## L. Kokilashyili

## ON THE EXISTENCE OF PROPER AND VANISHING AT INFINITY SOLUTIONS OF ODD ORDER NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

(Reported on February 21, 2000)

Consider a nonlinear ordinary differential equation

$$
\begin{equation*}
u^{(n)}+\sum_{k=1}^{n-1} p_{k}(t) u^{(k)}=f\left(t, u, u^{\prime}, \ldots, u^{(n-1)}\right) \tag{1}
\end{equation*}
$$

on $\left[a,+\infty\left[\right.\right.$, where $n \geq 2,0<a<+\infty$ each of the functions $p_{k}:[a,+\infty[\rightarrow \mathbb{R}, k \in\{1<$ $\cdots<n-1\}$ are locally absolutely continuous together with its derivatives up to order $k-1$, inclusive, and the function $f:\left[a,+\infty\left[\times \mathbb{R}^{n} \rightarrow \mathbb{R}\right.\right.$ is locally summable in the first argument and satisfies the local Lipschitz condition in the last $n$ variables.

As is well-known, even in the case where $p_{k}(t) \equiv 0$, the general theory of the Cauchy problem does not answer the question on the existence of a global nontrivial solution of the equation (1) if the increase order with respect to at least one phase variable is greater than 1.

In 1986, I. Kiguradze [1] investigated a certain boundary value problem for (1) and obtained sufficient conditions for the existence of proper solutions in the above-mentioned case. The same question was considered by the author in [2] for equation (1). In the present paper we complement the results of [2], in the case, where $n$ is odd.

Throughout this work, the use will be made of the following notation:
$\mathbb{R}$ is the set of real numbers;
$\mathbb{R}_{+}=[0,+\infty[;$
$\mathbb{R}^{n}$ is the $n$-dimensional real Euclidean space;
$\mu^{k}(k=1,2, \ldots ; k=2 i, 2 i+1, \ldots)$ are the real constants defined by the recurrence relation

$$
\mu_{0}^{i+1}=\frac{1}{2} ; \quad \mu_{i}^{2 i}=1 ; \quad \mu_{i+1}^{k}=\mu_{i+1}^{k-1}+\mu_{i}^{k-2} \quad(i=0,1, \ldots ; k=2 i+3, \ldots)
$$

The solution $u$ of the equation (1) is said to be proper, if it is defined on $\left[t_{0},+\infty[\subset\right.$ $[a,+\infty[$ and does not equal identically to zero in any neighborhood of $+\infty$.

We say that the proper solution $u$ of the equation (1) vanishes at infinity, if

$$
\lim _{t \rightarrow+\infty} u(t)=0
$$

Let $n_{0}$ be the entire part of the number $\frac{n}{2}$ and $\varphi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous functions satisfying

$$
\begin{equation*}
0<\sum_{i=0}^{n_{0}-1}\left|\varphi_{i}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)\right| \leq c\left(1+\sum_{k=n_{0}}^{n-1}\left|x_{k}\right|\right)^{-\lambda} \tag{2}
\end{equation*}
$$

[^0]on $\mathbb{R}^{n}$, where $c \geq 0$ and $\lambda \in[0,1]$.
Below, unless otherwise specified, the function $f$ is assumed to satisfy the conditions
\[

$$
\begin{align*}
& (-1)^{n_{0}} f\left(t, x_{0}, x_{1}, \ldots, x_{n-1}\right) \operatorname{sgn} x_{0} \geq-\sum_{i=0}^{n_{0}-1} \alpha_{i}(t)\left|x_{0}\right|  \tag{3}\\
& \left|f\left(t, x_{0}, x_{1}, \ldots, x_{n-1}\right)\right| \leq h\left(t,\left|x_{0}\right|,\left|x_{1}\right|, \ldots,\left|x_{n_{0}-1}\right|\right)
\end{align*}
$$
\]

on $\left[a,+\infty\left[\times \mathbb{R}^{n}\right.\right.$, where the functions $\alpha_{i}:\left[a,+\infty\left[\rightarrow \mathbb{R}\left(i=0, \ldots, n_{0}-1\right)\right.\right.$ are locally summable, while the function $h:\left[a,+\infty\left[\rightarrow \mathbb{R}_{+}^{n_{0}} \rightarrow \mathbb{R}_{+}\right.\right.$is locally summable in the first argument, nondecreasing in the last $n_{0}$ arguments and for any $\rho_{0}>0$ satisfies the condition

$$
\begin{equation*}
\limsup _{\substack{t \rightarrow a_{k} \\ \rho \rightarrow+\infty}} \frac{1}{\rho^{2}}\left(\int_{a}^{t} h\left(\tau, \rho_{0}, \rho, \ldots, \rho\right) d \tau\right)^{1-\lambda}<+\infty \tag{4}
\end{equation*}
$$

Theorem 1. Let there exist the constant $\delta>0$ such that the inequalities

$$
\begin{gathered}
\sum_{k=2 i}^{n-1}(-1)^{n_{0}+k-i} \mu_{i}^{k}\left[p_{k}(t)\right]^{(k-2 i)} \leq 0 \quad\left(i=1, \ldots, n_{0}-1\right) \\
p_{n-1}(t) \leq-\delta \text { and } \sum_{k=1}^{n-1}(-1)^{n_{0}+k-1} \mu_{0}^{k}\left[p_{k}(t)\right]^{(k)}-\sum_{i=0}^{n_{0}-1} \alpha_{i}(t) \geq \delta
\end{gathered}
$$

hold on $[a,+\infty[$. Then there exists a proper, vanishing at infinity, solution $u$ of the equation (1) satisfying the initial conditions

$$
\begin{equation*}
u^{(i)}(a)=\varphi_{i}\left(u(a), u^{\prime}(a), \ldots, u^{(n-1)}(a)\right) \quad\left(i=0, \ldots, n_{0}-1\right) \tag{5}
\end{equation*}
$$

The theorem below deals with the case, where $h\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \equiv h_{0}\left(t, x_{0} x\right)$, $\alpha_{i}(t) \equiv 0\left(i=1, \ldots, n_{0}-1\right) \lambda=0$ i.e., when the conditions (2) and (3) are of the form

$$
\begin{gathered}
(-1)^{n_{0}} f\left(t, x_{0}, \ldots, x_{n-1}\right) \operatorname{sgn} x_{0} \geq-\alpha_{0}(t)\left|x_{0}\right| \\
0<\sum_{i=0}^{n_{0}-1}\left|\varphi_{i}\left(x_{0}, \ldots, x_{n-1}\right)\right| \leq c
\end{gathered}
$$

The condition (4) in this case is fulfilled automatically.
Theorem 2. Let there exist a continuous solution $\delta:[a,+\infty[\rightarrow[0,+\infty[$ such that $\delta(a)>0$ and the inequalities

$$
\begin{aligned}
& \sum_{k=2 i}^{n-1}(-1)^{n_{0}+k-i} \mu_{i}^{k} p_{k}^{(k-2 i)}(t) \leq 0 \quad\left(i=1, \ldots, n_{0}-1\right) \\
& p_{n-1}(t) \leq 0, \quad \sum_{k=1}^{n-1}(-1)^{n_{0}+k-1} \mu_{0}^{k} p_{k}^{(k)}(t) \geq \alpha_{0}(t)+\delta(t)
\end{aligned}
$$

hold on $[a,+\infty[$. Then there exists at least one proper solution of the equation (1) satisfying the initial conditions (5).

In a special case where $p_{k}(t) \equiv 0$ for $k \in\{1, \ldots, n-3, n-1\}$ and $p_{n-2}(t) \equiv 1$, Theorem 2 implies one result from [3].

## References

1. I. Kiguradze, On a boundary value problem with a condition at infinity for higher order differential equations. (Russian) Trudy Vsesojuznogo Simpoziuma po Diff. Uravnenijam v Chastnykh Proizvodnykh, Tbilis. Univ. Press, 1986, 91-105.
2. L. Kokilashyili, On the existence of proper solutions of higher order nonlinear ordinary differential equations. Fasc. Math. 26(1996), 37-60.
3. L. Kokilashvili, On a certain boundary value problem for nonlinear ordinary differential equations. Mem. Differential Equations Math. Phys. 13(1998), 145-147.

Author's address:
Faculty of Mechanics and Mathematics
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 380043
Georgia


[^0]:    2000 Mathematics Subject Classification. 34B40
    Key words and phrases. Odd order nonlinear ordinary differential equation, vanishing at infinity solution, existence.

