B. PŮŽA

ON UNIQUE SOLVABILITY OF BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

(Reported on December 18, 2000)

Let $-\infty<a<b<+\infty, I=[a, b], p: C\left(I ; \mathbb{R}^{n}\right) \rightarrow L\left(I ; \mathbb{R}^{n}\right)$ and $\ell: C\left(I ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ be linear bounded operators, $q \in L\left(I ; \mathbb{R}^{n}\right)$ and $c_{0} \in \mathbb{R}^{n}$. On the basis of the results from [5], in the present paper we establish new sufficient conditions for solvability of the boundary value problem

$$
\begin{align*}
\frac{d x(t)}{d t} & =p(x)(t)+q(t) \tag{1}\\
\ell(x) & =c_{0} \tag{2}
\end{align*}
$$

which supplement the results of [1-4, 6-9].
Throughout the paper, the following notation will be used.
$\mathbb{R}=]-\infty, \infty\left[, \mathbb{R}_{+}=[0, \infty[;\right.$
χ_{I} is the characteristic function of the interval I, i.e.,

$$
\chi_{I}(t)= \begin{cases}1 & \text { for } t \in I \\ 0 & \text { for } t \notin I\end{cases}
$$

\mathbb{R}^{n} is the space of n-dimensional column vectors $x=\left(x_{i}\right)_{i=1}^{n}$ with the elements $x_{i} \in \mathbb{R}$ $(i=1, \ldots, n)$ and the norm

$$
\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|
$$

$\mathbb{R}^{n \times n}$ is the space of $n \times n$-matrices $X=\left(x_{i k}\right)_{i, k=1}^{n}$ with the elements $x_{i k} \in \mathbb{R}$ $(i, k=1, \ldots, n)$ and the norm

$$
\begin{gathered}
\|X\|=\sum_{i, k=1}^{n}\left|x_{i k}\right| \\
\mathbb{R}_{+}^{n}=\left\{\left(x_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n}: x_{i} \geq 0 \quad(i=1, \ldots, n)\right\} \\
\mathbb{R}_{+}^{n \times n}=\left\{\left(x_{i k}\right)_{i, k=1}^{n} \in \mathbb{R}^{n \times n}: \quad x_{i k} \geq 0 \quad(i, k=1, \ldots, n)\right\}
\end{gathered}
$$

if $x, y \in \mathbb{R}^{n}$ and $X, Y \in \mathbb{R}^{n \times n}$, then

$$
x \leq y \Longleftrightarrow y-x \in \mathbb{R}_{+}^{n}, \quad X \leq Y \Longleftrightarrow Y-X \in \mathbb{R}_{+}^{n \times n}
$$

if $x=\left(x_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n}$ and $X=\left(x_{i k}\right)_{i, k=1}^{n} \in \mathbb{R}^{n \times n}$, then

$$
|x|=\left(\left|x_{i}\right|\right)_{i=1}^{n},|X|=\left(\left|x_{i k}\right|\right)_{i, k=1}^{n}
$$

$\operatorname{det}(X)$ is the determinant of the matrix X;
2000 Mathematics Subject Classification. 34K10.
Key words and phrases. System of functional differential equations, boundary value problem.
X^{-1} is the inverse matrix to X;
$r(X)$ is the spectral radius of the matrix X;
E is the unit matrix;
Θ is the zero matrix;
$\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)=\left(\begin{array}{ccccc}x_{1} & 0 & \ldots & 0 & 0 \\ 0 & x_{2} & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & 0 & x_{n}\end{array}\right) ;$
if $x=\left(x_{i}\right)_{i=1}^{n}$, then $\operatorname{Sgn}(x)=\operatorname{diag}\left(\operatorname{sgn} x_{1}, \ldots, \operatorname{sgn} x_{n}\right)$;
$C\left(I ; \mathbb{R}^{n}\right)$ is the space of continuous vector functions $x: I \rightarrow \mathbb{R}^{n}$ with the norm

$$
\|x\|_{C}=\max \{\|x(t)\|: \quad t \in I\}
$$

$C\left(I ; \mathbb{R}_{+}^{n}\right)=\left\{x \in C\left(I ; \mathbb{R}^{n}\right): x(t) \in \mathbb{R}_{+}^{n}\right.$ for $\left.t \in I\right\} ;$
$\widetilde{C}\left(I ; \mathbb{R}^{n}\right)$ is the space of absolutely continuous vector functions $x: I \rightarrow \mathbb{R}^{n}$;
$L\left(I ; \mathbb{R}^{n}\right)$ is the space of integrable vector functions $x: I \rightarrow \mathbb{R}^{n}$ with the norm

$$
\|x\|_{L}=\int_{a}^{b}\|x(t)\| d t
$$

$L\left(I ; \mathbb{R}_{+}^{n}\right)=\left\{x \in L\left(I ; \mathbb{R}^{n}\right): x(t) \in \mathbb{R}_{+}^{n}\right.$ for almost all $\left.t \in I\right\} ;$
$L\left(I ; \mathbb{R}^{n \times n}\right)$ is the space of integrable matrix functions $X: I \rightarrow \mathbb{R}^{n \times n}$;
if $Z \in C\left(I ; \mathbb{R}^{n \times n}\right)$ is a matrix function with the columns z_{1}, \ldots, z_{n} and $g: C\left(I ; \mathbb{R}^{n}\right) \rightarrow$ $L\left(I ; \mathbb{R}^{n}\right)$ is a linear operator, then $g(Z)$ stands for the matrix function with columns $g\left(z_{1}\right), \ldots, g\left(z_{n}\right)$.

Below we will assume that $p: C\left(I ; \mathbb{R}^{n}\right) \rightarrow L\left(I ; \mathbb{R}^{n}\right)$ is a strongly bounded operator, i.e., there exists $\eta \in L\left(I ; \mathbb{R}_{+}\right)$such that

$$
\|p(x)(t)\| \leq \eta(t)\|x\|_{C} \quad \text { for } t \in I, \quad x \in C\left(I ; \mathbb{R}^{n}\right)
$$

Definition 1. A vector function $x \in \widetilde{C}\left(I ; \mathbb{R}^{n}\right)$ is said to be a solution of the system (1) if it satisfies this system almost everywhere on I. A solution x of the system (1) is said to be a solution of the problem (1), (2) if it satisfies the condition (2).

Definition 2. A linear operator $v: C\left(I ; \mathbb{R}^{n}\right) \rightarrow L\left(I ; \mathbb{R}^{n}\right)\left(v_{0}: C\left(I ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}\right)$ is called positive if

$$
v(x) \in L\left(I ; \mathbb{R}_{+}^{n}\right) \quad\left(v_{0}(x) \in \mathbb{R}_{+}^{n}\right) \text { for } x \in C\left(I ; \mathbb{R}_{+}^{n}\right)
$$

Along with (1), (2) we consider the problems

$$
\begin{align*}
\frac{d x(t)}{d t} & =p_{0}(x)(t)+q(t) \tag{3}\\
\ell_{0}(x) & =c_{0} \tag{4}\\
\frac{d x(t)}{d t} & =p_{0}(x)(t) \tag{0}\\
\ell_{0}(x) & =0 \tag{0}
\end{align*}
$$

Introduce
Definition 3. Let $\sigma_{i}: I \rightarrow \mathbb{R}(i=1, \ldots, n)$ be measurable functions such that $\sigma_{i}(t) \in\{-1,1\}(i=1, \ldots, n)$ for almost all $t \in I$. We say that a pair $\left(p_{0}, \ell_{0}\right)$, where $p_{0}: C\left(I ; \mathbb{R}^{n}\right) \rightarrow L\left(I ; \mathbb{R}^{n}\right)$ is a linear strongly bounded operator and $\ell_{0}: C\left(I ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ is a linear bounded operator, belongs to the set $M_{I}^{\sigma_{1}, \ldots, \sigma_{n}}$ if the homogeneous problem
$\left(3_{0}\right),\left(4_{0}\right)$ has only the trivial solution, and for any $c_{0} \in \mathbb{R}_{+}^{n}$ and $q \in L\left(I ; \mathbb{R}^{n}\right)$ satisfying the condition

$$
\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) q \in L\left(I ; \mathbb{R}_{+}^{n}\right)
$$

the solution x of the problem (3), (4) is nonnegative, i.e., $x(t) \in \mathbb{R}_{+}^{n}$ for $t \in I$.
Theorems 1.1-1.3 and Corollaries 1.1-1.2 from [5] contain the necessary and sufficient conditions for the validity of the inclusion $\left(p_{0}, \ell_{0}\right) \in M_{I}^{\sigma_{1}, \ldots, \sigma_{n}}$.

By $X_{p, \ell}$ we denote the space of solutions of the homogeneous problem

$$
\frac{d x(t)}{d t}=p(x)(t), \quad \ell(x)=0
$$

Theorem 1. Let there exist measurable functions $\sigma_{i}: I \rightarrow\{-1,1\}(i=1, \ldots, n)$, a linear bounded operator $\ell_{0}: C\left(I ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ and a strongly bounded linear operator $p_{0}: C\left(I ; \mathbb{R}^{n}\right) \rightarrow L\left(I ; \mathbb{R}^{n}\right)$ such that

$$
\begin{gather*}
\left(p_{0}, \ell_{0}\right) \in M_{I}^{\sigma_{1}, \ldots, \sigma_{n}} \tag{5}\\
\operatorname{diag}\left(\sigma_{1}(t), \ldots, \sigma_{n}(t)\right)\left[\operatorname{Sgn}(x(t)) p(x)(t)-p_{0}(|x|)(t)\right] \leq 0 \text { for } t \in I, \quad x \in X_{p, \ell} \tag{6}
\end{gather*}
$$

and

$$
\begin{equation*}
\ell_{0}(|x|) \leq 0 \text { for } x \in X_{p, \ell} \tag{7}
\end{equation*}
$$

Then the problem (1), (2) has a unique solution.
Proof. Let $x \in X_{p, \ell}$. Set

$$
y(t)=|x(t)|
$$

Then according to (6) and (7) we obtain

$$
\operatorname{diag}\left(\sigma_{1}(t), \ldots, \sigma_{n}(t)\right)\left[\frac{d y(t)}{d t}-p_{0}(y)(t)\right] \leq 0
$$

Hence by Proposition 1.2 from [5] and the condition (5) we have $y(t) \leq 0$ for $t \in I$. Consequently, $x(t) \equiv 0$. If now we apply Theorem 1.1 from [9], then the validity of Theorem 1 becomes evident.

Corollary 1. Let there exist numbers $t_{i} \in I, s_{k} \in I, \gamma_{i k} \in \mathbb{R}(i=1, \ldots, n ; k=$ $1, \ldots, m)$, linear positive operators $\bar{\ell}: C\left(I ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ and $\bar{p}: C\left(I ; \mathbb{R}^{n}\right) \rightarrow L\left(I ; \mathbb{R}^{n}\right)$ and a matrix $A \in \mathbb{R}_{+}^{n \times n}$ such that $r(A)<1$,

$$
\begin{gather*}
\operatorname{diag}\left(\operatorname{sgn}\left(t-t_{1}\right), \ldots, \operatorname{sgn}\left(t-t_{n}\right)\right) \times \\
\times\left[\operatorname{Sgn}(x(t)) p(x)(t)-\operatorname{diag}\left(p_{1}(t), \ldots, p_{n}(t)\right)|x(t)|\right] \leq \bar{p}(|x|)(t) \tag{8}\\
\text { for } t \in I, \quad x \in X_{p, \ell} \\
\left|\ell(x)-\left(x_{i}\left(t_{i}\right)-\sum_{k=1}^{m} \gamma_{i k} x_{i}\left(s_{k}\right)\right)_{i=1}^{n}\right| \leq \bar{\ell}(|x|) \text { for } x \in C\left(I ; \mathbb{R}^{n}\right), \tag{9}\\
\gamma_{i}=\exp \left(\int_{a}^{t_{i}} p_{i}(s) d s\right)-\sum_{k=1}^{m}\left|\gamma_{i k}\right| \exp \left(\int_{a}^{s_{k}} p_{i}(s) d s\right)>0 \quad(i=1, \ldots, n) \tag{10}
\end{gather*}
$$

and

$$
\begin{equation*}
Y_{0}(t) \bar{\ell}(E)+\int_{a}^{b}\left|G_{0}(t, s)\right| \bar{p}(E)(s) d s \leq A \text { for } t \in I \tag{11}
\end{equation*}
$$

where

$$
\begin{gather*}
Y_{0}(t)=\operatorname{diag}\left(\exp \left(\int_{a}^{t} p_{1}(s) d s\right), \ldots, \exp \left(\int_{a}^{t} p_{n}(s) d s\right)\right) \\
G_{0}(t, s)=\operatorname{diag}\left(g_{1}(t, s), \ldots, g_{n}(t, s)\right), \\
g_{i}(t, s)=\frac{1}{\gamma_{i}}\left(\chi_{[a, t]}(s)-\chi_{\left[a, t_{i}\right]}(s)\right) \exp \left(\int_{s}^{t} p_{i}(\xi) d \xi+\int_{a}^{t_{i}} p_{i}(\xi) d \xi\right)- \\
-\sum_{k=1}^{m} \frac{\left|\gamma_{i k}\right|}{\gamma_{i}}\left(\chi_{[a, t]}(s)-\chi_{\left[a, s_{k}\right]}(s)\right) \exp \left(\int_{s}^{t} p_{i}(\xi) d \xi+\int_{a}^{s_{k}} p_{i}(\xi) d \xi\right) \tag{12}\\
(i=1, \ldots, n) .
\end{gather*}
$$

Then the problem (1), (2) has a unique solution.
Proof. From (8) and (9) the inequalities (6) and (7) follow, where $\sigma_{i}(t)=\operatorname{sgn}\left(t-t_{i}\right)$ $(i=1, \ldots, n)$,

$$
\begin{aligned}
p_{0}(y)(t) & =\operatorname{diag}\left(p_{1}(t), \ldots, p_{n}(t)\right) y(t)+\operatorname{diag}\left(\sigma_{1}(t), \ldots, \sigma_{n}(t)\right) \bar{p}(y)(t) \\
\ell_{0}(y) & =\left(y_{i}\left(t_{i}\right)-\sum_{k=1}^{m}\left|\gamma_{i k}\right| y_{i}\left(s_{k}\right)\right)_{i=1}^{n}-\bar{\ell}(y)
\end{aligned}
$$

On the other hand, by Theorem 1.2 from [5] the inequalities (11) and $r(A)<1$ guarantee the validity of the inclusion (5). Therefore all the conditions of Theorem 1 are fulfilled.

Corollary 2. Let there exist numbers $t_{i} \in I, s_{k} \in I, \gamma_{i k} \in \mathbb{R}(i=1, \ldots, n ; k=$ $1, \ldots, m)$ and linear positive operators $\bar{\ell}: C\left(I ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}, \bar{p}: C\left(I ; \mathbb{R}^{n}\right) \rightarrow L\left(I ; \mathbb{R}^{n}\right)$ such that

$$
\begin{gathered}
\gamma_{i}=1-\sum_{k=1}^{m}\left|\gamma_{i k}\right|>0 \quad(i=1, \ldots, n), \\
r\left(\bar{\ell}(E)+\operatorname{diag}\left(\frac{1}{\gamma_{1}}, \ldots, \frac{1}{\gamma_{n}}\right) \int_{a}^{b} \bar{p}(E)(s) d s\right)<1, \\
\operatorname{diag}\left(t-t_{1}, \ldots, t-t_{n}\right) \operatorname{Sgn}(x(t)) p(x)(t) \leq \bar{p}(|x|)(t) \text { for } t \in I, \quad x \in X_{p, \ell}
\end{gathered}
$$

and the inequality (9) holds. Then the problem (1), (2) has a unique solution.
This corollary follows from Corollary 1 in the case $p_{i}(t) \equiv 0(i=1, \ldots, n)$.
Consider now the problem

$$
\begin{gather*}
\frac{d x(t)}{d t}=P(t) x(\tau(t))+q_{0}(t) \tag{13}\\
x(t)=u(t) \text { for } t \notin I, \quad \ell(x)=c_{0} \tag{14}
\end{gather*}
$$

where $P \in L\left(I ; \mathbb{R}^{n \times n}\right), q_{0} \in L\left(I ; \mathbb{R}^{n}\right), \tau: I \rightarrow \mathbb{R}$ is a measurable function and $u: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is a continuous and bounded vector function*. This problem can be reduced to the
${ }^{*}$ If $\tau(t) \in I$ for almost all $t \in I$, then the condition $x(t)=u(t)$ for $t \notin I$ is to be dropped.
problem (1), (2). To see this, set

$$
\begin{align*}
\tau_{0}(t) & = \begin{cases}a & \text { for } \tau(t)<a \\
\tau(t) & \text { for } a \leq \tau(t) \leq b, \\
b & \text { for } \tau(t)>b\end{cases} \\
p(x)(t) & =\chi_{I}(\tau(t)) P(t) x\left(\tau_{0}(t)\right), \tag{15}
\end{align*}
$$

and

$$
q(t)=\left(1-\chi_{I}(\tau(t))\right) P(t) u(\tau(t))+q_{0}(t)
$$

Theorem 2. Let there exist numbers $t_{i} \in I, s_{k} \in I, \gamma_{i k} \in \mathbb{R}(i=1, \ldots, n ; k=$ $1, \ldots, m)$, functions $p_{i} \in L(I ; \mathbb{R})(i=1, \ldots, n)$, a linear positive operator $\bar{\ell}: C\left(I ; \mathbb{R}^{n}\right) \rightarrow$ \mathbb{R}^{n} and a matrix $A \in \mathbb{R}_{+}^{n \times n}$ such that along with (9) and (10) the following conditions

$$
\begin{align*}
& \left(\chi_{I}(\tau(t)) p_{i i}(t)-p_{i}(t)\right) \operatorname{sgn}\left(t-t_{i}\right) \leq 0 \text { for } t \in I \quad(i=1, \ldots, n) \tag{16}\\
& Y_{0}(t) \bar{\ell}(E)+\int_{a}^{b}\left|G_{0}(t, s)\right| \times \\
& \times\left[\left|\mathcal{P}_{0}(s)\right|\left|\int_{s}^{\tau_{0}(s)}\right| \mathcal{P}(\xi)|d \xi|+\left|\mathcal{P}(s)-\mathcal{P}_{0}(s)\right|\right] \chi_{I}(\tau(s)) d s \leq A \text { for } t \in I \tag{17}
\end{align*}
$$

and $r(A)<1$ hold, where

$$
\begin{gathered}
Y_{0}(t)=\operatorname{diag}\left(\exp \left(\int_{a}^{t} p_{1}(s) d s\right), \ldots,\left(\int_{a}^{t} p_{n}(s) d s\right)\right) \\
\mathcal{P}_{0}(t)=\operatorname{diag}\left(p_{11}(t), \ldots, p_{n n}(t)\right), \quad G_{0}(t, s)=\operatorname{diag}\left(g_{1}(t, s), \ldots, g_{n}(t, s)\right)
\end{gathered}
$$

and $g_{i}(i=1, \ldots, n)$ are the functions given by the equalities (12). Then the problem (13), (14) has a unique solution.

Proof. Let p be the operator defined by (15) and $x \in X_{p, \ell}$. Then

$$
\begin{aligned}
x^{\prime}(t) & =\chi_{I}(\tau(t)) \mathcal{P}_{0}(t) x(t)+\chi_{I}(\tau(t)) \mathcal{P}_{0}(t) \int_{t}^{\tau_{0}(t)} x^{\prime}(s) d s+ \\
& +\chi_{I}(\tau(t))\left[\mathcal{P}(t)-\mathcal{P}_{0}(t)\right] x\left(\tau_{0}(t)\right)= \\
& =\chi_{I}(\tau(t)) \mathcal{P}_{0}(t) x(t)+\chi_{I}(\tau(t)) \mathcal{P}_{0}(t) \int_{t}^{\tau_{0}(t)} \chi_{I}(\tau(s)) \mathcal{P}(s) x\left(\tau_{0}(s)\right) d s+ \\
& +\chi_{I}(\tau(t))\left[\mathcal{P}(t)-\mathcal{P}_{0}(t)\right] x\left(\tau_{0}(t)\right) .
\end{aligned}
$$

From this equality, by (16) and (17), we get the inequalities (8) and (9), where

$$
\begin{aligned}
\bar{p}(y)(t) & =\left|\mathcal{P}_{0}(t)\right|\left(\int_{t}^{\tau_{0}(t)}|\mathcal{P}(\xi)| y\left(\tau_{0}(\xi)\right) d \xi\right) \operatorname{sgn}\left(\tau_{0}(t)-t\right)+ \\
& +\chi_{I}(\tau(t))\left|\mathcal{P}(t)-\mathcal{P}_{0}(t)\right| y\left(\tau_{0}(t)\right)
\end{aligned}
$$

Therefore all the assumptions of Corollary 1 are satisfied.
In the case $p_{i}(t) \equiv 0$, Theorem 2 yields
Corollary 3. Let there exist numbers $t_{i} \in I, s_{k} \in I, \gamma_{i k} \in \mathbb{R}(i=1, \ldots, n ; k=$ $1, \ldots, m)$ and a linear positive operator $\bar{\ell}: C\left(I ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ such that along with (9) the following conditions

$$
\begin{gathered}
\chi_{I}(\tau(t)) p_{i i}(t) \operatorname{sgn}\left(t-t_{i}\right) \leq 0 \text { for } t \in I \quad(i=1, \ldots, n), \\
\gamma_{i}=1-\sum_{k=1}^{m}\left|\gamma_{i k}\right|>0 \quad(i=1, \ldots, n), \quad r(A)<1
\end{gathered}
$$

hold, where

$$
\begin{gathered}
A=\bar{\ell}(E)+ \\
+\operatorname{diag}\left(\frac{1}{\gamma_{1}}, \ldots, \frac{1}{\gamma_{n}}\right) \int_{a}^{b}\left[\left|\mathcal{P}_{0}(s)\right|\left|\int_{s}^{\tau_{0}(s)}\right| \mathcal{P}(\xi)|d \xi|+\left|\mathcal{P}(s)-\mathcal{P}_{0}(s)\right|\right] \chi_{I}(\tau(s)) d s .
\end{gathered}
$$

Then the problem (13), (14) has a unique solution.

References

1. N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the theory of functional differential equations. (Russian) Nauka, Moscow, 1991.
2. E. BravyǏ, R. Hakl, and A. Lomtatidze, Optimal conditions on unique solvability of the Cauchy problem for the first order linear functional differential equations. Czechoslovak Math. J. (to appear).
3. E. Bravyǐ, R. Hakl, and A. Lomtatidze, On Cauchy problem for the fisrt order nonlinear functional differential equations of non-Volterra's type. Czechoslovak Math. J. (to appear).
4. Sh. Gelashvili and I. Kiguradze, On multi-point boundary value problems for systems of functional differential and difference equations. Mem. Differential Equations Math. Phys. 5(1995), 1-113.
5. R. Hakl, I. Kiguradze, and B. PŮŽa, Upper and lower solutions of boundary value problems for functional differential equations and theorems on functional differential inequalities. Georgian Math. J. $\mathbf{7}(2000)$, No. 3, 489-512.
6. R. Hakl and A. Lomtatidze, A note on the Cauchy problem for first order linear differential equations with a deviating argument. Arch. Math. (to appear).
7. R. Hakl and A. Lomtatidze, and B. PŮŽa, New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Math. Bohemica (to appear).
8. R. Hakl and A. Lomtatidze, and B. Půža, On periodic solutions of first order linear functional differential equatuions. Nonlinear Anal.: Theory, Meth. Appl. (to appear).
9. I. Kiguradze and B. PŮŽa, On boundary value problems for systems of linear functional differential equations. Czechoslovak Math. J. $\mathbf{4 7}(1997)$, No. 2, 341-373.

Author's address:
Masaryk University, Faculty of Science
Department of Mathematical Analysis
Janáčkovo nám. 2a, 66295 Brno
Czech Republic
E-mail: puza@math.muni.cz

