Mem. Differential Equations Math. Phys. 21(2000), 146-150

V. A. RABTSEVICH

ON NONDECREASING SINGULAR SOLUTIONS OF THE EMDEN-FOWLER EQUATION

(Reported on May 22, 2000)

Consider the Emden-Fowler equation

$$u^{(n)} = p(t)|u|^{\lambda} signu, \quad p(t) > 0, \quad \lambda > 1, \quad n > 2,$$
(1)

with a locally Lebesgue integrable on (a, b) function p(t), which differs from zero on a set of positive measure in any left neighborhood of b.

A solution $u:[a,b)\to (0,+\infty)$ of the equation (1) is said to be a nonoscillatory singular solution of the second kind, if

$$u^{(i)}(t) > 0$$
 $(i = 0, ..., n-1)$ for $t \in (a, b)$, $\lim_{t \to b} u(t) = +\infty$. (2)

Problems on the existence of such solutions and on its asymptotic estimation were studied for the equation (1) in [1, p. 323-325], where they are reduced to the similar ones for a proper strongly increasing solutions, which are more investigated (see [1, 2] and the bibliography therein). In particular, this approach allows to give the sufficient condition

$$J(a,b) < +\infty, \quad \text{where} \quad J(s,t) \equiv \int_{s}^{t} p(\tau)(b-\tau)^{n-1} d\tau, \tag{3}$$

for the equation (1) to have a solution (2).

In this paper new necessary conditions of solvability of the problem (1)-(2) and twosided asymptotic estimates of its solutions are obtained. Here also it is established the necessity of the condition (3) in certain cases.

Begin with a simple assertion which presents some important properties of solutions of the problem under consideration.

Lemma 1. Let u(t) be a solution of the problem (1), (2) and $\varphi(t) > 0$ be a nondecreasing function on (a, b). Then $v_i(t) = \sum_{l=0}^{i} u^{(l)}(t)(b-t)^l/l!$ (i = 0, ..., n-1) are nondecreasing unbounded functions on (a, b), satisfying there conditions

$$\frac{\dot{v}_{\varphi,n-1}(t)}{v_{\varphi,n-1}(t)} = \frac{p(t)(b-t)^{n-1}v_{\varphi,0}^{\lambda}(t)}{(n-1)!\varphi^{\lambda-1}(t)v_{\varphi,n-1}(t)} + \frac{\dot{\varphi}(t)}{\varphi(t)}, \quad \frac{\dot{v}_{\varphi,i}(t)}{v_{\varphi,i+1}(t)} \ge \varphi_M(t), \tag{4}$$

where $v_{\varphi,i}(t) = v_i(t)\varphi(t), \ \varphi_M(t) = \min\{(b-t)^{-1}, \dot{\varphi}(t)/(M\varphi(t))\}.$

The lower asymptotic estimate of solutions of the problem (1), (2) gives

²⁰⁰⁰ Mathematics Subject Classification. 34C05

Key words and phrases. Emden-Fowler equation, nondecreasing singular solution.

Theorem 1. Every solution u of the problem (1), (2) admits the lower estimate

$$v_{n-1}(t) > \left((n-1)!(\lambda-1)^{-1}J(t,b) \right)^{1/(1-\lambda)}, \quad t \in (a,b),$$
(5)

provided the condition (3) holds.

Proof. Let u be a solution of the problem (1), (2). From (1) we deduce $\dot{v}_{n-1}(t) = u^{(n)}(t)(b-t)^{n-1}/(n-1)! \ge p(t)(b-t)^{n-1}v_{n-1}^{\lambda}(t)/(n-1)!$ for $t \in (a,b)$. Integrate this inequality taking into acount (2):

$$\frac{v_{n-1}^{1-\lambda}(t)}{\lambda-1} = \int_{t}^{b} \frac{\dot{v}_{n-1}(\tau)d\tau}{v_{n-1}^{\lambda}(\tau)} < \int_{t}^{b} \frac{p(\tau)(b-\tau)^{n-1}d\tau}{(n-1)!}.$$

The last estimate is equivalent to (5). Thus the theorem is proved.

The main result of this article is contained in the following \Box

Theorem 2. Let u(t) be a solution of the problem (1)-(2) and let $\varphi : (a,b) \to (0,+\infty)$ be any nondecreasing function. Then for any numbers $\nu \in [0,1)$, $\mu \in ((1-\nu)/n_1, (1-\nu)/n)$, M > 0 and $\sigma > 0$ the equality

$$\lim_{t \to b} F_{\nu,\mu,\sigma,M}(\varphi)(t) = 0 \tag{6}$$

 $is \ true \ and \ the \ upper \ estimate$

$$u(t) < \gamma [F_{\nu,\mu,\sigma,M}(\varphi)(t)]^{1/((1-\lambda)\mu)},$$
(7)

 $is \ fulfilled, \ where$

$$F_{\nu,\mu,\sigma,M}(\varphi)(t) = \varphi^{\sigma}(t) \int_{t}^{b} \frac{(p(\tau)(b-\tau)^{n-1})^{\mu}}{\varphi^{\sigma}(\tau)\varphi_{M}^{\mu+\nu-1}(\tau)} \left(\frac{\dot{\varphi}(\tau)}{\varphi(\tau)}\right)^{\nu} d\tau,$$

 $n_1 = 1 + (n-1)\lambda$ and $\gamma > 0$ depends only on n, λ, μ, ν .

Proof. Let u be a solution of the problem (1), (2) and $\varphi(t) > 0$ be a nondecreasing function on (a, b). By lemma 1 and the inequality

$$\sum_{i=1}^{n} \beta_i x_i \ge \prod_{i=1}^{n} x_i^{\beta_i}, \quad x_i > 0, \quad \beta_i \ge 0, \quad \sum_{i=1}^{n} \beta_i = 1,$$

for the derivative of the function $\omega_{arphi}(t) = \prod_{i=0}^{n-1} v_{arphi,i}(t)$ we have

$$\begin{split} \frac{\dot{\omega}_{\varphi}(t)}{\omega_{\varphi}(t)} &= \sum_{i=0}^{n-1} \frac{\dot{v}_{\varphi,i}(t)}{v_{\varphi,i}(t)} > \frac{p(t)(b-t)^{n-1}v_{\varphi,0}^{\lambda}(t)}{(n-1)!\varphi^{\lambda-1}(t)v_{\varphi,n-1}(t)} + \varphi_{M}(t) \sum_{i=0}^{n-2} \frac{v_{\varphi,i+1}(t)}{v_{\varphi,i}(t)} + \\ &+ \frac{\dot{\varphi}(t)}{\varphi(t)} \ge \gamma \Big(\frac{p(t)(b-t)^{n-1}v_{\varphi,0}^{\lambda}(t)}{\varphi^{\lambda-1}(t)v_{\varphi,n-1}(t)} \Big)^{\mu_{n}} \prod_{i=0}^{n-2} \Big(\frac{v_{\varphi,i+1}(t)}{v_{\varphi,i}(t)}\varphi_{M}(t) \Big)^{\mu_{i+1}} \times \\ &\times \Big(\frac{\dot{\varphi}(t)}{\varphi(t)} \Big)^{\mu_{n+1}} = \gamma \Big(\frac{\dot{\varphi}(t)}{\varphi(t)} \Big)^{\nu} \frac{\Big(p(t)(b-t)^{n-1} \Big)^{\mu} v_{\varphi,0}^{\lambda\mu-\mu_{1}}(t)}{\varphi^{\lambda-1}(t) \Big(\varphi_{M}(t)\Big)^{\mu+\nu-1}} \prod_{i=1}^{n-1} v_{\varphi,i}^{\mu_{i}-\mu_{i+1}}(t), \end{split}$$

where the numbers μ_i are defined by the equalities $\mu_n = \mu$, $\mu_{n+1} = \nu$,

$$\mu_{i} = \begin{cases} \lambda \mu - i\varepsilon_{1}, \quad \varepsilon_{1} = \frac{2(\nu + n_{1}\mu - 1)}{n(n-1)}, \quad \mu \in \left(\frac{1-\nu}{n_{1}}, \frac{2(1-\nu)}{n+n_{1}}\right) \\ \mu + (n-i)\varepsilon_{1}, \quad \varepsilon_{1} = \frac{2(1-\nu - n\mu)}{n(n-1)}, \quad \mu \in \left(\frac{2(1-\nu)}{n+n_{1}}, \frac{1-\nu}{n}\right) \end{cases}$$

for $i = 1, \ldots, n$. It is clear that these numbers satisfy the conditions

$$\mu_i - \mu_{i+1} \ge \varepsilon_1$$
 $(i = 1, ..., n - 1), \quad \lambda \mu_n - \mu_1 \ge \varepsilon_1, \quad \sum_{i=1}^{n+1} \mu_i = 1.$ (9)

Dividing (8) by $\omega_{\varphi}^{\varepsilon}(t)\varphi^{\delta}(t)$ with $\varepsilon < \min\{\varepsilon_1, \sigma/n\}, \ \delta = \sigma - n\varepsilon$ and integrating the result, we get

$$\varepsilon^{-1} w_{\varphi}^{-\varepsilon}(t) \varphi^{-\delta}(t) > \int_{t}^{b} \dot{\omega}_{\varphi}(s) \omega_{\varphi}^{-1-\varepsilon}(s) \varphi^{-\delta}(s) ds \ge$$
$$\ge \gamma \int_{t}^{b} \frac{((b-x)^{n-1} p(x))^{\mu}}{\varphi^{\sigma}(x) \varphi_{M}^{\mu+\nu-1}(x)} \left(\frac{\dot{\varphi}(x)}{\varphi(x)}\right) \nu v_{\varphi,0}^{\lambda\mu_{n}-\mu_{1}-\varepsilon}(x) \prod_{i=1}^{n-1} v_{\varphi,i}^{\mu_{i}-\mu_{i+1}-\varepsilon}(x) dx.$$

Hence by Lemma 1 and (9) it follows (7) and (8). The theorem is proved. \Box

The following part of the report contains some applications of the above results, where they are applied to analysis of the condition (3) and its natural extensions.

Theorem 3. If the equation (1) with the function p(t) satisfying

$$p(t)(b-t)^n < cJ(a,t) \quad for \quad t \in [t_c,b) \subset (a,b), \quad c > 0,$$
 (10)

has a solution of the type (2), then the condition (3) holds and in some left neighborhood of b

$$u(t) < \gamma J^{1/(\mu(1-\lambda))}(t,b), \quad where \quad \gamma = \gamma(n,\lambda,\mu).$$
(11)

If along with (3)

$$p(t)(b-t)^n < cJ(t,b) \quad for \quad t \in [t_c,b) \subset (a,b), \quad c > 0$$
 (12)

holds then there takes place the two-sided estimate

$$0 < \gamma_1 < u(t) J^{1/(\lambda - 1)}(t, b) < \gamma_2,$$
(13)

where γ_1 and γ_2 depend on n, λ .

Proof. Let the equation (1) with the function p(t) satisfying (10) has a solution of the type (2). Suppose to the contrary that (3) is not true. Then the function $\varphi(t) = J(a, t)$ increases with no bound on (a, b) and by $(10) (b-t)\varphi_c(t) = p(t)(b-t)^n/J(a, t) < 1$ holds.

Therefore, for any $\sigma > \mu$ we have the equality $F_{0,\mu,\sigma,M}(\varphi)(t) = J^{\sigma}(a,t) \int_{t}^{b} (p(x)(b-t)) dx dt dt dt dt$

 $x)^{n-1}J^{\mu-\sigma-1}(a,x)dx = J^{\mu}(a,t)/(\mu-\sigma)$, which contradicts the conclusion of Theorem 2. This means the validity of (3) and the boundness of $\varphi(t)$. In view of this fact we obtain $F_{0,\mu,\sigma,M}(\varphi)(t) > \gamma J(t,b)$ for $t > t_{\gamma} > a$, which by Theorem 2 yields (11).

148

Now assume that (3) and (12) are fulfilled. Then $\varphi(t) = 1/J(t, b)$ increases with no bound on (a, b) and for any $\mu, \sigma > 0$

$$F_{\nu,\mu,\sigma,M}(\varphi)(t) = J^{-\sigma}(t,b) \int_{t}^{b} p(x)(b-x)^{n-1} J^{\mu+\sigma-1}(x,b) dx = J^{\mu}(t,b)/(\mu+\sigma)$$

holds from which by Theorem 2 there immediately follows the estimate (13). The theorem is proved.

Corollary 1. The problem (1), (2) with function p(t), satisfying on (a, b) $0 < c_1 < c_1 < c_2$ $p(t)(b-t)^{n-1}\ln_k^{\sigma}(1/(b-t))l_k(1/(b-t)) < c_2, \ k \ge 0, \ has \ a \ solutions \ if \ and \ only \ if \ \sigma > 0,$ and every such solution admits the estimate $0 < \gamma_1 < u(t) \ln_k^{\sigma/(1-\lambda)} (1/(b-t)) < \gamma_2$, and every such solution solution where $\ln_0 t = t$, $\ln_{k+1} t = \ln(\ln_k t)$, $l_k(t) = \prod_{i=0}^k \ln_i t$ and γ_1 , γ_2 depend only on n, λ , σ .

In the general case it is useful to introduce into consideration the nonnegative functions $p_{f*}(t) = \min\{p(t), f(t)(b-t)^{-n}\}, p_f^*(t) = p(t) - p_{f*}(t)$ and the integrals

$$J_{f*}(s,t) = \int_{s}^{t} \frac{p_{f*}(x)(b-x)^{n-1}}{f(x)} dx, \quad J_{f}^{*}(s,t) = \int_{s}^{t} \frac{p_{f}^{*}(x)(b-x)^{n-1}}{f(x)} dx,$$

where f(x) is an arbitrary nondecreasing positive function.

Theorem 4. If the equation (1) has a solution u of the type (2), then for an arbitrary nondecreasing positive function f(t) and all $\mu \in (0, 1/n) J_{f*}(a, b) < +\infty$, $\lim_{t \to 0} f^{\mu}(t) J_{f,*}(t,b) = 0$ and in some neighborhood of b the estimate

$$u(t) < \gamma (f(t) J_{f_*}^{1/\mu}(t,b))^{1/(1-\lambda)}$$

is true.

If in addition $p_{f*}(t)(b-t)^n < cf(t)J_{f*}(t,b)$ for $t \in (a,b)$, holds then there takes place the estimate $u(t) < \gamma(f(t)J_{f*}(t,b))^{1/(1-\lambda)}$.

Corollary 2. If the problem (1), (2) with the function p(t), satisfying

$$J_f(t,b) = \int_t^b \frac{p(x)(b-x)^{n-1}}{f(x)} dx = +\infty \quad for \quad t \in (a,b),$$

where f(x) > 0 is an arbitrary nondecreasing function, is solvable, then

$$\overline{\lim_{t \to b}} p_f^*(t)(b-t)^{n-1}/f(t) = +\infty, \quad J_f^*(t,b) = +\infty.$$

Theorem 5. Let the equation (1) with the function p(t) satisfying the condition

$$p_{f*}(t)(b-t)^n > cf(t)J_{f*}(t,b) \quad for \quad t \in (a,b)$$

holds, where f(x) increases on (a, b), have a solution u of the type (2). Then the estimate

$$u(t) < \gamma \left(f(t) J_{f*}^{(1-\nu)/\mu}(t,b) \right)^{1/(1-\lambda)},$$

holds, where γ depends only on n, λ , μ .

Theorem 6. If the equation (1) with the function p(t) satisfying the condition

$$p_{f}^{*}(t)(b-t)^{n} > cf(t)J_{f}^{*}(a,t) \quad for \quad t \in (a,b),$$

where f(x) increases on (a, b), has a solution u of the type (2), then the estimate

$$u(t) < \gamma \left(f(t) J_{f}^{*}(a, t) \left(\int_{t}^{b} \tau^{-1} sgnp_{f}^{*}(\tau) d\tau \right)^{1/\mu} \right)^{1/(1-\lambda)}$$

holds, where γ depends only on n, λ , μ .

To prove the Theorem it is sufficient to apply Theorem 2 with the function $\varphi(t) = J_t^*(a, t)$, which is unbounded in the case where (3) is not fulfilled.

References

1. I. T. KIGURADZE AND T. A. CHANTURIA, Asymptotic properties of solutions of nonautonomous nonlinear ordinary differential equations. (Russian) *Nauka*, *Moscow*. 1990.

2. N. A. IZOBOV AND V. A. RABTSEVICH, On the two Kiguradze problems for the Emden — Fowler equations. (Russian) Proceedings of the Institute of Mathematics. Mn. 2(1999). 73–91.

Author's address: Institute of Mathematics Belorussian Academy of Sciences 11, Surganova St., Minsk 220072 Belarus