \operatorname{Re} \lambda_{l}) dv(b_{ik})(t) < +\infty, \ (l = 1, \dots, m; i, k = 1, \dots, n),$$

where $\xi : \mathbb{R}_+ \to \mathbb{R}_+$ is the continuous nondecreasing function satisfying the condition (2), $b_{ik}(t) \equiv a_{ik}(t) - p_{ik}t$, $a_{ik} \in BV_{loc}(\mathbb{R}_+, \mathbb{R})$, (i, k = 1, ..., n). Then the matrixfunction $A = (a_{ik})_{i,k=1}^n$ is uniformly stable (asymptotically stable or ξ -exponentially asymptotically stable) as well.

References

1. M. ASHORDIA AND N. KEKELIA, Criteria of stability for linear systems of generalized ordinary differential equations. *Mem. differential equations Mat. Phys.* **22**(2000), 143–146.

2. I. T. KIGURADZE, Initial and boundary value problems for systems of ordinary differential equations. (Russian) *Metsniereba, Tbilisi*, 1997.

Author's address:

 $\pm \infty$

N. Kekelia Sukhumi Branch of Tbilisi State University 12, Djikia St., 380086 Tbilisi Georgia

158