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BOUNDARY VALUE PROBLEMS

IN DOMAINS WITH PEAKS



Abstrat. We obtain riteria of solvability of the Dirihlet and the

Neumann boundary value problems (BVPs) for the Laplaian in 2D do-

mains with angular points and peaks on the boundary. We start with the

orret formulation of BVPs and modify it for domains with outward peaks

(lassial onditions are inorret). Boundary integral equations (BIEs),

obtained by the indiret potential method, turn out to be equivalent to the

orresponding BVPs only when inward peaks are absent. BIEs on bound-

ary urve with angular points are investigated in di�erent weighted funtion

spaes. If boundary urve has a usp, orresponding to an inward or an

outward peak, equations are non-Fredholm in usual spaes and we should

impose restritions on the right-hand sides. The onditions are de�ned

with the Cesaro-type integrals. We onsider also equivalent redution to

boundary pseudo-di�erential equations (BPsDEs) of orders�1 by the diret

potential method. Cruial role in our investigations of BVPs and of orre-

sponding BIEs, PsDOs belongs to the equivalent redution of BVPs to the

Riemann{Hilbert problem for analyti funtions on the unit disk. The

latter problem an be investigated thoroughly, even when peaks are present

and equations have non-losed image by invoking results on onvolution

equations with vanishing symbols.

2000 Mathematis Subjet Classi�ation. 47A68, 35J25, 35J55.

Key words and phrases: Boundary integral equation, onvolution

equation, non-ellipti symbols, logarithmi potentials, boundary value prob-

lems.
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Introdution

Let 


+

� C be a bounded domain in the omplex plane with a pieewise-

smooth boundary � = �


+

and 


�

= C n


+

be the omplementary outer

domain. Let t

j

2 �, j = 1; : : : ; n, be all knots on the boundary � = �


+

with the angles �

j

, 0 � 

j

� 2, j = 1; : : : ; n. Boundary urve might

ontain usps 

j

= 0; 2 orresponding to an outward (for 

j

= 0) and an

inward (for 

j

= 2) peaks of the domain 


+

. By ~�(t) = (�

1

(t); �

2

(t)) we

denote the outer unit normal vetor to � (with respet to 


+

).

As a model we onsider the Dirihlet u

�

(t) = g(t) (and the Neumann

�

~�(t)

u

�

(t) = f(t), t 2 �) BVPs for harmoni funtions

�u(x) = 0 ; x 2 


�

(0.1)

and look for the solution, as ommon, in the Sobolev spae

u 2W

1

2

(


+

) or u 2W

1

2;lo

(


�

) ; u(x) = O(1) ; as jxj ! 1 : (0.2)

Applying the potential method, based on the Green formula and its

onsequene-representation of solution by layer potentials, invoking the

Plemelji formulae (see x 1) we get boundary integral equations (BIEs)

of logarithmi potential

�

1

2

'(t) +

1

2�

Z

�

�

~�(�)

log jt� � j'(�)jd� j = g(t) ; (0.3)

�

1

2

 (t) +

1

2�

Z

�

�

~�(t)

log jt� � j (�)jd� j = f(t) ; t 2 �; (0.4)

whih are onjugate to eah-other (the indiret method; see [Ma1℄). It

is rather a lassial result, that (0.3) and (0.4) are Fredholm equations

provided � is smooth and the redution of BVPs to the orresponding BIEs

(0.3) and (0.4) is equivalent.

When � has angular points, equations (0.3) and (0.4) have �xed singu-

larities in the kernels (i.e., they areMellin onvolution equations) and are

Fredholm exept some disrete values of parameters of spaes they are

treated in (see Theorems 1.23, 1.24 and f. [Du1, Du3, Ma1℄). It is impor-

tant that in both mentioned ases equivalene of BVPs with orresponding

BIEs still hold.

Pieewise-smooth domains without peaks are partiular ases of Lips-

hitz domains and BVPs for seond order equations in suh domains were

thoroughly investigated reently (mostly in the Hilbert spaes L

2

and W

1

2

)

even for domains in R

n

, n > 2. For details of these profound investigations

as well as for exhaustive survey of vast literature in this �eld we reommend

reent publiations [Ke1, MMP1, MMT1, MT1℄.

Situation hanges ompletely if domain 


�

has peaks. There arise three

prinipal problems.
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� If a single outward peak ours onstraints (0.2) beome inorret.

Namely, if we look for solution of BVP in the Sobolev spaeW

1

p

(


+

)

for arbitrary �xed value of p 2 (1;1), there exists a ompat domain




2+3

� C

+

with outward peak at 0 2 �


2+3

in the �rst quadrant

R

+

+iR

+

� C of the omplex plane suh that the analyti funtion z



,

z 2 
, with arbitrary 0 <  <1 belongs to the spaeW

1

p

(


2+3

) (de-

tails see below in Example 1.2). Therefore a lassial solution to BVP

u 2 W

1

2

(


+

) might have non-integrable singularity on the boundary

and it is neessary to hange onstraints on harmoni funtions in

the domain. Moreover, due to ompliated relations between traes

of funtions on di�erent faes of outward peaks (see, e.g., [Ia1℄) it is

almost impossible to investigate orresponding BIEs.

� If a single inward peak ours, equivalene of BVPs (0.1), (0.2) with

the orresponding BIEs (0.3), (0.4) fail ompletely. Suh redution is

onneted with a representation of harmoni funtion of the Smirnov

lass by the Cauhy integral with real valued density. This turned

out to be possible if and only if the Riemann{Hilbert BVPs for

analyti funtions is surjetive in the same Smirnov spae but for the

omplementary domain (see Lemmata 1.1 and 1.13). If the domain

has an inward peak, the omplementary domain has an outward peak

and the Riemann{Hilbert BVP is not normally solvable (see Lemma

1.11).

� If a single peak (outward or inward) ours solvability property of BIEs

(0.3) and (0.4) hange dramatially: symbols of these onvolution-type

equations vanish and equations an not be Fredholm in any L

p

(�)

or any other spae with weight or without (see [MS1℄{[MS8℄ and x 1.6

below). For the spae of ontinuous funtions this was notied already

by J.Radon [Ra1℄.

We start with investigations of orret formulation of the BVPs. Namely,

we look for solutions in the weighted Smirnov{Lebesgue spae e

p

(


�

; �)

(see x 1.2) of harmoni funtions written as the real part of analyti funtions

represented by the Cauhy integrals with densities in the Lebesgue spaes

with weight L

p

(�; �) (plus onstanta for the unbounded domain 


�

). The

hoie of onstraints is justi�ed in the following sense: looking for solutions

in more narrow Smirnov{Sobolev spae u 2 w

1

2

2

(


�

) is the same as the

ommon (lassial) onstraint u 2 W

1

2

(


�

) provided the domain 


�

has

no outward peaks (see Lemma 1.2). Moreover, to raise exibility of the

method we suggest to look for solutions in some other Smirnov spaes:

weighted Smirnov{Sobolev w

s

p

(


�

; �), 0 � s � 1, Smirnov{H

�

older

h

0

m+�

(


�

; �) et. (see x 1.2).

If the boundary urve has usps (i.e., the domain has peaks) equations

(0.3) and (0.4) have non-losed images. Same is true for the Dirihlet

and the Neumann BVPs for (0.1) when inward peaks are present. Maz'ya
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and V.Solov'ev in [MS1℄{[MS4℄ suggested to study BIEs (0.3), (0.4) di-

retly. Namely, they have found onditions on the right-hand sides whih

ensure existene of solutions and have established properties (smoothness,

asymptoti) of suh solutions. The method is based on the orresponding

results for boundary value problems in domains with peaks, obtained with

the help of onformal mappings (see [Wa1, Wa2℄ for properties of suh on-

formal mappings). In more reent investigations [MS5℄{[MS8℄ for urves

with usps of order � 2 R

+

they have found pairs of Banah spaes where

BIEs (0.3), (0.4) are surjetive.

Di�erent approah (transformation of the underlying domain whih

maintains the struture of BVPs) was exploited in [RST1, RST2℄. The

authors obtained solvability results for BVPs in domains with speial usps

when the right-hand sides and solutions are in speial weighted spaes.

Essential role in our investigations play an equivalent redution of the

Dirihlet and the Neumann BVPs for (0.1) to the Riemann{Hilbert

BVPs for analyti funtions on the unit irumferene, using the onformal

mapping. Namely, we apply the approah exposed in [Mu1, Ch. III℄ and

ontributed by I.Vekua in [Ve1℄. Obtained BVPs are redued further to

equivalent Cauhy singular integral equations on the unit irumferene.

The same method was applyed by G.Khuskivadze and V.Paatashvi

li. Namely, they look for solutions of BVPs in the Smirnov{Lebesgue spae

e

p

(


�

), 1 < p <1. Although the motivation for the hoie of onstraints,

ensuring equivalent redution to the Riemann{Hilbert problem, was lear

justi�ation for the hange of onditions in [KKP1℄ is missing.

For the investigation of the Cauhy singular integral equations on the

unit irumferene, whih arise as an equivalent equation, we apply loaliza-

tion to 2� 2 systems of onvolution equations on the real semi-axes. Loal

representatives at usps have vanishing symbols and, by applying results

on onvolution equations with vanishing symbols of integer order (see [Pr1,

x 5.2℄ and x 3.1 below), we desribe the image spae by Cesaro-type inte-

grals and �nd the riteria for the data whih ensures unique solvability of

the Dirihlet and the Neumann BVPs for (0.1).

Further we prove equivalene of BVPs and of orresponding BIEs (0.3)

and (0.4) if inward peaks are absent (see Theorems 1.12 and 1.14). If the

boundary urve has no usps, obtained BIEs are partiular ases of gen-

eral equations studied in x 4 by invoking results from [DLS1℄. They are

Fredholm with rare exeptions for the parameters of the spae. Although

suh investigations were arried out earlier (see survey in [Ma1℄) some re-

sults of the present paper are new: we prove boundedness of harmoni

(the double and the single) layer potentials and obtain riteria for Fred-

holm property of equations (0.3) and (0.4) in the spaes of ontinuous and

pieewise-ontinuous funtions C(�;{) and PC(�;{) (in some ases also

in PC

1

(�;{); see x 1.7) with exponential weight {(t) =

n

Y

j=1

jt � 

j

j

�

j

; 0 �
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�

j

< 1.

If inward peaks are present equivalene with BVPs fail (see Lemma 1.13)

and equations (0.3), (0.4) are investigated by loalization. The loalization

enables replaement of inward peaks by outward ones (see x 5.4). Solvability

riteria of equations (0.3) and (0.4) are summarized in Theorems 1.23 and

1.24, whih are proved in x 5.4.

Let T

ow

, T

iw

be the disrete sets of all outward, all inward peaks and

T

pk

= T

ow

[ T

iw

be the set of all peaks of 


+

. We de�ne the spaes

L

p

(�; �; T

ow

); L

p

(�; �; T

iw

) � L

p

(�; �; T

pk

) � L

p

(�; �) ;

with the help of theCesaro integrals (see (1.76)), where �(t) =

n

Y

j=1

jt�

j

j

�

j

,

�

1

p

< �

j

< 1 �

1

p

, 1 < p < 1. It is proved that equations (0.3) and

(0.4) are Fredholm between spaes L

p

(�; �) �! L

p

(�; �; T

pk

) provided

the onditions

1

p

+ �

j

6= min

n

1



j

;

1

2�

j

o

holds for all t

j

62 T

pk

. Moreover, if

the inequalities

1

p

+�

j

< min

n

1



j

;

1

2�

j

o

hold, the mappings are isomorphi.

As for solvability of the Dirihlet BVP for 


+

(for 


�

) it suÆes to

restrit the data g 2 L

p

(�; �; T

ow

) (respetively, g 2 L

p

(�; �; T

iw

)) and the

solution is unique provided

1

p

+ �

j

< min

n

1



j

;

1

2�

j

o

for all t

j

62 T

pk

(note,

that inward peaks of 


�

have no impat on the orresponding Dirihlet

BVP). Similar holds for the Neumann BVPs.

In Lemma 1.22 we formulate suÆient onditions for the inlusion ' 2

L

p

(�; �; T

iw

), whih involves the onformal mapping �(z) : 


+

�! D

1

of the domain 


+

onto the unit disk D

1

= f� 2 C : j�j = 1g. It is

possible to write more transparent and expliit ondition, but for these we

need asymptoti behaviour of the onformal mapping �(z) in the viinity of

an outward peak. This we leave for a forthoming paper.

In our investigations we apply the Cisotti formula, whih represents

the derivative of the onformal mapping ! : D

1

! 


+

(see [LS1, Ch. III,

x 1, n

o

. 44, Example 5℄):

!

0

(z) = !

0

(0) exp

2

6

4

1

�

Z

j� j=1

�(�)d�

� � z

�

1

�

Z

j� j=1

�(�)

d�

�

3

7

5

; z 2 D

1

: (0.5)

Here �(�) := arg~�(!(�))�arg� and arg~�(!(�)) stands for the argument of

the outer unit normal vetor to the urve � = �


+

at the point � = e

i#

2

�

1

:= �D

1

. The formula was redisovered in [PK1℄ for a pieewise-smooth

boundary (see also [KKP1℄). We return to the lassial approah in [LS1℄)

whih is, above all, very simple and prove the Cisotti formula (0.5) in x 5.1

for a domain with reti�able Jordan boundary.



7

Although the onformal mapping is partiipating impliitly, representa-

tion (0.5) simpli�es proofs of some lassial theorems on onformal map-

pings

1)

(see [KKP1, Ch. III℄ and x 5.1 for the proofs of Lindel

�

of's, Kel-

logg's,Warshawsky's theorems). Moreover, using the Cisotti formula

we generalize the Kellogg theorem for the Zygmund spae (see Theorem

5.9).

In [Po1, Theorem 3.15℄ the Cisotti formula is redisovered for a so-alled

regulated domain, i.e., for a domain for whih the inlination �(t), t 2 �

of the tangent vetor to the boundary has limits �(t� 0) everywere on the

boundary t 2 �.

G.Khuskivadze and V.Paatashvili had applied formula (0.5) to �nd

disontinuities of the oeÆient, but the obtained Riemann{Hilbert prob-

lems they have found \non-solvable in L

p

(�) spaes in general" when out-

ward usps are present (see [KKP1, Ch. IY℄) and have written suÆient

ondition of solvability as well as expliit formula for solutions provided the

solvability onditions hold.

Applying the representation of solution by layer potentials and the di-

ret method we obtain boundary pseudo-di�erential equation

1

2�

Z

�

log jt� � j'(�)jd� j = g

�

(t) ; t 2 � ; (0.6)

g

�

(t) := �

1

2

g(t)�

1

2�

Z

�

�

~�(�)

log jt� � jg(�)jd� j ;

of order �1 for the Dirihlet problem for the Laplaian (0.1) and the

boundary pseudo-di�erential equation

1

2�

Z

�

�

~�(t)

�

~�(�)

log jt� � j'(�)jd� j = f

�

(t) ; t 2 � ; (0.7)

f

�

(t) :=

1

2

f(t) +

1

2�

Z

�

�

~�(t)

log jt� � jf(�)jd� j ;

of order +1 for the Neumann problem. We an formulate riteria of solv-

ability of equations (0.6) and (0.7) based on full equivalene with orre-

sponding BVPs (see Theorems 1.19, 1.20).

All prinipal theorems on solvability of boundary value problems and

boundary integral equations are formulated in x 1.7. Some of them are

proved later, mostly in x 5.

Aknowledgments: the authors thank I.Graham (University of Bath)

and S.Chandler{Wilde (Brunel University, London) for many enourag-

ing disussions on the subjet during the �rst authors visit to these univer-

sities.

1)

See [Ga1℄ for a survey on appliation of linear and non-linear integral equations in

onformal mappings.
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1 Boundary value problems

In the present setion we formulate the Dirihlet and the Neumann

boundary value problems for the Laplaian in domains with angular points

and peaks; disuss their equivalent redution to boundary integral equations

(the diret potential method), to boundary pseudo-di�erential equations

(the indiret potential method) and to singular integral equations on the

unit irumferene (Muskhelishvili{Vekua method); we expose prop-

erties of harmoni potentials appearing in the method and formulate all

prinipal results.

1.1 Spaes

We start by rigorous de�nitions of domains and spaes whih are neessary

for our onsiderations.

Let � be a losed, oriented, simple (i.e., without self-intersetion), piee-

wise-Ljapunov urve on the omplex plane C , irumventing a domain 


+

and having knots at t

1

; : : : ; t

n

2 �, i.e.,

� =

n

[

j=1

�

j

; �

j

=

!

t

j

t

j+1

; t

n+1

:= t

1

; j = 1; : : : ; n ; (1.1)

�

t

1

t

j

0

t

n

q

q

q

q

q

q

q

t

k




+



k

= 2



n



j

= 0



n

t

2


�



2



1

z

=

A

A

AU

�

�

�

�*

-

t

~�(t)

t

0

(s)

Re z

#

t

Fig. 1
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here �

j

are ��smooth, � > 1, oriented urves onneting knots t

j

and

t

j+1

. Let �

j

be the angle at t

j

between �

j�1

and �

j

, measured from




+

; 0 � 

j

� 2; j = 1; : : : ; n: When 

j

= 0 or 

j

= 2 the domain 


+

has an outward or an inward peak, respetively or, what is the same, the

boundary urve � has a usp (see Fig. 1).

We use the following standard notation for spaes.

Write C

m

(�) for the spae of funtions '(t); t 2 � with ontinuous

derivatives up to the order m

�

k

t

' 2 C(�) ; k = 0; 1; : : : ;m ; �

t

:=

d

dt

; m 2 N

0

:= f0; 1; : : :g:

Let us note that invariant (with respet to a parametrisation of the

underlying urve �) de�nition of the spae C

m

(�) an be provided i� � is

m-smooth. Therefore for pieewise-smooth urves (with angular points or

usps) we an de�ne only C(�) := C

0

(�).

Write H

�

(�) for the spae of H

�

older ontinuous funtions  (t); t 2 �

with the following �nite norm

k 

�

�

H

�

(�)k := k 

�

�

C(�)k+ sup

t

1

6=t

2

j (t

2

)�  (t

1

)j

jt

2

� t

1

j

�

; 1 < � � 1 :

Write PC(�) for the spae of funtions '(t) whih are ontinuous on

eah losed ar between knots t

1

; : : : ; t

n

and might have jumps at these

knots.

Write PC

m

(�) for the spae of funtions ' 2 C

m�1

(�) whih have

pieewise-ontinuous last derivative �

m

t

' 2 PC(�) with possible jumps at

knots t

1

; : : : ; t

n

.

Both, the spaes C

m

(�) and PC

m

(�) are endowed with the uniform

norm

k'

�

�

PC

m

(�)k :=

m

X

k=1

sup

�

j�

k

'(t)j : t 2 �

	

;

whih makes them into Banah spaes.

Let

�(t) =

n

Y

j=1

jt� t

j

j

�

j

(1.2)

be a weight funtion and C

m

(�; �) � PC

m

(�; �) denote the weighted spaes

of funtions:

C

m

(�; �) :=

�

' 2 C

m�1

(�) : ��

m

' 2 C(�)

	

;

PC

m

(�; �) :=

�

' 2 C

m�1

(�) : ��

m

' 2 PC(�)

	

:

These spaes both an be endowed with the weighted norm k'

�

�

PC

m

(�; �)k=

k'

�

�

C

m�1

(�))k+ k��

m

'

�

�

PC(�))k.
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We write C(�), PC(�; �) et. when m = 0.

Write H

0

m+�

(�; �), 0 < � < 1, m = 0; 1; : : :, for the weighted funtion

spae

H

0

m+�

(�; �) :=

�

' 2 C

m�1

(�) : e'

(m)

:= ��

m

' 2 H

�

(�);

e'

(m)

(t

1

) = : : : = e'

(m)

(t

n

) = 0

	

;

k'

�

�

H

0

m+�

(�; �)k := k'

�

�

C

m�1

(�)k+ k��

m

'

�

�

H

�

(�)k ;

provided � n ft

1

; : : : ; t

n

g is C

m+�

-smooth, while � itself is PC

m�1

-smooth.

Note, that for pieewise-smooth urve � de�nition is orret only for m =

0; 1.

Write L

p

(�; �) for the weighted Lebesgue spae endowed with the norm

k'

�

�

L

p

(�; �)k :=

0

�

Z

�

j�(t)'(t)j

p

jdtj

1

A

1

p

:

Write W

m

p

(�; �) for the Sobolev spae

W

m

p

(�; �) :=

�

' : '; �

k

' 2 L

p

(�; �); k = 0; : : : ;m

	

;

k'

�

�

W

m

p

(�; �)k :=

m

P

k=0

k�

k

'

�

�

L

p

(�; �)k :

Write W

s

p

(�; �), s 2 R, for the weighted Sobolev{Slobodetski spae

whih for s � 0 an be de�ned by the omplex interpolation (see [Tr1℄)

between the spaes W

m

p

(�; �) and W

0

p

(�; �) := L

p

(�; �) (s � m 2 N, while

for negative s < 0 an be de�ned as the dual spae to W

�s

p

0

(�; �

�1

), p

0

:=

p=(p� 1).

Sine multipliation by a pieewise-ontinuous funtion is a bounded

operator in W

s

p;lo

(R) only for s < 1=p, the spae W

s

p

(�; �) on pieewise-

smooth urve � an be de�ned orretly only for jsj < 1 + 1=p.

Write E

p

(


+

; �) for the Smirnov{Lebesgue spae of analyti funtions:

if ! : D

1

! 


+

denotes the onformal mapping of the unit disk D

1

:=

f� 2 C : j�j < 1g onto the domain 


+

, the norm of  2 E

p

(


+

; �) is de�ned

as follows

k 

�

�

E

p

(


+

; �)k := sup

0<r<1

0

�

Z

�

(r)

j�(�) (�)j

p

d�

1

A

1

p

;

where �

(r)

:= fz = !(�) : j�j = rg are the images of the onentri irum-

ferenes of the radius r.

Similarly is de�ned the Smirnov{Lebesgue spae E

p

(


�

; �) for the

outer domain 


�

.
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An equivalent de�nition of the Smirnov{Lebesgue spaes E

p

(


�

; �) is

the following: u 2 E

p

(


�

; �) i� u(z) is represented by the Cauhy integral

as follows

�(z) = 

0

+ C

�

'(z) ; 

0

= onst ; ' 2 L

p

(�; �) ;

C

�

'(z) :=

1

2�i

Z

�

'(�)d�

� � z

; z 2 


�

(1.3)

(f. [Pv1℄ and [Go1, Ch.X, x 5℄). In partiular, for the ompat domain




+

� C representation (1.3) an be written also as follows �(z) = C

�

'

0

(z),

'

0

(t) = 

0

+ '(t), t 2 �, while for 


�

we have 

0

= �(1).

Taking the advantage of the last de�nition we will introdue the following

new spaes, suited for our purposes.

WriteW

s

p

(


�

; �) for the weighted Smirnov{Sobolev spae of funtions

�(z) represented as in (1.3) with a density ' 2 W

s

p

(�; �). Note, that the

restrition for pieewise-smooth ontour � is jsj < 1 +

1

p

.

WriteW

1

p

(


�

; �) for the spae of funtions �(z) whih belong to E

p

(


�

; �)

together with their derivatives �; �� 2 E

p

(


�

; �). This is easy to hek with

a partial integration.

Due to Theorem 1.8 proved below, we get W

s

2

(


�

) � W

s+

1

2

2;lo

(


�

). If

outward peaks are absent 0 < 

j

� 1, the following inverse is also true:

traes of funtions from W

s+

1

2

2;lo

(


�

) belong to W

s

2

(�). In ase of outward

peaks the last assertion fails as shown in Example 1.3 (see also [Ia1℄). Note

that formulated theorem on traes remain valid even in the presene of

inward peaks (with interior angle 2�).

Write H

0

m+�

(


�

; �), C

m

(


�

; �) and PC

m

(


�

; �) for the weighted Smir-

nov{H

�

older et. spaes of funtions �(z) represented as in (1.3) with a

density ' in appropriate spaes H

0

m+�

(�; �), in C

m

(�; �) (with the restri-

tion m � 1 for a pieewise-smooth ontour �) or in PC

m

(�; �), respetively

(with the restrition m � 2 for a pieewise-smooth ontour �).

Write e

p

(


�

; �) = w

0

p

(


�

; �), w

s

p

(


�

; �), h

0

m+�

(


�

; �), 

m

(


�

; �) and

p

m

(


�

; �) is used for the spaes of harmoni funtions represented as real

u(z) = Re �(z) (or the imaginary u(z) = Im �(z) parts of funtions �(z)

from E

p

(


�

; �) = W

0

p

(


�

; �), W

s

p

(


�

; �), H

0

m+�

(


�

; �), C

m

(


�

; �) and,

respetively, from PC

m

(


�

; �). We use e

p

(


�

et for the spae e

p

(


�

; 1)

et.

It is important to have representations of funtions (1.3) with a pure real

or a pure imaginary density '(t). Next lemma provides the ondition for

suh representation. Similar onsiderations an be found in [Mu1, xx 62{66℄.

Lemma 1.1 Let X(�) be one of the following spaes: W

s

p

(�; �), H

0

m+�

(�; �),

C

m

(�; �) or PC

m

(�; �) and X (


�

){the orresponding Smirnov spae

W

s

p

(�; �), H

0

m+�

(�; �) et.
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The funtion � 2 X (


�

) an be represented by the Cauhy integral

as in (1.3) with a pure real ' = Re ' 2 X(�) or a pure imaginary ' =

i Im ' 2 X(�) density if and only if the Riemann{Hilbert problem for

the omplementary domain 


�

= C n


�

Re	

�

(t) = g(t); t 2 � ; g 2 X(�) ; 	(z)! 0 as jzj ! 1

is surjetive, i.e., has solution for all right-hand sides in X (


�

).

For the domain 


+

the same onditions provide the representation �(z)=

C

�

'

0

(z), z 2 


+

with a real valued density '

0

= Re'

0

.

We postpone the proof of the formulated Lemma until Subsetion 2.3.

Let us onlude this subsetion by the following agreements whih we

will hold on in the sequel.

I. X

s

(�; �) (or more simple X(�)) is used to denote the spaes W

s

p

(�; �),

H

0

s

(�; �) C

s

(�; �) or PC

s

(�; �), where the weight funtion �(t) is de-

�ned in (1.2) and X

s

(


�

; �), x

s

(


�

; �){for the orresponding Smir-

nov spaes of analyti and harmoni funtions.

For the parameters there hold the following onstraints:

jsj � 1 ; �

1

p

< �

j

< 1�

1

p

; 1 < p <1 for W

s

p

(�; �) ;

�

m+ s ; m=0; 1 ; 0<s<1 ;

s < �

j

< s+ 1 ; � n ft

1

; : : : ; t

n

g2C

m+s

for H

0

s

(�; �) ; (1.4)

s=m 2 N

0

; 0 < �

j

< 1 for PC

m

(�; �)

and for C

m

(�; �)

for j = 0; : : : ; n. Conditions (1.4) are neessary and suÆient for

boundedness of the Cauhy singular integral operator

S

�

'(t) =

1

�i

Z

�

'(�)d�

� � t

; t 2 � (1.5)

(the integral in (1.5) is understood in the Cauhy mean value sense)

in the spaes W

m

p

(�; �) ([GK1, Go2, Kh1, Kh2℄ and H

0

m+�

(�; �) (see

[Du1, Du6, Du7, GK1℄) and of operators with �xed singularities in the

kernel (see x 3.2) in all four spaes W

m

p

(�; �), H

0

m+�

(�; �), C

m

(�; �)

and in PC

m

(�; �) (see [Du1℄ and x 3.2 below; S

�

is not bounded in

C

m

(�; �) and in PC

m

(�; �)).

II. For a spae with weight W

m

p

(�; �), H

0

m+�

(�; �) or PC

m

(�; �), if not

otherwise stated, the weight funtion is de�ned in (1.1) and the expo-

nents satisfy the appropriate onditions (1.4).
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1.2 Boundary value problems

For a real valued harmoni funtion

�u(x) = 0 ; x 2 


�

; (1.6)

we onsider the Dirihlet

u

�

(t) = g(t) ; g 2 X

s

(�; �) ; 0 � s � 1 ; t 2 � ; (1.7)

and the Neumann

(�

~�(t)

u)

�

(t) = f(t) ; f 2 X

s�1

(�; �) ; 0 � s � 1 ; t 2 �; (1.8)

boundary value problems, with some real valued data

2)

Im g(t)� Im f(t)�

0, where �

~�(t)

:= �

1

(t)�

t

1

+ �

2

(t)�

t

2

, t = (t

1

; t

2

) 2 � denotes the normal

derivative. We hold on the agreement about spaes and weights made in

onlusion of x 1.1.

We look for solutions of problem (1.6), (1.7) (of (1.6), (1.8)) in the

Smirnov lass

u 2 x

s

(


�

; �) ; 0 � s � 1 : (1.9)

Let us note that by de�nition of the Smirnov lass a funtion u 2

x

s

(


�

; �) automatially possesses a �nite limit at the in�nity: u(x) = O(1)

for x 2 


�

as jxj ! 1 (see (1.3)).

Next Lemma and example are a ertain justi�ation of the hoie of

onstraints (1.9) instead of (0.2) whih is ommon for domains with a Lip-

shitz boundary (see [Ke1, Ma1, MT1℄).

Lemma 1.2 If (0.2) holds, 


�

has no outward peak and u(z) is a harmoni

funtion (i.e., u(z) solves (1.6)). Then

u 2 w

1

2

2

(


�

) : (1.10)

Vie versa, u 2 w

1

2

2

(


�

) � e

2

(


�

) implies (0.2) and u(z) is a harmoni

funtion, also for domains 


�

with outward peaks.

We postpone the proof of the formulated Lemma until Subsetion 2.3.

Next example shows that under onstraints (0.2) solution u(x) of BVPs

(1.6), (1.7) and (1.6), (1.8) might have non-integrable trae u

+

(t) on the

boundary � = �


+

as soon as 


�

has a single outward peak.

Example 1.3 Let 0 < � <1,  > 0 and




+

�

:=

�

x

1

+ ix

2

: 0 � x

1

� 1 ; 0 � x

2

� x

�+1

1

	

: (1.11)

2)

If we admit omplex-valued data Im g 6� 0 in (1.6) and Im f 6� 0 in (1.8) but then

we have to look for a omplex-valued solution u = u

r

+ iu

i

, u

r

; u

i

2 x

s

(


�

; �) in (1.9).
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Then, hoosing the branh of the analyti funtion '



(z) := z

�

appropri-

ately, for the harmoni funtion '



(z) := Re z

�

we get �'



= 0 in 




and '



2W

1

p

(


+

�

) provided � � ( + 1)p > �2.

In partiular, '



2W

1

2

(


+

2+3

).

In fat,

k'



�

�

W

1

p

(


+

�

)k

p

=

1

Z

0

dx

1

x

�+1

1

Z

0

h

(x

2

1

+ x

2

2

)

�



2

p

+ (x

2

1

+ x

2

2

)

�

+1

2

p

i

dx

2

� C

1

1

Z

0

dx

1

x

�+1

1

Z

0

(x

1

+ x

2

)

�(+1)p

dx

2

= C

2

1

Z

0

x

�(+1)p+1

1

dx

1

�

x

�

1

Z

0

(1 + t)

�(+1)p

dt � C

3

1

Z

0

x

��(+1)p+1

1

dx

1

= C

4

<1 :

1.3 Representation of solutions and layer potentials

Applying the Gauss formula on divergene (on \partial integration")

Z




�

�

j

u(y)v(y)dy =

Z




�

u(y)�

j

v(y)dy �

I

�

�

j

(�)u(�)v(�)d� ; (1.12)

we readily obtain two well-known Green formulae

Z




�

�u(y)v(y)dy =

2

X

j=1

Z




�

�

j

u(y)�

j

v(y)dy �

I

�

�

~�(�)

u(�)v(�)d� ; (1.13)

Z




�

h

�u(y)v(y)� u(y)�v(y)

i

dy =

I

�

h

�

~�(�)

u(�)v(�)

�u(�)�

~�(�)

v(�)

i

d� ; u; v 2 C

1

om

(


�

) : (1.14)

Invoking the fundamental solution of equation (1.6)

F

�

(z) :=

1

2�

log jzj ; �F

�

(z) = Æ(z) ; z 2 R

2

;

where Æ is Kroneker's delta funtion, we an easily derive from (1.14) the

following representation formula for a harmoni funtion u(x) whih meets

ondition (1.9)

�

+

(x)u(x) =W

�

u

+

(x)� V

�

(�

~�

u)

+

(x) ;

�

�

(x)u(x) = u

1

�W

�

u

�

(x) + V

�

(�

~�

u)

�

(x) ;

x 2 R

2

n � = 


�

[ 


+

(1.15)
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(see [Ma1, Ch.1, x 1.2℄), where u

1

=onst, �

�

is the harateristi funtion

of the domain 


�

and

W

�

'(x) =

1

2�

Z

�

'(�)�

~�(�)

log j� � xjds ; ds = jd� j ;

V

�

'(x) =

1

2�

Z

�

'(�) log j� � xjds ; x 2 


�

;

(1.16)

are the double and the single layer potentials (known as the harmoni or

the logarithmi potentials as well).

Let us note, that onstants are inluded into the lass of harmoni fun-

tions in unbounded domains 


�

(see (1.3) and the seond formulae in (1.15))

only in 2-dimensional ase (see, e.g., [Ma1, p.216℄, [Vl1, p.333℄).

For the diret values of harmoni potentials (1.16) on � we use the

notation W

�;0

and V

�;�1

where the additional subsript indies indiate

the order of these operators, treated as pseudo-di�erential operators on the

manifold � (see Theorem 1.5 below). Aording this rule we have also

S

�

:= C

�;0

(see (1.3) and (1.5)).

Lemma 1.4 The following holds:

W

�;0

'(t)=

1

4

(S

�

+ VS

�

V)'(t) =

1

4�i

Z

�

'(�)d log

� � t

� � t

=

1

4�i

Z

�

'(�)

�

d�

� � t

�

d�

� � t

�

; (1.17)

W

�

�;0

'(t)=

1

4

�

hS

�

h+ VhS

�

hV

�

'(t)

=

1

4�i

Z

�

'(�)

"

h(t)

h(�)

d�

� � t

�

h(t)

h(�)

d�

� � t

#

; (1.18)

�

t

V

�;�1

'(t)=

i

4

(S

�

� VS

�

V)'(t)

=

1

4�

Z

�

'(�)

�

d�

� � t

+

d�

� � t

�

; t 2 � ; (1.19)

where

V'(t) := '(t) ; h(t) := ie

i#

t

(1.20)

and #

t

denotes the inlination to the absissa axes of the outer unit normal

vetor ~�(t) (t 2 � n ft

1

; : : : ; t

n

g; see Fig. 1).

Proof (see [Mu1, x x 12,14℄). Let us onsider the natural parametrisation

of the urve � by the ar length parameter

�(s) : [0; `℄ �! � ; �(0) = �(`) :
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Easy to asertain that if the derivative �

0

(s) exists, oinides with the unit

tangent vetor to �. We have

~�(�) = (os#

�

; sin#

�

) ;

d� =

�

os

�

�

2

+ #

�

�

+ i sin

�

�

2

+ #

�

��

jd� j = h(�)ds (1.21)

(see Fig. 1 and (1.20)). Therefore

1

2�

�

~�(�)

[log j� � tj℄ds =

1

2�j� � tj

�

dj� � tj

dRe �

os#

�

+

dj� � tj

d Im �

sin#

�

�

ds

=

Re (� � t) os#

�

+ Im (� � t) sin#

�

2�j� � tj

2

ds =

�(� � t)d� + (� � t)d�

4�i

=

1

4�i

�

d�

� � t

�

d�

� � t

�

=

1

4�i

d

�

log

� � t

� � t

;

whih gives (1.17).

Formula (1.18) follows from (1.17) sine the adjoint operator S

�

�

to S

�

in (1.5) with respet to the sesquilinear form

h';  i :=

Z

�

'(�) (�)jd� j

reads

S

�

�

= VhS

�

h

�1

V = h

�1

VS

�

VhI : (1.22)

In fat, sine d� = h(�)jd� j and h(�) = h

�1

(�) (see (1.20), (1.21)), we get

hS

�

';  i :=

Z

�

S

�

'(�) (�)jd� j =

Z

�

S

�

'(�)h(�) (�)d�

= �

Z

�

'(t)S

�

h(�) (�)dt =

Z

�

'(t)V(S

�

Vh )(t)h(t)jdtj

=

Z

�

'(t)Vh(t)(S

�

h

�1

V )(t)jdtj:

To prove formula (1.19) we proeed as follows:

�

t

V

�;�1

'(t) =

1

2�

Z

�

'(�)�

�

log j� � tjds

=

1

2�

Z

�

'(�)

�Re (� � t) sin#

�

+ Im (� � t) os#

�

j� � tj

2

ds

=

1

2�

Z

�

'(�)

Re (� � t) Re d� + Im (� � t) Im d�

j� � tj

2

=

1

4�

Z

�

'(�)

�

d�

� � t

+

d�

� � t

�

:
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Next two theorems deal with boundedness properties of layer potentials.

They are based on Lemma 1.4 and justify onstraints (1.4) on the weight

funtion �(t).

Theorem 1.5 W

�;0

is bounded in the spaes W

s

p

(�; �) for 0 � s � 1 and

in H

0

m+�

(�; �) for m = 0; 1.

The operator W

�

�;0

is bounded in the spaes W

s

p

(�; �) for �1 � s � 0

and in H

0

�

(�; �).

V

�;�1

is bounded from L

p

(�; �) to W

1

p

(�; �) and from H

0

�

(�; �) to

H

0

1+�

(�; �).

Theorem 1.6 The operator W

�;0

is bounded in C(�; �) and in PC

m

(�; �)

for m = 0; 1.

The operator W

�

�;0

is bounded in PC(�; �).

We postpone the proofs of the formulated theorems until Subsetion 2.3.

Here we will prove the following orollary.

Corollary 1.7 Let �(t) be de�ned by (1.2) and (1.4). If � is smooth (on-

tains no usps and no angular points 

1

= � � � = 

n

= 1) operators W

�;0

and W

�

�;0

have weak singular kernels and are ompat in the spaes L

p

(�; �)

and PC(�; �).

Operator W

�;0

is ompat also in spaes W

s

p

(�; �) for �1 � s � 1, in

C(�; �) and in PC

1

(�; �).

Proof. It suÆes to prove ompatness of W

�;0

, sine W

�

�;0

is the adjoint

operator and would have weak singular kernel if W

�;0

has.

If � = R or � � R then K

1

=W

�;0

= 0 as it is lear from representations

(1.17) and (1.18).

If � = �

1

:= f� 2 C : j�j = 1g is the unit irumferene then #

t

�

#; h(t) = e

i#

and � = e

i#

; t = e

i�

(0 � #; � � 2�) inserted into (1.17) gives

K

1

=W

�

1

;0

'(�) =

1

4�

2�

Z

0

'(#)d# ; (1.23)

therefore W

�

1

;0

is one dimensional and ompat.

If � is arbitrary smooth urve and ! : � ! �

0

is a orresponding

di�eomorphism where either �

0

� R or �

0

= �

1

, then

W

�;0

= K

!

�K

�

!

+ !

�1

�

K

1

!

�

;

K

!

:= !

�1

�

S

�

!

�

� S

�

; !

�

'(t) = '(!(t)) ; t 2 � ;

with !

�1

: � ! �

0

standing for the inverse di�eomorphism and K

�

!

{for

the adjoint to K

!

. the integral operator K

!

has a weak singular kernel

(see [DLS1, x 3.5℄ or [Kh1, GK1℄). As for K

1

, either K

1

= 0 or it is a one

dimensional operator (see (1.23)).
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To aomplish boundedness properties of potential operators and their

diret values on the urve we formulate the next result. For a general

assertion (layer potentials for partial di�erential operators with variable

oeÆient and arbitrary order in R

n

, provided they have a fundamental

solution) we quote [Du10, Theorem 3.2℄ (for Lipshitz domains see also

[MMP1, MMT1, MT1℄).

Theorem 1.8 Let s 2 R and the boundary � = �


�

be m-smooth, where

m 2 N

0

, m � jsj.

The potential operators

3)

C

�

: W

s

2

(�) �!W

s+

1

2

2;om

(


�

) ;

W

�

: W

s

2

(�) �!W

s+

1

2

2;om

(


�

) ;

V

�

: W

s

2

(�) �!W

s+

3

2

2;om

(


�

)

(1.24)

(see (1.3) and (1.16)) are bounded

4)

.

In partiular, if � is pieewise-smooth we should restrit �1 � s � 1.

Proof. For a smooth � = �


�

see [Du10, Theorem 3.2℄.

Let � have knots t

1

; : : : ; t

n

(see (Fig. 1) and onsider C

�

'(z). The

operator C

�

is of the loal type, i.e., if

v

1

2 C

1

0

(


+

) ; v

2

2 L

1

(�) ; supp v

1

\ supp v

2

= ; ;

then v

1

C

�

v

2

' 2 C

1

0

(C ). Therefore it suÆes to establish ontinuity (1.24)

for vC

�

uI , where v 2 C

1

0

(


+

), u 2 C(�) are ut-o� funtions, equal 1 in

some small neighbourhood of a knot t

j

and vanishing outside another one;

in partiular, v(t

k

) = u(t

k

) = 0 for j 6= k.

We an suppose that

' = '

1

+ '

2

; '

k

:= u

k

' 2 W

s

2

(�) ; u

k

:= �

k

u ; k = 1; 2 ;

where �

1

(t) and �

2

(t) are harateristi funtions of the left and right neigh-

bourhoods of t

j

2 � and [�

1

(t) + �

1

(t)℄u(t) = u(t). Sine �

k

(t), k = 1; 2

have disontinuities at t

j

, for the laimed inlusions '

k

2 W

s

2

(�) we need

'(t

j

) = 0 if s �

1

2

. The latter an be provided sine (C

�

1)(z) � 1 for

z 2 


+

and

C

�

'(z) = C

�

'

0

(z) + '(t

j

) :

Thus,

v(z)C

�

u'(z)=u(z)C

�

'

1

(z)+u(z)C

�

'

2

(z)=u(z)C

�

1

'

1

(z)+u(z)C

�

2

'

2

(z);

3)

For a ompat domain we de�ne W

�

2;om

(


�

) = W

�

2

(


�

).

4)

We have formulated only a partiular result{the ase p = 2. The general result for

1 < p < 1 in [Du10℄ states boundedness between the Bessel potential and the Besov

spaes.
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where �

1

and �

2

are smooth and losed ontours whih have in ommon

either only the point ft

j

g when 

j

< 1, or two points (one of them ft

j

g)

when 1 < 

j

< 2, or some ar �

0

=

�

t

j

z

o

when 

j

= 2. We an assume

'

k

2W

s

2

(�

k

) extending funtions to �

k

n (�\�

k

) by 0 (k = 1; 2). As noted

above, due to smoothness of �

k

we get vC

�

k

'

k

2 W

s+

1

2

2

(


+

k

), where 


+

k

is

the inner domain for �

k

, k = 1; 2. On the other hand,

supp v \


+

= 


1

[ 


2

; 


k

:= ( supp v \


+

) \ 


+

k

; k = 1; 2 :

Then vC

�

'

k

= vC

�

k

'

k

2 W

s+

1

2

2

(


1

[ �

2

) sine on the ommon boundary




1

\ 


2

= �

1

\ �

2

� 


+

[ ft

j

g, exept t

j

, funtions are C

1

smooth.

Therefore, vC

�

u' = vC

�

'

1

+ vC

�

'

2

2 W

s+

1

2

2

(


+

).

The inlusion vC

�

u' 2 W

s+

1

2

2;om

(


�

) and other results in (1.24) are

proved similarly.

To proeed further we need the Plemelji formulae (the jump relations)

for layer potentials, whih we formulate next.

Let � 2 C(


�

). By �

�

(t); t 2 � = �


�

is denoted, as usual, non-

tangential boundary values �

�

(t) = lim

z2


�

; z!t

�(z).

Lemma 1.9 Let 1 < p < 1, �1 � s � 1 and ' 2 W

s

p

(�; �), where �(t) is

de�ned in (1.2), (1.4). Then

(W

�

')

�

(t) = �

1

2

'(t) +W

�;0

'(t) ; (�

~�

V

�

')

�

(t) = �

1

2

'(t) +W

�

�;0

'(t) ;

(�

~�

W

�

')

+

(t) = (�

~�

W

�

')

�

(t) ; (C

�

')

�

(t) = �

1

2

'(t) +

1

2

S

�

'(t) ; (1.25)

for almost all t 2 � (for all t 2 � n ft

1

; : : : ; t

n

g provided s >

1

2

or ' 2

H

0

�

(�; �)).

Proof. The proof an be found e.g. in [Mu1, x x 15,16℄) (see the survey

[Ma1℄). See also [MT1, Appendix C℄ for the ase of Lipshitz domains and

[Du10, x 6.4℄ for muh more general operators.

If � is a ompat urve and ' 2 L

1

(�) then

W

�

'(x) = O

�

1

jxj

�

as jxj ! 1 : (1.26)

As for the single layer potential,

V

�

'(x) = O(1) as jxj ! 1 i�

Z

�

'(�)jd� j = 0 (1.27)

and then

V

�

'(x) = o(1) as jxj ! 1 : (1.28)
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In fat,

V

�

'(x) =

Z

�

'(�) log

r

jxj

jd� j+ log jxj

Z

�

'(�)jd� j

= o(1) + log jxj

Z

�

'(�)jd� j as jxj ! 1 :

and (1.27), (1.28) follow.

If

Z

�

(�

~�(�)

u)

�

(�)jd� j = 0; (1.29)

then in (1.15) we have

u

1

= u(1) =W

�

u

�

(0)� V

�

(�

~�

u)

�

(0) : (1.30)

In fat, the �rst equality u

1

= u(1) follows from (1.15), and (1.26){

(1.28) sine (1.29) holds.

Passing to the limit x ! t 2 �, x 2 


�

, in the representation formula

(1.15) and applying the appropriate Plemelji formulae (1.25) we �nd:

u

�

(t) = u

1

+

1

2

u

�

(t)�W

�

u

�

(t) + V

�

(�

~�

u)

�

(t) ; t 2 � :

The obtained formula an be rewritten as follows

u

1

=

1

2

u

�

(t) +W

�

u

�

(t)� V

�

(�

~�

u)

�

(t) ; t 2 � :

Therefore, the trae of the harmoni funtion

w(x) =W

�

u

�

(x) � V

�

(�

~�

u)

�

(x) ; x 2 


+

;

on the boundary � = �


+

w

+

(t) =

1

2

u

�

(t) +W

�

u

�

(t)� V

�

(�

~�

u)

�

(t) = u

1

; t 2 � :

(see the appropriate Plemelji formulae (1.25)) is onstant. This implies

w(x) �=onst for the entire domain x 2 


+

and, therefore, u

1

= w(0) =

W

�

u

�

(0)� V

�

(�

~�

u)

�

(0).

The integral W

�

1(x) is known as the Gaussian integral and an be

written expliitly:

W

�

1(x) =

1

2�

Z

�

�

~�(�)

log j� � xjjd� j =

8

<

:

1 if x 2 


+

;

0 if x 2 


�

;

1

2

if x 2 �

(1.31)

(see [Ma1, Chapter I, x 1.1℄).
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Remark 1.10 The homogeneous equation

�

1

2

r+W

�

�;0

r = 0 ; (1.32)

has a unique linearly independent solution r

0

6� 0 in L

2

(�) suh that

V

�

r

0

(x) � 1 ;

Z

�

r

0

(�)jd� j � 1 ;

V

�

r

0

(x) = O (log jxj) for x 2 


�

as jxj ! 1 :

(1.33)

The solution r

0

2 W

1

1

(�) is known as the Robin funtion (or the density

of the Robin potential; see [Ma1, x 2.2℄).

The homogeneous equation

�

1

2

 (t) +W

�;0

 (t) = 0

has, due to (1.31), the solution  (t) � 1, whih is a unique linearly inde-

pendent solution of this equation in L

2

(�) (see [Ma1, x 2.2℄).

Lemma 1.11 The Riemann{Hilbert problem

Re 	

�

(t) = g(t) ; t 2 �; (1.34)

has a solution 	 2 E

p

(


�

; �) for all right-hand sides g 2 L

p

(�; �) (i.e., is

surjetive under asserted onditions) if and only if:

i:

1

p

+ �

j

6=

8

>

<

>

:

1



j

for 


+

;

1

2� 

j

for 


�

;

(1.35)

ii: the domain has no inward peaks:

(

0 � 

j

< 2 for 


+

;

0 < 

j

� 2 for 


�

(1.36)

for all j = 1; : : : ; n.

Moreover, (1.34) is Fredholm if and only if (1.36) holds and then the

index of the orresponding operator reads

Ind A =

X

(

1

p

+�

j

)



j

>1

1 for 


+

;

Ind A =

X

(

1

p

+�

j

)

(1�

j

)>1

1 for 


�

:

Proof. The proof will be given in x 5.2.
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1.4 Redution to boundary integral equations (the in-

diret method)

Theorem 1.12 Let onditions (1.35) and (1.36) hold for the omplemen-

tary domain 


�

. A harmoni funtion u 2 e

p

(


�

; �) solves the Dirihlet

problem (1.6), (1.7) if and only if

u(x) = �

�

(x)g

0

+W

�

'

�

(x) ; x 2 


�

; (1.37)

where

g

0

:=

Z

�

g(�)r

0

(�)jd� j ; (1.38)

r

0

(�) is the Robin funtion (see Remark 1.10) and '

�

= Re '

�

2 L

p

(�; �)

is some real valued solution of the orresponding boundary integral equation

(written separately for the domains 


+

and 


�

, respetively)

A

+

'

+

(t) :=

1

2

'

+

(t) +W

�;0

'

+

(t) = g(t) ; t 2 � ; (1.39)

A

�

'

�

(t) := �

1

2

'

�

(t) +W

�;0

'

�

(t) = g(t)� g

0

; t 2 � : (1.40)

Proof. Easy to asertain that formulae (1.17) and (1.19) hold for the

orresponding potential operators as well

W

�

'(z) =

1

2

(C

�

+ VC

�

V)'(z) = Re [C

�

Re'(z)℄ + iRe [C

�

Im'(z)℄ ;

�

z

V

�

'(z) =

i

2

(C

�

� VC

�

V)'(z) = � Im (C

�

Re')(z) + i Im (C

�

Im')(z)

= Re (C

�

iRe')(z)� iRe (C

�

i Im')(z); ; z 2 


�

(1.41)

(see (1.3)).

Conditions (1.35), (1.36) provide representation of a solution u 2

e

p

(


�

; �), by the real part of the Cauhy integral with a real valued density

u(x) = �

�

(x)g

0

+ Re [C

�

'

�

(x)℄ ; ' 2 L

p

(


�

; �) ; x 2 


�

(see Lemmata 1.1, 1.13 and 1.11) and, due to (1.41) the latter an be rewrit-

ten in the form (1.37).

Passing to the limit x ! t 2 �, x 2 


�

in the representation formula

(1.37), applying the appropriate Plemelji formulae (1.25) and inserting

u

�

(t) = g(t) we get equations (1.39) for the density '

+

and (1.40) for the

density '

�

, respetively.

The onstant u(1) in (1.37) is hosen in the form (1.38) to justify the

orthogonality ondition

Z

�

[g(�)� g

0

℄r

0

(�)jd� j =

Z

�

g(�)r

0

(�)jd� j � g

0

= 0 (1.42)
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(see (1.33)) whih is neessary and suÆient for the existene of the solution

of equation (1.40) provided the equation is Fredholm (see x 1.6, Theorem

1.23).

Vie versa, let '

+

; '

�

+ 

0

2 L

p

(�; �), 

0

=onst, be solutions of (1.39),

(1.40), respetively (we remind, that homogeneous equation (1.40) has on-

stants as solutions; see Remark 1.10); let u(1) = g

0

=onst be de�ned by

(1.38). u(x) in (1.37) solves equation (1.6); passing to the limit x! t 2 �,

x 2 


�

and invoking the appropriate Plemelji formulae (1.25) due to

equalities (1.39), (1.40) we get

u

+

(t) =

1

2

'

+

(t) +W

�;0

'

+

= g(t) ; t 2 � ;

u

�

(t) = �

�

(t)g

0

� [(W

�

'

�

+ 

0

)(x)℄

�

= �

�

(t)g

0

� [(W

�

'

�

)(x)℄

�

= �

�

(t)g

0

�

1

2

'

�

(t) +W

�;0

'

�

= g(t) ; t 2 �

sine (W

�



0

)(x) � 0 for x 2 


�

(see Remark 1.10) and the boundary

ondition (1.7) holds.

Let us note that representation (1.37) (and, later, a similar one (1.43))

an not be used if inward peak is present. Namely, there holds the following.

Lemma 1.13 The funtion u 2 e

p

(


�

; �) (u 2 w

s

p

(


�

)) an be represented

by the double layer potential (1.37) with a density ' 2 L

p

(�; �) (in W

s

p

(�))

if and only if the Riemann{Hilbert problem for the omplementary domain




�

(1.34) is surjetive (see Lemma 1.11).

Proof. The proof follows from Lemma 1.11. In fat, let �(z) = u(z) +

iv(z), � 2 E

p

(


�

; �) (� 2 W

s

p

(


�

; �)) be the analyti funtion in the same

domain 


�

. Sine, due to (1.41), W

�

=

1

2

(C

�

+ VC

�

V), representation

(1.37) follows if the representation of the analyti funtion �(z) by the

Cauhy integral (1.3) with a pure real ' = Re ' density in L

p

(�; �) (in

W

s

p

(�)) holds.

Vie versa, let ' = Re' and u = W

�

' = ReC

�

'; sine � = u + iv is

de�ned by u(z) uniquelly modulo a pure imaginary aditive onstant i

0

, we

�nd �(z) = i

0

+ C

�

'(z) (f. (1.3)) with the same density ' = Re'.

Theorem 1.14 Let onditions (1.35) and (1.36) hold for the omplemen-

tary domain 


�

. A harmoni funtion u 2 e

p

(


�

; �) solves the Neumann

problem (1.6), (1.8) if and only if

u(x) = 

0

+ V

�

 

�

(x) ; x 2 


�

;

Z

�

 

�

(�)jd� j = 0 ;

(1.43)
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where  

�

2 w

�1

p

(�; �) are solutions of equations (written separately for the

domains 


+

and 


�

, respetively)

B

+

 

+

(t) := �

1

2

 

+

(t) +W

�

�;0

 

+

(t) = f(t) ; t 2 � ; (1.44)

B

�

 

�

(t) :=

1

2

 

�

(t) +W

�

�;0

 

�

(t) = f(t) ; t 2 � ; (1.45)

and 

0

is arbitrary onstant.

Proof. Sine solution belongs to the Smirnov spae u 2 e

p

(


�

; �) and

onditions of Lemmata 1.1, 1.11 hold, we have the following representation

u(x) = 

0

+ Im

�

C

�

 

0

�

(x)

�

; Im  

0

�

= 0 ;  

0

�

2 L

p

(�; �) ; x 2 


�

(see (1.3)). Due to (1.41) the latter an be rewritten in the form (1.43)

u = Im C

�

 

0

�

= i�

z

V

�

 

0

�

= V

�

[�

�

 

1

�

℄ = V

�

 

�

;  

�

:= �

t

 

1

�

= i�

t

 

0

�

and  

�

2 w

�1

p

(�; �) sine  

0

�

2 e

p

(�; �).

Applying the normal derivative �

~�(x)

to the representation (1.43), pass-

ing to the limit x ! t 2 �, x 2 


�

with the help of appropriate Plemelji

formulae (1.25) and inserting u

�

= g we get equations (1.44) for the density

 

+

(t) and (1.45) for the density  

�

, respetively.

The seond ondition in (1.43) provides u(x) = 

0

+ o(1) for x 2 


�

as

jxj ! 1 (see (1.26), (1.28)).

Vie versa, let  

�

2 w

�1

p

(�; �) be solutions of (1.44), (1.45). Then u(x)

in (1.43) solves equation (1.6) and has the asymptoti u(x) = 

0

+ o(1)

as jxj ! 1. Applying the normal derivative �

~�(x)

, passing to the limit

x! t 2 �, x 2 


�

and invoking the appropriate Plemelji formulae (1.25)

due to equalities (1.44), (1.45) we get

(�

~�

u)

�

(t) = �

1

2

 

�

(t) +W

�

�;0

 

�

= f(t) ; t 2 �;

and the boundary ondition (1.8) holds as well.

Lemma 1.15 The homogeneous Dirihlet BVP (1.6), (1.7) with g = 0

and u 2 w

1

2

2

(


�

) has a unique solution.

The homogeneous Neumann BVP (1.6), (1.8) with f = 0 and u 2

w

1

2

2

(


�

) has only a onstant solution u(x) � onst .

Proof. The proof is based on the Green formula (1.13) and is standard.

In fat, if u 2 w

1

2

2

(


�

) then on the boundary u

�

2W

1

2

2

(�). Due to Theorem

1.8 this yields u 2 W

1

2

(


�

) and �

x

j

u 2 L

2

(


�

), �u 2 W

�1

2

(


�

), j = 1; 2.
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Now if �u(x) = 0 in 


�

and u

�

(t) = 0 on � (see (1.6), (1.7)) by assuming

v(x) = u(x) in (1.13) we get

2

X

j=1

j�

j

u(x)j

2

� 0 for x 2 


�

:

Therefore u(x) =onst on entire domain and sine u(t) = 0 on the boundary,

u(x) = 0 everywhere.

For the Neumann BVP (1.6), (1.8) the proof is similar.

1.5 Redution to Cauhy singular integral equations

on the irumferene

In the present subsetion we redue theDirihlet (1.6), (1.7) and theNeu-

mann (1.6), (1.7) BVPs to Riemann{Hilbert BVPs for analyti funtions

on the unit irumferene �

1

or, what is equivalent, to Cauhy singular

integral equations (SIEs) on �

1

. Theorems on the Fredholm and the solv-

ability properties for the obtained SIEs will be formulated in x 1.6.

The method goes bak to N.Muskhelishvili (see [Mu1, Ch. III℄) and

I.Vekua [Ve1℄; they investigated BVPs in H

�

older spaes when domain

has smooth boundary (see [Mu1, x x 41,43,75℄) and for domains with �nite

number of uts (see [Mu1, x 109℄). In [Kh1℄ B.Khvedelidze treated similar

problems in the Lebesgue spaes and in [KKP1, Ch. IV℄ the method was

applied to the same BVPs on domains with angular points and usps in the

Smirnov{Lebesgue spae e

p

(


�

) without weight. For the weighted spae

see [Me1℄.

Let 


�

, t

1

: : : ; t

j

2 � = �


�

be as in x 1.1 and

! : D

1

�! 


�

; !(�

j

) = t

j

; j = 1; : : : ; n; (1.46)

be a onformal mapping of the unit disk

D

1

= D

+

1

:= fz 2 C : jzj < 1g

onto the domain 


�

(!(0) = 0; !

0

(0) = 1 for the domain 


+

and !(0) =

1; !

0

(0) = 1 for the domain 


�

; see x 5 for further details). By �(x) we

denote the inverse mapping

� : 


�

�! D

1

; �(!(z)) � z ; !(�(x)) � x : (1.47)

Then

!

0

(�(z)) = [�

0

(z)℄

�1

;

�(0) = 0; �

0

(0) = 1 for 


+

;

�(1) = 0; �

0

(1) = 1 for 


�

:
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Let D

�

1

:= fz 2 C : jzj > 1g be the domain outer to the unit disk

D

1

= D

+

1

and

�

0

(z) :=

n

Y

j=1

(z � t

j

)

�

j

for z 2 


+

� C (1.48)

denote the analyti funtion in the domain 


+

, whih is the extension of

the weight funtion; namely, �

0

(x) is analyti in the omplex plane C ut

along some urves onneting knots t

1

; : : : ; t

n

2 �


�

with in�nity and do

not rossing the domain 


+

.

Theorem 1.16 A harmoni funtion u 2 e

p

(


�

; �) solves the Dirihlet

problem (1.6), (1.7) if and only if

u(x) = Re

2

6

4

[�

0

(x)℄

1

p

2��

0

(x)

8

>

<

>

:

Z

j� j=1

'(�)d�

� � �(x)

�

i

2

�

Z

��

'(e

i#

)d#

9

>

=

>

;

3

7

5

(1.49)

for x 2 


�

,. where �(x) is the onformal mapping from (1.47). ' = Re ' 2

L

p

(�

1

) in (1.49) is a real-valued solutions of the following singular integral

equation on the unit irumferene

A'(�) := P

+

�

1

'(�) +G(�)P

�

�

1

'(�) +

G(�) � 1

2

K' = g

0

(�) ; � 2 �

1

;

K' :=

1

2�

�

Z

��

'(e

i#

)d# ; P

�

�

1

:=

1

2

(I � S

�

1

) ; (1.50)

where the oeÆient G 2 PC(�

1

) (see x 5:2) and the right-hand side g

0

2

L

p

(�

1

) are de�ned as follows:

G(�) := �

�

0

(!(�))

�

0

(!(�))

"

!

0

(�)

!

0

(�)

#

1

p

;

g

0

(�) := �2i�

0

(!(�))[!

0

(�)℄

1

p

g(!(�)) ; � 2 �

1

:

(1.51)

The solution has the following asymptoti at in�nity

u(1) = Re

2

4

(2�)

�1

n

Y

j=1

(�t)

�

j

�

Z

��

'(e

i#

)d#

3

5

: (1.52)

Proof. The Dirihlet problem (1.6), (1.7) an be written as follows

Re [	

�

(t)℄ = g(t) ; t 2 �

1

;

u(x) = Re 	(x) ; 	 2 E

p

(


�

; �

0

) ; x 2 


�

:

(1.53)
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Then for the analyti funtion

�(z) :=

8

>

>

>

>

<

>

>

>

>

:

�

0

(!(z))[!

0

(z)℄

1

p

	(!(z)) for jzj < 1 ;

�

0

�

!

�

1

z

��

"

!

0

�

1

z

�

#

1

p

	

�

!

�

1

z

��

for jzj > 1

(1.54)

(see [Mu1, x 39℄ and [KKP1, Ch. IV, x 1℄), where �

0

(x) is de�ned in (1.48),

boundary ondition (1.53) aquires the form

Re [	

�

(!(�))℄ =

1

2

"

�

+

(�)

�

0

(!(�))[!

0

(�)℄

1

p

+

�

�

(�)

�

0

(!(�))[!

0

(�)℄

1

p

#

= g(!(�)) ;

whih an also be written as follows

�

+

(�) �G(�)�

�

(�) = g

0

(�) ; � 2 �

1

; (1.55)

with G(�) and g

0

(�) de�ned in (1.51). Sine � 2 E

p

(D

�

1

) \ E

p

(D

+

1

) it is

represented by the Cauhy integral

�(z) = �

�




+

(z)

2

Ki'+ C

�

1

i'(z) = �

�




+

(z)

2�

�

Z

��

'(e

i#

)d#

+

1

2�

Z

j� j=1

'(�)d�

� � z

(1.56)

for all jzj 6= 1 with a pure imaginary density i', ' 2 L

p

(�

1

). If we apply

the Plemelji formulae for the Cauhy integral (1.25) we get

�

�

(�) = �

i

2

�

�




+

(z)K'� '(�) + S

�

1

'(�)

�

= �

i�




+

(z)

2

K'� iP

�

�

1

'(�)

for � 2 �

1

and inserting this into (1.55) we get equation (1.50) for the

density ' 2 L

p

(�

1

).

Let us remind that we need only the real-valued solution ' = Re ' of

(1.50). To this end let us hek that if  2 L

p

(�

1

) is a solution, than  is

a solution as well. In fat, applying the relations

� =

1

�

; � =

1

�

; d� =

d�

�

2

;

d�

�

= id# for � = e

i#

; j�j = 1; �� < # < �

we �nd that

G(�) = G

�1

(�) ; g

0

(�) = G

�1

(�)g

0

(�) ; g = g ;

P

�

�

1

 (�) =

1

2

 (�) �

1

2�i

Z

j� j=1

 (�)d�

� � �

=

1

2

 (�)�

1

2�i

Z

j� j=1

�

�

 (�)d�

� � �

= P

�

�

1

 (�) �

1

2�i

Z

j� j=1

 (�)

d�

�

= P

�

�

1

 (�) �K : (1.57)
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Now, if  2 L

p

(�

1

) is a solution of equation (1.50), taking the omplex

onjugate and invoking (1.57) we get the same equality for  :

G(�)A'(�) := P

+

�

1

 (�) +G(�)P

�

�

1

 (�) +

G(�) � 1

2

K = g

0

(�) ; � 2 �

1

:

Therefore, the real-valued funtion  := Re  =

1

2

( +  ) is a solution we

look for.

With a solution 'Re ' of (1.50) at hand we �nd �(z) from (1.56), but

the latter might have the following symmetry property

�

�

(z) := �

�

1

z

�

= �(z) ; z 2 


+

[


�

;

originating from the de�nition (1.54). This property is proved similarly to

(1.57):

�(z) = �

�

1

z

�

=

i

2

K'+

1

2�

Z

j� j=1

'(�)d�

� �

1

z

=

i

2

K'+

1

2�

Z

j� j=1

z

�

'(�)d�

� � z

= �

i

2

K'+

1

2�

Z

j� j=1

'(�)d�

� � z

= �

i

2

K'+ iC

�

1

'(z) = �(z) : (1.58)

Inserting �(z) in (1.54) we �nd �rst 	(x) and afterwards u = Re 	.

The result is written in (1.49).

Vie versa, if '(�) is a solutions of (1.58) we easily asertain that 	(z)

found in (1.56) and (1.54) solves BVP (1.53) and u(x) (see (1.49)) solves

BVP (1.6), (1.7).

Asymptoti (1.52) results from (1.47){(1.49) and from the following

asymptoti of the weight funtion

�

0

�

!

�

1

z

��

=

n

Y

j=1

(�t)

��

j

+O(jzj

�1

) as jzj ! 1 :

Theorem 1.17 A harmoni funtion u 2 w

1

p

(


�

; �) solves the Neumann

problem (1.6), (1.8) if and only if

u(x) = 

0

+ Re

8

>

<

>

:

x

Z

x

0

[�

0

(y)℄

1

p

2��

0

(y)

Z

j� j=1

 

�

(�)d�

� � �(y)

dy

9

>

=

>

;

; (1.59)

u(x) = 

0

+ Re

8

>

<

>

:

x

Z

x

0

[�

0

(y)℄

1

p

2��

0

(y)

2

6

4

Z

j� j=1

 

+

(�)d�

� � �(y)

�

i

2

�

Z

��

 

+

(e

i#

)d#

3

7

5

dy

9

>

=

>

;
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for x 2 


�

and x 2 


+

, respetively; x

0

2 


�

is some �xed point, 

0

2 R

is a real onstant and �(x) is the onformal mapping from (1.46).  

�

=

Re  

�

2 L

p

(�

1

) are real-valued solutions of the following singular integral

equations on the unit irumferene

B

�

 

�

(�) :=

8

>

>

<

>

>

:

P

+

�

1

 

�

(�) + F (�)P

�

�

1

 

�

(�) = f

0

(�) ; � 2 �

1

;

K 

�

=

1

2�

�

Z

��

 

�

(e

i#

)d# = 0 ;

(1.60)

B

+

 

+

(�) := P

+

�

1

 

+

(�) + F (�)P

�

�

1

 

+

(�) +

F (�)� 1

2

K 

+

= f

0

(�) :

The oeÆient F 2 PC(�

1

) (see x 5:2) and the right-hand side f

0

2 L

p

(�

1

)

are de�ned as follows:

F (�) :=

�

0

(!(�))

�

0

(!(�))

"

!

0

(�)

!

0

(�)

#

1

p

�1

;

f

0

(�) := �2i�

0

(!(�))[!

0

(�)℄

1

p

f(!(�)) ; � 2 �

1

:

(1.61)

Proof. The Neumann problem (1.6), (1.8) an be written as follows (see

[Mu1, x x 74,75℄)

Re

�

e

i#

t

(	

0

)

�

(t)

�

= f(t) ; t 2 �

1

;

u(x) = Re 	(x) ; 	 2 W

1

p

(


�

; �

0

) x 2 


�

;

(1.62)

where #(�) = #

t

denotes the inlination of the outer unit normal vetor ~�(t)

to the absissa axes at t = !(�) 2 �nft

1

; : : : ; t

n

g (see Fig. 1). In fat, sine

	 = u+ iv 2 W

1

p

(


�

; �

0

) ; 	

0

:=

�u

�x

� i

�u

�y

2 E

p

(


�

; �

0

) ; (1.63)

�

~�(t)

u(t) = os#

t

�u

�x

+ sin#

t

�u

�y

; os#

t

+ i sin#

t

= e

i#

t

(see (1.21)), we get

Re

�

e

i#

t

(	

0

)

�

(t)

�

= os#

t

�

�u

�x

�

�

+ sin#

t

�

�u

�y

�

�

= (�

~�(t)

u)

�

(t)

and (1.62) follows.

Similarly to (1.54) (see also [Mu1, x 39℄ and [KKP1, Ch. IV, x 2℄) for the

analyti funtion

�(z) :=

8

>

>

>

>

<

>

>

>

>

:

�

0

(!(z))[!

0

(z)℄

1

p

	

0

(!(z)) for jzj < 1;

�

0

�

!

�

1

z

��

"

!

0

�

1

z

�

#

1

p

	

0

�

!

�

1

z

��

for jzj > 1;

(1.64)
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whih belongs to the spae E

p

(D

+

1

), we get the following BVP:

�

+

(�) � F (�)�

�

(�) = f

0

(�) ; � 2 �

1

; (1.65)

where f

0

(�) is de�ned in (1.61) and

F (�) := �e

�2#(�)i

�

0

(!(�))

�

0

(!(�))

"

!

0

(�)

!

0

(�)

#

1

p

= e

�2�(�)i

�

0

(!(�))

�

0

(!(�))

"

!

0

(�)

!

0

(�)

#

1

p

with �(�) = #(�) +

�

2

denoting the inlination of the tangent to � vetor

to the absissa axes at t = !(�) 2 � n ft

1

; : : : ; t

n

g (see Fig. 1). Let us

reall that !

0

(z) has an angular (i.e., non-tangential) boundary limits

^

! for

almost all � 2 �

1

and

!

0

(�) = e

�(�)i

j!

0

(�)j (1.66)

(see, e.g., [Go1, p.p. 405{411℄ and [Ks1, Ch. I, II℄). Therefore

e

�2�(�)i

=

 

!

0

(�)

!

0

(�)

!

�1

and by inserting this into the foregoing formula we get F (�) as written in

(1.61). In (1.64), (1.65) � 2 E

p

(D

+

1

) and, therefore, it an be represented

by the Cauhy integral with a pure imaginary density for the problems in

the domains 


+

and 


�

, respetively (f. (1.56))

�(z) := �

i

2

K 

+

+ iC

�

1

 

+

(x) = �

i

4�

�

Z

��

 

+

(e

i#

)d#+

1

2�

Z

j� j=1

 

+

(�)d�

� � z

;

�(z) := iC

�

1

 

�

(x) = �

1

2�

Z

j� j=1

 

�

(�)d�

� � z

;  

�

= Re  

�

2 L

p

(�

1

) (1.67)

for all jzj 6= 1 beause for the domain 


�

we should require in addition (see

the ondition in (1.60))

K 

�

=

1

2�

�

Z

��

 

�

(e

i#

)d# = 0 :

To justify the latter we remind that 	 2 W

1

p

(


�

; �

0

) and, due to represen-

tation (1.3) the derivative should vanish at the in�nity 	

0

(1) = 0; therefore

(see (1.64), (1.67))

�

Z

��

 

�

(e

i#

)d# = 2��(0) = 2��

0

(!(0))[!

0

(0)℄

1

p

	

0

(!(0)) = 0
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beause !(0) =1 (see (1.46){(1.47)).

Let us note that �(z) in (1.67) has the symmetry property �

�

(z) =

�(z)(f. (1.58)).

Sine we need only real-valued solutions  

�

= Re  

�

of (1.60), we

hek, based on the properties similar to (1.57) that along with  

�

equa-

tions (1.60) have solutions  

�

. Therefore the real-valued solutions  

�

=

Re  

�

=

1

2

( 

�

+  

�

) are those we look for.

Vie versa, if  

�

= Re  

�

are real-valued solutions of (1.59), (1.60),

we �nd easily that �(z), de�ned in (1.65) solves BVP (1.67), whih implies

that u(x) in (1.59) solves BVP (1.6), (1.8).

Remark 1.18 Similar resulta about equivalent redution of the Dirih-

let (1.6), (1.7) and the Neumann (1.6), (1.8) BVPs to BIEs (1.50) and

(1.60) an be arried out in the spaes of ontinuous C(


�

; �) and pieewise-

ontinuous PC(


�

; �) funtions. Transition to the unit disk is lear and

smooth, but is senseless beause the Cauhy SIO is unbounded in these

spaes, even on the unit irumferene.

Solvability results we possess e.g. for the H

�

older spaes with weight

h

0

�

(D

1

; �) on the unit disk (see x 4), but transformation of the Riemann{

Hilbert problem for 


+

to the unit disk (similar to (1.53){(1.59)) is not

implemented so far.

1.6 Redution to boundary pseudo-di�erential equa-

tions (the diret method)

Theorem 1.19 Let X

s

(�; �) stand for one of the following spaes: W

s

p

(�; �)

with 0 � s � 1 or for H

0

�+1

(�; �), PC

1

(�; �). x

s

(


�

; �) is used for the

orresponding Smirnov spae of harmoni funtions. �(t) is de�ned in

(1.2) and inequalities (1.4) hold.

A harmoni funtion u 2 x

s

(


�

; �) solves the Dirihlet problem (1.6),

(1.7) if and only if

u(x) = �

�

(x)[W

�

g(0)� V

�

'

�

(0)℄�W

�

g(x)� V

�

'

�

(x) ; (1.68)

where ' 2 X

s�1

(�; �) is a solution of the following pseudo-di�erential equa-

tion of order �1 (written separately for the domains 


+

and 


�

, respeti-

vely)

V

�;�1

'

+

(t) :=

1

2�

Z

�

log jt� � j'

+

(�)jd� j = g

+

(t) ; t 2 �; (1.69)

8

>

>

>

>

<

>

>

>

>

:

V

�;�1

'

�

(t) :=

1

2�

Z

�

log

�

�

�

�

t� �

�

�

�

�

�

'

�

(�)jd� j = g

�

(t) ; t 2 � ;

Z

�

'

�

(�)jd� j = 0

(1.70)
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and

g

+

(t) := �

1

2

g(t)�

1

2�

Z

�

�

~�(�)

log jt� � jg(�)jd� j ; t 2 � ;

g

�

(t) :=

1

2

g(t)�

1

2�

Z

�

�

~�(�)

log

�

�

�

�

t� �

�

�

�

�

�

g(�)jd� j ; t 2 � :

Proof. Solution u(x) of the the Dirihlet problem (1.6), (1.7) has the

form (1.68) (see (1.15) and (1.30)). Taking the trae on � from 


�

, invoking

the Plemelji formulae (1.25), inserting u

�

(t) = g(t) from (1.7) and hoos-

ing the funtion '

�

(t) := (�

~�(t)

u)

�

(t) for an unknown, we get equations

(1.69) and the �rst equation in (1.70), beause

W

�

'(x)�W

�

'(0) =

1

2�

Z

�

�

~�(�)

log

�

�

�

�

x� �

�

�

�

�

�

'(�)jd� j ;

V

�

'(x) � V

�

'(0) =

1

2�

Z

�

log

�

�

�

�

x� �

�

�

�

�

�

'(�)jd� j ; x 2 


�

:

The seond equation in system (1.70) is neessary for boundedness of solu-

tion (1.68) at in�nity (see (1.27), (1.28)).

Vie versa, if u(x) is written in the form (1.68), it is obviously harmoni

and u 2 x

s

(


�

; �). In fat, '

�

= Re '

�

2 X

s�1

(�; �) and, due to (1.41),

u(x) = �

�

(x)u(1)�W

�

g(x)�V

�

'

�

(x)=�

�

(x)u(1)+ ReC

�

[�g�i'

�

℄(x):

Further, u(x) has �nite limit u(1) = W

�

g(0)� V

�

'

�

(0) at in�nity and it

remains to hek the boundary ondition (1.7). To this end it suÆes to take

the trae in (1.68), applying the Plemelji formulae (1.25), and remember

that equations (1.69) and (1.70) hold. We easily get:

u

�

(x) = �

�

(x)[W

�

g(0)� V

�

'

�

(x)℄ +

1

2

g(t)

�W

�;0

g(t)� V

�

'

�

(t) = g(t):

Theorem 1.20 Let X

s

(�; �) stand for one of the following spaes: W

s

p

(�; �)

with 0 � s � 1 or for H

0

�+1

(�; �), PC

1

(�; �). x

s

(


�

; �) is used for the

orresponding Smirnov spae of harmoni funtions. �(t) is de�ned in

(1.2) and inequalities (1.4) hold.

A harmoni funtion u 2 x

s

(


�

; �) solves the Neumann problem (1.6),

(1.8) if and only if

u(x) = C

0

�W

�

 

�

(x) � V

�

f(x) ; (1.71)
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where C

0

is arbitrary onstant,  2 X

s

(�; �) is a solution of the following

pseudo-di�erential equation of order +1

D

�;+1

 

�

(t) :=

1

2�

Z

�

�

~�(t)

�

~�(�)

log jt� � j 

�

(�)jd� j = f

�

(t); t 2 �; (1.72)

and

f

�

(t) := �

1

2

f(t) +

1

2�

Z

�

�

~�(t)

log jt� � jf(�)jd� j ; t 2 � :

For the outer domain problem 


�

the data f(t) should meet the addi-

tional onstraint

Z

�

f(�)jd� j = 0 : (1.73)

Proof. Solution u(x) of the the Neumann problem (1.6), (1.8) has the form

(1.71) (see (1.15)) and to be bounded in the outer domain ondition (1.73)

should hold (see (1.27), (1.28)). Taking the trae on � from 


�

, invoking

the Plemelji formulae (1.25), inserting (�

~�(t)

u)

�

(t) = f(t) from (1.8) and

anouneing  

�

(t) := u

�

(t) as an unknown funtion, we get equations (1.72).

Vie versa, if u(x) is written in the form (1.71), it is obviously harmoni

and u 2 x

s

(


�

; �). In fat,  

�

= Re  

�

2 X

s

(�; �) and, due to (1.41),

u(x) = C

0

�W

�

 

�

(x) � V

�

f(x) = C

0

+ ReC

�

[� 

�

(x)� if ℄(x) :

Further, u(x) has �nite limit u(1) = C

0

at in�nity (see (1.73) and reall

(1.27), (1.28)). It remains to hek the boundary ondition (1.8). To this

end it suÆes to take the trae in (1.71), applying the Plemelji formulae

(1.25), and remember that equations (1.72) hold. We easily get:

(�

~�(t)

u)

�

(x) = �D

�;+1

 

�

(t) +

1

2

g(t)� V

�

f(t) = f(t) :

1.7 Statement of the prinipal results

In the present subsetion we formulate prinipal results on BIEs (1.39),

(1.40), (1.44), (1.45), (1.50), (1.60) (see Theorems 1.26 and 1.29), whih we

prove later in x 5.3{x5.4. We also formulate (and prove) their immediate

onsequenes-solvability results for orresponding BVPs (see Theorems 1.28

and 1.30). Theorems are formulated separately for the ase of absene of

usps beause in suh a ase equations an be studied diretly and not only

the weighted Lebesgue spae L

p

(�; �), but in the weighted spaes of on-

tinuous, pieewise-ontinuous and H

�

older funtions. Moreover, equations

are Fredholm in usual spaes, in ontrast to the ase of usps, when we
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have to introdue speial image spaes to make operators Fredholm. The

approahes to the ases are substantially di�erent (f. x 5.3 and x 5.4).

Before formulating theorems on solvability of boundary integral equa-

tions and boundary value problems let us reall [DNS1, Lemma 19℄ whih

will be quoted later and whih is useful in establishing additional smooth-

ness properties of solutions to BVPs (e.g., H

�

older ontinuity with weight).

A pair of Banah spaes fX

0

;X

1

g embedded in some topologial spae

E is alled an interpolation pair. For suh a pair we an introdue the

following two spaes X

min

= X

0

\ X

1

and X

max

= X

0

+X

1

:=

�

x 2 E : x =

x

0

+x

1

; x

j

2 X

j

; j = 0; 1

	

; X

min

and X

max

beome Banah spaes if they

are endowed with the norms

kxjX

min

k = max

�

kxjX

0

k; kxjX

1

k

	

;

kxjX

max

k = inf

�

kx

0

jX

0

k+ kx

1

jX

1

k : x = x

0

+ x

1

; x

j

2 X

j

; j = 0; 1

	

;

respetively.

Besides, we have the ontinuous embedding

X

min

� X

0

; X

1

� X

max

:

For any interpolation pairs fX

0

;X

1

g and fY

0

;Y

1

g the spae

L(fX

0

X

1

g; fY

0

Y

1

g) onsists of all linear operators from X

max

into Y

max

whose restritions to X

j

belong to L(X

j

;Y

j

) (j = 0; 1). The notation

L(X;Y) is used for the spae of all linear bounded operators A : X! Y.

Lemma 1.21 (see [DNS1, Lemma 19℄). Assume fX

0

;X

1

g and fY

0

;Y

1

g

are interpolation pairs and the embedding X

min

� X

max

, Y

min

� Y

max

to

be dense. Let an operator A 2 L(X

0

;Y

0

) \ L(X

1

;Y

1

) have a ommon regu-

larizer: R 2 L(Y

0

;X

0

) \ L(Y

1

;X

1

) and RA� I 2 L(X

0

X

0

) \ L(X

1

;X

1

) be

ompat. Then

A : X

min

! Y

min

; A : X

max

! Y

max

are Fredholm operators and

Ind

X

min

!Y

min

A = Ind

X

max

!Y

max

A = Ind

X

j

!X

j

A; j = 0; 1:

If y 2 Y

j

, then any solution x 2 X

max

of the equation Ax = y belongs

to X

j

. In partiular,

Ker

X

min

A = Ker

X

j

A = Ker

X

max

A ; j = 0; 1:

Let

T := ft

1

; : : : t

n

g ; T

pk

:= T

ow

[ T

iw

;

T

ow

:= ft

j

2 T : 

j

= 0g ; T

iw

:= ft

j

2 T : 

j

= 2g

(1.74)
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be the olletions of all knots, of all peaks, of all outward and all inward

peaks on �.

Let us de�ne the following Cesaro-type mean value integral on the

ontour � (f. (1.90))

V

t

j

'(t) := ()

Z

^

t

j

t

�

�(t)

�(�)

�

1

p

�

�(�) � �(t

j

)

�(t)� �(t

j

)

�

1

p

�(�)

�(t)

'(�)�

0

(�)d�

�(�)� �(t

j

)

(1.75)

= lim

�!t

j

Z

^

� t

log

�(�)��(t

j

)

�(�)��(t

j

)

log

�(t)��(t

j

)

�(�)��(t

j

)

�

�(t)

�(�)

�

1

p

�

�(�) � �(t

j

)

�(t)� �(t

j

)

�

1

p

�(�)

�(t)

'(�)�

0

(�)d�

�(�) � �(t

j

)

;

where � is the onformal mapping from (1.47). Obviously,

V

t

j

'(t) :=

Z

^

t

j

t

�

�(t)

�(�)

�

1

p

�

�(�) � �(t

j

)

�(t)� �(t

j

)

�

1

p

�(�)

�(t)

'(�)�

0

(�)d�

�(�) � �(t

j

)

if the latter (usual) integral exists.

Let t

j

2 T

pk

be a peak and t 2 �. The points

t = !(�) and t

�

t

j

:= !(�(t)�

2

j

) ; !(�

j

) = t

j

are the images of equidistant points j�(t) � �

j

j = j�(t)�

2

j

� �

j

j on the unit

irumferene under the onformal mapping (1.46). Points t 2 � and t

�

t

j

2 �

are on di�erent sides from the outward peak t

j

2

!

t

�

t

j

t . Let �

t

j

� � be,

similarly to �

1�

j

� �

1

, a suÆiently small �xed neighbourhood of t

j

2 �

suh that �

t

k

\ �

t

j

= ; (and, therefore, t

k

62 �

t

j

) for k 6= j. Let �

t

j

=

�

�

t

j

[ �

+

t

j

be the deomposition of the neighbourhood of t

j

into the semi-

losed left and right neighbourhoods and �

t

j

be the harateristi funtion

of �

t

j

. We de�ne the spae

L

p

(�; �; T

pk

) :=

n

' 2 L

p

(�; �) :

e

V

t

j

' 2 L

p

(�; �) ; t

j

2 T

pk

o

; (1.76)

e

V

t

j

' := V

t

j

'

�

t

j

; '

�

t

j

(t) := "

j

'(t)� '(!(�(t)�

2

j

)); ; "

j

:= e

�

p

(

j

�1)i

;

k'

�

�

L

p

(�; �; T

pk

)k :=k'

�

�

L

p

(�; �)k+

P

t

j

2T

pk

k

e

V

t

j

�

t

j

'

�

�

L

p

(�

+

t

j

; (t� t

j

)

�

j

)k

and

5)

"

j

= e

�

�

p

i

for t

j

2 T

ow

, "

j

= e

�

p

i

for t

j

2 T

iw

. Similarly is de�ned

the spae L

p

(�; �; T

ow

) � L

p

(�; �; T

pk

).

5)

Non-equal rights of left and right neighbourhoods and di�erenes for outward and

inward peaks in the de�nition of the spae L

p

(�; �; T

pk

) are explained in Remark 5.12.
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Lemma 1.22 Let � be a pieewise-Ljapunov urve. If  2 L

p

(�; �) and

log[�(t) � �(t

j

)℄ 

�

t

j

2 L

p

(�; �) for all t

j

2 T

pk

, then  2 L

p

(�; �; T

pk

).

Let a 2 L

1

(�) and

a(t) = a(t

j

) +O

�

j log[�(t)� �(t

j

)℄j

�1

�

(1.77)

for all t

j

2 T

pk

as t! t

j

. Then the operators

aI : L

p

(�; �; T

pk

) �! L

p

(�; �; T

pk

) ;

[a� a

0

(t)℄I : L

p

(�; �) �! L

p

(�; �; T

pk

)

(1.78)

are bounded, where a

0

(t) :=

P

t

j

2T

pk

a(t

j

)�

j

(t) and �

j

(t) denotes the hara-

teristi funtion of �

t

j

.

Proof. The proof is an easy onsequene of Lemmata 1.25 and 1.27.

Note, that if � has no usps, 0 < 

j

< 2 for all j = 11; : : : ; n, than

log[�(t)� �(t

j

)℄ � log[t� t

j

℄ ; t 2 �

(see Corollary 5.10). For a urve with usps this is not valid any more.

Theorem 1.23 Let T

pk

= ; and X

m

(�; �) be one of the following spaes

W

m

p

(�; �), H

0

�+m

(�; �), C

m

(�; �) or PC(�; �), m = 0; 1.

Equations (1.39) and (1.40) are Fredholm in the spae X

m

(�; �) if and

only if

�

j

6=

(



0

j

if m = 0 ;

1� 

0

j

if m = 1 ;



0

j

:= min

�

1



j

;

1

2� 

j

�

for all j = 1; : : : ; n, where

�

j

:=

8

>

>

<

>

>

:

1

p

+ �

j

for X

m

(�; �) =W

m

p

(�; �) ;

�

j

for PC

m

(�; �) ; C(�; �);

�

j

� �

j

for H

0

�+m

(�; �) :

(1.79)

If T

pk

6= ; or �

j

= 

0

j

when m = 0, �

j

= 1� 

0

j

when m = 1, then the

operators A

�

in (1.39), (1.40) have non-losed images in W

m

p

(�; �).

Equations (1.39) and (1.40) with ' 2 L

p

(�; �), g 2 L

p

(�; �; T

pk

) are

Fredholm, i.e., the operators

A

�

: L

p

(�; �)! L

p

(�; �; T

pk

) (1.80)

are bounded and are Fredholm if and only if �

j

6= 

0

j

for all t

j

62 T

pk

;

the following formulae hold for the index, kernel and okernel in the spae
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X

m

(�; �) when T

pk

= ; or in the pairs (1.80) when T

pk

6= ;

Ind

X

0

(�;�)

A

�

=

X

t

j

62T

pk

�

j

>

0

j

1 ; Ind

X

1

(�;�)

A

�

= �

X

t

j

2T

�

j

<1�

0

j

1 ; (1.81)

dim

X

0

(�;�)

Ker A

�

= "

�

+ Ind

X

0

(�;�)

A

�

; dim Coker

X

0

(�;�)

A

�

= "

�

;

dim Ker

X

1

(�;�)

A

�

= "

�

; dim Coker

X

1

(�;�)

A

�

= "

�

� Ind

X

1

(��)

A

�

with "

+

= 0 and "

�

= 1.

In partiular, if

0 < �

j

< 

0

j

for all t

j

62 T

pk

; (1.82)

then equations (1.39) and (1.40) have solutions for all right-hand sides g(t)

in L

p

(�; �; T

pk

) (in C(�; �) and in

6)

H

0

�

(�; �) when T

pk

= ;), while for

T

pk

= ; ; 1� 

0

j

< �

j

< 1 for all t

j

2 T (1.83)

they have solutions in W

1

p

(�; �), in PC

1

(�; �) and in H

0

�+1

(�; �) for the

right hand sides in the same spaes. Equation (1.39) has a unique solution

in these spaes, while homogeneous equation (1.40), g(t) � 0 has a single

linearly independent solution '

�

(t) � 1.

Proof. The proof is postponed to x 5.4.

Theorem 1.24 Let T

pk

= ; and X

m

(�; �) be either W

m

p

(�; �) (m = 0;�1)

or H

0

�

(�; �).

Equations (1.44) and (1.45) are Fredholm in X(�; �) if and only if

�

j

6=

(

1� 

0

j

for L

p

(�; �); H

0

�

(�; �) ;



0

j

for W

�1

p

(�; �) ;



0

j

:= min

�

1



j

;

1

2� 

j

�

for all j = 1; : : : ; n, where �

j

is de�ned in (1.79).

If either T

pk

6= ; or �

j

= 

0

j

when m = 0, �

j

= 1� 

0

j

when m = 1 then

the operators B

�

in (1.44), (1.45) have non-losed images in W

m

p

(�; �).

Equations (1.44) and (1.45) with  2 L

p

(�; �), f 2 L

p

(�; �; T

pk

) are

Fredholm, i.e., the operators

B

�

: L

p

(�; �)! L

p

(�; �; T

pk

) (1.84)

are bounded and are Fredholm if and only if �

j

6= 1 � 

0

j

for all t

j

62 T

pk

;

the following formulae hold for the index, kernel and okernel in the spae

6)

Absene of additional solvability ondition for equation (1.40) under onstraints

(1.82) and (1.83), whih are inevitable sine dim CokerA

�

= 1 (see Remark 1.10),

is due to the speial right-hand side g(t) � g

0

, whih already satis�es the orthogonality

ondition (1.42).
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X

m

(�; �) when T

pk

= ; or in the pairs (1.84) when T

pk

6= ;

Ind

X

0

(�;�)

B

�

=

X

t

j

62T

pk

�

j

>1�

0

j

1 ; (1.85)

Ind

X

1

(�;�)

B

�

= �

X

t

j

2T

�

j

<

0

j

1 ; (1.86)

dim Ker

X

0

(�;�)

B

�

="

�

+ Ind

X

0

(�;�)

B

�

; dim Coker

X

0

(�;�)

B

�

="

�

;

dim Ker

X

�1

(�;�)

B

�

= "

�

; dim Coker

X

�1

(�;�)

B

�

= "

�

� Ind

X

�1

(�;�)

B

�

;

where "

+

= 0 and "

�

= 1.

In partiular, if

0 < �

j

< 1� 

0

j

for all t

j

62 T

pk

; (1.87)

then equation (1.45) has solution for all right-hand sides f(t) in L

p

(�; �; T

pk

)

(in H

0

�

(�; �) when T

pk

= ;), if and only if (1.73) holds. If

T

pk

= ; ; 

0

j

< �

j

< 1 for all t

j

2 T (1.88)

then, again, equation (1.45) has a solution for all right-hand sides f(t) in

W

�1

p

(�; �), while equation (1.44) has a solution if and only if ondition

(1.73) holds.

Equation (1.45) has a unique solution in these spaes, while homogeneous

equation (1.44), f(t) � 0 has a single linearly independent solution  

�

= r

0

(see Remark 1.10).

Proof. For the ases T

pk

= ; and W

m

p

(�; �) (m = 0;�1) the proof fol-

lows from the foregoing Theorem 1.23 beause equations (1.39), (1.40) in

W

m

p

(�; �) (m = 0; 1) and equations (1.45), (1.44) in W

�m

p

0

(�; �

�

1) are pair-

wise onjugate.

As for equations (1.44) and (1.45) in the H

�

older spaes H

0

�

(�; �) and

the ase T

pk

6= ; (see (1.84)), the assertion is proved word to word as

Theorem 1.23 (see x 5.4).

Let

� := f�

1

; : : : ; �

n

g � �

1

; �

pk

:= �

ow

[ �

iw

; (1.89)

�

ow

:= f�

j

= f!

�1

(t

j

) : t

j

2 T

ow

g ;

�

iw

:= f�

j

= f!

�1

(t

j

) : t

j

2 T

iw

g

be the images on the unit irumferene of the disrete sets T , T

pk

, T

ow

T

iw

(see (1.74)) under the inverse onformal mapping !

�1

(�) in (1.46){(1.47).
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We de�ne the following Cesaro-type mean value integral

V

�

j

'(�) := ()

Z

^

�

j

�

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

:= lim

�!�

j

�

log

� � �

j

� � �

j

�

�1

Z

^

� �

d�

�� �

j

Z

^

��

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

= lim

�!�

j

Z

^

� �

log

���

j

���

j

log

���

j

���

j

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

: (1.90)

Obviously,

V

�

j

'(�) :=

Z

^

�

j

�

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

(1.91)

if the latter (usual) integral exist (f. (3.4), (3.5)).

Let us �x a neighbourhood �

1�

j

� �

1

of �

j

2 �

1

suh that �

1�

k

\�

1�

j

= ;

(whih implies �

k

62 �

1�

j

) for k 6= j and deompose �

1�

j

into the left and the

right neighbourhoods �

1�

j

= �

�

1�

j

[ �

+

1�

j

. �

�

j

be the harateristi funtion

of �

1�

j

. We de�ne the spae (see (1.89))

L

p

(�

1

;�

ow

) :=

n

' 2 L

p

(�

1

) :

e

V

�

j

' 2 L

p

(�

+

1�

j

) ; �

j

2 �

ow

o

; (1.92)

e

V

�

j

' := V

�

j

'

�

�

j

; '

�

�

j

(�) := e

�

�

p

i

'(�) � '(��

2

j

) ;

k'

�

�

L

p

(�

1

;�

ow

)k := k'

�

�

L

p

(�

1

)k+

P

�

j

2�

ow

k

e

V

�

j

�

�

j

'

�

�

L

p

(�

+

1�

j

)k :

Below, in Lemma 1.22, there is given a suÆient ondition for the inlu-

sion ' 2 L

p

(�

1

;�

ow

) and for the boundedness of a multipliation operator

aI).

Let us note, that if � 2 �

�

1�

j

, then the point ��

2

j

belongs to the di�erent

half-neighbourhood ��

2

j

2 �

�

1�

j

(i.e., points are on di�erent sides of �

j

2

�

1�

j

), but are equidistant from �

j

: j� � �

j

j = j��

2

j

� �

j

j.

Lemma 1.25 If  2 L

p

(�

1

) and log(� � �

j

) 

�

�

j

2 L

p

(�

1

) for all �

j

2 �

pk

,

then  2 L

p

(�

1

;�

pk

).

Let a 2 L

1

(�

1

) and

a(�) = a(�

j

) +O

�

j log(� � �

j

)j

�1

�

for all �

j

2 �

pk

as � ! �

j

:

Then the operators

aI : L

p

(�

1

;�

pk

) �! L

p

(�

1

;�

pk

) ;

[a� a

0

(�)℄I : L

p

(�

1

) �! L

p

(�

1

;�

pk

)
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are bounded, where a

0

(�) :=

P

�

j

2�

pk

a(�

j

)�

j

(�) and �

j

(�) denotes the har-

ateristi funtion of �

�

j

.

The proof will be given later at the end of x 3.3.

Theorem 1.26 The operator

A : L

p

(�

1

) �! L

p

(�

1

;�

ow

) ; (1.93)

where A is de�ned in (1.50), is bounded and is Fredholm (i.e., equation

(1.50) is Fredholm if g

0

2 L

p

(�

1

;�

ow

) and we look for a solution ' 2

L

p

(�

1

)) if and only if

�

j

:=

�

1

p

+ �

j

�



j

6= 1 for all �

j

62 �

ow

: (1.94)

If onditions (1.94) hold,

Ind A =

X

�

j

62�

ow

�

j

>1

1 ;

dim Ker A = Ind A ; dim Coker A = 0 ;

(1.95)

Proof. The proof is postponed to x 5.3.

Let (f. (1.64))

Z

!

'(�) := �(!(�))[!

0

(�)℄

1

p

'(!(�)) : (1.96)

Lemma 1.27 Z

!

de�nes an isomorphism of spaes

Z

!

: L

p

(�; �) �! L

p

(�

1

) ;

: L

p

(�; �; T

ow

) �! L

p

(�

1

;�

ow

);

: L

p

(�; �; T

pk

) �! L

p

(�

1

;�

pk

)

(1.97)

and the inverse operator reads

Z

�1

!

 (t) := �

�1

(t)[(!

�1

)

0

(t)℄

1

p

 (!

�1

(t)) : (1.98)

The Cesaro-type operators V

t

j

in (1.75),

e

V

t

j

in (1.76) and V

�

j

in (1.90),

e

V

�

j

in (1.92) are related as follows

Z

!

�

t

j

V

t

j

�

t

j

Z

�1

!

= V

�

j

; Z

!

�

t

j

e

V

t

j

�

t

j

Z

�1

!

=

e

V

�

j

: (1.99)

Proof. The proof is diret and follows from the de�nitions.
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Theorem 1.28 The Dirihlet problem (1.6), (1.7) with

u 2 e

p

(


+

; �) and g 2 L

p

(�; �; T

ow

) (1.100)

is Fredholm if and only if the onditions

�

j

:=

�

1

p

+ �

j

�



j

6= 1 for all �

j

62 T

iw

: (1.101)

hold. If this is the ase, the problem has solution for eah right hand-side

in (1.100) and the homogeneous problem has exatly

{ :=

X

�

j

>1

1 (1.102)

solutions (i.e., the index of the orresponding operator is {). In partiular,

if onditions

�

j

= �

0

j

:=

�

1

p

+ �

j

�



j

< 1 for all �

j

62 T

iw

(1.103)

hold, the problem has a unique solution.

Moreover, if T

ow

= ; the Dirihlet problem (1.6), (1.7) with

u 2 w

1

p

(


+

; �) and g 2 W

1

p

(�; �) ; �

1

j

:=

�

1

p

+ �

j

� 1

�



j

;

u 2 p

m

(


+

; �) and g 2 PC

m

(�; �) ;

�

m

j

:= (�

j

�m)

j

; m = 0; 1 ;

u 2 (


+

; �) and g 2 C(�; �) ; �

0

j

:= �

j



j

;

u 2 h

0

�+m

(


+

; �) and g 2 H

0

�+m

(�; �) ;

�

m

j

:= (�

j

� �

j

�m)

j

; m = 0; 1;

(1.104)

is Fredholm if and only if the ondition

�

m

j

6= (�1)

m

(1.105)

holds for all j = 1; : : : ; n. If this is the ase, the problem has the following

index

Ind A :=

X

j�

m

j

j>1

(�1)

m

: (1.106)

and either the kernel (when Ind A � 0) or the okernel (when Ind A � 0) is

trivial. For Ind A = 0 both kernel and okernel are trivial and the problem

has a unique solution for all right-hand sides (see (1.103)).

The same holds for the domain 


�

with the obvious replaements: T

ow

by T

iw

and 

j

by 1� 

j

.
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Proof. The �rst part of the theorem (1.100){(1.103) follows from Theorems

1.16 and 1.26.

The seond half of the theorem, when T

ow

= ;, follows from equivalene

of the Dirihlet problem and of the orresponding singular integral equa-

tion (1.39){(1.40) in appropriate spae, whih an be proved as in Theorem

1.12, and from appropriate assertions on singular integral equations in x 4.

Theorem 1.29 The operator

B

+

: L

p

(�

1

) �! L

p

(�

1

;�

ow

) (1.107)

(see (1.60)) is bounded and is Fredholm (i.e., equation (1.60) is Fred-

holm if f

0

2 L

p

(�

1

;�

ow

) and we look for a solution ' 2 L

p

(�

1

)) if and

only if the onditions

�

j

:=

�

1�

1

p

� �

j

�



j

6= 1 for all t

j

62 T

ow

: (1.108)

hold. If onditions (1.107) hold,

Ind B

+

= �1 +

X

�

j

62�

ow

�

j

>1

1 ;

dim Ker B

+

= Ind B

+

; dim Coker B = 1

+

:

(1.109)

Proof. The proof follows word in word the proof of Theorem 1.26 (see x 5.3)

with obvious modi�ations (inluding substitution of

1

p

by

1

p

� 1, as seen

from (1.51) and (1.61)). The only di�erene whih we have found worth

explaining is the appearane of \�1" and \1" in the index formulae (1.106):

the seond ondition in (1.60) obviously inreases dim Coker B

+

by 1 and

diminishes Ind B

+

also by 1.

Theorem 1.30 The Neumann problem (1.6), (1.8) for 


+

has solutions

u(x) + 

0

, where 

0

=onst is arbitrary and, u 2 w

1

p

(


+

; �) for f 2

L

p

(�; �; T

ow

) if and only if onditions (1.108) hold and the solution is unique

modulo a onstant if �

j

< 1 for t

j

62 T

ow

. The index of the problem is given

by the formula

Ind B

+

:= 1 +

X

�

j

>1

1: (1.110)

If T

ow

= ; the Neumann problem (1.6), (1.8) 


+

with

u 2 p

1

(


+

; �) and g 2 PC

m

(�; �) ; �

j

:= (1� �

j

)

j

;

u 2 h

0

�+1

(


+

; �) and g 2 H

0

�+1

(�; �) ;

�

j

:= (1� �

j

+ �

j

)

j

; m = 0; 1

(1.111)
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is Fredholm if and only if the ondition �

j

6= 1 holds for all j = 1; : : : ; n. If

this is the ase, the problem has the same index (1.110).

The same holds for the domain 


�

with the obvious replaements: T

ow

by T

iw

and 

j

by 1� 

j

.

Proof. The �rst part of the theorem (1.110) follows from Theorems 1.17

and 1.29.

The seond half of the theorem, when T

ow

= ;, follows from equivalene

of the Neumann problem to the orresponding singular integral equation

(1.43){(1.44) in appropriate spae, whih an be proved as in Theorem 1.14,

and from appropriate assertions on singular integral equations in x 4.

Remark 1.31 Fredholm and solvability properties of pseudodi�erential

equations (1.69), (1.70), (1.72) an easily be derived from Theorems 1.28

and 1.30 (see Theorems 1.19 and 1.20). To save the spae we leave this to

readers.

2 Convolutions with ellipti symbols

2.1 Boundedness properties

C

1

0

(R) denotes the Frehet spae of all in�nitely di�erentiable funtions

on R := (�1;1) with ompat supports supp ' and D

0

(R) { the dual

spae of distributions.

The onvolution operator W

0

a

with a symbol a 2 L

1

(R) is de�ned as

follows

W

0

a

' := F

�1

aF' ; ' 2 C

1

0

(R); (2.1)

where

F'(�)=

Z

R

e

i�x

'(x)dx and

F

�1

 (x)=(2�)

�n

Z

R

e

�ix�

 (�)d�; x; � 2 R

n

; (2.2)

are the Fourier transforms.

M

p

(R) denotes, as usual (see [Du1, Hr1℄, the lass of Fourier L

p

-

multipliers, i.e., the lass of all those symbols a(�) 2 L

1

(R) for whih

the operator W

0

a

admits a bounded extension

W

0

a

: L

p

(R) ! L

p

(R) (2.3)

for all 1 < p <1 (see [BS1, Du1, RS1℄).

In partiular, if symbol a(�) has: one of the following properties:
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i. bounded total variation a 2 V

1

(R) (B.Stehkin theorem),

ii. if

a 2 C

1

(R n f0g) ; ja(t)j �M

0

<1 ; jta

0

(t)j �M

0

<1 (2.4)

(J.Marinkieviz theorem),

iii. belongs to the Wiener algebra

a 2W (R) := fa(�) = +Fk(�) : k 2 L

1

(R)g ;

then a 2 M

p

(R). Moreover, in the ase (iii.) W

0

a

is written as an integral

onvolution

W

0

a

'(x) = '(x) +

1

Z

�1

k(x� y)'(y)dy ;

while in general ase onvolution has distributional kernel (see [Du1, Hr1,

St1℄ for details).

Let

_

R and

�

R denote one point and two point ompati�ations of the

real axes

_

R := R [ f1g ; or

�

R := R [ f�1g

respetively and PC(

_

R) denote the spae of all pieewise-ontinuous fun-

tions on

_

R, i.e., the spae of all funtions a(�) on R whih have �nite limits

a(� � 0) for all � 2

_

R. The spae PC(

_

R) oinides with the losure of

all pieewise-onstant funtions on

_

R with respet to the uniform norm

(in L

1

(

_

R); see [Du1℄). Let PC

p

(

_

R) be the same losure of all pieewise-

onstant funtions with respet to the multiplier norm ka

�

�

M

p

(R)k := kW

0

a

�

�

L(L

p

(R))k. Then

PC

2

(

_

R) = PC(

_

R) ; V

1

(R);W (R) �

\

1<p<1

PC

p

(

_

R) :

For a matrix symbol a 2 PC

N�N

p

(

_

R) invertibility riteria of the operator

W

0

a

in L

p

(R) spae reads

inf

�2R

j det a(�)j > 0 ; (2.5)

whih yields a

�1

2 PC

N�N

p

(

_

R) and the inverse operator is W

0

a

�1

(see [Du1,

Hr1℄ for these and other properties of multipliers).

Moreover, we an take 1 � p � 1 and involve new spaes. Namely

W

0

a

has bounded extensions in the following spaes of smooth funtions:

C

m

0

(

_

R), C

m

(

_

R), C

m

0

(

�

R) for all m = 0; 1; : : : (see [Kr1℄). These spaes are

de�ned as follows.

Let X be either one point or two point ompati�ations of the real

axes and C

m

(X) denote the Banah spae of ontinuous funtions on the
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ompat Hausdorff set X, whih have ontinuous derivatives up to the

order m and is endowed with the appropriate uniform norm

k'k =

m

X

k=0

sup

t2R

�

�

�

�

�

d

k

dt

k

'

�

(t)

�

�

�

�

(C

m

(X) is even a Banah algebra with pointwise multipliation). Note,

that a funtion ' 2 C

m

(

_

R) and its derivatives have equal limits at in�nity

(d

k

=dt

k

)'(1) = (d

k

=dt

k

)'(�1) while funtion ' 2 C

m

(

�

R) might have two

di�erent limits (d

k

=dt

k

) (�1) for all k = 0; 1; : : : ;m.

C

m

0

(

_

R) denotes the subspae (the sub-algebra) of C

m

(

_

R) of those fun-

tions '(x) whih vanish at in�nity with all derivatives up to the order m:

C

m

0

(

_

R) :=

�

' 2 C

m

(

_

R) : '(1) = � � � =

�

d

m

dt

m

'

�

(1) = 0

�

:

Let

W

a

' := r

+

W

0

a

`

0

' ; ' 2 C

1

0

(R

+

) ; (2.6)

where r

+

denotes the restrition to R

+

from R, while `

0

{the right inverse to

r

+

whih extends funtions by 0 from R

+

to R. Let L

p

(R

+

; �); �(x) � 0,

denote the weighted Lebesgue spae endowed with the standard norm

k'

�

�

L

p

(R

+

; �)k := k�'

�

�

L

p

(R

+

)k.

Lemma 2.1 (see [Du1, S1℄). Let a 2 V

1

(R) and

1 < p <1 ; �

1

p

< �;  < 1�

1

p

: (2.7)

Then

W

a

: L

p

(R

+

; x

�

(1 + x)

��

) �! L

p

(R

+

; x

�

(1 + x)

��

) (2.8)

is ontinuous.

Let � 2 R and

L

h�i

1

(R) :=

8

<

:

L

1

(R

+

) \ L

1

(R

�

; (1� x)

��

) for � < 0 ;

L

1

(R

�

) \ L

1

(R

+

; (1 + x)

�

) for � > 0 ;

where R

�

:= (�1; 0℄. Let further

W

�

(R) :=

n

a(�) = +Fk(�) :  = onst ; k2L

1

(R; (1 + jxj)

j�j

)

o

; (2.9)

W

h�i

1

(R) :=

n

a(�) = +Fk(�) :  = onst ; k 2 L

h�i

1

(R)

o

(2.10)
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and endow them with the appropriate norms

ka

�

�

W

�

(R)k := jj+ kk

�

�

L

1

(R; (1 + jxj)

j�j

)k for � � > 0 ;

ka

�

�

W

h�i

(R)k := jj+ kk

�

�

L

h�i

1

(R)k = jj+ kk

�

�

L

1

(R

�

)k

+kk

�

�

L

1

(R

�

; (1 + jxj)

j�j

)k for � � > 0

provided a(�) = +Fk(�). Obviously, W

�

(R) �W

h�i

(R).

Let C(

_

R

+

) denote the restrition of the spae C(

_

R) to the semi-axes

R

+

and C(

_

R

+

; (1 + x)

�

) denote the weighted spae of funtions '(x) on

the semi-axes R

+

for whih (1 + x)

�

'(x) belong to C(

_

R

+

).The spae is

endowed with the appropriate weighted norm k'

�

�

C(

_

R

+

; (1+x)

�

)k := k(1+

x)

�

'(x)

�

�

C(

_

R

+

)k.

Lemma 2.2 Let a 2 W

h�i

(R) and � 2 R. Then the operator

W

a

: C(

_

R

+

; (1 + x)

�

) �! C(

_

R

+

; (1 + x)

�

) (2.11)

is ontinuous

7)

and

lim

x!1

(1 + x)

�

W

a

'(x) = a(0) lim

x!1

(1 + x)

�

'(x) ; (2.12)

kW

a

�

�

C(

_

R

+

; (1 + x)

�

k � ka

�

�

W

h�i

(R)k : (2.13)

Proof. For a(�) =  we have W

a

= I and the assertion is trivial. Thus,

we an take a = Fk; k 2 L

h�i

1

(R).

The integral

W

0

a

=

1

Z

�1

k(x� y)'(y)dy =

1

Z

�1

k(y)'(x � y)dy

is ontinuous funtion for a ontinuous ' 2 C(

_

R

+

; (1 + x)

�

) and we should

hek only (2.12){(2.13).

Obviously,

kW

a

�

�

C(

_

R

+

; (1 + x)

�

)k � K

�

;

K

�

= sup

x2R

+

1

Z

0

�

1 + x

1 + y

�

�

jk(x� y)jdy :

(2.14)

If � < 0, applying the inequality

1 + x � (1 + jx� yj)(1 + y) ; x; y 2 R

+

; (2.15)

7)

See similar assertions in [GF1, Pr1, PS1℄.
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we proeed as follows

K

�

� sup

x>0

2

4

x

Z

0

�

1 + x

1 + y

�

�

jk(x� y)jdy +

1

Z

x

�

1 + y

1 + x

�

��

jk(x� y)jdy

3

5

� sup

x>0

2

4

1

Z

0

jk(x� y)jdy +

1

Z

x

(1 + jx� yj)

��

jk(x� y)jdy

3

5

�

1

Z

0

jk(t)jdt +

0

Z

�1

(1 + jtj)

��

jk(t)jdt = ka

�

�

W

h�i

(R)k :

Now let � > 0. Similarly to the foregoing ase we �nd (see (2.14) and

(2.15))

K

�

� sup

x>0

2

4

x

Z

0

�

(1 + x

1 + y

�

�

jk(x� y)jdy +

1

Z

x

�

(1 + x

1 + y

�

�

jk(x� y)jdy

3

5

� sup

x>0

2

4

x

Z

0

(1 + jx� yj)

�

jk(x� y)jdy +

1

Z

x

jk(x� y)jdy

3

5

� sup

x>0

2

4

x

Z

0

(1 + t)

�

jk(t)jdt+

0

Z

�1

jk(t)jdt

3

5

= ka

�

�

W

�

(R)k :

To prove (2.12) (for arbitrary � 2 R) we represent

'

�

(x) := (1 + x)

�

'(x) = '

�

(1) + '

0

�

(x) ; '

0

�

(1) = 0

and suppose that both '

0

�

(x) and k(t) have ompat supports

supp'

0

�

� [0; 

1

℄ ; supp k � [�

2

; 

2

℄ :

Sine suh funtions are dense in appropriate spaes, this does not restrits

generality. Then

lim

x!1

(1 + x)

�

W

a

'(x) = lim

x!1

1

Z

0

�

1 + x

1 + y

�

�

k(x� y)'

�

(y)dy

= lim

x!1



1

Z

0

�

1 + x

1 + y

�

�

k(x� y)'

0

�

(y)dy

+'

�

(1) lim

x!1

1

Z

0

�

1 + x

1 + y

�

�

k(x� y)dy = a(0)'

�

(1) ;
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sine

k(x� y)'

0

�

(y) = 0 if x � 

1

+ 

2

;

lim

x!1

1

Z

0

�

1 + x

1 + y

�

�

k(x� y)dy = lim

x!1



2

Z

�

2

�

1 + x

1 + x� t

�

�

k(t)dt

=



2

Z

�

1

k(t)dt =

1

Z

�1

k(t)dt = a(0) :

This aomplishes the proof.

2.2 Fredholm properties

Lemma 2.3 Let � 2 R. Then W

�

(R) �W

0

(R) = W (R) � C(

_

R) is an in-

verse losed Banah algebra in C(

_

R), whih reads: the element a 2 W

�

(R)

is invertible if and only if it is invertible in C(

_

R), i.e., i� inf

�2R

ja(�)j > 0,

and then a

�1

2W

�

(R).

Proof. The proof see in [GRS1, x 18℄.

Let for a matrix-funtion a = [a

jk

℄

N�N

with entries a

jk

2 A use the

same notation a 2 A.

Lemma 2.4 Let � 2 R and a matrix-funtion a 2 W

�

(R) be ellipti

inf

�2R

j det a(�)j > 0 : (2.16)

Then a(�) has the following fatorization

a(�) = a

�

(�) diag

��

�� i

�+ i

�

{

1

; : : : ;

�

�� i

�+ i

�

{

N

�

a

+

(�) (2.17)

where the matrix-funtions a

�

�

2 W

�

(R) and a

�

+

2 W

�

(R) have uniformly

bounded analyti extensions a

�

�

(� � i�) and a

�

+

(� + i�) in the lower and

upper � > 0 omplex half-planes, respetively. The integers {

1

; : : : ;{

N

are

known as the partial indies of the fatorization (2.17).

Proof. For the algebra W (R) = W

0

(R) the proof is well-known (see, e.g.,

[GF1℄) and we follow the same sheme: if all rational funtions are dense in

W

�

(R) (a rationally dense algebra) and the Hilbert transform

S

R

'(x) =

1

�i

1

Z

�1

'(y)dy

y � x

= �W

0

sign�

'(x) ; x 2 R (2.18)
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(see [Du1, Lemma 1.35℄) is bounded there (a deomposable algebra), then

aording to the general theorem proved in [BG1℄ (see also [CG1, GF1℄) all

invertible elements of W

�

(R) would possess fatorization (2.17). Invertibil-

ity of a 2 W

�

(R) under ondition (2.16) is provided by Lemma 2.3.

Rational density of W

�

(R) follows sine the Laguerre polynomials are

dense in L

1

(R; (1 + jxj)

j�j

) (see, e.g., [GF1, x 8℄).

W

�

(R) is a deomposable beause FS

R

F

�1

 (�) = � sign � (�) (see

(2.18)) is a bounded operator in L

h�i

1

(R) andW

�

(R) = onst +FL

1

(R; (1+

jxj)

j�j

)) (see (2.8)).

Let us onsider a = +Fk 2W

�

(R) and the orresponding equation

W

0

a

'(x) =  '(x) +

1

Z

�1

k(x� y)'(y)dy = f(x) ; x 2 R

+

(2.19)

(f. (2.5)).

Theorem 2.5 Equation (2.19) in the spae C(

_

R

+

; (1 + x)

�

), � 2 R is

Fredholm if and only if the symbol a(�) is ellipti (see (2.16)). If this

is the ase, then

Ind W

a

= � ind a :

If, in addition, (2.19) is a salar equation N = 1, then:

i. equation (2.19) is uniquely solvable for all f 2 C(

_

R

+

; (1+x)

�

) provided

ind a = 0;

ii. if { = ind a < 0 equation (2.19) has a solution ' 2 C(

_

R

+

; (1 + x)

�

)

for all f 2 C(

_

R

+

; (1 + x)

�

) and the homogeneous equation f = 0 has

exatly �{ linearly independent solutions;

iii. if { = ind a > 0 equation (2.19) has a solution ' 2 C(

_

R

+

; (1 + x)

�

)

only for those right-hand sides f 2 C(

_

R

+

; (1 + x)

�

) for whih

1

Z

0

f(y)g

j

(y)dy = 0 ; j = 1; : : : ;{ ;

where g

1

; : : : ; g

{

are all solutions to the dual homogeneous equation

 g(x) +

1

Z

�1

k(y � x)g(y)dy = 0 (2.20)

in the dual spae C(

_

R

+

; (1 + x)

��

).

If the solution exists it is unique.
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Proof. The proof is standard and based on Lemmata 2.3, 2.4 (see [Du1,

GF1, GK1, Kr1℄ for similar proofs, exept the last laim).

Conerning the last laim{we replaed the adjoint spae C

�

(

_

R

+

; (1+x)

�

)

by the dual one C(

_

R

+

; (1+ x)

��

); this is possible sine the equation (2.20)

has the same solutions in these two spaes (see [Du5℄ for a similar assertion).

The last laim follows also from Lemma 1.21. whih states that equation

has the same solutions in two spaes B

1

� B

2

provided the embedding is

dense and the equation has a ommon regularizer in B

1

and inB

2

.

Now let a 2 V

1

(R); thenW

a

an be written as integral onvolution (2.19)

only onventionally{the kernel k(t) is a distribution. If a(�) possesses a

single jump, operator W

a

is not bounded in C(

_

R

+

; (1 + x)

�

) beause the

Hilbert transform (2.18) is not bounded in these spae.

Thus, we should onsider equation (2.19) with a 2 PC

p

(R)in the Le-

besgue spae L

p

(R

+

; x

�

(1 + x)

��

) with weight under onditions (2.7).

With equation (2.19) we assoiate the symbol

a

!

(�; �) :=

1 + oth�[i�(�) + �℄

2

a(�� 0)

+

1� oth�[i�(�) + �℄

2

a(�+ 0) ; � 2

_

R ; � 2 R ; (2.21)

where (note, that a 2 PC

p

(R) has limits a(�� 0); � 2

_

R inluding in�nity

a(1� 0) := a(�1)). ! := (p; �; ) reminds the spae and

�(�) :=

8

>

>

>

>

<

>

>

>

>

:

1

p

; if � 6= 0;1 ;

1

p

+ �; if � = 0;

1

p

+ ; if � =1 :

Theorem 2.6 Let a 2 PC

p

(R); the weight �(t) be de�ned by (1.2) and

satisfy appropriate (namely the �rst) ondition in (1.4).

Equation (2.32) is Fredholm in the spae L

p

(R

+

; x

�

(1+x)

��

) if and

only if the symbol a

!

(�; �) is ellipti

inf

�2

_

R; �2R

j det a

!

(�; �)j > 0 :

If this is the ase, then

Ind W

a

= �

1

2�i

1

X

j=1

�

[arg a(�)℄

�2[�

j

;�

j+1

℄

+ [arg a

!

(�

j

; �)℄

�2R

	

; (2.22)

where f�

j

g

1

j=1

�

_

R denotes the set of all points where a 2 V

1

(R) has jumps
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a(�

j

� 0) 6= a(�

j

+ 0) and

8)

[arg g(t)℄

t2I

denotes the inrement of any

ontinuous branh of arg g(t) as t ranges through I in the positive diretion.

If, in addition, (2.19) is a salar equation N = 1, then:

i. equation (2.19) is unuquelly solvable for all f 2 L

p

(R

+

; x

�

(1+x)

��

)

provided Ind W

a

= 0;

ii. if { = Ind W

a

> 0 (2.19) has a solution ' 2 L

p

(R

+

; x

�

(1 + x)

��

)

for all f 2 L

p

(R

+

; x

�

(1+x)

��

) and the homogeneous equation f = 0

has exatly { linearly independent solutions;

iii. if { = ind W

a

< 0 (2.19) has a solution ' 2 L

p

(R

+

; x

�

(1 + x)

��

)

only for those right-hand sides f 2 L

p

(R

+

; x

�

(1 + x)

��

) for whih

1

Z

0

f(y)g

j

(y)dy = 0 ; j = 1; : : : ;�{ ;

where g

1

; : : : ; g

�{

are all solutions of the dual homogeneous equation

 g(x) +

1

Z

�1

k(y � x)g(y)dy = 0 (2.23)

in the dual spae L

p

0

(R

+

; x

��

(1 + x)

�+�

) with p

0

:=

p

p� 1

.

If solution exists it is unique.

Proof. For the proof we quote [Du1℄ (the ase � =  = 0) and [S1℄ (the

ase � 6= 0; � 6= 0).

2.3 Some proofs

Proof of Lemma 1.1. Let, for de�niteness, onsider the domain 


+

. Sine

� 2 X (


+

) we have

�(z) = 

0

+

1

2�i

Z

�

�

+

0

(�)d�

� � z

; z 2 


+

;

where �

+

0

2 X(�) is the trae of �

0

(z) := �(z)� 

0

on � from 


+

. On the

other hand

�(z) = 

0

+

1

2�i

Z

�

'(�)d�

� � z

; z 2 


+

;

8)

The set f�

j

g

1

j=1

is at most ountable and the sum in (2.22) is onvergent (see, e.g.,

[Du1℄).
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for some ' 2 X(�) (see (1.3)) and we get

Z

�

�

+

0

(�)� '(�)

� � z

d� � 0 ; z 2 


+

:

The obtained equality means

�

+

0

(t)� '(t) = 	

�

(t) ; t 2 � ; (2.24)

where 	 2 X (


�

); therefore,

	(z) = �C

�

'(z) := �

1

2�i

Z

�

'(�)d�

� � z

; z 2 


�

;

and 	(z)! 0 as jzj ! 1, sine C

�

�

+

0

(z) � 0 for z 2 


�

. In fat, P

+

�

�

+

0

=

�

+

0

yields P

�

�

�

+

0

= 0 (we remind that P

�

�

+ P

+

�

= I ; see (1.50)). On the

other hand, due to the Plemelji formula for C

�

' in (1.25) (C

�

�

+

0

)

�

=

P

�

�

�

+

0

= 0 and the analyti funtion C

�

�

+

0

(z), z 2 


�

vanishing on the

boundary vanishes everywhere in 


�

.

(2.24) an be written as follows

Re (�i	

�

)(t) = Im 	

+

(t) = Im �

+

0

(t) ; t 2 �

if '(t) = Re '(t) = Re �

+

0

(t)� Re 	

�

(t) is pure real and

Re 	

�

(t) = Re �

+

0

(t) ; t 2 �;

if '(t) = i Im '(t) = i Im �

+

0

(t) � i Im 	

�

(t) is pure imaginary. Sine

�

+

0

(t) is known, solvability of the obtained Riemann{Hilbert problems is

equivalent to the laimed representations.

Proof of Lemma 1.2. If (0.2) holds and 


�

has no outward peak (T

ow

=

;), u

�

2 W

1

2

2

(�) due to theorem on traes (see, e.g., [Tr1℄)). Although

�

~�

u 2 W

0

2;om

(


�

), we an not laim (�

~�

u)

�

2 W

�

1

2

2

(�) beause the trae

does not exists. But u is harmoni �u(z) = 0 in 


�

and from the Green

formula (1.13) we get

I

�

�

~�(�)

u(�)v(�)d� = �

2

X

j=1

Z




�

�

j

u(y)�

j

v(y)dy : (2.25)

Taking arbitrary v 2 W

1

2;om

(


�

), whih implies v

�

2 W

1

2

2

(�) due to theo-

rem on traes, by duality of spaes from (2.25) follows (�

~�

u)

�

2 W

�

1

2

2

(�).
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Sine u(z) is a harmoni funtion, due to representation formula (1.15)

u(z) = Re u(z) = �

�

(z)u(1)�W

�

u

�

(z)� V

�

(�

~�

u)

�

(x)

= �

�

(z)u(1)�W

�

u

�

(z)� Re (�

z

V

�

)v

�

(z) (2.26)

= �

�

(z)u(1) + Re (C

�

u

�

)(z) ; u

�

(t) := �u

�

(t) + iRe v

�

(t) ;

v

�

(t) :=

Z

^

t

(�

~�(�)

u)

�

(�)d� ; z 2 


�

; t 2 � :

From (2.26) we get the inlusion into the Smirnov lass u 2 w

1

2

2

(


�

) with

the omplex valued density u

�

2 W

1

2

2

(�) beause u

�

; v

�

2W

1

2

2

(�).

Vie versa, u 2 w

1

2

2

(


�

), also for 


�

with peaks, implies the represen-

tation

u(z) = u(1) + Re C

�

'(z) ; z 2 


�

; ' 2 W

1

2

2

(�) :

Then u(z) is harmoni in 


�

and u(z) = u(1)+O((1+ jzj)

�1

) as jzj ! 1

and, due to Theorem 1.8, u 2 W

1

2

(


�

).

Proof of Theorem 1.5. The �rst and the seond laims for s = m = 0

follows from representations (1.17), (1.18) and boundedness of the singular

integral operator S

�

(see (1.5)) in L

p

(�; �) (see, e.g., [GK1, Kh1, Pr1℄) and

in H

0

�

(�; �) (see [Du6, Du7℄ and also [Du3, Du5℄).

The operators

W

(k)

�;0

'(t) :=

1

4

�

S

�

+ Vh

k

S

�

h

�k

V

�

'(t)

=

1

4�i

Z

�

'(�)

"

d�

� � t

�

h

k

(t)

h

k

(�)

d�

� � t

#

(2.27)

are bounded in L

p

(�; �) and in H

0

�

(�; �) by the same reason.

For a losed ontour �

t

S

�

' = S

�

�

t

' and we get

�

t

W

�;0

' :=

1

4

�

�

t

S

�

+ V

dt

dt

�

t

S

�

V

�

'

=

1

4

�

S

�

+ Vh

2

S

�

h

�2

V

�

�

t

' =W

(2)

�;0

�

t

' (2.28)

(f. (1.17){(1.21), (1.26)); therefore W

�;0

is bounded in W

1

p

(�; �) and in

H

0

1+�

(�; �). By interpolation (see [Tr1℄) we get boundedness of W

�;0

in

W

s

p

(�; �) for 0 � s � 1.

Sine the operator W

�

�;0

is adjoint to W

�;0

, it is automatially bounded

in adjoint spae W

s

p

(�; �) (see, e.g., [Tr1℄) to W

�s

p

0

(�; �) for �1 � s � 0 and

p

0

:= p=(p� 1).
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Let us prove the last laim.

V

�

has a weak singular kernel and, therefore,

kV

�

'

�

�

L

p

(�; �)k � C

1

k'

�

�

L

p

(�; �)k ;

on the other hand, due to (1.19),

k�

t

V

�

'

�

�

L

p

(�; �)k = k(S

�

+ VS

�

V)'

�

�

L

p

(�; �)k � C

2

k'

�

�

L

p

(�; �)k :

and we get the �nal estimate

kV

�

'

�

�

W

1

p

(�; �)k = kV

�

'

�

�

L

p

(�; �)k+ k�

t

V

�

'

�

�

L

p

(�; �)k :

Similarly for the H

�

older spaes H

0

�

(�; �)! H

0

1+�

(�; �).

Proof of Theorem 1.6. It suÆes to show that W

(k)

�;0

are bounded in

PC(�; �) for even k = 0; 2; : : : and W

(0)

�;0

= W

�;0

is bounded in C(�; �). In

fat, h

�

I are bounded in PC(�; �) and boundedness of W

�

�;0

in PC(�; �)

follows sine

W

�

�;0

= �hW

(2)

�;0

hI

(f. (1.18), (2.27)). By virtue of (1.22) we get

kW

�;0

'

�

�

PC

1

(�; �)k=kW

�;0

'

�

�

C(�; �)k+ k�

t

W

�;0

'

�

�

PC(�; �)k ;

=kW

�;0

'

�

�

C(�; �)k+ kW

(2)

�;0

�

t

'

�

�

PC(�; �)k :

whih means boundedness of W

�;0

in PC

1

(�; �).

Integral operator K with a weak singular kernel

jk(t; �)j � Cjt� � j

��1

; 0 < � � 1 ; t; � 2 �; (2.29)

is bounded (moreover, is ompat) in spaes C(�; �) and in PC(�; �).

In fat, this is easy to asertain for �(t) � 1. For �(t) 6� 1 we have to

prove that K

1

:= �K�

�1

I �K is ompat in C(�) and in PC(�).

The kernel k

1

(t; �) of K

1

has the following estimate

jk

1

(t; �)j = j�(t)� �(�)j

k(t; �)

�(�)

� C

g

�

(t; �)

�(�)

jt� � j

��1

;

here g

�

(t; �) = jt � � j

Æ

j

when both t and � are lose to the knot t

j

; j =

1; : : : ; n and g

�

(t; �) = jt� � j otherwise. Thus, k

1

(t; �) is weak singular and

ompatness (in C(�) and in PC(�)) follows.

Let �

0

be another Ljapunov ontour and ! : � ! �

0

be a di�eomor-

phism with analyti ontinuation in some neighbourhood of uspidal wedge

U

j

� 


+

(outward peak of 


+

) of usps 

j

with 

j

= 0. Then the operator

K

!

:= !

�1

�

S

�

!

�

� S

�

; !

�

'(t) = '(!(t)) ; t 2 � ; (2.30)
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where !

�1

: � ! �

0

is the inverse di�eomorphism, has a weak singular

kernel (2.29) (see [DLS1, x 3.5℄ and [Kh1, GK1℄).

Due to representations (1.17){(1.19), (2.27) and to boundedness of op-

erator K

!

in C(�; �) and in PC(�; �) (see (2.29) and further) the ontour �

an be replaed by another one �

0

for whih we an �nd a di�eomorphism

! : �! �

0

with loal analyti ontinuation in the viinity of usps.

-

�

�

�

�

�

�

�

�

��

- -q q

�

j

t

j

�

+

j

�

�

j

�

+

j

�

+

j

t

j

t

j

�

�

j

�

�

j

0 < 

j

< 2 

j

= 0 

j

= 2

Fig. 2

Due to this we an suppose �

j

has retilinear parts �

+

j

and �

�

j+1

in

some neighbourhoods of the endpoints t

j

and t

j+1

exept usps; for a usp



j

= 0; 2 the right neighbourhood �

+

j

� �

j

is retilinear in the viinity

of t

j

, while the left neighbourhood �

�

j

� �

j�1

is not (we remind, that

ft

j

g = �

j�1

S

�

j

; see Fig. 2). Let

�

0

j

= �

�

j

[

�

+

j

; �

0

=

n

[

j=1

�

0

j

; �

0

= � n �

0

: (2.31)

Let v

0

2 C

1

(�) be a ut-o� funtion with supp v

0

� �

0

and v

0

(t) = 1

in some neighbourhoods of all knots t

1

; : : : ; t

n

. Then

W

(k)

�;0

= (1� v

0

)W

(k)

�;0

+ v

0

W

(k)

�

0

;0

+ v

0

W

(k)

�

0

;0

: (2.32)

�

0

is free of knots t

1

; : : : ; t

n

and operators (1 � v

0

)W

(k)

�;0

, v

0

W

(k)

�

0

;0

have

weak singular kernels. In fat, kernels of these operators read

k

2

(t; �)= [1� v

0

(t)℄k

0

(t; �) ;

k

3

(t; �)=v

0

(t)�

0

(t)k

0

(t; �) ; t; � 2 � ;

where �

0

(t) is the harateristi funtion of �

0

and

k

0

(t; �)=

1

�i

"

1

� � t

�

h

k

(t)

h

k

(�)

1

� � t

d�

d�

#

=

1

�i

�

1

� � t

�

1

� � t

d�

d�

�

�

h

k

(t)� h

k

(�)

h

k

(�)(� � t)

d�

d�

: (2.33)
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k

0

(t; �) = k

1

(t; �) = 0 if t; � 62 �

0

; therefore we an suppose t; � 2 �

0

beause otherwise k

2

(t; �) and k

2

(t; �) are bounded. �

0

onsists of n disjoint

smooth ars and k

0

(t; �) is the kernel ofW

(k)

�;0

= S

�

�Vh

k

S

�

h

�k

V ; therefore

we an apply a di�eomorphism ! : �

0

! �

R

� R whih transforms �

0

to

the �nite union of intervals on the real axes. Sine !

�1

�

W

(k)

�

0

;0

!

�

di�ers from

W

(k)

�

R

;0

by a ompat operator with weak singular kernel, we an onsider

W

(k)

�

R

;0

. But the �rst summand in representation (2.33) of the kernel of

operator W

(k)

�

R

;0

vanishes

1

� � t

�

1

� � t

d�

d�

= 0 ; t; � 2 �

R

� R ;

while the seond summand is weak singular, beause the funtion h

k

(!

�1

(t))

is C

1+�

-ontinuous.

Thus, we have to onsider only operator v

0

W

(k)

�

0

;0

in (2.32). This an be

simpli�ed further and we need to treat only operators W

(k)

�

0

j

;0

, beause the

di�erene

T

0

= v

0

2

4

W

(k)

�

0

;0

�

n

X

j=1

W

(k)

�

0

j

;0

3

5

is ompat (has a bounded kernel).

Let 0 < 

j

< 2. Without loss of generality we an suppose that

�

0

j

= �

�

j

[

�

+

j

; �

+

j

= (0; 1℄ ; �

�

j

=

�

e

i

j

x : 0 � x � 1

	

:

Consider the transformation

Z



j

;Æ

j

'(x) :=

�

e

�Æ

j

x

'(e

�x

)

e

�Æ

j

xi

'(e

�

j

�x

)

�

; x 2 R

+

; (2.34)

and its inverse

Z

�1



j

;Æ

j

�

 

1

 

2

�

(t) = �

0

+

(t)t

�Æ

j

 

1

(� log t)

+�

0

�

(t)e

�

j

Æ

j

i

t

�Æ

j

 

2

(�

j

� log t) ; t 2 �

0

j

;

where �

0

+

and �

0

�

are the harateristi funtions of �

+

j

and �

�

j

, respetively.

Z



j

;Æ

j

arranges the isomorphism of the spae PC(�

0

j

; t

Æ

j

) = PC(�

0

j

; �)

with the vetor-spae [C(

_

R

+

)℄

2

= C(

_

R

+

) � C(

_

R

+

) (see x 1.1). The trans-

formed operator aquires the form

Z



j

;Æ

j

W

(k)

�

0

j

;0

Z

�1



j

;Æ

j

=

"

0 W

a

+



j

;Æ

j

;k

W

a

�



j

;Æ

j

;k

0

#

;
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where

W

a

�



j

;Æ

j

;k

'(x) =

1

Z

0

k

�



j

;Æ

j

;k

(x � y)'(y)dy ;

a

�



j

;Æ

j

;k

(�) :=F

t!�

h

k

�



j

;Æ

j

;k

(t)

i

; �; x 2 R ;

k

�



j

;Æ

j

;k

(t) = �

e

��

j

k�Æ

j

t

sin�

j

+ e

�(Æ

j

+1)t

sin�

j

2�(1� 2e

�t

os�

j

+ e

�2t

)

:=

e

�Æ

j

t

4�i

�

1

1� e

��

j

i�t

�

e

��

j

ki

1� e

�

j

i�t

�

:

Obviously,

k

�



j

;Æ

j

;k

2 L

1

(R) i� 0 < Æ

j

< 1 (2.35)

and, due to Lemma 2.2, the transformed operator Z



j

;Æ

j

W

(k)

�

0

j

;0

Z

�1



j

;Æ

j

is

bounded in [C(

_

R

+

)℄

2

beause 0 < 

j

< 2 ; 0 < Æ

j

< 1.

Now let 

j

= 0; 2. We an suppose without loss of generality that t

k

= 0

and

�

+

j

= J = (0; 1℄ � R

+

;

�

�

j

= fz

j

(x) = x+ ig

j

(x) : 0 � x � 1g ;

g

j

2 C

1+�

(J ) ; g

j

(0) = g

0

j

(0) = 0 ; g

j

(x) � 0 ;

h(z

j

(x)) = 1 + ig

j

(x) ; h(x) = 1 ; x 2 J (see (2.21)) :

The transformation

B

j

'(x) =

�

'(x)

'(z

j

(x))

�

; z

j

(x) = x+ ig

j

(x) ; x 2 J ; (2.36)

arranges the isomorphism

B : PC(�

0

j

; jtj

Æ

j

) �! [C(J ; jtj

Æ

j

)℄

2

and

B

j

W

(k)

�

j

;0

B

�1

j

=

�

0 �

e

V

ig

j

V

ig

j

0

�

+

�

0 T

12

T

21

T

22

�

;

where

T

12

=

e

N

�ig

j

[(1� ig

0

j

)

�k

� 1℄ ; T

12

= [(1� ig

0

j

)

k

� 1℄N

�ig

j

;
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T

21

=�K

z

j

�(1� ig

0

j

)

k

K

z

j

(1� ig

0

j

)

�k

I + (1� ig

0

j

)

k

S

J

(1� ig

0

j

)

�k

I�S

J

;

V

ig

j

N

ig

j

�N

�ig

j

;

e

V

ig

j

=

e

N

ig

j

(1 + ig

0

j

)I �

e

N

�ig

j

(1� ig

0

j

)I ;

N

�ig

j

1

�i

1

Z

0

'(y)dy

y � x� ig

j

(x)

;

e

N

�ig

j

=

1

�i

1

Z

0

'(y)dy

y � x� ig

j

(y)

and K

z

j

is de�ned in (2.30) (z

j

(x) see in (2.36)). Operators T

12

; T

21

; T

22

all have weak singular kernels and there is left to prove boundedness of

operators V

ig

j

and

e

V

ig

j

only.

It is easy to asertain that

v(x) := V

ig

j

1(x)=�

2g

j

(x)

�

1

Z

0

dy

(y � x)

2

+ g

2

j

(x)

=

1

�i

log

[x+ ig

j

(x)℄[1� x+ ig

j

(x)℄

[x� ig

j

(x)℄[1� x� ig

j

(x)℄

;

ev(x) :=

e

V

ig

j

1(x)=

1

�i

1� x+ ig

j

(x)

1� x� ig

j

(x)

; x 2 J ;

and v; ev 2 C(J ). Funtions

V

ig

j

'(x)=V

ig

j

['(y)� '(x)℄ + '(x)v(x) ;

e

V

ig

j

'(x)=

e

V

ig

j

['(y)� '(x)℄ + '(x)ev(x)

are ontinuous provided ' 2 C

1

(J ). On the other hand we get

�

�

V

ig

j

'(x)

�

�

=

2g

j

(x)

�

�

�

�

�

�

�

1

Z

0

'(y)dy

(y � x)

2

+ g

2

j

(x)

�

�

�

�

�

�

�

k'

�

�

C(J )k

�

�

�

�

�

�

�

1

Z

0

�

1

y � x+ ig

j

(x)

�

1

y � x� ig

j

(x)

�

dy

�

�

�

�

�

�

=

k'

�

�

C(J )k

�

jv(x)j ;

�

�

�

e

V

ig

j

'(x)

�

�

�

=

2

�

�

�

�

�

�

�

1

Z

0

(y � x)g

0

j

(y)� g

j

(y)

(y � x)

2

+ g

2

j

(y)

'(y)dy

�

�

�

�

�

�
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�

2

�

k'

�

�

C(J )k

(

�

�

�

�

�

1

Z

0

[(y � x)g

0

j

(y)� g

j

(y)℄[g

2

j

(x)� g

2

j

(y)℄

[(y � x)

2

+ g

2

j

(y)℄[(y � x)

2

+ g

2

j

(x)℄

dy

+g

2

j

(x)

1

Z

0

(y � x)g

0

j

(y)� g

j

(y)

(y � x)

2

+ g

2

j

(x)

dy

�

�

�

�

�

)

� k'

�

�

C(J )k

�

(1 + kg

0

j

�

�

C(J )k)

2

kg

0

j

�

�

C(J )k

+kg

j

�

�

C(J )k(kg

0

j

�

�

C(J )k+ kg

0

j

�

�

C(J )k)

�

�

�

�

�

�

�

1

�

1

Z

0

2ig

j

(x)dy

(y � x)

2

+ g

2

j

(x)

�

�

�

�

�

�

= C

g

j

k'

�

�

C(J )kjv(x)j ;

C

g

j

=

�

(1 + kg

0

j

�

�

C(J )k)

2

kg

0

j

�

�

C(J )k

+kg

j

�

�

C(J )k(kg

0

j

�

�

C(J )k+ kg

0

j

�

�

C(J )k)

�

:

Obtained inequalities prove that V

ig

j

and

e

V

ig

j

an be extended as ontinuous

operators from C

1

(J ) �! C(J ) to C(J ) �! C(J ).

3 Equations with non-ellipti symbols

3.1 Convolutions on R

+

Let �;  and p be as in (2.7) and the symbol a 2 PC

p

(R) be non-ellipti

(vanishing at 0):

a(�) =

�

�� i

a

(�)

(�) ; a

(�)

2 PC

p

(R) ; inf

�2R

j det a

(�)

(�)j > 0 : (3.1)

Then equation (2.19) is not Fredholm in L

p

(R

+

; x

�

(1 + x)

��

) due

to Theorem 2.6. Namely the image of the operator Im W

a

is not losed in

L

p

(R

+

; x

�

(1 + x)

��

) (see [Du4, x 4℄).

In the present setion, similarly to [Pr1, x 5.2℄, we de�ne the spaes

!

L

p

(R

+

; x

�

(1 + x)

��

) and

 

L

p

(R

+

; x

�

(1 + x)

��

) suh that the operators

W

a

: L

p

(R

+

; x

�

(1 + x)

��

) �!

!

L

p

(R

+

; x

�

(1 + x)

��

) ; (3.2)

W

a

:

 

L

p

(R

+

; x

�

(1 + x)

��

) �! L

p

(R

+

; x

�

(1 + x)

��

) (3.3)

would be Fredholm.



60

Let

U

0

'(x) :=

x

Z

0

'(y)dy ; V

1

'(x) := ()

1

Z

x

'(y)dy ; (3.4)

where ()

1

Z

x

denotes the Cesaro mean value

()

1

Z

x

'(y)dy := lim

t!1

1

t� x

t

Z

x

d�

�

Z

x

'(y)dy = lim

t!1

t

Z

x

t� y

t� x

'(y)dy (3.5)

whih oinides with the usual Lebesgue (or the Riemann) integral if the

latter exists. The operator V

1

in (3.5) is equivalent to the Cesaro-type

operators

e

V

�

j

in (1.90) and

e

V

t

j

in (1.75) modulo isomorphism of spaes (see

Lemmata 1.27 and 3.8).

Let

!

L

p

(R

+

; x

�

(1 + x)

��

) :=

�

' : ';V

1

' 2 L

p

(R

+

; x

�

(1 + x)

��

)

	

; (3.6)

 

L

p

(R

+

; x

�

(1 + x)

��

) :=

�

 + U

0

' : ';  2 L

p

(R

+

; x

�

(1 + x)

��

)

	

:

On de�ning the norms

k'

�

�

!

L

p

(R

+

; x

�

(1 + x)

��

)k := k'

�

�

L

p

(R

+

; x

�

(1 + x)

��

)k

+kV

1

'

�

�

L

p

(R

+

; x

�

(1 + x)

��

)k ;

k'+ U

0

 

�

�

 

L

p

(R

+

; x

�

(1 + x)

��

)k := k'

�

�

L

p

(R

+

; x

�

(1 + x)

��

)k

+k 

�

�

L

p

(R

+

; x

�

(1 + x)

��

)k

we make

!

L

p

(R

+

; x

�

(1 + x)

��

) and

 

L

p

(R

+

; x

�

(1 + x)

��

) into Banah

spaes.

The embedding

C

1

0

(R

+

) �

!

L

p

(R

+

; x

�

(1 + x)

��

) � L

p

(R

+

; x

�

(1 + x)

��

)

�

 

L

p

(R

+

; x

�

(1 + x)

��

) (3.7)

are dense and follow from de�nitions.

Let

G

�

:=W

g

�

; g

�

:=

�

�� i

: (3.8)
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Then

G

�

'(x) = '(x) �

1

Z

x

e

x�y

'(y)dy ; G

+

'(x) = '(x) �

x

Z

0

e

y�x

'(y)dy (3.9)

and we an give equivalent desription of spaes (3.6) in form of the following

lemma (see [Pr1, x 5.2℄ for a similar assertion).

Lemma 3.1 The following de�nitions of spaes are equivalent:

!

L

p

(R

+

; x

�

(1 + x)

��

) :=

�

G

�

' : ' 2 L

p

(R

+

; x

�

(1 + x)

��

)

	

= Im

L

p

(R

+

;x

�

(1+x)

��

)

G

�

;

 

L

p

(R

+

; x

�

(1 + x)

��

) :=

�

' : G

+

' 2 L

p

(R

+

; x

�

(1 + x)

��

)

	

= Im

L

p

(R

+

;x

�

(1+x)

��

)

G

�1

+

:

Proof. It suÆes to prove that

k 

�

�

!

L

p

(R

+

; x

�

(1 + x)

��

)k

0

:= kG

�1

�

 

�

�

L

p

(R

+

; x

�

(1 + x)

��

)k ; (3.10)

k'

�

�

 

L

p

(R

+

; x

�

(1 + x)

��

)k

0

:= kG

+

'

�

�

L

p

(R

+

; x

�

(1 + x)

��

)k (3.11)

de�ne equivalent norms. To hek this let us prove that the operators

W

g

�1

�

 = G

�1

�

 =  + V

1

 ; W

g

�1

+

 = G

�1

+

 =  + U

0

 (3.12)

represent inverses to G

�

and to G

+

, respetively. Let us hek G

�

(I +

V

1

)' = ', beause all other ases are similar.

Due to the density of embedding (3.7) we have to hek the laimed

equality only for ' 2 C

1

0

(R

+

). Then

V

1

'(x) =

1

Z

x

'(y)dy

and integrating by parts we �nd

G

�

(I + V

1

)'(x) = '(x) +

1

Z

x

'(s)ds � e

�x

1

Z

x

e

�y

'(y)dy

�e

�x

1

Z

x

e

�y

dy

1

Z

0

'(s)ds = '(x) :



62

By the de�nition of ' 2

 

L

p

(R

+

; x

�

(1+x)

��

) we get G

�1

�

' = '+V

1

' 2

L

p

(R

+

; x

�

(1 + x)

��

); therefore the mappings

G

�

: L

p

(R

+

; x

�

(1 + x)

��

) �!

!

L

p

(R

+

; x

�

(1 + x)

��

) ;

G

�1

�

:

!

L

p

(R

+

; x

�

(1 + x)

��

) �! L

p

(R

+

; x

�

(1 + x)

��

)

are one-to-one and ontinuous. Equivalene of the norm in

!

L

p

(R

+

; x

�

(1 +

x)

��

) and of the norm in (3.10) follows from the Banah theorem.

As we already know

G

+

('+ U

0

') = G

+

G

�1

+

' = ' ;

on the other hand ' 2 L

p

(R

+

; x

�

(1+x)

��

) implies G

+

' 2 L

p

(R

+

; x

�

(1+

x)

��

) (see (3.8), (3.9)) and therefore G

+

U

0

' = G

+

(' + U

0

') � G

+

' =

'� G

+

' 2 L

p

(R

+

; x

�

(1 + x)

��

). Thus, the mappings

G

+

:

!

L

p

(R

+

; x

�

(1 + x)

��

) �! L

p

(R

+

; x

�

(1 + x)

��

) ;

G

�1

+

: L

p

(R

+

; x

�

(1 + x)

��

) �!

!

L

p

(R

+

; x

�

(1 + x)

��

)

are one-to-one and ontinuous. Equivalene of the norms in (3.11) and of

this in

 

L

p

(R

+

; x

�

(1 + x)

��

) follows from the Banah theorem.

Corollary 3.2 The spaes

!

L

p

(R

+

; x

�

(1 + x)

��

) and

 

L

p

0

(R

+

; x

��

(1 +

x)

�+�

), where p

0

=

p

p� 1

, are dual.

Proof. The operators

W

g

�

= G

�

: L

p

(R

+

; x

�

(1 + x)

��

) �!

!

L

p

(R

+

; x

�

(1 + x)

��

) ;

W

g

+

= G

+

:

 

L

p

(R

+

; x

�

(1 + x)

��

) �! L

p

(R

+

; x

�

(1 + x)

��

)

(3.13)

de�ne isomorphisms (see Lemma 3.1) and they are dual (onjugate) W

�

g

�

=

W

g

�

. The laimed result follows sine the spaes L

p

(R

+

; x

�

(1+x)

��

) and

L

p

0

(R

+

; x

��

(1 + x)

�+�

) are dual as well.

Lemma 3.3 The embedding

L

p

(R

+

; x

�

(1 + x)

1+��

) �

!

L

p

(R

+

; x

�

(1 + x)

��

) � L

p

(R

+

; x

�

(1 + x)

��

)

�

 

L

p

(R

+

; x

�

(1 + x)

��

) � L

p

(R

+

; x

�

(1 + x)

�1+��

) (3.14)

are ontinuous and dense.
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Proof (see [Pr1, Ch. 5, Theorem 2.3℄). We have to prove only the �rst and

the last embedding (see (3.7)).

Density of embedding follow from the density of C

1

0

(R

+

) in all these

spaes.

First we hek the embedding in (3.14). Obviously,

L

p

(R

+

; x

�

(1 + x)

1+��

) = L

p

([0; 1℄; x

�

)

�

+ L

p

([1;1); (1 + x)

1+

) ;

!

L

p

(R

+

; x

�

(1 + x)

��

) = L

p

([0; 1℄; x

�

)

�

+ L

p

([1;1); (1 + x)



)

and it suÆes to prove the embedding

L

p

([1;1); (1 + x)

1+

) �

!

L

p

([1;1); (1 + x)



) : (3.15)

If we prove the inequality

kV

1

'

�

�

L

p

([1;1); (1 + x)



)k � 

1

k'

�

�

L

p

([1;1); (1 + x)

1+

) ; (3.16)

due to the norm de�nition in

!

L

p

([1;1); (1 + x)



) (see (3.6)) there will

follow the embedding (3.15).

Invoking the H

�

older inequality we proeed as follows

jV

1

'(x)j =

�

�

�

�

�

�

1

Z

x

'(y)dy

�

�

�

�

�

�

�

0

�

1

Z

x

y

�(1+)p

0

dy

1

A

1

p

0

0

�

1

Z

x

�

�

y

1+

'(y)

�

�

p

dy

1

A

1

p

�

1

(1 + )p

0

� 1

k'

�

�

L

p

([1;1); (1 + x)

1+

)k ;

sine �p

0

(1 + ) < �1 (see (2.7)). Thus, V

1

'(x) exists as an ordinary

Lebesgue integral for arbitrary ' 2 L

p

([1;1); (1 + x)

1+

).

For the funtion

f(s; t) := t j'(st)j ; s; t 2 [1;1);

we have

1

Z

1

f(s; t)ds =

1

Z

t

j'(y)dyj � jV

1

'(x)j ;

8

<

:

1

Z

1

[t



f(s; t)℄

p

dt

9

=

;

1

p

= t

1

p

��1

8

<

:

1

Z

t

�

�

y

1+

'(y)

�

�

p

9

=

;

1

p

dy :

The latter equalities, inserted in the following well-known inequality

8

<

:

1

Z

1

2

4

1

Z

1

t



f(s; t)ds

3

5

p

dt

9

=

;

1

p

�

1

Z

1

8

<

:

1

Z

1

[t



f(s; t)℄

p

dt

9

=

;

1

p

ds
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(see [HLP1, Theorem 202℄) yield

kV

1

'

�

�

L

p

([1;1); (1 + x)



)k � 2



1

Z

1

s

�

1

p

��1

8

<

:

1

Z

1

�

�

y

1+

'(y)

�

�

p

dy

9

=

;

1

p

dt

�

2



1

p

+ 

k'

�

�

L

p

([1;1); (1 + x)

1+

)k

sine �

1

p

�  < 0 (see (2.7)).

Thus, (3.16) is proved and implies ontinuity of the �rst embedding in

(3.14).

The seond embedding in (3.14) follows by density. In fat, as we already

proved the embedding

L

p

0

(R

+

; x

��

(1 + x)

1�+�

) �

!

L

p

0

(R

+

; x

��

(1 + x)

�+�

)

is ontinuous and dense. The spaes are reexive and the embedding of the

dual spaes

 

L

p

(R

+

; x

�

(1 + x)

��

) � L

p

(R

+

; x

�

(1 + x)

�1+��

)

are ontinuous and dense as well.

Corollary 3.4 Let a 2 C(

_

R

+

); then

aI 2 L

�

!

L

p

(R

+

; x

�

(1 + x)

��

)

�

; aI 2 L

�

 

L

p

(R

+

; x

�

(1 + x)

��

)

�

;

provided

ja(x) � a(1)j �M(1 + x))

�1

; x 2 R

+

M <1 :

Proof. It suÆes to represent

a' = [a� a(1)℄'+ a(1)'

and apply Lemma 3.3 to the �rst summand, beause the seond summand,

multipliation by a onstant, is obviously ontinuous operator.

Theorem 3.5 Let a(�) be given by (3.1) and (1.4) hold. Then operators

(3.2) and (3.3) are ontinuous.

Operators (3.2) and (3.3) are Fredholm or are invertible if and only if

the orresponding operators

W

a

(�)

: L

p

(R

+

; x

�

(1 + x)

��

) �! L

p

(R

+

; x

�

(1 + x)

��

) ; (3.17)

W

a

(+)

: L

p

(R

+

; x

�

(1 + x)

��

) �! L

p

(R

+

; x

�

(1 + x)

��

) ; (3.18)

a

(+)

(�) :=

�+ i

�

a(�)
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are Fredholm or are invertible, respetively.

The pairs of operators (3.2) and (3.17), (3.3) and (3.18) have the kernels

and okernels of equal dimension and equal indies.

Proof (see [Pr1, x 5.2.3℄ for a similar proof). Let b; d 2 V

1

(R) and either

b(�) has a bounded analyti ontinuation b(� � i�) in the lower half-plane

� > 0 or d(�) has a bounded analyti ontinuation d(� + i�) in the upper

half-plane � > 0; then

W

bd

=W

b

W

d

(3.19)

(see[Du1, GF1℄). Sine

a(�) =

�

�� i

a

(�)

(�) =

�

�+ i

a

(+)

(�)

(see (3.1), (3.17) and (3.18)), we get

W

a

= G

�

W

a

(�)

= G

+

W

a

(+)

(3.20)

(see (3.8) and (3.19)).

All laimed assertions follow from (3.20) sine the operators

G

�

: L

p

(R

+

; x

�

(1 + x)

��

) �!

!

L

p

(R

+

; (1 + x)

�al

) ;

G

+

:

 

L

p

(R

+

; x

�

(1 + x)

��

) �! L

p

(R

+

; (1 + x)

�al

)

establish isomorphism (see Lemma (3.1)).

Remark 3.6 De�ning the spaes

!

C

(

_

R

+

; (1 + x)

�

) :=

n

' : ';V

1

' 2 C(

_

R

+

; (1 + x)

�

)

o

;

 

C

(

_

R

+

; (1 + x)

�

) :=

n

 + U

0

' : ';  2 C(

_

R

+

; (1 + x)

�

)

o

;

for � 2 R and taking in (3.1) a; a

(�)

2W

�

(R), full analogies of Lemma 3.1

and of Theorem 3.5 an be proved for the onvolution operators

W

a

: C(

_

R

+

; (1 + x)

�

) �!

!

C

(

_

R

+

; (1 + x)

�

) ;

W

a

:

 

C

(

_

R

+

; (1 + x)

�

) �! C(

_

R

+

; (1 + x)

�

) :

As for the analogies of Lemma 3.3 and Corollary 3.4 we easily �nd that

ontinuity

[g � g(1)℄I : C(

_

R

+

; (1 + x)

�

) �!

!

C

(

_

R

+

; (1 + x)

�

) ;

[g � g(1)℄I :

 

C

(

_

R

+

; (1 + x)

�

) �! C(

_

R

+

; (1 + x)

�

) ;

gI 2 L

�

!

C

(

_

R

+

; (1 + x)

�

)

�

; gI 2 L

�

 

C

(

_

R

+

; (1 + x)

�

)

�
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follows if

g 2 C(

_

R) ; jg(x)� g(1)j �M(1 + x))

�1�"

; x 2 R

+

; M <1 :

3.2 Convolutions on R

Let a 2 PC

p

(R) be non-ellipti, namely, as in (3.1). Then operator W

0

a

is

not Fredholm in L

p

(R) and, moreover, has non-losed image Im W

0

a

(see

[Du4, x 4℄).

Let us onsider the operators

V

1

'(x) := ()

1

Z

x

'(y)dy= lim

t!1

1

t� x

t

Z

x

d�

�

Z

x

'(z)dz= lim

t!1

t

Z

x

t� y

t� x

'(y)dy;

V

�1

'(t) := ()

t

Z

�1

'(y)dy ; F

0

' :=

1

Z

�1

'(�)d� ; t 2 R ; (3.21)

where the integrals with pre�x () are understood in the Cesaro mean value

sense and they onvert into an usual Lebesgue (or a Riemann) integral if

the latter exist. We de�ne the spae

!

L

p

(R) := f' 2 L

p

(R) : V

1

2 L

p

(R)g

= f' 2 L

p

(R) : V

�1

2 L

p

(R); F

0

' = 0g (3.22)

and endow it with the norm

k'

�

�

!

L

p

(R)k := k'

�

�

L

p

(R)k + kV

1

'

�

�

L

p

(R)k :

To justify the seond de�nition in (3.22) let us prove that the onditions

V

�1

' 2 L

p

(R) ; F

0

' = 0

follow from the prinipal ondition V

1

' 2 L

p

(R). In fat, the inlusion

V

�1

' 2 L

p

(R) follows from the prinipal ondition and from F

0

' = 0,

sine

V

�1

'(t) = F

0

'� V

1

'(t) = �V

1

'(t) :

Thus, we have to prove only F

0

' = 0. Sine

F

0

' = lim

t!�1

V

1

'(t) ;

V

1

' 2 L

p

(R) is absolutely ontinuous with derivative (V

1

') = ' 2 L

p

(R),

we get the result.

The embedding

f' 2 C

1

0

(R) : F

0

' = 0g �

!

L

p

(R)
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is dense.

Let us prove that the onvolution operator

G

�

:=W

0

g

�

: L

p

(R) �!

!

L

p

(R) ; g

�

(�) :=

�

�� i

: (3.23)

with vanishing symbol is bounded and, moreover, de�nes an isomorphism

with the inverse operator written as follows

(W

0

g

�

)

�1

=W

g

�1

�

= I + V

1

:

!

L

p

(R) �! L

p

(R) (3.24)

(f. Lemma 3.1). In fat, by de�nition (3.21) operator (3.24) is bounded

and, due to obvious equality W

0

g

W

0

h

= W

0

gh

(see (2.1)) W

g

�1

�

is the inverse

from the right to W

0

g

�

:

W

0

g

�

W

g

�1

�

=W

0

g

�

g

�1

�

= I :

Let us prove that operator (3.23) is bounded. Aording to the de�nition

(3.22) it suÆes to prove that

V

1

W

0

g

�

' 2 L

p

(R) provided ' 2 L

p

(R) :

Sine

W

0

g

�

'(t) = '(t) �

1

Z

x

e

t��

'(�)d� ;

we proeed as follows

V

1

W

0

g

�

'(t) = V

1

'(t)� ()

1

Z

t

d�

1

Z

�

e

��y

'(y)dy

= V

1

'(t)�()

1

Z

t

'(y)dy

y

Z

t

e

��y

dy=V

1

'(t)�()

1

Z

t

(1� e

��y

)'(y)dy

= ()

1

Z

t

e

��y

'(y)dy = '(t)�W

0

g

�

'(t) (3.25)

and get the inlusion V

1

W

0

g

�

' 2 L

p

(R) beause ', W

0

g

�

' 2 L

p

(R). More-

over, (3.25) an also be written as follows

(I + V

1

)W

0

g

�

' = ' ;

whih means, due to (3.24), W

0

g

�1

�

W

0

g

�

= I and W

0

g

�

is invertible from the

left.
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Similarly to (3.14) is proved that the embeddings

f' 2 L

p

(R; 1 + jxj) : F

0

' = 0g �

!

L

p

(R) � L

p

(R; (1 + jxj)

�1

)

are ontinuous and dense.

If g 2 L

1

(

_

R) has the estimate

jg(x)� g(1)j �M(1 + jxj))

�1

; x 2 R ; M <1 ; (3.26)

the following multipliation operators are bounded

[g � g(1)I : L

p

(R) �!

!

L

p

(R) ; gI :

!

L

p

(R) �!

!

L

p

(R) : (3.27)

Theorem 3.7 Let a(�) be as in (3.1). Operator W

0

a

: L

p

(R) �!

!

L

p

(R)

is Fredholm if and only if W

0

a

(�)

is Fredholm in the spae L

p

(R), whih

reads

inf

�2R

ja

(�)

(�)j > 0 (3.28)

(see (2.5)). If (3.28) holds, (a

(�)

)

�1

2 PC

N�N

p

(

_

R) and the inverse is

(W

0

a

)

�1

:=W

0

(a

(�)

)

�1

(I + V

1

) :

!

L

p

(R) �! L

p

(R) : (3.29)

Proof. Due to (3.24), (3.24) the proof an immediately be redued to the

investigation of the operator W

0

a

(�)

in the spae L

p

(R). In this ase the

Fredholm riteria is known (see (2.5)).

3.3 Cesaro-type operators

We remind that �

1

:= f� 2 C : j�j = 1g is the unit irumferene,

� := f�

1

; : : : ; �

n

g � �

1

is the onformal image of all knots of � and �

ow

is the subset of � (onformal image of all outward peaks of �; see (1.74){

(1.92)); �

1�

j

= �

�

1�

j

[�

+

1�

j

is a �xed neighbourhood of �

j

(see (1.74){(1.92)).

We use L

p

(�

1

; f�

j

g) for the spae L

p

(�

1

;�

ow

) when �

ow

= f�

j

g onsists of

a single knot.

For a Banah spae X by X

n

we denote the spaes of vetor{elements

	 = ( 

1

; : : : ;  

n

) with omponents  

j

2 X. Let

L

2

p

(R; f1g) :=

n

� = ('

1

; '

2

) 2 L

2

p

(R) :

e

V

1

� 2 L

p

(R

+

)

o

; (3.30)

e

V

1

� :=

�

e

2�

p

i

V

1

�V

1

0 0

��

'

1

'

2

�

= V

1

[e

�

�

p

i

'

1

� '

2

℄

(see (3.4) for V

1

) denote the subset of L

2

p

(R) with the appropriate norm

k�

�

�

L

2

p

(R; f1g)k := k�

�

�

L

p

(R)k + k

e

V

1

�

�

�

L

p

(R

+

)k :
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Lemma 3.8 There exists an isomorphism of spaes

Z

p�

j

: L

p

(�

1

) �! L

2

p

(R) ;

Z

p�

j

: L

p

(�

1

; f�

j

g) �! L

2

p

(R; f1g) ;

(3.31)

suh that the Cesaro-type operators

e

V

�

j

in (1.90) and

e

V

1

in (3.4) are

equivalent

Z

p�

j

e

V

�

j

Z

�1

p�

j

= g

j

e

V

1

h

j

I = g

j

e

V

1

+R

j

; (3.32)

where the funtions g

�1

j

, h

�1

j

2 C

1

(

_

R) are non-vanishing

g

j

(x) :=

�

1� ie

�x

1 + e

�2x

�

1

p

; h

j

(x) :=

(1 + e

�2x

)

1

p

(1� ie

�x

)

1+

1

p

and the operator R

j

: L

p

(R) ! L

p

(R) is bounded.

Proof. The transformations

Z

�

j

'(x) := j{

0

�

j

(x)j

1

p

'({

�

j

(x)) = 2

1

p

(x

2

+ 1)

1

p

'

�

��

j

x� i

x+ i

�

;

Z

p

 (�) :=

�

e

�

�

p

 (e

��

); e

�

�

p

 (�e

��

)

�

; x; � 2 R;

(3.33)

where the �rst one is based on the Kelly transformation

{

�

j

(x) := ��

j

x� i

x+ i

: R �! �

1

; {

�

j

(0) = �

j

;

establish isometri isomorphisms

Z

�

j

: L

p

(�

1

)! L

p

(R) ; kZ

�

j

'

�

�

L

p

(R)k = k'

�

�

L

p

(�

1

)k ;

Z

p

: L

p

(R) ! L

2

p

(R) ; kZ

p

 

�

�

L

2

p

(R)k = k 

�

�

L

p

(R)k

(3.34)

and have the following inverses

Z

�1

�

j

 (�) := j({

�1

�

j

)

0

(x)j

1

p

 ({

�1

�

j

(x)) = j� + �

j

j

�

2

p

 

�

�i

� � �

j

� + �

j

�

; (3.35)

Z

�1

p

�(x) := �

�

(x)(�x)

�

1

p

'

2

(� log(�x)) + �

+

(x)x

�

1

p

'

1

(� log x) ;

where � = ('

1

; '

2

)

>

and �

�

(x) are the harateristi funtions of R

�

� R.

The transformation

Z

p�

j

:= Z

p

Z

�

j

(3.36)

establishes the �rst of laimed isomorphisms in (3.31).

To prove that Z

p�

j

arranges the seond isomorphisms in (3.31) as well,

let us onsider the following intermediate spae

L

2

p

(R; f0g) :=

n

 2 L

p

(R) :

e

V

0

 2 L

p

(R

+

)

o

; (3.37)

e

V

0

 (x) := V

0

[e

�

�

p

i

 (x)�  (�x)℄ ;
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where the operator V

0

is de�ned by the Cesaro-type mean value integral

(f. (3.5)):

V

0

 (x) := ()

x

Z

0

�

y

x

�

1

p

 (y)

dy

y

= lim

z!0

h

log

x

z

i

�1

x

Z

z

d�

�

x

Z

�

�

y

x

�

1

p

 (y)

dy

y

= lim

z!0

x

Z

z

log

y

z

log

x

z

�

y

x

�

1

p

 (y)

dy

y

: (3.38)

It is easy to verify diretly the following onnetion

Z

p

e

V

0

Z

�1

p

=

e

V

1

(3.39)

(see (3.34)). Moreover, Z

p

establishes isometri isomorphisms

Z

p

: L

p

(R; f0g) ! L

2

p

(R; f1g) ;

kZ

p

 

�

�

L

2

p

(R; f1g)k = k 

�

�

L

p

(R; f0g)k :

(3.40)

Therefore, to justify the seond isomorphism in (3.31) we just need to verify

Z

�

j

V

�

j

Z

�1

�

j

= g

0

V

0

h

0

I ; (3.41)

where g

�1

0

; h

�1

0

2 C

1

(R) are non-vanishing funtions

g

0

(x) :=

�

1� ix

1 + x

2

�

1

p

; h

0

(x) :=

(1 + x

2

)

1

p

(1� ix)

1+

1

p

beause applying equivalene (3.39) to equality (3.41) we immeadiately get

(3.32).

Let us onsider the following operators

V

1

�

j

'(�) := lim

�!�

j

�

log

(� � �

j

)(� + �

j

)

(� � �

j

)(� + �

j

)

�

�1

Z

^

� �

d�

�� �

j

Z

^

��

�

� � �

j

� � �

j

�

1

p

�'(�)

d�

� � �

j

= lim

�!�

j

Z

^

� �

log

���

j

���

j

log

(���

j

)(�+�

j

)

(���

j

)(�+�

j

)

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

;

V

2

�

j

'(�) := lim

�!�

j

Z

^

� �

log

(���

j

)(�+�

j

)

(���

j

)(�+�

j

)

log

(���

j

)(�+�

j

)

(���

j

)(�+�

j

)

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

and prove that

V

�

j

= V

1

�

j

= V

2

�

j

: (3.42)
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In fat,

(V

�

j

� V

1

�

j

)'(�) := lim

�!�

j

log

�+�

j

�+�

j

log

���

j

���

j

+ log

�+�

j

�+�

j

V

�

j

'(�) = 0 ;

beause, for a �xed � 2 �

1�

j

,

�

�

�

�

log

� + �

j

� + �

j

�

�

�

�

�M

0

<1 and lim

�!�

j

log

�+�

j

�+�

j

log

���

j

���

j

+ log

�+�

j

�+�

j

= 0 :

For the di�erene V

2

�

j

� V

1

�

j

we have

(V

2

�

j

� V

1

�

j

)'(�) = lim

�!�

j

Z

^

� �

log

�+�

j

�+�

j

log

(���

j

)(�+�

j

)

(���

j

)(�+�

j

)

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

: (3.43)

If log

2

(� � �

j

)'(�) belongs to L

p

(�

1�

j

) integrand in (3.43) is absolutely

integrable and we an drug the limit inside; on the other hand

lim

�!�

j

log

�+�

j

�+�

j

log

(���

j

)(�+�

j

)

(���

j

)(�+�

j

)

= 0

for all �xed � 2

�

� � . Therefore, with above onstraints on '(�) we get

(V

2

�

j

� V

1

�

j

)'(�) = lim

�!�

j

V

1

�

j

v

j

'(�) = 0 ; v

j

(�; �) :=

log

�+�

j

�+�

j

log

���

j

���

j

:

Sine the above taken funtions are dense in the spae L

p

(�

1j

; f�

j

g), equality

V

2

�

j

' = V

1

�

j

' holds for all ' 2 L

p

(�

1j

; f�

j

g).

Due to (3.42) all three operators V

�

j

, V

1

�

j

and V

2

�

j

de�ne the same spae

L

p

(�

1

; f�

j

g) (f. (1.92)). Therefore, to prove the seond isomorphism in

(3.31) we use the operator V

2

�

j

instead of V

�

j

. We proeed as follows:

(Z

�

j

�

�

j

V

2

�

j

Z

�1

�

j

 )(x)= lim

{

�

j

(z)!�

j

�

�

�

{

0

�

j

(x)

�

�

�

1

p

Z

!

{

�

j

(z){

�

j

(x)

log

(���

j

)({

�

j

(z)+�

j

)

({

�

j

(z)��

j

)(�+�

j

)

log

({

�

j

(x)��

j

)({

�

j

(z)+�

j

)

({

�

j

(z)��

j

)({

�

j

(x)+�

j

)

�

�

� � �

j

{

�

j

(x)� �

j

�

1

p

�

�

�

({

�1

�

j

)

0

(�)

�

�

�

1

p

 ({

�1

�

j

(�))

d�

� � �

j

;



72

inserting � = {

�

j

(y), d� = {

0

�

j

(y)dy and taking into aount the equalities

({

�1

�

j

)

0

({

�

j

(y)) = [{

0

�

j

(y)℄

�1

;

{

�

j

(x) � �

j

{

�

j

(x) + �

j

= ix ;

{

�

j

(x)� �

j

=

�2�

j

x

x+ i

; {

0

�

j

(x) =

�2i�

j

(x + i)

2

; (3.44)

we ontinue as follows

(Z

�

j

�

�

j

V

2

�

j

Z

�1

�

j

 )(x) = lim

z!0

x

Z

z

log

({

�

j

(y)��

j

)({

�

j

(z)+�

j

)

({

�

j

(z)��

j

)({

�

j

(y)+�

j

)

log

({

�

j

(x)��

j

)({

�

j

(z)+�

j

)

({

�

j

(z)��

j

)({

�

j

(x)+�

j

)

�

{

�

j

(y)� �

j

{

�

j

(x)� �

j

�

1

p

�

�

�

�

�

�

{

0

�

j

(x)

{

0

�

j

(y)

�

�

�

�

�

1

p

 (y)

{

0

�

j

(y)dy

{

�

j

(y)� �

j

= lim

z!0

g

0

(x)

x

Z

z

log

y

z

log

x

z

�

y

x

�

1

p

h

0

(y) (y)

dy

y

= g

0

V

0

h

0

 (x) ; g

0

(x) :=

�

1� ix

1 + x

2

�

1

p

; h

0

(x) :=

(1 + x

2

)

1

p

(1� ix)

1+

1

p

and we get (3.41).

Boundedness of

R

j

:= g

j

e

V

1

[h

j

� 1℄I : L

2

(R) �! L

2

(R)

follows sine h

j

(x) � 1 = h

j

(x) � h

j

(+1) = O

�

e

�

x

p

�

as x ! +1 whih

yields the boundedness [h

j

� 1℄I : L

2

(R) !

!

L

2

(R) (see (3.27)).

Proof of Lemma 1.27. Let us apply the isomorphism Z

p�

j

, de�ned in

(3.31), (3.33). Then '; log(� � �

j

)' 2 L

p

(�

1�

j

) for all �

j

2 �

ow

imply

Z

p�

j

' 2 L

2

p

(R

+

); (Z

p�

j

log(� � �

j

)')(x)=log

�

��

j

e

�x

e

�x

+ i

�

(Z

p�

j

')(x)

=

�

�x+ log

��

j

e

�x

+ i

�

(Z

p�

j

')(x) 2 L

2

p

(R

+

)

(see (3.33)); due to Lemma 3.3 Z

p�

j

' 2

!

L

2

p

(R

+

). Applying the inverse iso-

morphism Z

�1

p�

j

(see (3.31), (3.35)) we �nd ' = Z

�1

p�

j

Z

p�

j

' 2

!

L

2

p

(�

1�

j

; f�

j

g).

The remainder laims of the Lemma (see (1.98)) follow from the proved

part as Corollary 3.4 from Lemma 3.3.

Remark 3.9 Due to the above established isomorphism (3.40) and to Corol-

lary 3.4 if a funtion g(x) has the property

g 2 C(J ); g(x)� g(0) = O((1� log x)

�1

) ; J := (�; ) � R (3.45)
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the following multipliation operators (see (3.37))

gI : L

p

(J ; f0g) �! L

p

(J ; f0g) ;

[g � g(0)℄I : L

p

(J ) �! L

p

(J ; f0g)

are bounded.

3.4 Equations on the irumferene (example)

Let �

1

, � := f�

1

; : : : ; �

n

g � �

1

, �

ow

� �, �

1�

j

and �

�

1�

j

be the same as in

x 3.3.

We us onsider, as an example, the following operator with �xed singu-

larities at � in the kernel

A

�

'(�) = '(�)

+

n

P

j=1

�

+

�

j

(�)

�

j

�

j

�

R

�

+

1�

j

�

���

j

���

j

�



j

'(�)d�

�

2

j

��t

; � 2 �

1

; (3.46)

where �

+

�

j

(t) is the harateristi funtion of the ar �

+

1�

j

� �

1�

j

� �

1

and

�

j

=

8

>

>

>

>

<

>

>

>

>

:

sin�

�

1

p

+ 

j

�

for � 2 �

ow

;

sin�

�

1

p

+ 

0

j

�

for � 62 �

ow

;

(3.47)

�

1

p

< 

j

< 1�

1

p

; � 2 �

ow

;

�

1

p

< 

0

k

6= 

k

< 1�

1

p

; � 62 �

ow

: (3.48)

Theorem 3.10 Let onditions (3.47) and (3.48) hold. Then the operator

A

�

: L

p

(�

1

)! L

p

(�

1

;�

ow

) ; 1 < p <1 (3.49)

is Fredholm provided

1

p

+ 

j

6=

1

2

for all j = 1; : : : ; n (3.50)

and then

dim Ker A

�

=

X

�

j

>0

�

j

; dim Coker A

�

= �

X

�

j

<0

�

j

; (3.51)
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where

�

j

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 for

1

2

<

1

p

+ 

j

< 1 ; �

j

2 �

ow

;

0 for 

j

2 (

0

j

; 1� 

0

j

) ; �

j

62 �

ow

;

�1 for 0 <

1

p

+ 

j

<

1

2

; �

j

2 �

ow

;

1 for 

j

> maxf

0

j

; 1� 

0

j

g ; �

j

62 �

ow

;

�1 for 

j

< minf

0

j

; 1� 

0

j

g ; j = m+ 1; : : : ; n :

(3.52)

In partiular, A

�

in (3.49) is invertible provided

1

2

<

1

p

+ 

j

< 1 for all � 2 �

ow

and 

j

2 (

0

j

; 1� 

0

j

) for all � 62 �

ow

: (3.53)

Proof. Note that sine �

+

1�

k

\ �

+

1�

j

= ; for k 6= j, we have

A

�

=

n

Q

j=1

A

�

j

;

A

�

j

:= '(�) + �

+

�

j

(�)

�

j

�

j

�

Z

�

+

1�

j

�

� � �

j

� � �

j

�



j

'(�)d�

�

2

j

� �t

; � 2 �

1

: (3.54)

Therefore it suÆes to prove the Theorem for a single knot � = f�

j

g.

We will apply the isomorphisms of spaes

Z

�

j

: L

p

(�

+

1�

j

) �! L

p

(I) ;

e

Z

p

: L

p

(I) �! L

p

(R

+

) ;

(3.55)

where I = [0; 1℄ and Z

�

j

is de�ned in (3.33), while

e

Z

p

'(x) := e

�

x

p

'(e

�x

) : (3.56)

We have assumed, without loss of generality, that

�

+

1�

j

=

�

e

i#

�

j

: 0 < # < �

	

is the half-irumferene; otherwise we will use another Kelly transforma-

tion

{

�

j

(x) := ��

j

x� i ot

#

j

2

x+ i ot

#

j

2

: I = [0; 1℄ �! �

+

1�

j

=

!

�

j

(�

j

e

i#

j

)� �

1

while de�ning the isomorphism Z

�

j

in (3.33). The operators Z

�

j

and

e

Z

p

,

besides (3.55) and similarly to (3.31), (3.40), establish the following isomor-

phisms

Z

�

j

: L

p

(�

+

1�

j

; f�

j

g) �! L

p

(I; f0g) ;

e

Z

p

: L

p

(I; f0g) �!

!

L

p

(R

+

) :

(3.57)
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Lifting the operator (3.54) to the equivalent operator �rst by the iso-

morphism Z

�

j

, we get, by applying (3.44),

e

B

�

j

 (x) := (Z

�

j

A

�

j

Z

�1

�

j

 )(x)= (x)+

�

j

�

j

�

�

�

{

0

�

j

(x)

�

�

�

1

p

�

Z

�

1�

j

�

{

�

j

(x)� �

j

� � �

j

�



j

�

�

�

�

({

�1

�

j

)

0

(�)

�

�

�

1

p

 ({

�1

�

j

(�))

d�

�

2

j

� �{

�

j

(x)

=  (x) +

�

j

�

j

�

1

Z

0

�

�

�

�

�

{

0

�

j

(x)

{

0

�

j

(y)

�

�

�

�

�

1

p

�

{

�

j

(x)� �

j

{

�

j

(y)� �

j

�



j

{

0

�

j

(y) (y)dy

�

2

j

� {

�

j

(y){

�

j

(x)

=  (x)�

�

j

�

1

Z

0

�

x

y

�



j

�

x+ i

y + i

�

1�

j

�

x

2

+ 1

y

2

+ 1

�

1

p

 (y)dy

y + x

=g

j

B

�

j

g

�1

j

 (x)

for x 2 I, where

g

j

(x) :=

(x+ i)

1�

j

(1 + x

2

)

1

p

; B

�

j

 (x) :=  (x) �

�

j

�

1

Z

0

�

x

y

�



j

 (y)dy

y + x

(3.58)

and g

�

j

2 C

1

(I) satisfy ondition (3.45). Therefore we an detah invertible

operators g

�1

j

I and study the equivalent operators

B

�

j

: L

p

(I) �! L

p

(I; f0g) for �

j

2 �

ow

;

B

�

j

: L

p

(I) �! L

p

(I) for �

j

62 �

ow

:

The operator B

�

j

an be lifted further, now by Z

p

, to the following equiva-

lent operator

W

B

�

j

= Z

p

B

�

j

Z

�1

p

: L

p

(R

+

) �!

~

L

p

(R

+

) for �

j

2 �

ow

;

W

B

�

j

= Z

1

B

�

j

Z

�1

1

: L

p

(R

+

) �! L

p

(R

+

) for �

j

62 �

ow

(3.59)

(see (3.56)), whih turn out to be onvolutions. In fat,

(Z

1

B

�

j

Z

�1

1

')(x) = '(x) �

�

j

�

1

Z

0

e

�

x

p

�

e

�x

y

�



j

z

�

1

p

'(� log z)dz

z + e

�x

= '(x)�

�

j

�

1

Z

0

e

(y�x)

(

1

p

+

j

)

'(y)dy

1 + e

y�x

=W

B

�

j

'(x) ;

where

B

�

j

(�) := 1�

�

j

�

F

t!�

"

e

�

(

1

p

+

j

)

t

1 + e

�t

#

= 1�

�

j

i

sinh�

h�

1

p

+ 

j

�

i+ �

i
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= 1�

�

j

sin�

�

1

p

+ 

j

� i�

�

; � 2 R ; j = 0; : : : ; n (3.60)

(see [Du1, Ch. II, x 1℄).

First let �

j

62 �

ow

; then (see (3.47))

B

�

j

(�) := 1�

sin�

�

1

p

+ 

0

j

�

sin�

�

1

p

+ 

j

� i�

�

; � 2 R ; 

0

j

6= 

j

:

From the property B

�

j

(�) = B

�

j

(��) we easily onlude that B

�

j

(�) = 0

implies � = 0 and, due to onditions (3.48),

inf

�2R

jB

�

j

(�)j > 0 for �

j

62 �

ow

:

Sine B

�

j

(�) depends ontinuously on the parameter �

j

:=

1

p

+ 

j

, 0 <

�

j

< 1, the index indB

�

j

might have at most 3 di�erent values. For 

j

2

(

0

j

; 1� 

0

j

) we apply the homotopy

B

j;�

(�) := 1� �

sin�

�

1

p

+ 

0

j

�

sin�

�

1

p

+ 

j

� i�

�

6= 0 for � 2

_

R ; 0 � � � 1 ;

sine B

j;�

(�) 6= 0 for all � 2

_

R and � 2 [0; 1℄ we onlude ind B

�

j

=

ind B

j;1

= ind B

j;0

= 0.

For 

j

< minf

0

j

; 1 � 

0

j

g and for 

j

> maxf

0

j

; 1 � 

0

j

g it is suÆient

to alulate the index only for one value of parameters in eah ase. The

images of the test funtions on the omplex plane are plotted on Fig. 5 in

the Appendix with the arrows showing the orientation of the image when

the argument � ranges through R from �1 to 1.

Finally we get

ind B

�

j

=

8

<

:

1 if 

j

< minf

0

j

; 1� 

0

j

g ;

0 if 

j

2 (

0

j

; 1� 

0

j

) ;

�1 if 

j

> maxf

0

j

; 1� 

0

j

g ;

(3.61)

for �

j

62 �

ow

(f. [Du1, Du3℄).

Next let �

j

2 �

ow

. Then (see (3.47))

B

�

j

(�) := 1�

sin�

�

1

p

+ 

j

�

sin�

�

1

p

+ 

j

� i�

�

=

�

�� i

B

0

j

(�)

and

B

0

j

(0) = lim

�!0

�� i

�

B

0

j

(�) = �iB

0

j

(0)

= �� ot�

�

1

p

+ 

j

�

6= 0 i�

1

p

+ 

j

6=

1

2

:
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Therefore,

inf

�2R

jB

0

j

(�)j > 0 i�

1

p

+ 

j

6=

1

2

; �

j

2 �

ow

: (3.62)

Further we �nd easily that ind B

0

j

might have at most two di�erent values,

B

0

j

(�1) = 1, �B

0

j

(0) > 0 for �

�

1

p

+ 

j

�

1

2

�

> 0 and � Im B

0

j

(�) > 0 for

�� > 0. The images of the test funtions on the omplex plane are plotted

on Fig. 6 in Appendix with the arrows showing the orientation of the image

when the argument � ranges through R from �1 to 1. These tests show

that

ind B

0

j

=

�

1 if 0 <

1

p

+ 

j

<

1

2

;

0 if

1

2

<

1

p

+ 

j

< 1 for �

j

2 �

ow

:

Aording to Theorems 2.5 and 3.5 we get: the operator W

B

�

j

in (3.59)

is Fredholm i� onditions (3.48) and (3.50) hold (see (3.51) and (3.62))

and Ind W

B

�

j

= � ind B

0

j

= �

j

for �

j

2 �

ow

(see (3.61)), Ind W

B

�

j

=

� ind B

�

j

= �

j

for �

j

62 �

ow

(see (3.61)), where �

j

is de�ned in (3.52).

4 Ellipti boundary integral equations

Let � be as in x 1.1, the weight funtion �(t) be de�ned in (1.2).

For our purposes we need to de�ne the order of usp: �

j

> 0 is alled

the order of a usp t

j

2 � if there exists q

j

6= 0 suh that

arg

�

�

(t

j

; r)� t

j

�

+

(t

j

; r)� t

j

= q

j

r

�

j

+ o (r

�

j

) as r ! 0;

where �

�

(t

j

; r) 2 �

j�1

and �

+

(t

j

; r) 2 �

j

are equidistant points j�

�

(t

j

; r)�

t

j

j = r (see Fig. 3).

`
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+
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�
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+
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�

xx

t

j

t

j

�

+

�

�

�

�

�

+

�

j�1

�

j

�
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�

j

r

r

Fig. 3
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The obvious equivalent ondition is

�

�

(t

j

; r)� �

+

(t

j

; r) = q

j

r

1+�

j

+ o

�

r

1+�

j

�

as r ! 0 :

Further equivalent de�nitions of the order an be found in [DLS1℄.

Throughout this setion we assume the orders of usps are all equal 1

if 

j

= 0 or 

j

= 2 ; then �

j

= �(t

j

) = 1 (4.1)

for all j = 1; : : : ; n

(see (3.2)) and will investigate the following integral equations:

A

0

' = a

0

'+ a

1

S

�

+ a

2

W

�;0

'+ a

3

W

�

�;0

'+ a

4

�

t

V

�

' = f (4.2)

with N � N matrix oeÆients a

0

, a

1

, a

2

, a

3

, a

4

2 PC

N�N

(�) (a

0

, a

1

,

a

2

, a

3

, a

4

2 PH

N�N

�

(�)) in the vetor spae L

N

p

(�; �) (in the vetor spae

(H

0

�

)

N

(�; �), respetively, provided � has no usps 0 < 

j

< 2, j = 1; : : : ; n)

A

1

' = a

0

'+ a

1

W

�;0

'+ a

2

W

�

�;0

' = f ; a

0

; a

1

; a

2

2 PC

N�N

(�) (4.3)

in the vetor spaes L

N

p

(�; �) and PC

N

(�; �),

B

0

' = b

0

'+ b

1

W

�;0

' = g ; b

0

; b

1

2 (PC

1

)

N�N

(�) � C

N�N

(�) (4.4)

in the vetor spaes (W

1

)

N

p

(�; �), C

N

(�; �), (PC

1

)

N

(�; �) and in

(H

0

)

N

�+1

(�; �) (in the latter ase usps are absent and oeÆients belong

to PH

N�N

�

(�)).

Due to Theorems 1.5 and 1.6 respetive onditions in (1.4) ensure bound-

edness of operators A

0

; A

1

; B

0

in spaes listed above.

4.1 Equation (4.2) in the spaes L

N

p

(�; �) and H

0

�

(�; �)

Let X(�) denote the spae L

N

p

(�; �) or, if usps are absent, the spae

H

0

�

(�; �) and appropriate ondition in (1.4) hold. Symbol of equation (4.2)

in the spae X(�) reads as follows

(A

0

)

X(�)

:= ea

0

+ ea

1

S

X(�)

+ ea

2

W

X(�)

+ ea

3

W

�

X(�)

+ ea

4

(�

t

V )

X(�)

; (4.5)

where

ea :=

"

a(t+ 0) 0

0 a(t� 0)

#

; a 2 PC

N�N

(�) ; t 2 � ;

W

X(�)

(t; �; �) :=

1

4

h

S

X(�)

(t; �; �) + S

X(�)

(t;��;��)

i

; �; � 2 R ;
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(�

t

V )

X(�)

(t; �; �) :=

i

4

h

S

X(�)

(t; �; �)� S

X(�)

(t;��;��)

i

;

W

�

X(�)

(t; �; �) := �

1

4

h

e

h

�1

(t)S

X(�)

(t; �; �)

e

h(t) +

e

h(t)S

X(�)

(t;��;��)

e

h

�1

(t)

i

e

h(t) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

"

1 0

0 1

#

if t 6= t

1

; : : : ; t

n

;

"

1 0

0 e

�(

j

�1)i

#

if t = t

j

; j = 1 : : : ; n ;

S

X(�)

(t; �; �) :=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

2

6

6

4

oth�(i�

t

+ �) �

e

�(

t

�1)(i�

t

+�)

sinh�(i�

t

+ �)

e

�(1�

t

)(i�

t

+�)

sinh�(i�

t

+ �)

� oth�(i�

t

+ �)

3

7

7

5

if 0 < 

t

< 2 ;

(

j

� 1)

"

� sign � 2�

�

(�)e

2�

2�

+

(�)e

�2�

sign�

#

if t = t

j

; 

t

= 

j

= 0; 2 ; � 6= 0 ;

(

j

�1)

"

� oth�(i�

t

+ �) 1+oth�(i�

t

+ �)

1�oth�(i�

t

+ �) � oth�(i�

t

+ �)

#

if t = t

j

; 

t

= 

j

= 0; 2; � = 0 ;

(4.6)

�

t

:=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1

p

if t 6= t

1

; : : : ; t

n

; X(�) = L

p

(�; �) ;

1

2

if t 6= t

1

; : : : ; t

n

; X(�) = H

0

�

(�; �) ;

1

p

+ �

t

if t = t

j

; X(�) = L

p

(�; �) ;

�

j

� � if t = t

j

; X(�) = H

0

�

(�; �) ;



t

:=

(

1 if t 6= t

1

; : : : ; t

n

;



j

if t = t

j

;

�

�

(�) :=

1

2

(1 + sign �) :

Due to onstraints (1.4) 0 < �

t

< 1 for all t 2 � and the symbol

(A

0

)

X(�)

(t; �; �) represents pieewise-ontinuous uniformly bounded fun-

tion of all variables.

Although h(t

j

� 0) = h(t

j

+ 0)e

�(

j

�1)i

(see (1.20)), we have dropped

the fator h(t

j

+ 0) for t = t

j

and the fator h(t) for t 6= t

1

; : : : ; t

n

in
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the de�nition of the symbol matrix

e

h(t) above sine it anels out in the

ombined symbol (A

0

)

X(�)

(t; �; �). In fat,

e

h(t) and

e

h

�1

(t) enter the symbol

(A

0

)

X(�)

(t; �; �) only as the ombination

e

h

�1

(t)S

X(�)

e

h(t) and the onstant

fators h

�1

(t

j

+ 0), h(t

j

+ 0) anel out.

Theorem 4.1 Let X(�) = L

N

p

(�; �) or, if � has no usps, X(�) =

(H

0

�

)

N

(�; �)). Equation (4.2) is Fredholm in the spae X(�) if and only

if

inf

t2�; �;�2R

�

�

det (A

0

)

X(�)

(t; �; �)

�

�

> 0 : (4.7)

If ondition (4.7) holds, then

Ind A

0

= �

1

2�

�

arg det (A

0

)

X(�)

(t;+1; 0)

�

�

�

n

X

j=1

1

2�

n

�

arg det (A

0

)

X(�)

(t

j

; �; 0)

�

Rnf0g

+

�

arg det (A

0

)

X(�)

(t

j

; 0; �)

�

R

o

: (4.8)

Proof. Due to Lemma 3.1

A

0

= a

0

I + a

1

S

�

+

a

2

4

(S

�

+ VS

�

V) +

a

3

4

(S

�

�

+ VS

�

�

V) +

a

4

4

(S

�

� VS

�

V)

and the laimed result follows from [DLS1, Theorem 1.1℄ for the ase X(�) =

L

N

p

(�; �) and from [Du6, Du7℄ for the ase X(�) = (H

0

�

)

N

(�; �) (when usps

are absent) if we take into aount the following:

I. The symbol of operator A

0

de�ned in [DLS1℄ and in [Du8℄ (see also

[Du3, Du5℄) has a blok-diagonal form

2

4

(A

0

)

X(�)

(t; �; �) 0

0 (A

0

)

X(�)

(t;��;��)

3

5

and it suÆes to onsider only the �rst blok as a symbol of A

0

. Due

to this hange we should multiply the index formula by fator

1

2

.

Let us note that symbol would be a full matrix-funtion if the orre-

sponding operator ontains terms VS

�

; VaI; aV or S

�

V .

II. The dual operator W

�

�;0

to W

�;0

is de�ned in (3.9) and the symbol

for it is omposed aording to the usual rule (see (4.5)) with

e

h(t)

denoting the symbol of hI (see (3.7) for h(t)).
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III. If B(t; �; �) is the symbol of B, the symbol of B

0

= VBV reads as

follows

B

0

(t; �; �) = B(t;��;��) (4.9)

(see [DLS1, x 1℄).

Corollary 4.2 For the operator

A

0

= a

0

I+a

1

S

�

= (a

o

+a

1

)(P

+

+GP

�

); P

�

:=

1

2

(I�S

�

); G :=

a

o

� a

1

a

o

+ a

1

;

following onditions are equivalent to (4.7):

(i) inf

t2�

ja

0

(t)� a

1

(t)j > 0;

(ii

0

) �2��

t

j

< arg

G(t

j

� 0)

G(t

j

+ 0)

< 2�(1 � �

t

j

), j = 1; : : : ; n, where �

t

j

is

de�ned in (4.6);

(ii

00

) (equivalent to ii') G(t) has the representation

G(t) = G

0

(t)

n

Y

j=1

(t� z

0

)

�

j

t

j

; G

o

2 C(�

1

) ;

z

0

2 


+

; ��

t

j

< �

j

< 1� �

t

j

; j = 1; : : : ; n

and (t� z

0

)

�

j

t

j

has the jump only at the point t

j

2 �.

If onditions (i) and (ii') (or (i) and (ii")) hold,

Ind A = ind G

0

:

4.2 Equation (4.3) in the spaes L

N

p

(�; �) and PC

N

(�; �)

Although equation (4.3) is a partiular ase of equation (4.2), in this ase

we an de�ne substantially simpler symbol and onsider equations also in

the spae PC

N

(�; �).

Let X(�) denote either L

N

p

(�; �) or PC

N

(�; �) and (1.4) hold.

Symbol of equation (4.3) in the spae X(�) reads as follows

(A

1

)

X(�)

(t; �) :=

"

a

0

(t+ 0) A

+

(t; �)

A

�

(t; �) a

0

(t� 0)

#

; (4.10)
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where

A

�

(t; �) := a

1

(t� 0)w

X(�)

(t; �) + a

2

(t� 0)w

�

X(�)

(t; �) ; t 2 �; � 2 R ;

w

X(�)

(t; �) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 if t 6= t

1

; : : : ; t

n

;

sinh�(1� 

j

)(i�

j

+ �)

sinh�(i�

j

+ �)

if t = t

j

; 0 < 

j

< 2 ;



j

� 1

2

e

�j�j

if t = t

j

; 

j

= 0; 2 ;

w

�

X(�)

(t; �) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 if t 6= t

1

; : : : ; t

n

;

sinh�(1� 

j

)[(�

j

+ 1)i+ �℄

sinh�(i�

j

+ �)

if t = t

j

; 0 < 

j

< 2 ;



j

� 1

2

e

�j�j

if t = t

j

; 

j

= 0; 2 ;

�

j

:=

8

>

<

>

:

1

p

+ �

j

if X(�) = L

N

p

(�; �) ;

�

j

if X(�) = PC

N

(�; �) :

Sine 0 < �

j

< 1; j = 1; : : : ; n (see (1.4)) the symbol (A

1

)

X(�)

(t; �) is a

orretly de�ned 2N � 2N matrix-funtion, is ontinuous and

(A

1

)

X(�)

(t

j

;�1) = (A

1

)

X(�)

(t

j

;+1) = diag fa

0

(t

j

� 0); a

0

(t

j

+ 0)g :

Theorem 4.3 Let X(�) denote either L

N

p

(�; �) or PC

N

(�; �) and (1.4)

hold.

Equation (4.3) is Fredholm in X(�) if and only if

inf

t2�; �2R

�

�

det (A

1

)

X(�)

(t; �)

�

�

> 0 : (4.11)

If ondition (4.11) holds, then

Ind A

1

=

n

X

j=1

1

2�

�

arg det (A

1

)

X(�)

(t

j

; �)

�

R

: (4.12)

Remark 4.4 It is easy to asertain that ondition (4.11) for a usp t

j

(with



j

= 0; 2) reads as follows

a

0

(t

j

�0)a

0

(t

j

+0)�[a

1

(t

j

�0)+a

2

(t

j

�0)℄[a

1

(t

j

+0)+a

2

(t

j

+0)℄e

��

6= 0; �2R;
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or, equivalently,

�

a

0

(t

j

� 0)a

0

(t

j

+ 0)

[a

1

(t

j

� 0) + a

2

(t

j

� 0)℄[a

1

(t

j

+ 0) + a

2

(t

j

+ 0)℄

�

> 1 :

Proof of Theorem 4.3. For X(�) = L

N

p

(�; �) the proof an be derived

from Theorem 4.1 (see (4.36) how to get symbol (4.10) from (4.6)). We

expose independent proof to over the ase X(�) = PC

N

(�; �) whih is not

overed by Theorem 4.1.

We suppose, as in the proof of Theorem 1.6 in x 2.3, that � has retilinear

parts �

�

j

; �

+

j

in some neighbourhood of all knots t

1

; : : : ; t

n

exept usps;

for a usp 

j

= 0; 2 the right neighbourhood �

+

j

is retilinear, while the

left one �

�

j

is not (f. (2.31) and Fig. 2). Suh hanges of the ontour �

ause a ompat perturbation of equation (4.3) and does not inuene the

Fredholm properties as well as the index of equation (see [DLS1℄).

Next we notie that operators W

�

0

;0

and W

�

�

0

;0

are ompat due to

Corollary (1.6) sine �

0

has no angular points and usps.

Applying the \maro loalization", desribed in [DLS1, Theorem 1.1,

x 3.2℄, we �nd that A

1

is Fredholm in X(�) i� det a

0

(t) 6= 0 for t 2

� n ft

1

; : : : ; t

n

g and operators

A

1;�

0

j

= a

0;j

I + a

1;j

W

�

0

j

;0

+ a

2;j

W

�

�

0

j

;0

; �

0

j

= �

�

j

[ �

+

j

; (4.13)

a

k;j

(t) :=

8

<

:

a

k

(t

j

� 0) if t 2 �

�

j

;

a

k

(t

j

+ 0) if t 2 �

+

j

; k = 0; 1; 2

are Fredholm in X(�

0

j

) for all j = 1; : : : ; n; for the index we have

Ind A

1

=

n

X

j=1

Ind A

1;�

0

j

: (4.14)

First let us onsider the spae X(�) = L

N

p

(�; �) and 0 < 

j

< 2; without

loss of generality t

j

= 0.

The transformation Z



j

;�

j

with �

j

:=

1

p

+�

j

has the inverse Z

�1



j

;�

j

(see

(2.34)) and arranges an isomorphism

Z



j

;�

j

: L

N

p

(�

0

j

; jtj

�

j

) �! L

2N

p

(R

+

) : (4.15)

Obviously,

Z



j

;�

j

A

1;�

0

j

Z

�1



j

;�

j

=

"

a

0

(t

j

+ 0) 0

0 a

0

(t

j

� 0)

#
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+

1

2

"

a

1

(t

j

+ 0) 0

0 a

1

(t

j

� 0)

#

2

4

0 N

0



j

�N

0

�

j

N

0



j

�N

0

�

j

0

3

5

+

1

2

"

a

2

(t

j

+ 0) 0

0 a

2

(t

j

� 0)

#

�

2

4

0 e

��(

j

�1)i

N

0



j

�e

�(

j

�1)i

N

0

�

j

e

��(

j

�1)i

N

0



j

�e

�(

j

�1)i

N

0

�

j

0

3

5

;

where

N

0

�

j

'(x) :=

1

2�i

1

Z

0

e

�(x�y)�

j

'(y)dy

1� e

�(x�y)��

j

i

(4.16)

(see (4.6) where the symbols of hI , S

�

and of VS

�

V is possible to pik up).

Thus, we get a onvolution operator

Z



j

;�

j

A

1;�

0

j

Z

�1



j

;�

j

=W

(A

1

)

X(�)

(t

j

;�)

: L

2N

p

(R

+

) �! L

2N

p

(R

+

) (4.17)

(f. (2.6)) with the symbol (A

1

)

X(�)

(t

j

; �) de�ned in (4.10). In fat, N

0

�

j

in (4.16) are onvolutions with the symbols

N

0

�

j

(�) :=

1

2�i

1

Z

�1

e

i�y��

j

y

dy

1� e

�y��

j

i

=

1

2�i

1

Z

0

t

�

j

�i��1

dt

1� e

��

j

i

t

(4.18)

=

e

��(1�

j

)(�

j

�i�)

sinh�(i�

j

+ �)

=

e

��(1�

j

)�

t

j

i

sinh�(i�

j

+ �)

; �

j

=

1

p

+ �

j

; � 2 R ;

sine �� < � � �

j

< � (see [GR1, 3.194.4℄). Thus, N

0

�

j

= W

N

0

�

j

and

from (4.18) we get (4.17).

From (4.17) and from Theorem 2.6 follows: A

1;�

j

is Fredholm i�

inf

�

�

det (A

1

)

X(�)

(t

j

; �)

�

�

> 0 ; � 2 R (4.19)

and, for 0 < 

j

< 2

Ind A

1;�

j

= � ind det (A

1

)

X(�)

(t

j

; �) : (4.20)

Now let 

j

= 0 or 

j

= 2. Then �

+

j

= [0; 1℄ and, due to ondition

(4.1) �

�

j

an be taken as the quarter part of the irumferene entered at

z

0

=

1�

j

2

i, starting at z

1

=

i

2

+

1�

j

2

i and terminating at z

2

= 0 (see Fig.

4).
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0 0

1

2

+

i

2

q q

q

q

q

q

1

2

�

i

2

z

0

z

0

�

�

j

�

�

j

�

+

j

�

+

j



j

= 2



j

= 0

- �

Fig. 4

The transformations

Z

0

'(x) :=

2

6

6

6

4

1

x+ 1

'

�

1

x+ 1

�

1

x� i+ 1

'

�

1

x� i+ 1

�

3

7

7

7

5

if 

j

= 0 ;

Z

2

'(x) :=

2

6

6

6

4

1

x+ 1

'

�

1

x+ 1

�

1

x+ i+ 1

'

�

1

x+ i+ 1

�

3

7

7

7

5

if 

j

= 2 ; x 2 R

+

; (4.21)

de�ne isomorphisms

Z



j

: L

N

p

(�

0

j

; jtj

�

j

) �! L

2N

p

(R

+

; (1 + x)

e�

j

) ; e�

j

:= p� �

j

� 2 (4.22)

and their inverses read

Z

�1

0

2

4

 

1

 

2

3

5

(t) = �

0

+

(t)

1

t

 

1

(t� 1) + �

0

�

(t)

1

t

 

2

(

1

t

+ i� 1) ;

Z

�1

2

2

4

 

1

 

2

3

5

(t) = �

0

+

(t)

1

t

 

1

(t� 1) + �

0

�

(t)

1

t

 

2

(

1

t

� i� 1) ;

where �

0

+

and �

0

�

are the harateristi funtions of �

+

j

and �

�

j

, respetively.

Obviously 1 < e�

j

< p� 1 and

Z



j

A

1;�

0

j

Z

�1



j

=

2

4

a

0

(t

j

+ 0) 0

0 a

0

(t

j

� 0)

3

5



86

+



j

� 1

2

2

4

a

1

(t

j

+ 0) + a

2

(t

j

+ 0) 0

0 a

1

(t

j

� 0) + a

2

(t

j

� 0)

3

5

�

2

4

0 N

i

�N

�i

N

i

�N

�i

0

3

5

;

where

N

�i

'(x) :=

1

2�i

1

Z

0

'(y)dy

y � x� i

=W

N

�i

'(x) (4.23)

are onvolutions with the symbols

N

�i

(�) :=

1

2�i

1

Z

�1

e

i�y

dy

�i� y

= ��

�

(�)e

��

; (4.24)

�

�

(�) :=

1

2

(1� sign�) ; � 2 R :

Therefore,

Z



j

A

1;�

j

Z

�1



j

=

2

4

a

0

(t

j

+ 0) 0

0 a

0

(t

j

� 0)

3

5

+



j

� 1

2

2

4

a

1

(t

j

+ 0) + a

2

(t

j

+ 0) 0

0 a

1

(t

j

� 0) + a

2

(t

j

� 0)

3

5

�

2

4

0 W

N

i

�N

�i

W

N

i

�N

�i

0

3

5

=W

(A

1

)

X(�)

(t

j

;�)

and, due to Theorem 2.6, A

1;

j

is Fredholm i� (4.19) holds; the index

formula (4.20) remains valid for 

j

= 0; 2.

Now let X(�) = PC

N

(�; �).

For 0 < 

j

< 2 we onsider the transformation Z



j

;Æ

j

, de�ned in (3.20).

Similarly to (4.15){(4.18) we �nd that

Z



j

;Æ

j

: C

N

(�

0

j

; jtj

Æ

j

) �! C

2N

(

_

R

+

)

de�nes an isomorphism and

Z



j

;Æ

j

A

1;�

0

j

Z

�1



j

;Æ

j

=W

(A

1

)

X(�)

(t

j

;�)
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is a Fredholm operator in the spae C

2N

(

_

R

+

) i�

inf

�

�

det (A

1

)

PC(�;�)

(t

j

; �)

�

�

> 0 ; � 2 R (4.25)

and

Ind A

1;�

0

j

= �

�

arg det (A

1

)

PC(�;�)

(t

j

; �)

�

R

; (4.26)

provided 0 < 

j

< 2.

For 

j

= 0 and 

j

= 2 (see Fig. 4) the transformation

Z



j

: PC

N

(�

0

j

; jtj

Æ

j

) �! C

2N

(

_

R

+

; (1 + x)

�Æ

j

+1

) ; �

0

j

= �

�

j

[ �

+

j

;

de�ned in (4.21), arranges an isomorphism and

Z



j

A

1;�

0

j

Z

�1



j

=W

(A

1

)

PC(�;�)

(t

j

;�)

is Fredholm in the spae PC

2N

(

_

R

+

; (1+x)

�Æ

j

+1

) i� ondition (4.25) holds

(see Theorem 2.6); again the index is de�ned by (4.26).

Remark 4.5 If S

X

(�)(t; �) is the symbol of S

�

(see (4.5), (4.6), (4.10)),

the symbol of VS

�

V is S

X(�)

(t;��). We know the symbol of aI for a 2

PC

N�N

(�) (X(�) = L

N

p

(�; �) or X(�) = PC

N

(�; �)). Therefore we an

ompose the symbol of equation

a

0

'+ a

1

W

�;0

'+ a

2

W

�

�;0

'+

M

X

k=1

a

2+k

W

(k)

�;0

' = f ; (4.27)

a

0

; : : : ; a

2+M

2 PC

N�N

(�)

and prove Theorem 4.3 for equation (4.27).

4.3 Equation (4.4) in the spaes (W

1

p

)

N

(�; �),

(H

0

�+1

)

N

(�; �), C

N

(�; �) and (PC

1

)

N

(�; �)

Let X(�) denote one of the spaes mentioned in the headline.

To equation (4.4) in the spae X(�) with smooth matrix oeÆients we

assign the symbol

(B

0

)

X(�)

(t; �) :=

2

4

b

0

(t) b

1

(t)e

��(1�

j

)i

w

X(�)

(t; �)

b

1

(t)e

�(1�

j

)i

w

X(�)

(t; �) b

0

(t)

3

5

; (4.28)

where

w

X(�)

(t; �) =

8

<

:

0 if t 6= t

1

; : : : ; t

n

;



j

� 1

2

e

�j�j

if t = t

j

; 

j

= 0; 2
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and w

X(�)

(t

j

; �) has following values for the di�erent spaes X(�):

w

W

1

p

(�;�)

(t

j

; �) =

sinh�(1� 

j

)

�

i

p

+ �

j

i� i+ �

�

2 sinh�

�

i

p

+ �

j

i+ �

�

;

w

H

0

�+1

(�;�)

(t

j

; �) =

sinh�(1� 

j

) (�

j

i� �i� i+ �)

2 sinh�

�

i

p

+ �

j

i+ �

�

;

w

PC

1

(�;�)

(t

j

; �) =

sinh�(1� 

j

)(�

j

i� i+ �)

2 sinh�(�

j

i+ �)

;

w

C(�;�)

(t

j

; �) =

sinh�(1� 

j

)(�

j

i+ �)

2 sinh�(�

j

i+ �)

:

Due to onditions (1.4) the symbol (B

0

)

X(�)

(t; �) is orretly de�ned, i.e.,

is a pieewise-ontinuous and uniformly bounded funtion of all variables.

Theorem 4.6 Let X(�) denote one of the following spaes (W

1

p

)

N

(�; �),

(H

0

�+1

)

N

(�; �) (if usps are absent), (PC

1

)

N

(�; �) or C

N

(�; �) and ondi-

tions (1.4) hold.

Equation (4.4) is Fredholm in the spae X(�) if and only if

9)

inf

t2�; �2R

�

�

det (B

0

)

X(�)

(t; �)

�

�

> 0 : (4.29)

If ondition (4.29) holds, then (f. (4.12))

Ind B

0

= �

n

X

j=1

1

2�

�

arg det (B

0

)

X(�)

(t

j

; �)

�

R

: (4.30)

Proof. For the spae X(�) = C

N

(�; �) the proof is verbatim the ase

X(�) = PC

N

(�; �), exposed in Theorem 4.3.

Let

g(s) : [0; `℄ �! � ; r(t) := g

�1

(t) : � �! [0; `℄ ; g(r(t)) � t

be some parametrisation of � and the inverse to the parametrisation. The

operator

�

1

�

'(t) := �

t

'(t) + r

0

(t)

2�i

`

['(t)� '(t

n

)℄ + '(t

n

)e

�

2�i

`

r(t)

= �

s

'

0

(s) +

2�i

`

['

0

(s)� '

0

(0)℄ + '

0

(0)e

�

2�i

`

s

; (4.31)

s = r(t) ; '

0

(s) = '(g(s)) ; 0 � s � ` ; t 2 �

9)

An equivalent ondition for a usp see in Remark 4.4.
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(see [Du3, x 2.2℄) de�nes an isomorphism of spaes

�

1

�

: (W

1

p

)

N

(�; �) �! L

N

p

(�; �) : (4.32)

and the inverse operator reads

�

�1

�

 (t) := e

�

2�i

`

r(t)

Z

t

n

t

e

2�i

`

r(�)

 (�)d�

+

1

`

h

1� r(t)e

�

2�i

`

r(t)

i

Z

�

e

2�i

`

r(�)

 (�)d� : (4.33)

Namely,

�

�1

�

�

1

�

 =  ;  2 L

N

p

(�; �) ; �

1

�

�

�1

�

' = ' ; ' 2 (W

1

p

)

N

(�; �)

and

�

1

�

= �

t

+R ; �

t

;R : (W

1

p

)

N

(�; �) �! L

N

p

(�; �) ;

where R is a ompat operator.

Then the equation

B

1

 := �

1

�

B

0

�

�1

�

 = u ; (4.34)

u;  2 L

N

p

(�; �) ;  := �

1

�

' ; u = �

1

�

f

is equivalent to (4.3). Sine

�

t

�

�1

�

= I +K ; K : L

N

p

(�; �) �! L

N

p

(�; �)

where K is a ompat operator, applying (2.27). we get

B

1

= (�

t

+R)(a

0

I + a

1

W

�;0

)�

�1

�

= a

0

I + a

1

W

(2)

�;0

+ T

= a

0

I + a

1

[S

�

+ h

�2

VS

�

Vh

2

I ℄ + T ; (4.35)

T = (a

0

0

I + a

0

1

W

�;0

)�

�1

�

+R(a

0

I + a

1

W

�;0

)�

�1

�

+(a

0

I + a

1

W

(2)

�;0

)K : L

N

p

(�; �) �! L

N

p

(�; �) :

T is a ompat operator beause �

�1

�

, R and K are ompat in L

N

p

(�; �).

Symbol of the operatorB

1

in L

N

p

(�; �), aording to (4.6) and to Remark

4.5, reads

(B

1

)

L

p

(�;�)

(t; �) :=

"

b

0

(t) 0

0 b

0

(t)

#

if t 6= t

1

; : : : ; t

n

;
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while for the knots t = t

j

we get

(B

1

)

L

p

(�;�)

(t

j

; �) =

"

b

0

(t

j

) 0

0 b

0

(t

j

)

#

+

"

b

1

(t

j

) 0

0 b

1

(t

j

)

#

�

8

>

>

<

>

>

:

2

6

6

4

oth�(i�

j

+ �) �

e

��(1�

j

)(i�

j

+�)

sinh�(i�

j

+ �)

e

�(1�

j

)(i�

j

+�)

sinh�(i�

j

+ �)

� oth�(i�

j

+ �)

3

7

7

5

+

"

1 0

0 e

2�(1�

j

)i

#

�

2

6

6

4

� oth�(i�

j

+ �)

e

�(1�

j

)(i�

j

+�)

sinh�(i�

j

+ �)

�

e

��(1�

j

)(i�

j

+�)

sinh�(i�

j

+ �)

oth�(i�

j

+ �)

3

7

7

5

"

1 0

0 e

�2�(1�

j

)i

#

9

>

>

=

>

>

;

(4.36)

=

"

b

0

(t) b

1

(t)e

��(1�

j

)i

w

W

1

p

(�;�)

(t

j

; �)

b

1

(t)e

�(1�

j

)i

w

W

1

p

(�;�)

(t

j

; �) b

0

(t)

#

;

w

W

1

p

(�;�)

(t

j

; �) :=

sinh�(1� 

j

)[i(�

j

� 1) + �)

sinh�(i�

j

+ �)

;

where �

j

is de�ned in (1.79). Thus, we get the symbol de�ned in (4.28).

As proved above, the operator B

1

(see (4.35)) in the spae L

N

p

(�; �)

is equivalent (as a Fredholm operator) with B

0

(see (4.4)) in the spae

(W

1

p

)

N

(�; �) and their indies are equal Ind B

0

= Ind B

1

(see (4.34)).

Thus, the symbol (B

0

)

L

p

(�;�)

(t

j

; �) := (B

1

)

L

p

(�;�)

(t; �) de�ned in (4.36)

is responsible for the Fredholm properties and the index of B

0

in the

spae (W

1

p

)

N

(�; �). Now the assertion follows from Theorem 4.1 (and from

Theorem 4.3).

In the ases X(�) = (H

0

�+1

)

N

(�; �) and X(�) = (PC

1

)

N

(�; �) the proofs

follow verbatim the above exposed ase X(�) = (W

1

p

)

N

(�; �).

5 Conformal mapping and BVPs

Through this setion we use the notation from x 1.1: for domains 


�

, for

their boundary � = �


�

, for the weight funtion �(t) (see (1.2), (1.4)), for

the unit disk D

1

and the unit irumferene �

1

= �D

1

.

5.1 The Cisotti formula and its appliations

In the present subsetion we prove the Cisotti formula (5.5). It was pub-

lished in 1921 (see [LS1, Ch. III, x 1, n

o

. 44, Example 5℄) and was redisov-

ered in [PK1℄ for pieewise-smooth urves by a di�erent method (namely,
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by reduing the problem to the Riemann{Hilbert BVP for analyti fun-

tions). This formula has several interesting appliations (see [KKP1℄) and

we will give some further appliations below. Returning to the original

method (see [LS1℄) we prove the Cisotti formula for arbitrary domain

bounded by a reti�able Jordan urve.

Next Theorem is easy to asertain if properties of onformal mapping

! : D

1

�! 


+

and of the inverse to it !

�1

: 


+

�! D

1

are taken into

aount: it suÆes to hange variables in the integrals � = !(z), z = !

�1

(�).

(see (1.47) and [Ev1, Ch. V, x 1℄).

Theorem 5.1 The derivatives !

0

(z) and (!

�1

)

0

(�) of onformal mapping

(1.46) and its inverse are both square integrable

Z




+

j(!

�1

)

0

(�)j

2

jd�j = �

2

;

Z

D

1

j!

0

(z)j

2

jdzj = (mes


+

)

2

; (5.1)

while restrited to the boundaries they beome absolutely integrable

Z

�

j(!

�1

)

0

(�)jjd�j = 2� ;

Z

�

1

j!

0

(z)jjdzj = mes� : (5.2)

Next Theorem is a far non-trivial and subtle onsequene of the foregoing

theorem and we quote [Go1, p.p. 405{411℄ (see also [Ko1, Ch. I, II℄) for

rigorous proofs.

Theorem 5.2 If !(z) in (5.1) is a onformal mapping of the unit disk D

1

onto a simply onneted domain 


+

with the reti�able Jordan boundary,

then:

i. ! 2 W

1

1

(D

1

) (see x 1:1).

ii. !(z) is absolutely ontinuous on the boundary �

1

.

iii. For almost all t

0

2 [0; 2�℄ there exists an angular (i.e., non-tangential)

boundary limit

^

! of the funtion !

0

(z)

lim

re

it

^

!e

it

0

!

0

(re

it

) = �ie

�it

0

d!(e

i�

)

d�

�

�

�

�

�=t

0

: (5.3)

The limit is denoted again by !

0

(e

it

0

).

Theorem 5.3 The derivatives !

0

(z) of the onformal mapping ! : D

1

!




+

has the following representation

!

0

(z) = !

0

(0) exp

2

6

4

1

�

Z

j�j=1

�(�)d�

� � z

�

1

�

Z

j�j=1

�(�)

d�

�

3

7

5

; z 2 D

1

; (5.4)

�(e

it

) := �(t) � t�

�

2

= #(t)� t for a.a. t 2 [��; �℄ ; (5.5)
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where �(t) and #(t) = #

!(e

it

)

= arg~�(!(e

it

)) denote the inlinations with

respet to the absissa axes of the tangent and the outer unit normal vetors

at the point !(e

it

), respetively (see Fig. 1).

Proof. Due to (5.3) �

0

(t) := �(e

it

) in (5.5) exists for almost all t 2 (��; �℄

and for those t we have

!

0

(e

it

) = �ie

�it

d!(e

it

)

dt

= �ie

i�

0

(t)

�

�

�

�

d!(e

it

)

dt

�

�

�

�

:

Sine !

0

(e

it

) 6= 0 (!(z) is a onformal mapping!)

Re [�i log!

0

(e

it

)℄ = Im log !

0

(e

it

) = �

0

(t) = �(e

it

) for a.a. t 2 (��; �℄

and the Shwartz integral reovers the analyti funtion �i log!

0

(z) 2

w

1

1

(D

1

) by its real part on the boundary

�i log!

0

(z) = iC +

1

2�

�

Z

��

e

i�

+ z

e

i�

� z

�(e

i�

)d�

(see [Ko1, Ch. I, II℄, [LS1, x. 44℄); therefore

!

0

(z) = exp(�C) exp

2

4

i

2�

�

Z

��

e

i�

+ z

e

i�

� z

�(e

i�

)d�

3

5

= C

0

exp

2

4

�

i

2�

�

Z

��

�(e

i�

)d� +

i

�

�

Z

��

�(e

i�

)e

i�

d�

e

i�

� z

3

5

= C

1

exp

2

6

4

1

�

Z

j�j=1

�(�)d�

� � z

3

7

5

and taking z = 0 easily loate the onstant C

1

:

C

1

= !

0

(0) exp

2

6

4

�

1

�

Z

j�j=1

�(�)

d�

�

3

7

5

:

It is sometimes helpful to have the Cisotti formula (5.4) in the following

equivalent form

!

0

(re

it

) = !

0

(0) exp

2

4

i(P

r

�

0

)(re

it

)� (

e

P

r

�

0

)(re

it

)�

i

2�

�

Z

�

�

0

(�)d�

3

5

; (5.6)

0 < r < 1 ; �� < t � � ;
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where P

r

'(z) is the Poisson operator and

e

P

r

'(z) de�nes the adjoint har-

moni funtion to P

r

'(z) (jzj < 1; see [Ko1, Ch. I℄):

P

r

'(re

it

) :=

1

2�

�

Z

��

1� r

2

1� 2r os(t� �) + r

2

'(�)d� ;

e

P

r

'(re

it

) =

1

2�

�

Z

��

r sin(t� �)

1� 2r os(t� �) + r

2

'(�)d� :

(5.7)

In the next theorem we have olleted properties of the Poisson op-

erator P

r

and its adjoint

e

P

r

from [Ko1, Ch.I℄ and [Ko1, Ch. V, xD.1

o

℄,

neessary for further investigations.

Theorem 5.4 Let ' 2 L

p

(�), � := [��; �℄, 1 � p <1. Then

i. P

r

'(z) is harmoni in D

1

and

kP

r

'

�

�

L

p

(�)k � k'

�

�

L

p

(�)k ; 0 � r < 1 ; lim

r!0

kP

r

'� '

�

�

L

p

(�)k = 0

ii. If '(t) is ontinuous at some t

0

2 �, then

lim P

r

'(z) = '(t

0

) as z = re

it

! e

it

0

; r < 1: (5.8)

iii. If Im g(t) � 0, jg(t)j � �

�

2

for all t 2 � and � < 1, then

�

Z

��

exp

h

�

�

�

e

P

r

g(e

it

)

�

�

�

i

�

4�

os

�

2

�

: (5.9)

In partiular, if ' 2 C(�), '(��) = '(�), then the onvergene in

(5.8) is uniform (inluding onvergene aross tangent paths) with re-

spet to t

0

2 �.

Remark 5.5 Easy to hek that

P

r

'(z) = ImC

�

'(z) �

1

2�

�

Z

�

'(�)d� ;

e

P

r

'(z) = �ReC

�

'(z) for Im'(t) � 0

(5.10)

(see (1.3)). Therefore for

e

P

r

' we an apply the Plemelji formulae and get

lim

z

^

!e

it

e

P

r

'(z) = �

1

2

'(t) �

1

2�

�

Z

�

ot

t� �

2

'(�)d� ; (5.11)

where the limit is angular (see (1.25)).
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Corollary 5.6 If the inlination of the tangent vetor to the boundary urve

� is ontinuous on the entire boundary, derivative !

0

(�) of the onformal

mapping in (1.46) belongs to the Smirnov{Lebesgue spae !

0

2 e

p

(D

1

)

for all 1 < p <1.

Proof. Due to the asserted onditions �

0

(t) = �(e

it

) in (5.5) is a ontinuous

funtion �

0

2 C(�) and �

0

(�) = �

0

(��) (see (5.5)); then

�

0

(t) = �

1

(t) + �

2

(t) ; �

1

2 C

1

(�) ; �

1

(�) = �

1

(��) ;

j�

2

(t)j �

�

4p

=

1

2p

�

2

for all t 2 � :

From (5.6) and (5.8) we have

�

Z

��

j!

0

(re

i�

)j

p

d� =

�

Z

��

j exp

h

�

�

�

p

e

P

r

�

1

(e

i�

) + p

e

P

r

�

2

(e

i�

)

�

�

�

i

d�

�

4�C

0

os

�

4

for all 0 < r � 1

(see Corollary (5.6)), where

C

0

=

�

Z

��

exp

h

�

�

�

p

e

P

r

�

1

(e

i�

)

�

�

�

i

d� <1

sine �

1

2 H

1

(�

1

) and P

r

�

1

(�) is uniformly bounded with respet to 0 <

r � 1 (see (5.10) and (5.12) below).

Let us formulate several onsequenes of the foregoing results. First of

them is a weak form of the Lindel

�

of theorem; in full generality it an be

found e.g. [Ko1℄ and deals with arbitrary domain with Jordan boundary.

For a domain with the smooth boundary it is proved e.g in [Go1, ℄ by

di�erent method and in [KKP1, p. 141℄{as here, by using the Cisotti

formula, but for pieewise-smooth urves.

Theorem 5.7 Let 


�

be a simply onneted domain with the reti�able

Jordan boundary � and !(z) be a onformal mapping of the unit disk D

1

onto the domain 


+

. If the tangent exists at some point of the boundary t

0

2

�, then the argument arg!

0

(z) of the derivative of the onformal mapping

is ontinuous at e

i#

0

2 �

1

= �D

1

, where t

0

= !(e

i#

0

):

lim arg!

0

(z) = arg!

0

(e

i#

0

) = e

i�(#

0

)

as z ! e

i#

0

and z 2 


+

:

In partiular, if the tangent exists at eah point of the boundary �, then

arg!

0

(x) is a ontinuous funtion on the losed domain 


+

.
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Proof. The proof follows from Theorem 5.4.ii and from the equality

arg!

0

(z) = arg!

0

(0) + P

r

�

0

(t)�

1

2�

�

Z

�

�

0

(�)d� ; (5.12)

z = re

i#

; 0 < r < 1 ; �� < t � �

(see (5.6)), where �

0

(t) := �(e

it

) is de�ned in (5.5).

Let 0 < � <1 and X be a ompat suÆiently smooth manifold (we an

take X = [0; 1℄, X = 


+

or even X = � if the latter is suÆiently smooth).

Norm in the Zygmund spae Z

�

(X) is de�ned as follows

jj'jZ

�

(X)jj = jjf jC

[�℄

�

(X)jj

+

X

j�j=[�℄

�

sup

x;x�h2X

j(�

�

')(x + h)� 2(�

�

')(x) + (�

�

')(x � h)j

jhj

f�g

+

;

� = [�℄

�

+ f�g

+

[�℄

+

2 N

0

; 0 < f�g

+

� 1;

where

kf jC

m

(X)k =

X

j�j�m

sup

x2X

j�

�

f(x)j:

For � 2 R

+

nN the spae Z

�

(X) oinides with the generalized H

�

older

spae H

�

(X) (see [St1℄), where (f. x 1.1)

jj'

�

�

H

�

(X)jj = jjf jC

[�℄

(X)jj+

X

j�j=[�℄

sup

x;y2X;x6=y

j(�

�

')(y) � (�

�

')(x)j

jy � xj

f�g

;

� = [�℄ + f�g; [�℄ 2 N

0

; 0 < f�g < 1:

Z

�

(�) oinides with the Besov spae B

�

1;1

(�) (see [Tr1℄) and the

next theorem represents very partiular ase of [Du10, Theorem 3.2℄ (f.

Theorem 1.8 above). the assertion an readily be derived from the Mus-

khelishvili{Privalov theorem (the ase � < 1), proved in [Mu1, x 21℄,

for non-integer � 2 R and extended to integer values � = 1; 2; : : : by the

interpolation of Zygmund spaes (see [St1, Tr1℄ for theorems on interpola-

tion).

Theorem 5.8 Let 0 < � < 1 and the boundary � = �


�

be m-smooth,

where m 2 N

0

, m � �.

The potential operators

C

�

: Z

�

(�) �! Z

�

(


�

) ;

W

�

: Z

�

(�) �! Z

�

(


�

) ;

V

�

: Z

�

(�) �! Z

�+1

(


�

)

(5.13)

(see (1.3) and (1.16)) are bounded.

In partiular, if � is pieewise-smooth, we should restrit 0 < � < 1.
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Kellogg proved that if the inlination of the tangent vetor is a H

�

ol-

der ontinuous funtion with some exponent 0 < � < 1 (so alled Ljapunov

boundary), then the derivative !

0

(x) of the onformal mapping ! :;D

1

!




+

also is H

�

older ontinuous with the same exponent �. The simple proof

of this assertion is exposed in [KKP1, p. 143℄ and is based on the Cisotti

formula. . Next theorem generalization the Kellogg theorem for � � 1.

Theorem 5.9 Let 


�

be a simply onneted domain and the inlination of

the tangent to the boundary � = �


�

with respet to some �xed diretion

belongs to the Zygmund spae Z

�

([0; `℄) for some 0 < � <1.

If !(z) is a onformal mapping of the unit disk D

1

onto the domain 


+

,

then ! 2 Z

�+1

(


+

).

Proof. Let us onsider the natural parametrisation of the urve � by the

ar length parameter �(s) [0; `℄! �, �(0) = �(`) (f. (1.21)). The derivative

�

0

(s) oinides with the unit tangent vetor to � and the ondition of the

theorem an be written as follows

arg �

0

(�) 2 Z

�

([0; `℄) ; arg�

k+1

s

�(`�0) = arg�

k+1

s

�(0+0) ; k = 0; : : : ; [�℄ :

From (5.3) we �nd easily that

�(e

it(s)

) = �(t(s)) � t(s)�

�

2

;

where t(s) : [0; `℄ ! [��; �℄ is a ontinuous funtion of the ar length

parameter, de�ned by the equality !(e

it(s)

) Thus, we need to prove the

impliation

t

0

(�) 2 Z

�

([0; `℄) ) t

0

(s(!(�))) 2 Z

�

(�

1

) :

From the asserted onditions � 2 C(�

1

) and from Corollary (5.6) we get

!

0

2 e

2

(D

1

). Then

js(!(�

2

))� s(!(�

1

))j =

�

�

�

�

�

�

�

�

2

Z

�

1

j!

0

(�)jjd�j

�

�

�

�

�

�

�

�

0

B

�

�

2

Z

�

1

j!

0

(�)j

2

jd�j

1

C

A

1

2

0

B

�

�

2

Z

�

1

jd�j

1

C

A

1

2

= C

0

j�

2

� �

1

j

1

2

: (5.14)

Thus, s(!(�)) 2 H

1

2

(�

1

) and we �nd the �rst rude inlusion �(s(!(�))) 2

Z

�

1

(�

1

) = H

�

1

(�

1

) with �

1

= min

�

1

2

;

�

2

	

. Due to Theorem 5.8 and to the

Cisotti formula (5.4) we get another rude result !

0

2 Z

�

1

(D

1

). We return

to (5.14) and �nd

js(!(�

2

))� s(!(�

1

))j =

�

2

Z

�

1

j!

0

(�)jjd�j � C

1

j�

2

� �

1

j ; �

1

; �

2

2 � ;



97

where C

1

= sup

�2�

1

j!

0

(�)j. the obtained estimate and the inlusion �(�) 2

Z

�

([0; `℄) give the seond rude inlusion �(s(!(�))) 2 Z

�

2

(�

1

) with �

2

=

minf1; �g. Due to Theorem 5.8 and to formula (5.4) this inlusion yields

!

0

2 Z

�

2

(D

1

), whih is the �nal result provided 0 < � � 1.

If � > 1 we take the derivative in (5.4)

!

00

(z) = !

0

(0) exp [C

�

1

�(z)�B

0

℄C

�

1

�

0

(z) ; (5.15)

B

0

:=

1

�

Z

j�j=1

�(�)

d�

�

; z 2 D

1

:

On the other hand,

(�

�

�)(s(!(�))) :=

d�(s(!(�)))

d�

= �

0

(s(!(�)))(�

�

s)(!(�)) : (5.16)

From the equality

(�

�

s)(!(�))j = j!

0

(�)j ;

(f. (5.13)), and from the inlusion !

0

2 Z

1

(�

1

) � H

1

(�

1

) we onlude

(�

�

s)(!(�)) 2 H

1

(�

1

). This inlusion, together with �

0

(�) 2 Z

��1

([0; `℄)

yields �

�

�(s(!(�))) 2 Z

�

3

(�

1

) (see (5.16) with �

3

= minf1; �� 1g.

Again, we derive !

00

2 Z

�

3

(


+

)) ! 2 Z

�

3

+2

(


+

) from (5.15) and from

Theorem 5.8. The �nal result is obtained if � � 2 whih implies �

3

= �.

If � > 2 we repeat the foregoing proof, taking further derivatives in

(5.15) and aomplish the proof by the mathematial indution.

Corollary 5.10 (see also [KKP1℄). The inequality

0 < C

1

�

�

�

�

�

log[!(�)� !(�

j

)℄

log[� � �

j

℄

�

�

�

�

� C

2

<1 (5.17)

holds for all j�j = 1 provided t

j

= !(�

j

) is not a usp of �, i.e., if 0 < 

j

< 2.

Proof. Invoking the Lagrange theorem and Cisotti formula (5.5) with

the Plemelji formula (the last one in (1.25)) we get

log[!(�)� !(�

j

)℄ = log(� � �

j

) + log!

0

(�

0

)

= C

0

+ log(� � �

j

) + �(�

0

) +

1

�

Z

j� j=1

�(�)d�

� � �

0

;

where �

0

= �

0

(�; �

j

) 2

^

�

j

� and

C

0

:= log!

0

(0)�

1

�

Z

j� j=1

�(�)

d�

�

= onst :
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The density �(�) in the Cauhy integral is pieewise-H

�

older ontinuous

� 2 H

�

(�

1�

j

n f�

j

g) by ondition and has the following jump at �

j

2 �

ow

�(�

j

+ 0)� �(�

j

� 0)

�

= 1� 

j

:

Applying the estimates

1

�

Z

j� j=1

�(�)d�

� � �

0

= �

�(�

j

+ 0)� �(�

j

� 0)

�

log(�

j

� �

0

) + �

1

(�

0

)

= (

j

� 1) log(�

0

� �

j

) + �

1

(�

0

) = (

j

� 1) log(� � �

j

) + �

2

(�

0

)

as � ! �

j

, j�

0

� �

j

j=j� � �

j

j � 1, where �

1

; �

2

2 H

�

(�

1�

j

n f�

j

g) (see [Mu1,

x 26℄) we �nd

log[!(�) � !(�

j

)℄ = 

j

log(� � �

0

) + �

3

(�

j

; �)

with uniformly bounded �

3

(�

j

; �) 2 H

�

(�

1�

j

n f�

j

g) when � ! �

j

and (5.17)

follows.

5.2 Proof of Lemma 1.11

Repeating verbatim the arguments exposed in the proof of Theorem 1.16

(see (1.51){(1.56)) we �nd easily that the Riemann{Hilbert problem (1.35)

in the spae 	 2 E

p

(


�

; �), g 2 L

p

(�; �) is equivalent to the singular integral

equation (1.50) in the spae L

p

(�).

Let, for de�niteness, onsider the domain 


+

. The ase of outer domain

di�ers only by angles: we should replae all 

j

by 2�

j

(i.e., by the measure

of the omplementary angle).

First let us prove that G 2 PC(�

1

); namely,

G(�

j

� 0)

G(�

j

+ 0)

= exp

�

�

2�

p

i+ 2�

�

1

p

+ �

j

�



j

i

�

; j = 1; : : : ; n : (5.18)

In fat, in the viinity of t

j

2 � we get

�

0

(!(�)) = �

j

(�) [!(�)� !(�

j

)℄

�

j

= �

j

(�)

�

!

0

(�

0

j

)

�

�

j

(� � �

j

)

�

j

; � ! �

j

;

�

0

j

:= �

j

�

j

+ (1� �

j

)� ; 0 < �

j

< 1 ; �

j

(�) =

Y

k 6=j

[!(�)� !(�

k

)℄

�

k

(see (1.46), (1.48)) and �

j

(t) is ontinuous at t

j

: �

j

(t

j

� 0) = �

j

(t

j

+ 0).

Therefore,

G(�

j

� 0)

G(�

j

+ 0)

=

�

0

(!(�

j

� 0))

�

0

(!(�

j

� 0))

�

0

(!(�

j

+ 0))

�

0

(!(�

j

+ 0))

"

!

0

(�

j

� 0)

!

0

(�

j

� 0)

!

0

(�

j

+ 0)

!

0

(�

j

+ 0)

#

1

p
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=

(�

j

� 0� �

j

)

�

j

(�

j

� 0� �

j

)

�

j

(�

j

+ 0� �

j

)

�

j

(�

j

+ 0� �

j

)

�

j

"

!

0

(�

j

� 0)

!

0

(�

j

� 0)

!

0

(�

j

+ 0)

!

0

(�

j

+ 0)

#

1

p

+�

j

= exp

�

2��

j

i+ 2

�

1

p

+ �

j

�

[arg !

0

(�

j

� 0)� arg !

0

(�

j

+ 0)℄i

�

:

We proeed with the help of (1.66) (see also (5.6) and (5.8))

G(�

j

� 0)

G(�

j

+ 0)

= exp

�

2��

j

i+ 2

�

1

p

+ �

j

�

[arg �(�

j

� 0)� arg �(�

j

+ 0)℄i

�

= exp

�

2��

j

i� 2�

�

1

p

+ �

j

�

(1� 

j

)i

�

= exp

�

�

2�

p

i+ 2�

�

1

p

+ �

j

�



j

i

�

:

The funtion �

��

j

�

j

with

�

j

:= �

1

p

+

�

1

p

+ �

j

�



j

; j = 1; : : : ; n; (5.19)

has disontinuity on the unit irumferene if �

j

6= 0;�1; : : : and this dis-

ontinuity we �x at the point �

j

2 �

1

; then

(�

j

� 0)

��

j

�

j

(�

j

+ 0)

��

j

�

j

= exp(�2��

j

i) = exp

�

2�

p

i� 2�

�

1

p

+ �

j

�



j

i

�

and onsider the funtion

G

0

(�) := G(�)

n

Y

j=1

�

��

j

�

j

; � 2 �

1

: (5.20)

Let us prove that

G

0

2 C(�

1

) ; jG

0

(�)j = 1 for all j�j = 1 and ind G

0

= 0 : (5.21)

Continuity on �

1

follows from (5.18) G

0

(�

j

� 0) = G

0

(�

j

+ 0), j = 1; : : : ; n,

while from (1.51), (5.20) we �nd immediately that the funtion is unimod-

ular jG

0

(�)j = 1.

To prove the last laim ind G

0

= 0 we rewrite (5.20) as follows

G

0

(�) = G(�)

n

Y

j=1

 

�

� � �

j

�

j

�

� � �

j

�

!

��

j

�

j

= G(�)

n

Y

j=1

(��

j

)

�

j

�

� � �

j

� � �

j

�

��

j

= 

0

�

0

(!(�))

�

0

(!(�))

"

!

0

(�)

!

0

(�)

#

1

p

�

� � �

j

� � �

j

�

��

j

; � 2 �

1

; 

0

:=

n

Y

j=1

(��

j

)

�

j

:



100

Thus, G

0

(�) has a ontinuous extension inside the unit disk

G

0

2 C(D

1

) ; G

0

(z)j 6= 0 for all z 2 D

1

and the homotopy

G

0;r

(�) := G

0

(r�) ; j�j = 1 ; 0 � r � 1

is ontinuous, non-vanishing and onnets the funtion G

0

= G

0;1

with the

onstant G

0;0

= G

0

(0), on�rming ind G

0

= 0.

Let us rewrite (5.20) in the form

G(�) := G

0

(�)

n

Y

j=1

�

�

j

�

j

; � 2 �

1

: (5.22)

From (5.22), (5.21) and Corollary 4.2 we �nd that onditions (1.36) (1.32)

are neessary and suÆient the singular integral equation (1.50) to have a

solution, beause under these onditions A is Fredholm in L

p

(�

1

) and has

the following index

Ind A =

X

�

j

>1

1 ;

sine ind �

�

j

�

j

= 0 when �

j

< 1 and ind �

�

j

�

j

= 1 when �

j

> 1.

In onlusion it is worth mentioning that the problem has alwayes non-

negative index Ind

L

p

(�

1

)

A � 0, i.e., is surjetive if it is Fredholm.

5.3 Proof of Theorem 1.26

As in the proof of Lemma 1.11 in x 5.2 we treat, for de�niteness, the domain




+

. In the ase of outer domain we have just to replae all 

j

by 2� 

j

.

First we suppose �

ow

= ;. Then

G(�) :=

e

G

0

(�)

n

Y

j=1

�

e�

j

�

j

; � 2 �

1

; (5.23)

e�

j

:=

(

�

j

for

1

p

� �

j

;

�

j

� 1 for

1

p

> �

j

;

e

G

0

(�) := G

0

(�)�

�

; � :=

X

�

j

62�

ow

�

j

>1

1

(see (5.22) and (1.93){(1.95)). Due to Corollary 4.2 equation (1.50) is Fred-

holm in L

p

(�

1

) if and only if onditions (1.94) hold and then

Ind A = ind

e

G

0

= � =

X

�

j

62�

ow

�

j

>1

1
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(see (5.23)). Proposition (1.95) follows beause the equivalent Riemann{

Hilbert BVP (1.55) has non-negative index � � 0 and has the trivial

kernel dim Ker A = 0 (if the index is positive, BVP (1.55) would have the

trivial okernel dim Coker A = 0; f. [GK1, Kh1, Mu1℄).

Now let �

ow

6= ; and onsider equation (1.50) for g

0

2 L

p

(�

1

;�

ow

),

' 2 L

p

(�

1

) or, what is equivalent, onsider operator (1.93). We should

start by proving boundedness of (1.93). First note that due to Lemma 1.25

the operator

G� 1

2

K : L

p

(�) �! PC(�) � L

p

(�;�

ow

)

is bounded and sine is one-dimensional inuenes neither the Fredholm

property nor the index of the operator

A = P

+

�

1

+G(�)P

�

�

1

+

G(�) � 1

2

K :

Therefore, in what follows, we ignore this summand in the operator A and

put

A = P

+

�

1

+G(�)P

�

�

1

:

Let �

�

1j

:= f� 2 �

1

: � Im (�=�

j

) > 0g be the semi-irles having ��

j

as

endpoints and �

�

�

j

(�) be the orresponding harateristi funtions (� 2 �

1

).

Boundedness of the operator in (1.93) follows from the boundedness of

the restritions

A

�

j

:= (1� �

�

j

)I + g

1

�

�

j

A�

�

j

g

�1

1

I : L

p

(�

1�

j

) �! L

p

(�

1�

j

; f�

j

g) ; (5.24)

g

1

(�) :=

j� + �

j

j

2

p

� + �

j

for all �

j

2 �

ow

. Easy to asertain that if

G

�

j

(�) := G(�

j

� 0)�

�

�

j

(�) +G(�

j

+ 0)�

+

�

j

(�) ;

then

G(�) �G

�

j

(�) = O(j� � �

j

j) as � ! �

j

2 �

ow

: (5.25)

Due to Lemma 1.22 the operator

A

�

j

�A

0

�

j

= g

1

[G(�) �G

�

j

℄P

�

�

1

g

�1

1

I : L

p

(�

1�

j

) �! L

p

(�

1

; f�

j

g) ;

A

0

�

j

:= g

1

[P

+

�

1

+G

�

j

P

�

�

1

℄g

�1

1

I (5.26)

is bounded. Moreover, if " > 0 and �

�

j

;"

is the harateristi funtion of

the neighbourhood �

1�

j

;"

� �

1�

j

, ontrating to f�

j

g as "! 0, then

k�

�

j

;"

(A

�

j

�A

0

�

j

)

�

�

L(L

p

(�

1

); L

p

(�

1

; f�

j

g))k

�M

0

k�

�

j

;"

(G�G

�

j

)

�

�

L

1

(�

1

)k

1�Æ

;
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whih yields

lim

"!0

k�

�

j

;"

(A

�

j

�A

0

�

j

)

�

�

L(L

p

(�

1

); L

p

(�

1

; f�

j

g))k = 0 as "! 0

sine Æ > 0 is arbitrary. Thus, boundedness of operator (1.93) follows from

the boundedness of the operator

A

0

�

j

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g) :

The boundedness of A

0

, in its turn, follows from the estimates

k

e

V

�

j

A

0

�

j

'

�

�

L

p

(�

+

1

)k �M

j

k'

�

�

L

p

(�

1

)k ; M

j

<1 for all �

j

2 �

ow

(see (1.90), (1.92)).

We an suppose, that

G

�

j

(�) =

(

e

2�

p

i

for � 2 �

+

1

;

1 for � 2 �

�

1

(5.27)

In fat, the operator

B

j

:= P

+

�

1

+G

�1

(�

j

� 0)P

�

�

1

(5.28)

has onstant oeÆients G(�

j

� 0) =onst6= 0 and due to the following

well-known properties of the singular projetions

(P

�

�

1

)

2

= P

�

�

1

; P

+

�

1

P

�

�

1

= P

�

�

1

P

+

�

1

= 0 ; P

�

�

1

+ P

+

�

1

= I (5.29)

is invertible B

�1

j

= P

+

�

1

+G(�

j

� 0)P

�

�

1

, B

�1

j

B

j

= B

j

B

�1

j

= I . Therefore it

suÆes to prove boundedness of the operator

AB

j

= P

+

�

1

+G

�1

(�

j

� 0)GP

�

�

1

: L

p

(�

1

) �! L

p

(�

1

;�

ow

) (5.30)

instead of (1.93). The oeÆient G

0

(�) := G

�1

(�

j

� 0)G(�) of the operator

(5.30) has limits G

0

(�

j

� 0) = 1 and G

0

(�

j

+ 0) = e

2�

p

i

and orresponding

loal representative G

0

�

j

(�) has the form (5.27).

Let us apply the isomorphisms Z

p�

j

= Z

p

Z

�

j

de�ned in (3.31){(3.36).

Sine

A

0;�

j

:= Z

p�

j

A

0

�

j

Z

�1

p�

j

=

1

2

(I +Z

p�

j

g

1

S

�

1

g

�1

1

Z

�1

p�

j

)

+

1

2

�

e

2�

p

i

0

0 1

�

(I �Z

p�

j

g

1

S

�

1

g

�1

1

Z

�1

p�

j

) (5.31)

it suÆes to �nd Z

p�

j

g

1

S

�

1�

j

g

�1

1

Z

�1

p�

j

. Applying (3.44) we proeed as follows

Z

�

j

g

1

S

�

1

g

�1

1

Z

�1

�

j

 (x) =

1

�i

1

Z

�1

�

�

�

�

�

{

0

�

j

(x)

{

0

�

j

(y)

�

�

�

�

�

1

p

{

�

j

(y)

{

�

j

(x)

{

0

�

j

(y)'(y)dy

{

�

j

(y)� {

�

j

(x)

=

1

�i

1

Z

�1

'(y)dy

y � x

= S

R

'(x)
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and further

Z

p�

j

S

�

1

Z

�1

p�

j

= Z

p

(Z

�

j

S

�

1

Z

�1

�

j

)Z

�1

p

=

2

4

S

p

�N

p

N

p

�S

p

3

5

;

where

S

p

'(x) :=

1

�i

1

Z

�1

e

�

x�y

p

'(y)dy

1� e

�(x�y)

=W

0

s

p

;

s

p

(�) := oth�

�

i

p

+ �

�

; �; x 2 R;

N

p

'(x) :=

1

�i

1

Z

�1

e

�

x�y

p

'(y)dy

1 + e

�(x�y)

=W

0

n

p

;

n

p

(�) :=

1

sinh�

�

i

p

+ �

�

: (5.32)

Easy to asertain that

A

0;�

j

:= Z

p�

j

A

0

�

j

Z

�1

p�

j

=

�

1

2

(I + S

p

) + e

2�

p

i

1

2

(I � S

p

)

1

2

(e

2�

p

i

� 1)N

p

0 I

�

=W

A

0

(�

j

;�)

(5.33)

(see (5.31){(5.32)), where A

0

(�

j

; �) is the symbol. Sine

osh z sinh w � sinh z osh w = sinh(w � z) ; z; w 2 C ;

we �nd the symbol

A

0

(�

j

; �) :=

"

e

�

p

i

h

osh

�

p

i� sinh

�

p

i oth�

�

i

p

+ �

�i

e

�

p

i

sinh

�

p

i

sinh�

(

i

p

+�

)

0 1

#

=

"

e

�

p

i

sinh��

sinh�

(

i

p

+�

)

e

�

p

i

sinh

�

p

i

sinh�

(

i

p

+�

)

0 1

#

(5.34)

Applying (3.30), (3.32) we get

Z

p�

j

e

V

�

j

Z

�1

p�

j

= g

j

e

V

1

I=g

j

�

e

�

�

p

i

V

1

�V

1

0 0

�

+R

j

=g

j

W

ev

0

+R

j

(5.35)

ev

0

:=

�

e

�

�

p

i

�

1� g

�1

�

(�)

�

g

�1

�

(�) � 1

0 0

�

=

�

e

�

�

p

i

i

�

�

i

�

0 0

�
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(see (3.8)). From (5.33) and (5.35) we have

Z

p�

j

e

V

�

j

A

0

�

j

' = g

j

e

V

1

A

0;�

j

( 

1

;  

2

)

>

+R

j

A

0;�

j

( 

1

;  

2

)

>

= (V

1

W

0

a

1j

 

1

+V

1

W

0

a

2j

 

2

; 0)

>

= (W

0

b

1j

 

1

+W

b

2j

 

2

; 0)

>

+R

j

A

0;�

j

( 

1

;  

2

)

>

; (5.36)

where ( 

1

;  

2

)

>

:= Z

p�

j

' and

a

1j

(�) :=

sinh��

sinh�

�

i

p

+ �

�

; b

1j

(�) :=

�i sinh��

� sinh�

�

i

p

+ �

�

; (5.37)

a

2j

(�) :=

sinh

�

p

i

sinh�

�

i

p

+ �

�

; b

2j

(�) :=

i

h

sinh

�

p

i� sinh�

�

i

p

+ �

�i

� sinh�

�

i

p

+ �

�

;

beause V

1

= W

0

g

�1

�

� I = W

0

g

�1

�

�1

(see (3.23)) and g

�1

�

(�) � 1 = �i=�.

The funtions b

kj

(�) satisfy onditions (3.4) and, therefore, b

kj

2 PC

p

(

_

R).

This yields the estimate

k

e

V

�

j

A

0

�

j

'

�

�

L

p

(�

+

1�

j

)k � kZ

�1

p�

j

kkZ

p�

j

e

V

�

j

A

0

�

j

'

�

�

L

p

(R

+

)k (5.38)

= kZ

�1

p�

j

kkg

j

e

V

1

A

0;�

j

( 

1

;  

2

)

>

�

�

L

2

p

(R)k + kR

j

A

0;�

j

( 

1

;  

2

)

>

�

�

L

2

p

(R)k

� kZ

�1

p�

j

k

2

4

X

k=1;2

kg

j

W

0

b

kj

 

k

�

�

L

p

(R)k + kR

j

A

0;�

j

( 

1

;  

2

)

>

�

�

L

2

p

(R)k

3

5

�M

0

j

k( 

1

;  

2

)

>

�

�

L

2

p

(R)k =M

0

j

kZ

p�

j

'

�

�

L

2

p

(R)k �M

j

k'

�

�

L

p

(�

1�

j

)k :

Estimates (5.30) follow and imply the boundedness in (1.93).

To prove the Fredholm riteria (1.94) we apply the loalization method,

due to I.Gohberg andN.Krupnik (see [GK1, RS1℄) modi�ed for operators

between two di�erent spaes (see [Du9, x 3℄). We skip over exposing details

of the method beause they are well-known and even modi�ed version is

operating with similar objets{loalization lasses, loal equivalene, loal

representatives, loal invertibility et.

We hoose a standard overing system of loalizing lasses fM

�

g

�2�

1

,

where M

�

onsists of all multipliation operators vI by smooth funtions

v 2 C

1

(�

1

), jv(t)j � 1 (t 2 �

1

) whih are equal 1 in some neighbourhood

of �. Boundedness of operators vI 2 M

�

in the spae L

p

(�

1

) is trivial,

while in L

p

(�

1

:�

ow

) follows from Lemma 1.22. Another essential property{

ompatness of ommutators

[vI; A℄ = vA�AvI : L

p

(�

1

) �! L

p

(�

1

:�

ow

) ;
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whih is a bounded operator already, follows from the well-known riteria

of ompatness in L

p

(�

1

) spae modi�ed with the help of Lemma 1.22

Z

�

1

2

4

Z

�

1

j log(� � �

j

)k(�; �)j

p

0

jd� j

3

5

p

p

0

jd�j <1 ;

sine the kernel k(�; �) of the ommutator [vI; A℄ is a uniformly bounded

funtion.

As a loal representative of A at a regular point �

0

6= �

1

; : : : �

n

we hoose

the following operator

A

M

�

0

� A

�

0

:= P

+

�

1

+G(�

0

)P

�

�

1

; A

�

0

: L

p

(�

1

) �! L

p

(�

1

) (5.39)

with the onstant (\frozen" at �

0

) oeÆient. This operator is invertible

A

�1

�

0

:= P

+

�

1

+G

�1

(�

0

)P

�

�

1

(see (5.28), (5.29)).

Before loalizing at the point �

j

, where the oeÆient has disontinuity

G(�

j

+0) 6= G

j

(�

j

�0) 6= 0 let us simplify the operator by taking omposition

with the invertible operator B

j

in (5.28). The omposition AB

j

has the

same image Im A

j

= Im A and due to invertibility of B

j

we an onsider

the omposition

A

j

:= P

+

�

1

+G

�1

(�

j

� 0)GP

�

�

1

: L

p

(�

1

) �! L

p

(�

1

;�

ow

) (5.40)

instead of (1.93). The loal representative of the operator (5.40) at the

point �

j

2 �

1

is hosen as follows

A

j

M

�

j

� A

0



j

;�

j

:= g

1

[P

+

�

1

+G

�

j

P

�

�

1

℄g

�1

1

I ; G

�

j

(t) := e

2��

j

i

�

+

j

+ �

�

j

;(5.41)

�

j

=

1

p

�

�

1

p

+ �

j

�



j

;

sine G

�1

(�

j

�0)G(�

j

+0) = e

2��

j

i

(see (5.18) and note that in (5.24){(5.27)

we have taken the outward peak whih means 

j

= 0); �

�

j

in (5.41) are the

harateristi funtions of the semi-irumferene � Im (�=�

j

) � 0.

The loalized operator A

0



j

;�

j

should be onsidered in the appropriate

loal spaes:

A

0



j

;�

j

: L

p

(�

1

) �! L

p

(�

1

) if 0 < 

j

� 2 ;

A

0

0;�

j

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g) if 

j

= 0; (i.e., �

j

2 �

ow

) :

(5.42)

The lifted operators (f. (5.33))

A



j

;�

j

:= Z

p�

j

A

0



j

;�

j

Z

�1

p�

j

=: L

2

p

(R) �! L

2

p

(R) if 0 < 

j

� 2 ;

A

0;�

j

:= Z

p�

j

A

0

0;�

j

Z

�1

p�

j

=: L

2

p

(R) �! L

2

p

(R; f1g) if 

j

= 0

(5.43)
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are onvolutions

A



j

;�

j

=W

0

A



j

(�

j

;�)

(5.44)

(f. (5.33)) with the symbols

A



j

(�

j

; �) :=

�

1

2

(I + s

p

(�)) + e

2��

j

i

1

2

(I � s

p

(�))

1

2

(e

2��

j

i

� 1)n

p

(�)

0 I

�

=

�

e

��

j

i

0

0 1

�

2

4

sinh�

(

i

p

��

j

i+�

)

sinh�

(

i

p

+�

)

sinh��

j

i

sinh�

(

i

p

+�

)

0 1

3

5

=

�

e

��

j

i

0

0 1

�

2

4

sinh�

(

��

(

1

p

+�

j

)



j

i

)

sinh�

(

i

p

+�

)

sinh�

[

i

p

�

(

1

p

+�

j

)



j

℄

sinh�

(

i

p

+�

)

0 1

3

5

: (5.45)

The operator A



j

;�

j

=W

0

A



j

(�

j

;�)

for 

j

6= 0 is invertible in L

2

p

(R) i�

A

0

(�

j

; �)=e

��

j

i

sinh�

�

��

�

1

p

+ �

j

�



j

i

�

sinh�

�

i

p

+ �

�

6= 0=)

�

1

p

+�

j

�



j

6= 1; (5.46)

as it follows from (5.45) and (2.5). Condition (1.94) is justi�ed.

Now let 

j

= 0; then �

j

=

1

p

and (see (5.45))

A

0

(�

j

; �) :=

"

e

�

p

i

sinh��

sinh�

(

i

p

+�

)

e

�

p

i

sinh

�

p

i

sinh�

(

i

p

+�

)

0 1

#

(5.47)

(f. (5.36), (5.37)). The operator

e

V

1

:=

�

I + V

1

0

0 I

� �

e

�

�

p

i

I �I

0 I

�

=

�

e

�

�

p

i

(I + V

1

) �(I + V

1

)

0 I

�

=W

0

v

0

: L

2

p

(R; f1g) �! L

2

p

(R) ; v

0

(�) :=

�

e

�

�

p

i

��i

�

�

��i

�

0 1

�

(5.48)

arranges an isomorphism (see (1.92) and (5.35)). Therefore, the operator

A

0;�

j

in (5.43), (5.44) (the ase 

j

= 0) is equivalent to the operator

e

V

1

W

0

A

0

(�

j

;�)

=W

0

v

0

W

0

A

0

(�

j

;�)

=W

0

A

1

0

(�

j

;�)

: L

2

p

(R) �! L

2

p

(R) ; (5.49)

where

A

1

0

(�

j

; �) := v

0

(�)A

0

(�

j

; �) :=

2

4

(��i) sinh��

� sinh�

(

i

p

+�

)

(��i)

[

sinh

�

p

i�sinh�

(

i

p

+�

)℄

� sinh�

(

i

p

+�

)

0 1

3

5
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Obviously, A

1

0

(�

j

; �) 2 PC

2�2

p

(R) (see (3.4)) and

det A

1

0

(�

j

; �) =

(�� i) sinh��

� sinh�

�

i

p

+ �

�

6= 0 for all � 2

_

R :

W

A

1

0

(�

j

;�)

is invertible in L

2

p

(R) and yields invertibility of the loal represen-

tatives A

�

j

in (5.42) for all �

j

2 �

ow

.

Thus, under onditions (1.94), all loal representatives of the operator

(1.93) are invertible, whih implies that (1.93) is Fredholm.

To prove the index formula (1.95) we reall the representation (5.23)

and arrange a homotopy sending the funtion G(�) to

g(�) := g

0

(�)

Y

�

j

2�

ow

g

j

(�) ; � 2 �

1

; (5.50)

where the funtions g

0

(�) and g

j

(�) have the same images (aept the same

values) as

e

G

0

(�) and �

�1

j

�

1

p

�

j

, respetively, when � ranges over �

1

(we remind

that e�

j

= �

j

=

1

p

as soon as 

j

= 0). More of this, supports of g

0

� 1 and of

g

j

� 1 are \squeezed" and belong to �

10

and �

�

j

, respetively. Therefore,

supp (g

k

� 1) \ (�) supp (g

j

� 1) := ; for all k 6= j ;

g

0

2 C

1

(�

1

) ; ind g

0

= ind

e

G

0

= � :

g

j

2 C

1

(�

1

n f�

j

g) ;

g

j

�

1

p

�

j

2 C

1

(�

1

) ; ind

g

j

�

1

p

�

j

= 0 :

(5.51)

To arrange suh homotopy we just de�ne

G

#

(�) :=

e

G

0

(�)

"

g

0

(�)

e

G

0

(�)

#

#

Y

�

j

2�

ow

2

4

g

j

(�)

�

1

p

�

j

3

5

#

�

1

p

�

j

Y

�

j

62�

ow

�

(1�#)�

j

�

j

(5.52)

for 0 � # � 1. Sine the funtions [g

0

(�)=

e

G

0

(�)℄

#

and [g

j

(�)=�

1

p

�

j

℄

#

are

ontinuous for all 0 � # � 1 (see (5.51)) and the exponents (1 � #)e�

j

ontinue to satisfy onditions (1.94) when �

j

62 �

ow

, we get the operators

A

#

:= P

+

�

1

+G

#

P

�

�

1

: L

p

(�

1

) �! L

p

(�

1

;�

ow

)

whih are Fredholm for all 0 � # � 1. Then these operators maintain the

index

Ind A = Ind A

0

= Ind A

1

= Ind (P

+

�

1

+G

1

P

�

�

1

) : (5.53)

Due to the disjoint supports of g

j

� 1 (see (5.51)) we get

A

1

= P

+

�

1

+G

1

P

�

�

1

= D

0

Q

�

j

2�

ow

D

j

;

D

0

:= P

+

�

1

+ g

0

P

�

�

1

: L

p

(�

1

) �! L

p

(�

1

) ; (5.54)

D

j

:= P

+

�

1

+ g

j

P

�

�

1

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g)
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and the operators ommute D

j

D

k

= D

k

D

j

. Therefore

Ind A

1

= Ind D

0

+

X

�

j

2�

ow

Ind D

j

= ind

e

G

0

+

X

�

j

2�

ow

Ind D

j

(5.55)

and to justify the index formula (1.95) we just have to show that

Ind D

j

= 0 for all �

j

2 �

ow

: (5.56)

By the ondition the image of g

j

(�) oinides with the image of �

�1

j

�

1

p

�

j

whih means that

jg

j

(�)j = 1 ; g

j

(�

j

� 0) = e

2�

p

i

; g

j

(�

j

+ 0) = +1 : (5.57)

Let us onsider the operator

H

�

j

= I +Z

�1

p�

j

W

0

H

Z

p�

j

= Z

�1

p�

j

W

0

1+H

Z

p�

j

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g) ;

1 +H(�) =

�

e

�

p

i

�

��i

e

�

p

i

0 1

�

: (5.58)

The lifted operator (see (3.37){(3.40))

Z

p�

j

H

�

j

Z

�1

p�

j

=W

0

1+H

: L

2

p

(R) �! L

2

p

(R; f1g) (5.59)

is invertible. In fat,

[1 +H(�)℄

�1

=

�

e

�

�

p

i

��i

�

�

��i

�

0 1

�

= v

0

(�)

(f. (5.48)) and therefore

e

V

1

in (5.48) is the inverse operator to (5.58)

e

V

1

W

0

1+H

=W

0

v

0

(1+H)

= I (5.60)

(see (3.23)).

For the parameter-dependent operator

R

#

:= (1�#)B

j

�#e

�i

H

�

j

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g) ; 0 � # � 1 ; (5.61)

where

2�

p

� � � 2� will be hosen later, the loal representatives for �

0

62

�

ow

read

R

#

M

�

0

� R

#;�

0

= g

�1

1

[(1� #)P

+

�

1

+ (1� #)g

j

(�

0

)P

�

�

1

℄g

1

I � #e

�i

I

=℄g

�1

1

[(1� #� #e

�i

)P

+

�

1

+ [(1� #)g

j

(�

0

)℄℄g

1

� #e

�i

℄P

�

�

1

: L

p

(�

1

) �! L

p

(�

1

) ; (5.62)



109

while for �

j

2 �

ow

we get

R

#

M

�

j

� R

#;�

j

=℄g

�1

1

[(1� #)P

+

�

1

+ (1� #)G

�

j

(�

0

)P

�

�

1

℄℄g

1

I

�#e

�i

Z

�1

p�

j

W

1+H

Z

p�

j

= Z

�1

p�

j

W

R

#

(�

j

;�)

Z

p�

j

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g) (5.63)

(f. (5.39), (5.41), (5.42){(5.47)), where G

�

j

(�) = +1 for Im (��

�1

j

) > 0

and G

�

j

(�) = e

2�

p

i

for Im (��

�1

j

) < 0 (f. (5.27), (5.41)) and

R

#

(�

j

; �) = (1� #)A(�

j

; �)� #e

�i

[1 +H(�)℄ : (5.64)

The operators R

#;�

0

in (5.62) are invertible having onstant non-vani-

shing oeÆients

1� #(1 + e

�i

) 6= 0 ; (1� #)g

j

(�

0

)� #e

�i

6= 0 for all 0 � # � 1 ; �

0

6= �

j

provided � > � (we remind that g

j

(�

0

) = e

�i

with

2�

p

� � � 2� is impossible

sine �

0

6= �

j

). The inverse operator is written as in (5.28){(5.30).

The operators R

#;�

j

in (5.63) are also invertible beause the lifted oper-

ators

W

0

R

#

(�

j

;�)

= Z

p�

j

R

#;�

j

Z

�1

p�

j

: L

2

p

(R) �! L

2

p

(R; f1g) (5.65)

are invertible. To verify this we should apply the isomorphism

e

V

1

from

(5.48)

e

V

1

W

0

R

#

(�

j

;�)

=W

0

v

0

R

#

(�

j

;�)

: L

2

p

(R) �! L

2

p

(R) (5.66)

(see (3.23)), where

v

0

(�)R

#

(�

j

; �) = (1� #)A

1

0

(�

j

; �)� #e

�i

v

0

(�)[1 +H(�)℄

= (1� #)A

1

0

(�

j

; �)� #e

�i

I

=

2

4

(1� #)

(��i) sinh��

� sinh�

(

i

p

+�

)

� #e

�i

(1� #)(� � i)

sinh

�

p

i�sinh �

(

i

p

+�

)

� sinh�

(

i

p

+�

)

0 1� #(1 + e

�i

)

3

5

(see (5.49), (5.60)). The image of the funtion

h

p

(�) :=

(� � i) sinh��

� sinh �

�

i

p

+ �

�

=

sinh��

�

2

6

4

� sinh�� os

�

p

� osh�� sin

�

p

�

�

�

sinh�

�

i

p

+ �

�

�

�

�

2

�i

sinh�� os

�

p

+ � osh�� sin

�

p

�

�

�

sinh�

�

i

p

+ �

�

�

�

�

2

3

7

5

; h

p

(�) = h

p

(��)
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on the omplex plane C when � ranges through R is a ontinuous urve

onneting points h

p

(�1) = e

�

�

p

i

on the unit irumferene and passing

through h

p

(0) = �

�

sin

�

p

< 0 on the negative semi-axes. Easy to asertain,

that

�

p

� arg h

p

(�) � 2� �

�

p

and the onstraints

max

�

�; 2� �

�

p

;

2�

p

�

< � � 2�

on the parameter � ensure the elliptiity

det v

0

(�)R

#

(�

j

; �) = [(1� #)h

p

(�)� #e

�i

℄[1� #(1 + e

�i

)℄ 6= 0

for all 0 � # � 1 ; � 2

_

R;

whih yields invertibility of the operator in (5.66) (see (2.5)).

Thus, the operator R

#

in (5.61) depends on the parameter # 2 [0; 1℄

ontinuously and onnets the operator B

j

with the invertible one �e

�i

H

�

j

in the group of Fredholm operators, whih yields equality of indies

Ind B

j

= Ind R

0

= Ind R

1

= Ind H

�

j

= 0 :

5.4 Proof of Theorem 1.23

First suppose � has no peaks T

pk

= ;.

Let us write the symbols of equations (1.39) and (1.40) in the spaes

X

m

(�; �) = W

m

p

(�; �); H

0

�+m

(�; �); C(�; �); PC

m

(�; �) aording to (4.6),

(4.10) and (4.28)

(A

�

)

X

m

(�;�)

(t; �) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

1

p

"

�1 0

0 �1

#

if t 6= t

1

; : : : ; t

n

;

1

p

�

�1 H

m;j

(�)

H

m;j

(�) �1

�

if t = t

j

;

where m = 0; 1, �

j

is de�ned in (1.79) and

H

m;j

(�) :=

sinh�(1� 

j

)(i�

j

�mi+ �)

sinh�(i�

j

+ �)

: (5.67)

Aording to Theorems 4.1, 4.3 and 4.6 equations (1.39) and (1.40) are

Fredholm in X

m

(�; �) if and only if

inf

�2R

�

�

det (A

�

)

X

m

(�;�)

(t; �)

�

�

=

1

4

inf

�2R

�

�

1�H

2

m;j

(�)

�

�

6= 0 : (5.68)
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Invoking the formulae

sinh

2

a� sinh

2

b = sinh(a� b) sinh(a+ b) ;

sinh(a+ 2�k) = sinh a ; a; b 2 C ; k = 0;�1; : : : :

we �nd easily

1

4

(1�H

2

m;j

(�)) =

sinh

2

�(i�

j

+ �)� sinh

2

�(1� 

j

)(i�

j

�mi+ �)

4 sinh

2

�(i�

j

+ �)

= �

sinh�[(2� 

j

)(i�

j

+ �)�mi+ 2

j

i℄ sinh�

j

(i�

j

+ ��mi)

sinh

2

�(i�

j

+ �)

= �

sinh�(2� 

j

)(i�

j

+ ��mi) sinh�

j

(i�

j

+ ��mi)

sinh

2

�(i�

j

+ �)

: (5.69)

Due to (5.69) ondition (5.68) holds if and only if

(2� 

j

)(i�

j

+ ��mi) 6= 0;�i; : : : ; 

j

(i�

j

+ ��mi) 6= 0;�i; : : : :

Sine 0 < �

j

< 1, m = 0; 1 the latter onditions an be written as follows

�

j

6=

(



0

j

if m = 0 ;

1� 

0

j

if m = 1 :

(5.70)

and the ondition of the theorem is justi�ed.

On the other hand due to (5.70) the group of non-degenerate symbols

(5.68) is divided in four homotopy groups (two for eah m = 0; 1); the

symbols inside eah group have equal indies and it suÆes to �nd the

value for one representative of the group. Sine

det (A

�

)

X

m

(�;�)

(t; �) =

1

4

[1�H

2

m;j

(�)℄ =

1

4

[1�H

m;j

(�)℄[1 +H

m;j

(�)℄

it is suÆient to investigate simpler funtions 1�H

m;j

(�). Images on the

omplex plane of representatives



j

=

1

p

; �

j

=

1

4

;

3

4

; m = 0; 1

are plotted on Fig. 7{Fig.10 in Appendix. The result an be summarized

as follows:

ind det (A

�

)

X

m

(�;�)

(t

j

; �) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 for �

j

< 1� 

0

j

and m = 0 ;

�1 for �

j

> 1� 

0

j

and m = 0 ;

1 for �

j

< 

0

j

and m = �1 ;

0 for �

j

> 

0

j

and m = �1 :
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From Theorems 4.1, 4.3 and 4.6 we get the index formula (we remind that

T

pk

= ;)

Ind A

�

= �

n

X

j=1

ind det (A

�

)

X

m

(�;�)

(t

j

; �)=

8

>

>

>

>

>

<

>

>

>

>

>

:

X

t

j

62T

pk

�

j

>

0

j

1 for m=0;

�

X

t

j

2T

�

j

<1�

0

j

1 for m=1

(see (1.81)).

Now we need information about the kernels dim Ker A

�

to derive the

remainder equalities in (1.81).

Solvability results follow from from (1.81) provided (1.82) or (1.83) hold.

First of all note, that due to Lemma 1.21 it suÆes to establish values

of dim Ker

X

A

�

and dim Coker

X

A

�

only for one spae among those where

operators A

�

have equal indies.

Equalities dim Ker A

�

= "

�

, dim Coker A

�

= "

�

under ondition

(1.82) and, in general, equalities in (1.81) an be derived from the equiva-

lene of BVPs and our BIEs stated in Theorem 1.12 by invoking Remark

1.10, Lemma 1.15 and equivalene of BVPs with the Riemann{Hilbert

problem, stated in Theorem 1.16, beause either the kernel or the okernel

of the Riemann{Hilbert problem (and of harateristi singular integral

equation) are trivial (see [Du1, GK1, Kh1℄).

If one of onditions of the theorem is missing we an apply above men-

tioned equivalene with the Riemann{Hilbert problem to �nd that our

BIEs are not Fredholm. Moreover, sine in all ases the kernels and oker-

nels are �nite dimensional dim Ker A

�

� n+1 and dim Coker A

�

�

� n+1,

the images Im A

�

an not be losed.

Now suppose � has peaks T

pk

6= ;.

Loalization method applied in x,5.3, an be applied in the present sit-

uation as well. Due to Corollary 1.7 loal representatives of operators A

�

in (1.39) at t

0

62 T

pk

are

A

�

M

t

0

� �

1

2

I

and are invertible in L

p

(�).

At the inward peak t

l

62 T

iw

we should loalize the operator A

�

to the

same one, but replae the urve � by a new one L

j

whih oinides with �

in the viinity of t

j

and has t

j

as a single outward peak. Therefore we an

suppose, without restriting generality, that � has a single knot T = ft

1

g,

whih is either an angular point or an outward peak.

WARNING! While hanging from the inward peak to outward, we hange

the orientation of the urve. Then operators A

�

and B

�

are replaed by

�A

�

and �B

�

, respetively. We should also interhange one-side neigh-

bourhoods �

�

t

j

and �

+

t

j

whih leads, due to non-equal rights of these neigh-



113

bourhoods in the de�nition of the spae L

p

(�; �; T

iw

) (see (1.76)) to di�er-

enes, whih should be taken into onsideration.

Due to Lemma 1.13 the Riemann{Hilbert problem is surjetive and we

an enjoy equivalent redution of (1.39) and of (1.44) to the orresponding

BVPs (1.6){(1.8) for the domain 


+

justi�ed in Theorems 1.12 and 1.14.

Due to equivalene established in Theorems 1.16 and 1.17 we �nd that

equation (1.39) is equivalent to (1.50) while (1.44){to (1.60). By applying

Theorem 1.26 and 1.29 we aomplish the proof of Fredholm properties.

The same equivalene an be used to prove the index formulae for the

ase of one knot. In ase of multiple knots we an use exatly the same

approa as in (5.51){(5.54) and redue the proof to the ase of one knot.

For equations (1.40) and (1.45) we make onlusions as for dual equations

to (1.39) and to (1.44), respetively.

As for dim Ker A

�

and dim Ker B

�

in (1.39){(1.40) and in (1.44){

(1.45), the formulae an be derived from the index formulae and above

mentioned results on kernels in L

p

(�) spaes (see Remark 1.10).

Remark 5.11 Due to Lemma 1.21 any integrable solutions '

�

2 L

p

(�; �)

of integral equations (1.39) and (1.40) are ontinuous (are H

�

older ontin-

uous with the exponent 0 < � < 1 or even belong to the Zygmund spae

Z

�

(�) for 0 < � <1) provided the right-hand sides are ontinuous (belong

to H

�

(�) or to Z

�

(�), respetively and, in the latter ases, � suÆiently

smooth).

Moreover, invoking Theorem 5.8 we �nd that the solution u(x) to the

Dirihlet BVP (1.6), (1.7) is ontinuous on 


�

(is H

�

older ontinuous

with the exponent 0 < � < 1 or even belongs to the Zygmund spae Z

�

(�)

for 0 < � <1) provided the same ondition holds for the date g(t) on �.

Similar assertions for L

p

-spaes and ontinuous solutions an be found

in [Mi2, x 14℄ and in [Ma1, Ch. I, Theorems 3 and 5℄.

Remark 5.12 Non-equal rights of urves �

�

t

j

in the de�nition of the spae

L

p

(�; �; T

pk

) in (1.76) originates in the behavior of the onvolution opera-

tor with 2 � 2 matrix symbol whih is a loal representative of the bound-

ary integral operator and an easily be traed in the proof of Theorem 1.26

in x 5.3 (see (5.42){(5.47)). Di�erene of onditions on the funtion ' 2

L

p

(�; �; T

pk

) at outward and inward peaks in the de�nition (1.76) reeted

in "

j

= �1, is due to the above-mentioned non-equal rights of urves �

�

t

j

and an be explained by the hange of domain 


+

to some outer domain by

loalization to make an inward peak outward (see the proof of Theorem 1.23

above).
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Appendix
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