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Consider the problem

dx(t) = dA(t) � p(t) � x(t) + df(t); (1)

x(t

0

) = 

0

; (2)

where A : R

+

! R

n�n

and f : R

+

! R

n

are, respetively, the real matrix- and vetor-

funtions with loally bounded variation omponents, p : R

+

! R

n�n

is a matrix-

funtion loally integrable with respet to A, 

0

2 R

n

and t

0

2 R

+

.

Along with the problem (10), (2) let us onsider the problem

dx(t) = d

e

A(t) � ep(t) � x(t) + d

e

f(t); (3)

x(

e

t

0

) = e

0

; (4)

where

e

A : R

+

! R

n�n

and

e

f : R

+

! R

n

are, respetively, real matrix{ and vetor-

funtions with loally bounded variation omponents, ep : R

+

! R

n�n

is a matrix-

funtion loally integrable with respet to

e

A, e

0

2 R

n

and

e

t

0

2 R

+

.

Before passing to the statement of the basi results, we give some notation and de�-

nitions.

R =℄�1;+1[ is the set of real numbers, [a; b℄ and ℄a; b[ are, respetively, losed and

open intervals; R

+

= [0;+1[.

R

n�m

is the spae of all real n � m-matries x = (x

ij

)

n;m

ij=1

with the norm kxk =

max

j=1;:::;m

P

n

i=1

jx

ij

j:

R

n�m

+

= f(x

ij

)

n;m

: x

ij

� 0 (i = 1; : : : ; n; j = 1; : : : ;m)g:

R

n

= R

n�1

is a spae of all real olumn n-vetors x = (x

i

)

n

i=1

.

If x 2 R

n�n

, then x

�1

and det(x) are, respetively, the inverse to x matrix and the

determinant of x; I

n

is the identity n� n matrix;

d

V



= supf

b

V

a

(x) :  < a < b < dg, where

b

x

a

is the sum of total variations on a

losed interval [a; b℄ of omponents x

ij

(i = 1; : : : ; n; j = 1; : : : ;m) of the matrix-funtion

x :℄; d[! R

n�m

; v(x)(t) = (v(x

ij

)(t))

n

i;j=1

, where v(x

ij

)(t) = (

t

V

�1

x

ij

) for t 2℄; d[

(i = 1; : : : ; n; j = 1; : : : ;m)

1

;

x(t�) and x(t+) are the left and the right limits of the matrix-funtion x :℄; d[!

R

n�m

at the point t 2℄; d[, d

1

x(t) = x(t) � x(t�), d

2

x(t) = x(t+) � x(t).
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as a onstant outside [a; b℄ is assumed to be ontinuous.
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BV

lo

(R

+

; R

n�m

) is the set of all matrix-funtions x : R

+

! R

n�m

of bounded

variations on every losed interval from R

+

.

If g : R

+

! R is a nondereasing funtion, x : R

+

! R and 0 � s < t < +1, then

t

Z

s

x(�) dg(�) =

Z

℄s;t[

x(�) dg

1

(�)�

Z

℄s;t[

x(�) dg

2

(�) +

+

X

s<��t

x(�) d

1

g(�) �

X

s��<t

x(�) d

2

g(�);

where g

j

: R

+

! R (j = 1; 2) are ontinuous nondereasing funtions suh that the

funtion g

1

� g

2

is identially equal to the ontinuous part of g, and

R

℄s;t[

dg

j

(�) is

the Lebesgue-Stieltjes integral over the open interval ℄s; t[ with respet to the measure

orresponding to the funtion g

j

(j = 1; 2) (if s = t, then

R

t

s

x(�)dg(�) = 0);

L

lo

(R

+

; R; g) is the set of all funtions x : R

+

! R �(g)-measurable (i.e, measurable

with respet to the measures �(g

1

) and �(g

2

)) and integrable on the losed interval [0; b℄

for every b 2 R

+

.

A matrix-funtion t

0

is said to be nondereasing if eah of its omponents is suh.

If G = (g

ik

)

`;n

i;k=1

: R

+

! R

`�n

is a nondereasing matrix-funtions, then

L(R

+

;R

n�n

: G) is the set of all matrix-funtions x = (x

kj

)

n;m

k;j=1

: R

+

! R

n�m

suh that x

kj

2 L(R

+

; R; g

ik

) (i = 1; : : : ; `; ; k = 1; : : : ; n; j = 1; : : : ;m);

t

Z

s

dG(�) � x(�) =

�

n

X

k=1

t

Z

s

x

kj

(�) dg

ik

(�)

�

`;m

i;j=1

for 0 � s � t < +1:

If G

j

: R

+

! R

`�n

(j = 1; 2) are nondereasing matrix-funtions, G � G

1

�G

2

and

x : R

+

! R

n�m

, then

t

Z

s

dG(�) � x(�) =

t

Z

s

dG

1

(�) � x(�)�

t

Z

s

dG

2

(�) � x(�) for 0 � s � t < +1;

L(R

+

; R

n�m

; G) =

2

\

j=1

L(R

+

; R

n�m

; G

j

):

Under a solution of the system (1) is understood a vetor-funtion x 2 BV

lo

(R

+

; R

n

)

suh that

x(t) � x(s) =

t

Z

s

dA(�) � p(�) � x(�) + f(t) � f(s) for 0 � s � t < +1:

We will assume that f 2 BV

lo

(R

+

; R

n

), A 2 BV

lo

(R

+

; R

n�n

) and p 2

L

lo

(R

+

; R

n�n

; A) are suh that

det(I

n

+ (�1)

j

djA(t) � p(t)) 6= 0 for t 2 R

+

(j = 1; 2): (5)

Then the problem (1), (2) has a unique solution (see [1℄).

De�nition 1. The problem (1), (2) is said to be orret if for every arbitrarily small

" > 0 and arbitrarily large � > 0 there exists Æ > 0 suh that for any

e

t

0

2 R

+

, e

0

2 R

n

,
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e

A 2 BV

lo

(R

+

; R

n�n

,

e

f 2 BV

lo

(R

+

; R

n

) and ep 2 L

lo

(R

+

; R

n�n

; A) satisfying the

onditions

jt

0

�

e

t

0

j < Æ; k

0

�e

0

k < Æ; (6)

kM(t) �

e

M(t)k < Æ kf(t) �

e

f(t)k < Æ;

+1

V

0

(M �

e

M) < �

and

det(I

n

+ (�1)

j

dj

e

A(t) � ep(t)) 6= 0 for t 2 R

+

(j = 1; 2) (7)

with

M(t) =

t

Z

0

dA(�) � p(�);

e

M(t) =

t

Z

0

d

e

A(�) � ep(�); (8)

the inequality

kx(t) � y(t)k < " for t 2 R

+

(9)

holds, where x and y are the solutions of the problems (1), (2) and (3), (4), respetively.

De�nition 2. The problem (1), (2) is said to be weakly orret if for arbitrary ">0

there exists Æ > 0 suh that for any

e

t

0

2 R

n

and e

0

2 R

n

,

e

A 2 BV

lo

(R

+

; R

n�n

),

e

f 2 BV

lo

(R

+

; R

n

) and ep 2 L

lo

(R

+

; R

n�n

; A) satisfying the onditions (6), (7) and

+1

V

0

(M �

e

M) < Æ;

+1

V

0

(f �

e

f) < Æ;

where the matrix-funtions M and

e

M are de�ned by (8), the inequality (9) holds, where

x and y are the solutions of the problems (1), (2) and (3), (4), respetively.

De�nition 3. Let � : R

+

!R

+

be a nondereasing funtion suh that lim

t!+1

�(t) =

+1: A solution x of the system (1) is said to be �-exponentially asymptotially stable if

there exists a positive number � suh that for every " > 0 there exists Æ = dl(") > 0 suh

that an arbitrary solution y of the system (1) the satisfying the inequality

kx(t

0

)� y(t

0

)k < Æ

for some t

0

2 R

+

, admits the estimate

kx(t) � y(t)k < " exp(��(�(t) � �(t

0

))) for t � t

0

The uniform stability of the solution x is de�ned just in the same way as for systems

of ordinary di�erential equations (see, e.g., [2℄ or [3℄).

De�nition 4. The system (1) is said to be uniformly stable (�-exponentially asymp-

totially stable) if every solution of that system is uniformly stable (�-exponentially

asymptotially stable).

De�nition 5. A pair (A; p) of matrix-funtions A 2 BV

lo

(R

+

; R

n�n

and p 2

L

lo

(R

+

; R

n�n

; A) satisfying the ondition (5) is said to be uniformly stable (�-expon-

entially asymptotially stable) if the system

dx(t) = dA(t) � p(t) � x(t)

is uniformly stable (�-exponentially asymptotially stable).
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Theorem 1. Let A 2 BV

lo

(R

+

;R

n�n

), f 2BV

lo

(R

+

;R

n

), p 2 L

lo

(R

+

;R

n�n

; A),

and let the ondition (5) hold. Moreover, let the pair (A; p) be �-exponentially asymp-

totially stable and the onditions

lim sup

t!+1

�(�)(t)

V

t

(B) < +1;

and

lim

t!+1

�(�)(t)

V

t

(

e

B) = 0

hold, where

�(�)(t) = supf� � t : �(�) � �(t) + 1g;

B(A; p)(t)=

t

Z

0

dA(�) � p(�) +

X

0��<t

d

1

A(�) � p(�)(I

n

� d

1

A(�) � p(�))

�1

� d

1

A(�) � (�)�

�

X

0��<t

d

2

A(�) � p(�)(I

n

+ d

2

A(�) � p(�))

�1

� d

2

A(�) � (�);

e

B(A; p; f)(t) = f(t) +

X

0<��t

d

1

A(�) � p(�)(I

n

� d

1

A(�) � p(�))

�1

� d

1

f(�) �

�

X

0��<t

d

2

A(�) � p(�)(I

n

+ d

2

A(�) � p(�))

�1

� d

2

f(�):

Then the problem (1), (2) is orret.

Theorem 2. Let A2BV

lo

(R

+

;R

n�n

), f 2BV

lo

(R

+

;R

n

), p 2 L

lo

(R

+

;R

n�n

; A),

and let the ondition (5) hold. Let, moreover, the pair (A; p) be uniformly stable. Then

the problem (1), (2) is weakly orret.
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