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Consider a linear homogeneous system of generalized ordinary differential equations

dx(t) = dA(t) · x(t), (1)

where A : [0,+∞[→ R
n×n is a real matrix-function with locally bounded variation

components.

In this paper we give some sufficient conditions imposed on the components of matrix-
function A, wich guarantee the stability of the system (1) in the Liapunov sense with
respect to small perturbations. This conditions are differed from those given in [1].
Analogous conditions for ordinary differential equations are given in [2].

The following notations and definitions will be used in the paper:

R =]−∞,+∞[, R+ = [0,+∞[, [a, b] and ]a, b[ (a, b ∈ R)

are, respectively, a closed and open intervals;

R
n×m is the space of all real n×m matrices X = (xij)

n,m

i,j=1 with the norm

‖X‖ = max
j=1,...,m

n
∑

i=1

|xij |;

On×m (or O) is zero n×m-matrix;

R
n = R

n×1 is the space of all real column n-vectors x = (xi)n
i=1;

If X ∈ R
n×n, then X−1 and det(X) are, respectively, the matrix inverse to X and

the determinant of X; In is the identity n× n-matrix;

V +∞
0 (X) = supb∈R+

V b
0 (X), where V b

0 (X) is the sum of total variations on [0, b] of

the compnents xij (i = 1, . . . , n; j = 1, . . . , m) of the matrix-function X : R+ → R
n×m;

V (X)(t) = (v(xij )(t))n,m

i,j=1 , where v(xij )(0) = 0 and v(xij )(t) = V t
0 (xij) for 0 < t < +∞

(i = 1, . . . , n; j = 1, . . . ,m).

X(t−) and X(t+) are the left and the right limits of the matrix-function X : R+ →
R

n×m at the point t; d1X(t) = X(t) −X(t−), d2X(t) = X(t+) −X(t);

BVloc(R+, R
n×m) is the set of all matrix-functions of bounded variations on every

closed interval from R+.

s0 : BVloc(R+, R) → BVloc(R+, R) is an operator defined by

s0(x)(t) ≡ x(t) −
∑

0<τ≤t

d1x(τ)−
∑

0≤τ<t

d2x(τ).
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If g : R+ → R is a nondecreasing function, x : R+ → R and 0 ≤ s < t < +∞, then

t
∫

s

x(τ)dg(τ) =

∫

]s,t[

x(τ)dg1(τ) −

−

∫

]s,t[

x(τ)dg2(τ) +
∑

s<τ≤t

x(τ)d1g(τ)−
∑

s≤τ<t

x(τ)d2g(τ),

where gj : R+ → R (j = 1, 2) are continuous nondecreasing functions, such that g1(t) −
g2(t) ≡ s0(g)(t), and

∫

]s,t[
x(τ)dgj (τ) is Lebesgue-Stieltjes integral over the open interval

]s, t[ with respect to the measure corresponding to the function gj (j = 1, 2) (if s = t,

then
∫ t

s
x(τ)dg(τ) = 0);

A matrix-function is said to be nondecreasing if each of its component is such.
If G = (gik)l,n

i,k=1
: R+ → R

l×n is a nondecreasing matrix-function, X = (xik)n,m

i,k=1
:

R+ → R
n×m, then

t
∫

s

dG(τ) ·X(τ) =

(

n
∑

k=1

t
∫

s

xkj(τ)dgik(τ)

)l,m

i,j=1

for 0 ≤ s ≤ t < +∞.

If Gj : R+ → R
l×n (j = 1, 2) are nondecreasing matrix-functions, G(t) ≡ G1(t) −

G2(t) and X : R+ → R
n×m, then

t
∫

s

dG(τ) ·X(τ) =

t
∫

s

dG1(τ) ·X(τ) −

t
∫

s

dG2(τ) ·X(τ) for 0 ≤ s ≤ t < +∞.

r(H) is the spectral radius of the matrix H ∈ R
n×n.

Under a solution of the system (1) we understand a vector function x ∈ BVloc(R+, R
n)

such that

x(t) = x(s) +

t
∫

s

dA(τ) · x(τ) (0 ≤ s ≤ t < +∞).

We will assume that A = (aik)n
i,k=1

∈ BVloc(R+, R
n×n), A(0) = On×n and

det(In + (−1)jdjA(t)) 6= 0 for t ∈ R+ (j = 1, 2).

Let x0 ∈ BVloc(R+, R
n) be a solution of the system (1).

Definition 1. Let ξ : R+ → R+ be a nondecreasing function such that

lim
t→+∞

ξ(t) = +∞. (2)

The solution x0 of the system (1) is called ξ-exponentially asymptotically stable, if
there exists a positive number η such that for every ε > 0 there exists a positive number
δ = δ(ε) such that an arbitrary solution x of the system (1), satisfying the inequality

‖x(t0)− x0(t0)‖ < δ

for some t0 ∈ R+, admits the estimate

‖x(t) − x0(t)‖ < ε exp(−η(ξ(t) − ξ(t0))) for t ≥ t0.

Stability, uniformly stability and asymptotically stability of the solution x0 are defined
analogously as for systems of ordinary differential equations (see [2]), i.e. in case when
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A(t) is the diagonal matrix-function with diagonal elements equal to t. Note that expo-
nentially asymptotically stability ([2]) is particular case of ξ-exponentially asymptotically
stability if we assume ξ(t) ≡ t.

Definition 2. The system (1) is called stable (uniformly stable, asymptotically sta-
ble or ξ-exponentially asymptotically stable) if every solution of this system is stable
(uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable).

Definition 3. The matrix-function A is called stable (uniformly stable, asymptoti-
cally stable or ξ-exponentially asymptotically stable) if the system (1) is stable (uniformly
stable, asymptotically stable or ξ-exponentially asymptotically stable).

If X ∈ BVloc(R+, R
n×n), then A(X, ·) : BVloc(R+, R

n×m) → BVloc(R+, R
n×m) is

an operator defined by

A(X, Y )(t) = Y (t)+
∑

0<τ≤t

d1X(τ) · (In − d1X(τ))−1 · d1Y (τ)−

−
∑

0≤τ<t

d2X(τ) · (In + d2X(τ))−1 · d2Y (τ) for t ∈ R+;

If a ∈ BVloc(R+, R+) and 1 + (−1)jdja(t) 6= 0 for t ∈ R+ (j = 1, 2), then J :
BVloc(R+, R+) → BVloc(R+, R+) is an operator defined by

J(a)(t) =
∑

0<s≤t

(d1a(s) + ln |1− d1a(s)|) +
∑

0≤s<t

(d2a(s) − ln |1 + d2a(s)|) for t ∈ R+.

Theorem 1. Let the components aik (i, k = 1, . . . , n) of the matrix-function A satisfy

the conditions

1 + (−1)jdjaii(t) 6= 0 for t ≥ t∗ (j = 1, 2; i = 1, . . . , n), (3)

t
∫

t∗

exp(aii(t) − J(aii)(t) − aii(τ) + J(aii((τ))dv(bik)(τ) ≤ hik (4)

for t ≥ t∗ (i 6= k; i, k = 1, . . . , n)

and

sup{aii(t) − J(aii)(t) : t ∈ R+} < +∞ (i = 1, . . . , n),

where bik(t) ≡ A(aii , aik)(t) (i, k = 1, . . . , n), t∗ and hik ∈ R+ (i 6= k; i, k = 1, . . . , n).
Let, moreover, the matrix H = (hik)n

i,k=1
, where hii = 0 (i = 1, . . . , n), be such that

r(H) < 1. (5)

Then the matrix-function A is stable.

Theorem 2. Let the components aik (i, k = 1, . . . , n) of the matrix-function A satisfy

the conditions (3), (4) and

sup{aii(t) − J(aii)(t) − aii(τ) + J(aii)(τ) : t ≥ τ ≥ 0} < +∞,

where t∗ ∈ R+, and hik ∈ R+ (i 6= k; i, k = 1, . . . , n) are such that the matrix H =

(hik)n
i,k=1, where hii = 0 (i = 1, . . . , n), satisfies the condotion (5). Then the matrix-

function A is uniformly stable.
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Corollary 1. Let the components aik (i, k = 1, . . . , n) of the matrix-function A sat-

isfy the conditions (3) and

V t
τ bik ≤ −hik(bii(t) − bii(τ)) for t ≥ τ ≥ t∗ (i 6= k; i, k = 1, . . . , n), (6)

where t∗ ∈ R+, bik(t) ≡ A(aii , aik)(t) (i, k = 1, . . . , n), bii (i = 1, . . . , n) are non-

increasing functions, and hik ∈ R+ (i 6= k; i, k = 1, . . . , n) are such that the matrix

H = (hik)n
i,k=1

, where hii = 0 (i = 1, . . . , n), satisfies the condition (5). Then the

matrix-function A is uniformly stable.

Theorem 3. Let the components aik (i, k = 1, . . . , n) of the matrix-function A satisfy

the conditions (3),

aii(t) − J(aii)(t) − aii(t
∗) + J(aii)(t

∗) ≤ −ξ(t) + ξ(t∗) for t ≥ t∗ (i = 1, . . . , n)

and

t
∫

t∗

exp(ξ(t)) − ξ(τ) + aii(t) − J(aii)(t) − aii(τ) + J(aii)(τ))dv(bik)(τ) ≤

≤ hik for t ≥ t∗ (i 6= k; i, k = 1, . . . , n),

where t∗ and hik ∈ R+ (i 6= k; i, k = 1, . . . , n), bik(t) ≡ A(aii , aik)(t) (i, k = 1, . . . , n).
Let, moreover, the matrix H = (hik)n

i,k=1
, where hii = 0 (i = 1, . . . , n), satisfy the

condition (5), and the function ξ ∈ BVloc(R+, R+) satisfies the condition (2). Then the

matrix-function A is asymptotically stable.

Corollary 2. Let the components aik (i, k = 1, . . . , n) of the matrix-function A sat-

isfy the conditions (3) and (6), where t∗ ∈ R+, bik(t) ≡ A(aii , aik)(t) (i, k = 1, . . . , n),
bii (i = 1, . . . , n) are nonincreasing functions, and hik ∈ R+ (i 6= k; i, k = 1, . . . , n) are

such that the matrix H = (hik)n
i,k=1

, where hii = 0 (i = 1, . . . , n), satisfies the condition

(5). Let, moreover,

lim
t→+∞

a0(t) = +∞,

where

a0(t) = min{|aii(t) − J(aii)(t) − aii(t
∗) + J(aii)(t

∗)| : i = 1, . . . , n} (t ≥ t∗).

Then the matrix-function A is uniformly and asymptotically stable.

Corollary 3. Let the components aik (i, k = 1, . . . , n) of the matrix-function A sat-

isfy the conditions (3),

aii(t) − J(aii)(t) − aii(t
∗) + J(aii)(t

∗)≤−γ(t − t∗) for t≥ t∗ (i=1, . . . , n) (7)

and

t
∫

t∗

exp(γ(t − τ) + aii(t) − J(aii)(t) − aii(τ) + J(aii)(τ))dv(bik)(τ) ≤ hik

for t ≥ t∗ (i 6= k; i, k = 1, . . . , n),

where γ > 0, t∗ and hik ∈ R+ (i 6= k; i, k = 1, . . . , n), bik(t) ≡ A(aii , aik)(t) (i, k =
1, . . . , n). Let, moreover, the matrix H = (hik)n

i,k=1, where hii = 0 (i = 1, . . . , n),

satisfy the condition (5). Then A is exponentially asymptotically stable.
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Corollary 4. Let the components aik (i, k = 1, . . . , n) of the matrix-function A sat-

isfy the conditions (3), (6) and (7), where γ > 0, t∗ and hik ∈ R+ (i 6= k; i, k = 1, . . . , n),
bik(t) ≡ A(aii, aik)(t) (i, k = 1, . . . , n). Let, moreover, the matrix H = (hik)n

i,k=1
, where

hii = 0 (i = 1, . . . , n), satisfy the condition (5). Then A is exponentially asymptotically

stable.

Theorem 4. Let A = (aik) ∈ BVloc(R+, R
n×n) be a matrix-function such that

‖djA(t)‖ < 1 for t ≥ 0,

s0(aii)(t) − s0(aii)(s) ≤ s0(aii)(t) − s0(aii)(s)

for t > s ≥ 0; (i = 1, . . . , n),

|s0(aik)(t) − s0(aik)(s)| ≤ s0(aik)(t) − s0(aik)(s)

for t > s ≥ 0; (i 6= k; i = 1, . . . , n)

and

|djaik(t)| ≤ djaik(t) for t ≥ 0 (j = 1, 2; i, k = 1, . . . , n).

Let, moreover, aik (i 6= k; i, k = 1, . . . , n) are nondecreasing functions, A be stable
(uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable). Then
A will be stable (uniformly stable, asymptotically stable or ξ-exponentially asymptotically
stable), too.
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