## B. PŮŽa and A. Rabbimov

## ON A WEIGHTED BOUNDARY VALUE PROBLEM FOR A SYSTEM OF SINGULAR FUNCTIONAL DIFFERENTIAL EQUATIONS

(Reported on February 7, 2000)

Let $-\infty<a<b<+\infty, 0 \leq \alpha, \beta \leq 1, n \geq 1$, and $f$ be a continuous operator acting from the space of continuously differentiable vector functions $u:] a, b\left[\rightarrow R^{n}\right.$ satisfying the condition

$$
\sup \left\{(t-a)^{\alpha-1}(b-t)^{\beta-1}\|u(t)\|+(t-a)^{\alpha}(b-t)^{\beta}\left\|u^{\prime}(t)\right\|: a<t<b\right\}<+\infty
$$

to the space of $n$-dimensional, summable with the weight $(t-a)^{\alpha}(b-t)^{\beta}$, vector functions. Consider the system of functional differential equations

$$
\begin{equation*}
u^{\prime \prime}(t)=f(u)(t) \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{gather*}
\lim _{t \rightarrow a} u(t)=0, \quad \lim _{t \rightarrow b} u(t)=0  \tag{2}\\
\sup \left\{(t-a)^{\alpha-1}(b-t)^{\beta-1}\|u(t)\|+(t-a)^{\alpha}(b-t)^{\beta}\left\|u^{\prime}(t)\right\|: a<t<b\right\}<+\infty
\end{gather*}
$$

In case $n=1$ or $f(u)(t)=f_{0}\left(t, u(t), u^{\prime}(t)\right)$, where $\left.f_{0}:\right] a, b\left[\times R^{n} \rightarrow R^{n}\right.$ is a vector function satisfying the local Carathéodory conditions, boundary value problems of the type (1), (2) are investigated in full detail (see $[1-9,11-20]$ and the references therein). Below we give optimal sufficient conditions for the solvability and the unique solvability of the problem (1), (2) which generalize the results of [19].

Throughout the paper the following notation will be used.
$R=]-\infty,+\infty\left[, R_{+}=[0,+\infty[\right.$.
$R^{n}$ is the space of $n$-dimensional vector columns $x=\left(x_{i}\right)_{i=1}^{n}$ with the components $x_{i} \in R(i=1, \ldots, n)$ and the norm

$$
\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|
$$

If $x=\left(x_{i}\right)_{i=1}^{n}$, then $|x|=\left(\left|x_{i}\right|\right)_{i=1}^{n}$.
$R_{+}^{n}=\left\{\left(x_{i}\right)_{i=1}^{n} \in R^{n}: x_{i} \in R_{+}(i=1, \ldots, n)\right\}$.
The inequality between vectors is understood componentwise, i.e, if $x=\left(x_{i}\right)_{i=1}^{n}$ and $y=\left(y_{i}\right)_{i=1}^{n} \in R^{n}$, then

$$
x \leq y \Longleftrightarrow x_{i} \leq y_{i}(i=1, \ldots, n)
$$

[^0]$R^{n \times n}$ is the space of $n \times n$-matrices $X=\left(x_{i k}\right)_{i, k=1}^{n}$ with the components $x_{i k} \in R$ $(i, k=1, \ldots, n)$ and the norm
$$
\|X\|=\sum_{i, k=1}^{n}\left|x_{k}\right| .
$$
$R_{+}^{n \times n}=\left\{X=\left(x_{i k}\right)_{i, k=1}^{n}: x_{i k} \in R_{+}(i, k=1, \ldots, n)\right\}$.
$r(X)$ is the spectral radius of a matrix $X \in R^{n \times n}$.
$C_{\alpha, \beta}^{1}(] a, b\left[; R^{n}\right)$ is the space of continuously differentiable functions $\left.u:\right] a, b\left[\rightarrow R^{n}\right.$ such that the norm
$$
\|u\|_{C_{\alpha, \beta}^{1}}=\sup \left\{(t-a)^{\alpha-1}(b-t)^{\beta-1}\|u(t)\|+(t-a)^{\alpha}(b-t)^{\beta}\left\|u^{\prime}(t)\right\|: a<t<b\right\}
$$
is finite.
If $u=\left(u_{i}\right)_{i=1}^{n} \in C_{\alpha, \beta}^{1}(] a, b\left[; R^{n}\right)$, then
\[

$$
\begin{gathered}
\nu_{0, \alpha, \beta}\left(u_{i}\right)=\sup \left\{(t-a)^{\alpha-1}(b-t)^{\beta-1}\left|u_{i}(t)\right|: a<t<b\right\}, \\
\nu_{1, \alpha, \beta}\left(u_{i}\right)=\sup \left\{\frac{(t-a)^{\alpha}(b-t)^{\beta}}{b-a}\left|u_{i}^{\prime}(t)\right|: a<t<b\right\}, \\
\nu_{\alpha, \beta}\left(u_{i}\right)=\max \left\{\nu_{0, \alpha, \beta}\left(u_{i}\right), \nu_{1, \alpha, \beta}\left(u_{i}\right)\right\}, \quad \nu_{\alpha, \beta}(u)=\left(\nu_{\alpha, \beta}\left(u_{i}\right)\right)_{i=1}^{n} .
\end{gathered}
$$
\]

$L_{\alpha, \beta}(] a, b\left[; R^{n}\right)$ is the space of vector functions $\left.v:\right] a, b\left[\rightarrow R^{n}\right.$ with summable with the weight $(t-a)^{\alpha}(b-t)^{\beta}$ components and the norm

$$
\|v\|_{L_{\alpha, \beta}}=\int_{a}^{b}(t-a)^{\alpha}(b-t)^{\beta}\|v(t)\| d t
$$

$L_{\alpha, \beta}(] a, b\left[; R_{+}^{n \times n}\right)$ is the set of matrix functions $\left.H:\right] a, b\left[\rightarrow R_{+}^{n \times n}\right.$ with summable with the weight $(t-a)^{\alpha}(b-t)^{\beta}$ nonnegative components.
$M_{\alpha, \beta}(] a, b\left[\times R_{+} ; R_{+}^{n}\right)$ is the set of vector functions $\left.h:\right] a, b\left[\times R_{+} \rightarrow R_{+}^{n}\right.$ summable in the first argument with the weight $(t-a)^{\alpha}(b-t)^{\beta}$ and nondecreasing in the second argument.

In what follows it will be assumed that the operator $f: C_{\alpha, \beta}^{1}(] a, b\left[; R^{n}\right) \rightarrow$ $L_{\alpha, \beta}(] a, b\left[; R^{n}\right)$ is continuous and

$$
\sup \left\{\|f(u)(\cdot)\|: \quad\|u\|_{C_{\alpha, \beta}^{1}} \leq \rho\right\} \in L_{\alpha, \beta}(] a, b[; R) \quad \text { for } \quad 0<\rho<+\infty
$$

A vector function $u:] a, b\left[\rightarrow R^{n}\right.$ is called a solution of the problem (1), (2) if:
(i) $u$ is continuously differentiable and $u^{\prime}$ is locally absolutely continuous in $] a, b[$;
(ii) $u$ satisfies the boundary conditions (2);
(iii) $u$ satisfies the system (1) almost everywhere on $] a, b[$.

Analogously to Theorem 1 of [10] it can be proved the following
Theorem 1. Let there exist a positive number $\rho_{0}$ such that for any $\left.\lambda \in\right] 0,1[$ an arbitrary solution of the differential system

$$
\frac{d u(t)}{d t}=\lambda f(u)(t)
$$

satisfying the boundary conditions (2) admits the estimation

$$
\|u\|_{C_{\alpha, \beta}^{1}} \leq \rho_{0} .
$$

Then the problem (1), (2) is solvable.

Corollary 1. Let there exist $H \in L_{\alpha, \beta}(] a, b\left[; R_{+}^{n \times n}\right)$ and $h \in M_{\alpha, \beta}(] a, b\left[\times R_{+} ; R_{+}^{n}\right)$ such that

$$
\begin{equation*}
\left.|f(u)(t)| \leq H(t) \nu_{\alpha, \beta}(u)+h\left(t ;\|u\|_{C_{\alpha, \beta}^{1}}\right) \quad \text { for } \quad t \in\right] a, b\left[, \quad u \in C_{\alpha, \beta}^{1}(] a, b\left[; R^{n}\right) .\right. \tag{3}
\end{equation*}
$$

Moreover, let

$$
\begin{equation*}
\lim _{\rho \rightarrow+\infty}\left(\frac{1}{\rho} \int_{a}^{b}\|h(t, \rho)\| d t\right)=0 \tag{4}
\end{equation*}
$$

and the system of differential inequalities

$$
\begin{equation*}
\left|u^{\prime \prime}(t)\right| \leq H(t) \nu_{\alpha, \beta}(u) \tag{5}
\end{equation*}
$$

under the boundary conditions (2) have only the trivial solution. Then the problem (1), (2) is solvable.

The problem (5), (2) has only the trivial solution if

$$
\begin{equation*}
r\left(\int_{a}^{b}(t-a)^{\alpha}(b-t)^{\alpha} H(t) d t\right)<b-a \tag{6}
\end{equation*}
$$

or

$$
H(t) \leq(t-a)^{-\alpha}(b-t)^{-\beta} H_{0}, \quad H_{0} \in R_{+}^{n \times n}
$$

and

$$
\begin{equation*}
r\left(H_{0}\right)<\min \{2-\alpha, 2-\beta\} . \tag{7}
\end{equation*}
$$

Therefore from Corollary 1 it follows
Corollary 2. Let there exist $H \in L_{\alpha, \beta}(] a, b\left[; R_{+}^{n \times n}\right)$ and $h \in M_{\alpha, \beta}(] a, b\left[\times R_{+} ; R_{+}^{n}\right)$ such that the conditions (3), (4) and (6) are fulfilled. Then the problem (1), (2) is solvable.

Corollary 3. Let there exist $H_{0} \in R_{+}^{n \times n}$ and $h \in M_{\alpha, \beta}(] a, b\left[\times R_{+} ; R_{+}^{n}\right)$ such that

$$
\begin{gathered}
|f(u)(t)| \leq(t-a)^{-\alpha}(b-t)^{-\beta} H_{0} \nu_{\alpha, \beta}(u)+h\left(t ;\|u\|_{C_{\alpha, \beta}^{1}}\right) \\
\quad \text { for } t \in] a, b\left[, \quad u \in C_{\alpha, \beta}^{1}(] a, b\left[; R^{n}\right)\right.
\end{gathered}
$$

and the conditions (4) and (7) are fulfilled. Then the problem (1), (2) is solvable.
Theorem 2. Let there exist $H \in L_{\alpha, \beta}(] a, b\left[; R_{+}^{n \times n}\right)$ such that

$$
\begin{equation*}
\left.|f(u)(t)-f(v)(t)| \leq H(t) \nu_{\alpha, \beta}(u-v) \quad \text { for } \quad t \in\right] a, b\left[, \quad u, v \in C_{\alpha, \beta}^{1}(] a, b\left[; R^{n}\right)\right. \tag{8}
\end{equation*}
$$

and the problem (5), (2) has only the trivial solution. Then the problem (1), (2) has one and only one solution.

Corollary 4. Let there exist $H \in L_{\alpha, \beta}(] a, b\left[; R_{+}^{n \times n}\right)$ such that the conditions (6) and (8) are fulfilled. Then the problem (1), (2) has one and only one solution.

Corollary 5. Let there exist $H_{0} \in R_{+}^{n \times n}$ such that

$$
\begin{gathered}
|f(u)(t)-f(v)(t)| \leq(t-a)^{-\alpha}(b-t)^{-\beta} H_{0} \nu_{\alpha, \beta}(u-v) \\
\text { for } t \in] a, b\left[, \quad u, v \in C_{\alpha, \beta}^{1}(] a, b\left[; R^{n}\right) .\right.
\end{gathered}
$$

Then the problem (1), (2) has one and only one solution.

A particular case of (1) is the differential system with deviating arguments

$$
\begin{equation*}
u^{\prime \prime}(t)=f_{0}\left(t, u\left(\tau_{1}(t)\right), u^{\prime}\left(\tau_{2}(t)\right)\right) \tag{9}
\end{equation*}
$$

This system will be considered under the following assumptions:
(i) $f_{0}$ maps $I \times R^{2 n}$ into $R^{n}$, where $I \subset[a, b]$ and mes $I=b-a$;
(ii) $f_{0}(t, \cdot, \cdot): R^{2 n} \rightarrow R^{n}$ is continuous for every $t \in I$, and $f(\cdot, x, y): I \rightarrow R^{n}$ is measurable for every $x$ and $y \in R^{n}$;
(iii) $\left.\tau_{i}: I \rightarrow\right] a, b[(i=1,2)$ are measurable functions.

The propositions below on the solvability and the unique solvability of the problem (9), (2) follow from Corollaries $2-5$.

Corollary 6. Let there exist $H_{i} \in L_{\alpha, \beta}(] a, b\left[; R_{+}^{n \times n}\right)(i=1,2)$ and $h \in$ $M_{\alpha, \beta}(] a, b\left[\times R_{+} ; R_{+}^{n}\right)$ such that

$$
\begin{gathered}
\left|f_{0}\left(t,\left(\tau_{1}(t)-a\right)^{1-\alpha}\left(b-\tau_{1}(t)\right)^{1-\beta} x,\left(\tau_{2}(t)-a\right)^{-\alpha}\left(b-\tau_{2}(t)\right)^{-\alpha} y\right)\right| \leq \\
\leq H_{1}(t)\left|x+\left|H_{2}(t)\right| y\right|+ \\
+h\left(t,\left(\tau_{1}(t)-a\right)^{1-\alpha}\left(b-\tau_{1}(t)\right)^{1-\alpha}|x|+\left(\tau_{2}(t)-a\right)^{-\alpha}\left(b-\tau_{2}(t)\right)^{-\beta}|y|\right) \\
\quad \text { for } t \in I, \quad x, y \in R^{n}
\end{gathered}
$$

and the condition (4) hold. Moreover, let either

$$
\begin{equation*}
r\left(\int_{a}^{b}(t-a)^{\alpha}(b-t)^{\beta}\left[H_{1}(t)+(b-a) H_{2}(t)\right] d t\right)<b-a \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
H_{1}(t)+(b-a) H_{2}(t) \leq(t-a)^{-\alpha}(b-t)^{-\alpha} H_{0}, \quad r\left(H_{0}\right)<2 . \tag{11}
\end{equation*}
$$

Then the problem (9), (2) is solvable.
Corollary 7. Let there exist $H_{i} \in L_{\alpha, \beta}(] a, b\left[; R_{+}^{n \times n}\right)(i=1,2)$ such that

$$
\begin{aligned}
& \mid f_{0}\left(t,\left(\tau_{1}(t)-a\right)^{1-\alpha}\left(b-\tau_{1}(t)\right)^{1-\beta} x,\left(\tau_{2}(t)-a\right)^{-\alpha}\left(b-\tau_{2}(t)\right)^{-\beta} y\right)- \\
& -f_{0}\left(t,\left(\tau_{1}(t)-a\right)^{1-\alpha}\left(b-\tau_{1}(t)\right)^{1-\beta} \bar{x},\left(\tau_{2}(t)-a\right)^{-\alpha}\left(b-\tau_{2}(t)\right)^{-\beta} \bar{y}\right) \mid \leq \\
& \left.\quad \leq H_{1}(t)|x-\bar{x}|+H_{2}(t)|y-\bar{y}| \quad \text { for } t \in\right] a, b\left[, \quad x, \bar{x}, y, \bar{y} \in R^{n} .\right.
\end{aligned}
$$

Moreover, let either the condition (10) or the condition (11) hold. Then the problem (9), (2) has one and only one solution.

As an example, consider the differential system

$$
\begin{align*}
u^{\prime \prime}(t) & =\left(\tau_{1}(t)-a\right)^{\alpha-1}\left(b-\tau_{1}(t)\right)^{\beta-1} F_{1}(t)\left|u\left(\tau_{1}(t)\right)\right|+ \\
& +\left(\tau_{2}(t)-a\right)^{\alpha}\left(b-\tau_{2}(t)\right)^{\beta} F_{2}(t)\left|u^{\prime}\left(\tau_{2}(t)\right)\right|+q(t), \tag{12}
\end{align*}
$$

where $F_{i}: I \rightarrow R^{n \times n}(i=1,2)$ are matrix functions with measurable bounded components, $\left.\tau_{i}: I \rightarrow\right] a, b\left[(i=1,2)\right.$ are measurable functions, and $q \in L_{\alpha, \beta}(] a, b\left[; R^{n}\right)$.

From Corollary 7 it follows
Corollary 8. Let there exist $H_{0} \in R_{+}^{n \times n}$ satisfying the inequality (7) such that

$$
\left|F_{1}(t)\right|+(b-a)\left|F_{2}(t)\right| \leq H_{0} \quad \text { for } \quad t \in I
$$

Then the problem (12), (2) has one and only one solution.

Suppose now that

$$
\alpha=\beta=0, \quad F_{1}(t) \equiv H_{0}, \quad F_{2}(t)=\Theta, \quad q(t)=\ell
$$

where $\Theta$ is the zero matrix, $H_{0} \in R_{+}^{n \times n}$, and $\ell \in R^{n}$ is a vector with positive components. Let us show that if

$$
r\left(H_{0}\right) \geq 2,
$$

then the problem (12), (2) has no solution. Indeed, let $u$ be an arbitrary solution of that problem. Then

$$
u^{\prime \prime}(t) \geq \ell
$$

Thus

$$
u(t) \leq-\frac{(t-a)(b-t)}{2} \ell \text { for } a<t<b
$$

Taking into account this inequality, we obtain

$$
u^{\prime \prime}(t) \geq \frac{1}{2} H_{0}+\ell
$$

and

$$
u(t) \leq-\left(\frac{1}{2} H_{0} \ell+\ell\right) \ell(t-a)(b-t) \text { for } a<t<b
$$

If we continue this process, then we will get

$$
-u(t) \geq \sum_{k=0}^{+\infty}\left(\frac{1}{2} H_{0}\right)^{k} \ell(t-a)(b-t) \quad \text { for } \quad a<t<b
$$

which is impossible since $r\left(\frac{1}{2} H_{0}\right) \geq 1$.
The above example shows that the condition (7) in Corollaries 3 and 5-8 cannot be replaced by the condition

$$
r\left(H_{0}\right) \leq \min \{2-\alpha, 2-\beta\} .
$$

## Acknowledgement

This work was supported by Grant No. 201/99/0295 the Grant Agency of the Czech Republic.

## References

1. M. Zh. Alves, On the solvability of the two-point boundary value problem for a singular nonlinear functional differential equation. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 2(1996), 12-19.
2. M. Alves, About a problem arising in chemical reactor theory. Mem. Differential Equations Math. Phys. 19(2000), 133-141.
3. G. D. Gaprindashvili, On a boundary value problem for systems of nonlinear ordinary differential equations with singularities. (Russian) Differentsial'nye Uravneniya 20(1984), No. 9, 1514-1523.
4. G. D. Gaprindashvili, On certain boundary value problems for systems of second order nonlinear ordinary differential equations. (Russian) Trudy Inst. Prikl. Mat. im. I. N. Vekua 31(1988), 23-52.
5. I. T. Kiguradze, On some singular boundary value problems for nonlinear second order ordinary differential equations. (Russian) Differentsial'nye Uravneniya 4(1968), No. 10, 1753-1773. English transl.: Differ. Equations 4(1968), 901-910.
6. I. T. Kiguradze, On a singular two-point boundary value problem. (Russian) Differentsial'nye Uravneniya 5(1969), No. 11, 2002-2016. English transl.: Differ. Equations 5(1969), 1493-1504.
7. I. T. Kiguradze, On a singular boundary value problem. J. Math. Anal. Appl. 30(1970), No. 3, 475-489.
8. I. T. Kiguradze, Some singular boundary value problems for ordinary differential equations. (Russian) Tbilisi University Press, Tbilisi, 1975.
9. I. T. Kiguradze and A. G. Lomtatidze, On certain boundary value problems for second order linear ordinary differential equations with singularities. J. Math. Anal. Appl. 10(1984), No. 2, 325-347.
10. I. T. Kiguradze and B. PÚža, On boundary value problems for functional differential equations. Mem. Differential Equations Math. Phys. 12(1997), 106-113.
11. I. T. Kiguradze and B. L. Shekhter, Singular boundary value problems for ordinary differential equations of second order. (Russian) Sovrem. Probl. Mat. Noveishie Dostizhenija 30(1987), 105-201.
12. A. G. Lomtatidze, On one boundary value problem for linear differential equations with nonintegrable singularities. (Russian) Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 14(1983), 136-144.
13. A. G. Lomtatidze, On one singular boundary value problem for linear equations of second order. In: Boundary value problems. Perm, Perm Polytechnical Inst., 1984, 46-50.
14. A. G. Lomtatidze, On the solvability of boundary value problems for nonlinear ordinary differential equations of second order with singularities. (Russian) Reports of the Extended Session of a Seminar of the I. N. Vekua Institute of Applied Mathematics, Vol. 1, No. 3 (Russian) (Tbilisi, 1985), 85-92, Tbiliss. Gos. Univ., Tbilisi, 1985.
15. A. G. Lomtatidze, On one boundary value problem for nonlinear ordinary differential equations of second order with singularities. (Russian) Differentsial'nye Uravneniya 22(1986), No. 3, 416-426. English transl.: Differ. Equations 22(1986), 301-310.
16. A. G. Lomtatidze, On positive solutions of singular boundary value problems for nonlinear ordinary differential equations of second order. (Russian) Differentsial'nye Uravneniya 22(1986), No. 6, 1092.
17. A. G. Lomtatidze, On positive solutions of boundary value problems for second order ordinary differential equations with singularities. (Russian) Differentsial'nye Uravneniya 23(1987), No. 10, 1685-1692.
18. S. MukhigulashVili, Two-point boundary value problems for second order functional differential equations. Mem. Differential Equations Math. Phys. 20(2000), 1-112.
19. A. S. Rabbimov and G. S. Tabidze, On two-point singular boundary value problems for systems of second order ordinary differential equations. Trudy Inst. Prikl. Mat. im. I. N. Vekua 31(1988), 131-158.
20. N. I. Vasil'ev and A. I. Lomakina, On a two-point boundary value problem with a nonsummable singularity. Differentsial'nye Uravneniya 14(1978), No. 2, 195-200.

Authors' addresses:
B. Půža

Department of Mathematical Analysis
Faculty of Science
Masaryk University
Janáčkovo nám. 2a, 66295 Brno
Czech Republic
A. Rabbimov
A. Navoi Samarkand State University

Samarkand, Uzbekistan


[^0]:    2000 Mathematics Subject Classification. 34K10.
    Key words and phrases. The system of singular functional differential equations, weighted boundary value problem, solvability, unique solvability.

