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Let −∞ < a < b < +∞, I = [a, b], p : C(I; R
n) → L(I; R

n) and ` : C(I; R
n) → R

n be
linear bounded operators, q ∈ L(I; R

n) and c0 ∈ R
n. On the basis of the results from [5],

in the present paper we establish new sufficient conditions for solvability of the boundary
value problem

dx(t)

dt
= p(x)(t) + q(t), (1)

`(x) = c0, (2)

which supplement the results of [1-4, 6-9].
Throughout the paper, the following notation will be used.

R =]−∞,∞[ , R+ = [0,∞[ ;
χ

I
is the characteristic function of the interval I, i.e.,

χ
I
(t) =

{
1 for t ∈ I

0 for t 6∈ I
;

R
n is the space of n-dimensional column vectors x = (xi)n

i=1 with the elements xi ∈ R

(i = 1, . . . , n) and the norm

‖x‖ =

n∑

i=1

|xi|;

R
n×n is the space of n × n-matrices X = (xik)n

i,k=1
with the elements xik ∈ R

(i, k = 1, . . . , n) and the norm

‖X‖ =

n∑

i,k=1

|xik|;

R
n
+ =

{
(xi)

n
i=1 ∈ R

n : xi ≥ 0 (i = 1, . . . , n)
}

;

R
n×n
+ =

{
(xik)n

i,k=1 ∈ R
n×n : xik ≥ 0 (i, k = 1, . . . , n)

}
;

if x, y ∈ R
n and X, Y ∈ R

n×n, then

x ≤ y ⇐⇒ y − x ∈ R
n
+, X ≤ Y ⇐⇒ Y −X ∈ R

n×n
+ ;

if x = (xi)n
i=1 ∈ R

n and X = (xik)n
i,k=1

∈ R
n×n, then

|x| = (|xi|)
n
i=1, |X| = (|xik|)

n
i,k=1;

det(X) is the determinant of the matrix X;
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X−1 is the inverse matrix to X;

r(X) is the spectral radius of the matrix X;

E is the unit matrix;

Θ is the zero matrix;

diag(x1, . . . , xn) =




x1 0 . . . 0 0
0 x2 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 xn


;

if x = (xi)
n
i=1, then Sgn(x) = diag(sgn x1, . . . , sgn xn);

C(I; R
n) is the space of continuous vector functions x : I → R

n with the norm

‖x‖C = max
{
‖x(t)‖ : t ∈ I

}
;

C(I; R
n
+) =

{
x ∈ C(I; R

n) : x(t) ∈ R
n
+ for t ∈ I

}
;

C̃(I; R
n) is the space of absolutely continuous vector functions x : I → R

n;

L(I; R
n) is the space of integrable vector functions x : I → R

n with the norm

‖x‖L =

b∫

a

‖x(t)‖ dt;

L(I; R
n
+) =

{
x ∈ L(I; R

n) : x(t) ∈ R
n
+ for almost all t ∈ I

}
;

L(I; R
n×n) is the space of integrable matrix functions X : I → R

n×n;

if Z ∈ C(I; R
n×n) is a matrix function with the columns z1, . . . , zn and g : C(I; R

n) →
L(I; R

n) is a linear operator, then g(Z) stands for the matrix function with columns
g(z1), . . . , g(zn).

Below we will assume that p : C(I; R
n) → L(I; R

n) is a strongly bounded operator,
i.e., there exists η ∈ L(I; R+) such that

‖p(x)(t)‖ ≤ η(t)‖x‖C for t ∈ I, x ∈ C(I; R
n).

Definition 1. A vector function x ∈ C̃(I; R
n) is said to be a solution of the system

(1) if it satisfies this system almost everywhere on I. A solution x of the system (1) is
said to be a solution of the problem (1), (2) if it satisfies the condition (2).

Definition 2. A linear operator v : C(I; R
n) → L(I; R

n) ( v0 : C(I; R
n) → R

n ) is
called positive if

v(x) ∈ L(I; R
n
+)

(
v0(x) ∈ R

n
+

)
for x ∈ C(I; R

n
+).

Along with (1), (2) we consider the problems

dx(t)

dt
= p0(x)(t) + q(t), (3)

`0(x) = c0; (4)

dx(t)

dt
= p0(x)(t), (30)

`0(x) = 0. (40)

Introduce

Definition 3. Let σi : I → R (i = 1, . . . , n) be measurable functions such that
σi(t) ∈ {−1, 1} (i = 1, . . . , n) for almost all t ∈ I. We say that a pair (p0, `0), where
p0 : C(I; R

n) → L(I; R
n) is a linear strongly bounded operator and `0 : C(I; R

n) → R
n

is a linear bounded operator, belongs to the set M
σ1,...,σn

I
if the homogeneous problem
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(30), (40) has only the trivial solution, and for any c0 ∈ R
n
+ and q ∈ L(I; R

n) satisfying
the condition

diag(σ1, . . . , σn)q ∈ L(I; R
n
+),

the solution x of the problem (3), (4) is nonnegative, i.e., x(t) ∈ R
n
+ for t ∈ I.

Theorems 1.1–1.3 and Corollaries 1.1–1.2 from [5] contain the necessary and sufficient
conditions for the validity of the inclusion (p0, `0) ∈ M

σ1,...,σn

I
.

By Xp,` we denote the space of solutions of the homogeneous problem

dx(t)

dt
= p(x)(t), `(x) = 0.

Theorem 1. Let there exist measurable functions σi : I → {−1, 1} (i = 1, . . . , n),
a linear bounded operator `0 : C(I; R

n) → R
n and a strongly bounded linear operator

p0 : C(I; R
n) → L(I; R

n) such that

(p0, `0) ∈ M
σ1,...,σn

I
, (5)

diag
(
σ1(t), . . . , σn(t)

)[
Sgn(x(t))p(x)(t) − p0(|x|)(t)

]
≤ 0 for t ∈ I, x ∈ Xp,`, (6)

and

`0(|x|) ≤ 0 for x ∈ Xp,`. (7)

Then the problem (1), (2) has a unique solution.

Proof. Let x ∈ Xp,`. Set

y(t) = |x(t)|.

Then according to (6) and (7) we obtain

diag
(
σ1(t), . . . , σn(t)

)[dy(t)

dt
− p0(y)(t)

]
≤ 0.

Hence by Proposition 1.2 from [5] and the condition (5) we have y(t) ≤ 0 for t ∈ I.
Consequently, x(t) ≡ 0. If now we apply Theorem 1.1 from [9], then the validity of
Theorem 1 becomes evident.

Corollary 1. Let there exist numbers ti ∈ I, sk ∈ I, γik ∈ R (i = 1, . . . , n; k =
1, . . . , m), linear positive operators ` : C(I; R

n) → R
n and p : C(I; R

n) → L(I; R
n) and

a matrix A ∈ R
n×n
+ such that r(A) < 1,

diag
(

sgn(t− t1), . . . , sgn(t − tn)
)
×

×

[
Sgn(x(t))p(x)(t) − diag

(
p1(t), . . . , pn(t)

)
|x(t)|

]
≤ p(|x|)(t) (8)

for t ∈ I, x ∈ Xp,`,

∣∣∣`(x)−

(
xi(ti)−

m∑

k=1

γikxi(sk)

)n

i=1

∣∣∣ ≤ `(|x|) for x ∈ C(I; R
n), (9)

γi = exp

( ti∫

a

pi(s) ds

)
−

m∑

k=1

|γik| exp

( sk∫

a

pi(s) ds

)
> 0 (i = 1, . . . , n) (10)

and

Y0(t)`(E) +

b∫

a

|G0(t, s)|p(E)(s) ds ≤ A for t ∈ I, (11)
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where

Y0(t) = diag

(
exp

( t∫

a

p1(s) ds

)
, . . . , exp

( t∫

a

pn(s) ds

))
,

G0(t, s) = diag
(
g1(t, s), . . . , gn(t, s)

)
,

gi(t, s) =
1

γi

(
χ

[a,t]
(s)− χ[a,ti]

(s)
)

exp

( t∫

s

pi(ξ) dξ +

ti∫

a

pi(ξ) dξ

)
−

−

m∑

k=1

|γik|

γi

(
χ

[a,t]
(s)− χ

[a,sk]
(s)

)
exp

( t∫

s

pi(ξ) dξ +

sk∫

a

pi(ξ) dξ

)
(12)

(i = 1, . . . , n).

Then the problem (1), (2) has a unique solution.

Proof. From (8) and (9) the inequalities (6) and (7) follow, where σi(t) = sgn(t − ti)
(i = 1, . . . , n),

p0(y)(t) = diag
(
p1(t), . . . , pn(t)

)
y(t) + diag

(
σ1(t), . . . , σn(t)

)
p(y)(t),

`0(y) =

(
yi(ti)−

m∑

k=1

|γik |yi(sk)

)n

i=1
− `(y).

On the other hand, by Theorem 1.2 from [5] the inequalities (11) and r(A) < 1 guarantee
the validity of the inclusion (5). Therefore all the conditions of Theorem 1 are fulfilled.

Corollary 2. Let there exist numbers ti ∈ I, sk ∈ I, γik ∈ R (i = 1, . . . , n; k =
1, . . . , m) and linear positive operators ` : C(I; R

n) → R
n, p : C(I; R

n) → L(I; R
n) such

that

γi = 1−

m∑

k=1

|γik| > 0 (i = 1, . . . , n),

r

(
`(E) + diag

(
1

γ1
, . . . ,

1

γn

) b∫

a

p(E)(s) ds

)
< 1,

diag(t− t1, . . . , t− tn) Sgn
(
x(t)

)
p(x)(t) ≤ p(|x|)(t) for t ∈ I, x ∈ Xp,`

and the inequality (9) holds. Then the problem (1), (2) has a unique solution.

This corollary follows from Corollary 1 in the case pi(t) ≡ 0 (i = 1, . . . , n).

Consider now the problem

dx(t)

dt
= P (t)x(τ(t)) + q0(t), (13)

x(t) = u(t) for t 6∈ I, `(x) = c0, (14)

where P ∈ L(I; R
n×n), q0 ∈ L(I; R

n), τ : I → R is a measurable function and u : R → R
n

is a continuous and bounded vector function∗. This problem can be reduced to the

∗If τ(t) ∈ I for almost all t ∈ I, then the condition x(t) = u(t) for t 6∈ I is to be
dropped.
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problem (1), (2). To see this, set

τ0(t) =






a for τ(t) < a

τ(t) for a ≤ τ(t) ≤ b

b for τ(t) > b

,

p(x)(t) = χ
I
(τ(t))P (t)x(τ0(t)), (15)

and

q(t) =
(
1− χ

I
(τ(t))

)
P (t)u(τ(t)) + q0(t).

Theorem 2. Let there exist numbers ti ∈ I, sk ∈ I, γik ∈ R (i = 1, . . . , n; k =
1, . . . , m), functions pi ∈ L(I; R) (i = 1, . . . , n), a linear positive operator ` : C(I; R

n) →
R

n and a matrix A ∈ R
n×n
+ such that along with (9) and (10) the following conditions

(
χ

I
(τ(t))pii(t) − pi(t)

)
sgn(t − ti) ≤ 0 for t ∈ I (i = 1, . . . , n), (16)

Y0(t)`(E) +

b∫

a

|G0(t, s)| ×

×

[
|P0(s)|

∣∣∣
τ0(s)∫

s

|P(ξ)| dξ

∣∣∣ +
∣∣P(s)− P0(s)

∣∣
]
χ

I
(τ(s)) ds ≤ A for t ∈ I, (17)

and r(A) < 1 hold, where

Y0(t) = diag

(
exp

( t∫

a

p1(s) ds

)
, . . . ,

( t∫

a

pn(s) ds

))
,

P0(t) = diag
(
p11(t), . . . , pnn(t)

)
, G0(t, s) = diag

(
g1(t, s), . . . , gn(t, s)

)

and gi (i = 1, . . . , n) are the functions given by the equalities (12). Then the problem

(13), (14) has a unique solution.

Proof. Let p be the operator defined by (15) and x ∈ Xp,`. Then

x′(t) = χ
I
(τ(t))P0(t)x(t) + χ

I
(τ(t))P0(t)

τ0(t)∫

t

x′(s) ds +

+ χ
I
(τ(t))

[
P(t) − P0(t)

]
x(τ0(t)) =

= χ
I
(τ(t))P0(t)x(t) + χ

I
(τ(t))P0(t)

τ0(t)∫

t

χ
I
(τ(s))P(s)x(τ0(s)) ds +

+ χ
I
(τ(t))

[
P(t) − P0(t)

]
x(τ0(t)).

From this equality, by (16) and (17), we get the inequalities (8) and (9), where

p(y)(t) = |P0(t)|

( τ0(t)∫

t

|P(ξ)|y(τ0(ξ)) dξ

)
sgn

(
τ0(t) − t

)
+

+ χ
I
(τ(t))

∣∣P(t) − P0(t)
∣∣y(τ0(t)).
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Therefore all the assumptions of Corollary 1 are satisfied.

In the case pi(t) ≡ 0, Theorem 2 yields

Corollary 3. Let there exist numbers ti ∈ I, sk ∈ I, γik ∈ R (i = 1, . . . , n; k =
1, . . . , m) and a linear positive operator ` : C(I; R

n) → R
n such that along with (9) the

following conditions

χ
I
(τ(t))pii(t) sgn(t− ti) ≤ 0 for t ∈ I (i = 1, . . . , n),

γi = 1−

m∑

k=1

|γik| > 0 (i = 1, . . . , n), r(A) < 1

hold, where

A = `(E) +

+ diag

(
1

γ1
, . . . ,

1

γn

) b∫

a

[
|P0(s)|

∣∣∣
τ0(s)∫

s

|P(ξ)| dξ

∣∣∣ +
∣∣P(s)− P0(s)

∣∣
]
χ

I
(τ(s)) ds.

Then the problem (13), (14) has a unique solution.
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