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1. Introduction

In this paper we discuss the existence of one and more solutions to Lid-

stone continuous and discrete boundary value problems. Problems of this

type have become quite popular and many articles have appeared in the

literature [4{8, 9, 13{16]. The results presented here extend, complement

and improve those in the literature.

Our paper will be divided into two main sections. In section 2 we discuss

the Lidstone continuous problem

8

<

:

(�1)

n

y

(2n)

(t) = �(t) f(t; y(t)); 0 < t < 1;

y

(2 i)

(0) = y

(2 i)

(1) = 0; 0 � i � n � 1;

(1.1)

where n � 1. We begin Section 2 by presenting an existence principle for

(1:1). This principle together with Krasnosel'ski��'s �xed point theorem in

a cone will enable us to establish the existence of one or more solutions to

(1:1). Throughout Section 2 we will let G

n

(t; s) denote Green's function

for the boundary value problem

8

<

:

y

(2 n)

= 0 on (0; 1);

y

(2 i)

(0) = y

(2 i)

(1) = 0; 0 � i � n� 1:

(1.2)

Now G

n

(t; s) can be expressed as [5]

G

n

(t; s) =

1

Z

0

G(t; u)G

n�1

(u; s) du;

where

G

1

(t; s) = G(t; s) =

8

<

:

t (s � 1); 0 � t � s;

s (t � 1); s � t � 1:

The following inequalities have appeared in the literature [13, 14]

0 � (�1)

n

G

n

(t; s) �

1

6

n�1

s (1� s) for (t; s) 2 [0; 1]� [0; 1]; (1.3)

and for � 2 (0;

1

2

) �xed,

(�1)

n

G

n

(t; s) � �

n

s (1� s) for (t; s) 2 [�; 1� �]� [0; 1]; (1.4)

where 0 < �

n

<

1

6

n�1

is given by

�

n

= �

n

�

4 �

3

� 6 �

2

+ 1

6

�

n�1

: (1.5)



110

In Section 3 we discuss the Lidstone discrete problem

8

<

:

(�1)

m

4

2m

y(k) = f(k; y(k)) for k 2 I

N

;

4

2 i

y(0) = 4

2 i

y(N + 2m� 2 i) = 0; 0 � i � m � 1:

(1.6)

Here N 2 f1; 2; : : :g, m � 1, I

N

= f0; 1; : : : ; Ng and y : I

N+2m

=

f0; 1; : : :; N + 2mg ! R. Existence of one or more solutions to (1:6) is

established in Section 3. Throughout Section 3 we will let G

1

m

(k; l) denote

Green's function for

8

<

:

4

2m

y = 0 on I

N

;

4

2 i

y(0) = 4

2 i

y(N + 2m� 2 i) = 0; 0 � i � m � 1:

(1.7)

Now G

1

m

can be expressed as [1]

G

1

m

(k; l) =

N+2m�2

X

i=0

G

m

(k; i)G

1

m�1

(i; l);

where

G

m

(k; l) =

8

>

>

<

>

>

:

�

(N + 2m� k)(l + 1)

N + 2m

; l 2 f0; 1; : : :; k � 2g

�

k (N + 2m� 1� l)

N + 2m

; l 2 fk � 1; : : : ; N + 2m� 2g

and

G

1

1

(k; l) = G

1

(k; l):

The following inequalities have appeared in the literature [15, 16]:

0� (�1)

m

G

1

m

(k; l)�a

m

(l + 1)(N + 1� l) for (k; l)2I

N+2m

� I

N

(1.8)

with

a

m

=

�

m

Y

i=1

(N + 2 i)

�

�1

m�1

Y

i=1

s

2 i

; (1.9)

where for j � 1,

s

j

=

N+j

X

i=0

(i + 1) (N + j + 1� i) =

1

6

(N + j + 3)

(3)

;

and

(�1)

m

G

1

m

(k; l)�b

m

minfl + 1 ; N + 1� lg for (k; l)2J

N

� I

N

; (1.10)

where J

n

= f1; : : : ; N + 2m� 1g,

b

m

=

�

m

Y

i=1

(N + 2 i)

�

�1

m�1

Y

i=1

T

2 i�1

(1.11)
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with

T

j

=

N+j

X

i=1

minfi + 1; N + j + 2� ig =

=

8

>

>

<

>

>

:

(N + j)

2

+ 6 (N + j) + 1

4

if N + j odd,

(N + j)(N + j + 6)

4

if N + j even

for j � 1, Finally we state Krasnosel'ski��'s Fixed Point Theorem in a cone.

Theorem 1.1. Let E = (E; k : k) be a Banach space and let K � E be a

cone in E. Assume that 


1

and 


2

are open subsets of E with 0 2 


1

and 


1

� 


2

and let A : K \ (


2

n


1

)! K be continuous and completely

continuous. In addition suppose either

kAuk � kuk for u 2 K \ @


1

and kAuk � kuk for u 2 K \ @


2

or

kAuk � kuk for u 2 K \ @


1

and kAuk � kuk for u 2 K \ @


2

hold. Then A has a �xed point in K \ (


2

n


1

).

2. Continuous Problem

In this section we present existence criteria for one or more solutions to

(1:1). Our theory will rely on the following existence principle.

Theorem 2.1. Assume that

f : [0; 1]�R! R is continuous, (2.1)

� 2 C(0; 1) with � > 0 on (0; 1) and

1

Z

0

t (1� t)�(t) dt <1 (2.2)

and

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

lim

t!0

+

t

2

(1� t)�(t) = 0 if

1

Z

0

(1� t)�(t) dt =1

and lim

t!1

�

t (1� t)

2

�(t) = 0 if

1

Z

0

t �(t) dt =1

(2.3)

hold. Suppose there is a constant M > 0 with

jyj

0

= sup

[0;1]

jy(t)j 6= M
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for any solution y 2 C

2n�2

[0; 1]\C

2n

(0; 1) to

8

<

:

(�1)

n

y

(2n)

(t) = ��(t) f(t; y(t)); 0 < t < 1;

y

(2 i)

(0) = y

(2 i)

(1) = 0; 0 � i � n� 1

(2:4)

�

for each � 2 (0; 1). Then (1:1) has a solution y 2 C

2n�2

[0; 1]\C

2n

(0; 1)

with jyj

0

�M .

Proof. Solving (2:4)

�

is equivalent to �nding a solution y 2 C[0; 1] to

y(t) = �

1

Z

0

(�1)

n

G

n

(t; s)�(s) f(s; y(s)) ds; (2:5)

�

where G

n

(t; s) is as in Section 1.

Remark 2.1. From (1:3) we can see that

1

Z

0

(�1)

n

G

n

(t; s)�(s) ds �

1

6

n�1

1

Z

0

s (1 � s)�(s) ds:

Remark 2.2. Showing the equivalence of (2:4)

�

and (2:5)

�

is just a matter

of modifying slightly the argument in [11, 12] using the ideas in [5 p. 3].

It is enough for us to note that if y 2 C[0; 1] and (2:1){(2:3) are satis�ed,

then

r

1

(t) =

t

Z

0

(1 � t) s �(s) f(s; y(s)) ds +

1

Z

t

t (1� s)�(s) f(s; y(s)) ds =

=

1

Z

0

(�1)G

1

(t; s)�(s) f(s; y(s)) ds 2 C[0; 1]

with r

1

(0) = r

1

(1) = 0 and � r

00

1

(t) = �(t) f(t; y(t)) for t 2 (0; 1). Next

note that

r

2

(t) =

1

Z

0

(�1)

2

G

2

(t; s)�(s) f(s; y(s)) ds =

=

1

Z

0

G

1

(t; x)

�

1

Z

0

G

1

(x; s)�(s) f(s; y(s)) ds

�

dx 2 C

2

[0; 1]
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with r

2

(0) = r

00

2

(0) = r

2

(1) = r

00

2

(0) = 0 and r

00

2

(t) = � r

1

(t) so r

(4)

2

(t) =

�(t) f(t; y(t)) for t 2 (0; 1). In general,

r

n

(t) =

1

Z

0

(�1)

n

G

n

(t; s)�(s) f(s; y(s)) ds 2 C

2n�2

[0; 1]

with r

(2 i)

n

(0) = r

(2 i)

n

(1) = 0 for 0 � i � n � 1 and r

(2n)

n

(t) = (�1)

n

�(t) �

f(t; y(t)) for t 2 (0; 1).

Let N : C[0; 1]! C[0; 1] be given by

N y(t) =

1

Z

0

(�1)

n

G

n

(t; s)�(s) f(s; y(s)) ds:

We now show that N : C[0; 1]! C[0; 1] is continuous and completely con-

tinuous. The continuity follows immediately from the Lebesgue dominated

convergence theorem since

jN y

m

(t)� N y(t)j �

1

6

n�1

1

Z

0

s (1 � s)�(s) jf(s; y

m

(s)) � f(s; y(s))j ds

for y

m

; y 2 C[0; 1]. To show the complete continuity, we will use the Arzela{

Ascoli theorem. To see this, let 
 � C[0; 1] be bounded, i.e., suppose that

there exists r

0

> 0 with juj

0

� r

0

for each u 2 
. Also there exists a

constant K

0

with jf(s; u(s))j � K

0

for s 2 [0; 1] and for all u 2 
. Now

if u 2 
 and t 2 [0; 1] , we have

jN u(t)j �

K

6

n�1

1

Z

0

s (1 � s)�(s) ds (2.6)

with

j(N u)

0

(t)j � L

n

t

Z

0

x dx+ L

n

1

Z

t

(1� x) dx � �

n

(t) if n > 1 (2.7)

and

j(N u)

0

(t)j�K

0

t

Z

0

s�(s) ds +K

0

1

Z

t

(1� s)�(s) ds��

1

(t) if n = 1; (2.8)

here

L

n

= K

0

sup

x2[0;1]

1

Z

0

(�1)

n

G

n�1

(x; s)�(s) ds if n > 1:
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Remark 2.3. Note that (2:7) is immediate since if n > 1,

N u(t) =

1

Z

0

G(t; x)

�

1

Z

0

(�1)

n

G

n�1

(x; s)�(s) f(s; u(s)) ds

�

dx =

= (1� t)

t

Z

0

x

�

1

Z

0

(�1)

n

G

n�1

(x; s)�(s) f(s; u(s)) ds

�

dx+

+ t

1

Z

t

(1� x)

�

1

Z

0

(�1)

n

G

n�1

(x; s)�(s) f(s; u(s)) ds

�

dx

and (2:8) is immediate since if n = 1,

N u(t) = (1� t)

t

Z

0

s �(s) f(s; u(s)) ds + t

1

Z

t

(1� s)�(s) f(s; u(s)) ds:

Note that �

n

2 L

1

[0; 1] for n � 1. Now (2:6) together with (2:7) and

(2:8) imply that N 
 is a bounded, equicontinuous family on [0; 1] , so the

Arzela{Ascoli theorem guarantees that N : C[0; 1]! C[0; 1] is completely

continuous. Let

U = fu 2 C[0; 1] : juj

0

< Mg :

The nonlinear alternative of Leray{Schauder [3, 12] guarantees that N has

a �xed point in U , i.e., (1:1) has a solution y 2 C

2n�2

[0; 1] \ C

2n

(0; 1)

with jyj

0

�M . �

We are now in a position to establish the existence of one or more non-

negative solutions to (1:1). First we present two results which guarantee

the existence of at least one solution.

Theorem 2.2. Suppose the following conditions are satis�ed:

8

<

:

f : [0; 1]� [0;1)! [0;1) is continuous with

f(t; u) > 0 for (t; u) 2 [0; 1]� (0;1);

(2.9)

� 2 C(0; 1) with � > 0 on (0; 1) and

1

Z

0

t (1� t)�(t) dt <1; (2.10)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

lim

t!0

+

t

2

(1� t)�(t) = 0 if

1

Z

0

(1� t)�(t) dt =1

and lim

t!1

�

t (1� t)

2

�(t) = 0 if

1

Z

0

t �(t) dt =1;

(2.11)
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(

f(t; u) � w(u) on [0; 1]� [0;1) with w � 0

continuous and nondecreasing on [0;1)

(2.12)

and

9 r > 0 with

r

w(r) sup

t2[0;1]

R

1

0

(�1)

n

G

n

(t; s)�(s) ds

> 1: (2.13)

Then (1:1) has a solution y

1

2 C

2n�2

[0; 1] \ C

2n

(0; 1) with y

1

� 0 on

[0; 1] and jy

1

j

0

< r.

Proof. We will use Theorem 2.1. The idea is to look at the boundary value

problem

8

<

:

(�1)

n

y

(2n)

(t) = ��(t) f

?

(t; y(t)); 0 < t < 1;

y

(2 i)

(0) = y

(2 i)

(1) = 0; 0 � i � n� 1

(2:14)

�

for 0 < � < 1; here

f

?

(t; u) =

(

f(t; u); u � 0;

f(t; 0); u < 0:

Let y be any solution of (2:14)

�

. Then y(t) � 0 for t 2 [0; 1] and

y(t) = �

1

Z

0

(�1)

n

G

n

(t; s)�(s) f

?

(s; y(s)) ds �

� w(jyj

0

) sup

t2[0;1]

1

Z

0

(�1)

n

G

n

(t; s)�(s) ds

for t 2 [0; 1]. Consequently

jyj

0

w(jyj

0

) sup

t2[0;1]

R

1

0

(�1)

n

G

n

(t; s)�(s) ds

� 1: (2.15)

Now (2:13) and (2:15) imply jyj

0

6= r. Thus Theorem 2.1 guarantees that

(2:14)

1

has a solution y

1

with jy

1

j

0

< r (note that jy

1

j

0

� r by Theorem

2.1 but jy

1

j

0

6= r by an argument similar to the one above). In fact,

0 � y

1

(t) � r for t 2 [0; 1] and so y

1

is a solution of (1:1).

In Theorem 2.2 note that it is possible to have y

1

with jy

1

j

0

= 0 in some

application. We remove this situation in the next theorem.
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Theorem 2.3. Suppose (2:9){(2:13) are satis�ed. In addition assume that

the following conditions hold:

8

>

<

>

:

there exists � 2

�

0;

1

2

�

(choose and �x it) and � 2 C[�; 1� �]

with � > 0 on [�; 1� �] and with �(t) f(t; u) � � (t)w(u)

on [�; 1� �]� (0;1)

(2.16)

and

9 R > r with

R

w (6

n�1

�

n

R)

�

1��

Z

�

(�1)

n

G

n

(�; s) � (s) ds; (2.17)

here 0 � � � 1 is such that

1��

Z

�

(�1)

n

G

n

(�; s) � (s) ds = sup

t2[0;1]

1��

Z

�

(�1)

n

G

n

(t; s) � (s) ds (2.18)

and 0 < �

n

<

1

6

n�1

is as in (1:5). Then (1:1) has a solution y

2

2

C

2n�2

[0; 1]\ C

2n

(0; 1) with y

2

� 0 on [0; 1], y

2

(t) > 0 for t 2 [�; 1 � �]

and r < jy

2

j

0

� R.

Proof. To show the existence of y

2

, we use Theorem 1.1. Let E = (C[0; 1];

j : j

0

) and

K =

�

u2C[0; 1] : u(t)�0 for t2 [0; 1] and min

t2[�;1��]

u(t)�6

n�1

�

n

juj

0

	

:

Clearly K is a cone of E. Let A : K ! C[0; 1] be de�ned by

Au(t) =

1

Z

0

(�1)

n

G

n

(t; s)�(s) f(s; u(s)) ds:

The argument in Theorem 2.1 implies that A : K ! C[0; 1] is continuous

and completely continuous. We now show that A : K ! K. If u 2 K ,

then clearly Au(t) � 0 for t 2 [0; 1]. Also for t 2 [0; 1] we have from (1:3)

that

Au(t) �

1

6

n�1

1

Z

0

s (1� s)�(s) f(s; u(s)) ds;

and so

jAuj

0

�

1

6

n�1

1

Z

0

s (1� s)�(s) f(s; u(s)) ds: (2.19)
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In addition, (1:4) and (2:19) yield

min

t2[�;1��]

Au(t) = min

t2[�;1��]

1

Z

0

(�1)

n

G

n

(t; s)�(s) f(s; u(s)) ds �

� �

n

1

Z

0

s (1� s)�(s) f(s; u(s)) ds � 6

n�1

�

n

jAuj

0

:

Consequently Au 2 K , so A : K ! K. Let




1

= fu 2 C[0; 1] : juj

0

< rg and 


2

= fu 2 C[0; 1] : juj

0

< Rg :

We �rst show

jAuj

0

� juj

0

for u 2 K \ @


1

: (2.20)

To see this, let u 2 K \@


1

, so juj

0

= r. Then (2:12) and (2:13) imply for

all t 2 [0; 1] that

Au(t) � w(juj

0

)

1

Z

0

(�1)

n

G

n

(t; s)�(s) ds �

� w(r) sup

t2[0;1]

1

Z

0

(�1)

n

G

n

(t; s)�(s) ds < r = juj

0

:

Thus jAuj

0

< juj

0

, and so (2:20) is true. Next we show

jAuj

0

� juj

0

for u 2 K \ @


2

: (2.21)

To see this, let u 2 K\@


2

, so juj

0

= R and min

t2[�;1��]

u(t) � 6

n�1

�

n

juj

0

=

6

n�1

�

n

R so in particular u(t) 2 [6

n�1

�

n

R ; R] for t 2 [�; 1��]: Now with

� as de�ned in (2:18) we have from (2:16) and (2:17) that

Au(�) =

1

Z

0

(�1)

n

G

n

(�; s)�(s) f(s; u(s)) ds �

�

1��

Z

�

(�1)

n

G

n

(�; s)�(s) f(s; u(s)) ds �

�

1��

Z

�

(�1)

n

G

n

(�; s) � (s)w(u(s)) ds �

� w

�

6

n�1

�

n

R

�

1��

Z

�

(�1)

n

G

n

(�; s) � (s) ds � R = juj

0

:
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Thus jAuj

0

� juj

0

and so (2:21) holds. Now Theorem 1.1 implies that A

has a �xed point y

2

2 K \ (


2

n


1

) , i.e., r � jy

2

j

0

� R. In fact, r < jy

1

j

0

(argue as in the �rst part of the theorem). Also y

2

� 0 on [0; 1] and since

y

2

2 K , we have y

2

(t) > 0 for t 2 [�; 1� �] since jy

2

j

0

> r.

Remark 2.4. If in (2:17) we have R < r , then (1:1) has a solution y 2

C[0; 1] with R � jyj

0

< r. The argument is essentially the same as that in

Theorem 2.3 except here we use the other half of Theorem 1.1.

Theorem 2.4. Suppose (2:9){(2:13), (2:16) and (2:17) hold. Then (1:1)

has two solutions y

1

; y

2

2 C

2n�2

[0; 1]\C

2n

(0; 1) with y

1

; y

2

� 0 on [0; 1],

y

2

(t) > 0 for t 2 [�; 1� �] and 0 � jy

1

j

0

< r < jy

2

j

0

� R.

Proof. The existence of y

1

follows from Theorem 2.2 and of y

2

from The-

orem 2.3.

In Theorem 2.4 it is possible to have jy

1

j

0

to be zero in some ap-

plications. Our next theorem guarantees the existence of two solutions

y

1

; y

2

2 C

2n�2

[0; 1]\C

2n

(0; 1) with 0 < jy

1

j

0

< r < jy

2

j

0

� R.

Theorem 2.5. Suppose (2:9){(2:13), (2:16) and (2:17) hold. In addition

assume that

9L; 0 < L < r with

L

w(6

n�1

�

n

L)

�

1��

Z

�

(�1)

n

G

n

(�; s)� (s) ds (2.22)

is satis�ed. Then (1:1) has two solutions y

1

; y

2

2 C

2n�2

[0; 1] \C

2n

(0; 1)

with y

1

; y

2

� 0 on [0; 1], y

1

(t) > 0 and y

2

(t) > 0 for t 2 [�; 1 � �] and

0 < L � jy

1

j

0

< r < jy

2

j

0

� R.

Proof. The existence of y

2

follows from Theorem 2.3 and of y

1

from Re-

mark 2.4.

Remark 2.5. It is easy to use Theorem 2.3 and Remark 2.4 to write a

theorem which guarantees the existence of more than two solutions to (1:1).

We leave the details to the reader.

Example. Consider the boundary value problem

8

<

:

y

(6)

+ (y

�

+ y

�

+ 1) = 0 on (0; 1);

y(0) = y

00

(0) = y

(4)

(0) = y(1) = y

00

(1) = y

(4)

(1) = 0

(2.23)

with 0 < � < 1 < �. Then (2:23) has two solutions y

1

; y

2

2 C

4

[0; 1] \

C

6

(0; 1) (in fact in C

6

[0; 1]) with y

1

> 0 on (0; 1), y

2

> 0 on (0; 1) and

0 < jy

1

j

0

< 1 < jy

2

j

0

.
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To show the above, we will apply Theorem 2.5 with � = � = 1, n = 3,

w(x) = x

�

+ x

�

+ 1, r = 1 and � =

1

4

. Note that (2:9), (2:10), (2:11),

(2:12) and (2:16) hold. Also since

(�1)

3

G

3

(t; s) �

1

36

s (1� s);

we have

sup

t2[0;1]

1

Z

0

(�1)

3

G

3

(t; s)�(s) ds �

1

36

1

Z

0

s (1 � s) ds =

1

216

:

Next note that (2:13) holds with r = 1 since

r

w(r) sup

t2[0;1]

R

1

0

(�1)

3

G

3

(t; s)�(s) ds

=

216

3

> 1:

Now since � > 1 , we have

lim

x!1

x

w(36 �

3

x)

= lim

x!1

x

(36 �

3

x)

�

+ (36 �

3

x)

�

+ 1

= 0;

so there exists R > r = 1 with (2:17) holding. Finally note that

lim

x!0

x

w(36 �

3

x)

= lim

x!0

x

(36 �

3

x)

�

+ (36 �

3

x)

�

+ 1

= 0;

so there exists L, 0 < L < 1, with (2:22) holding. Theorem 2.5 now

guarantees that (2:23) has two solutions y

1

; y

2

2 C

4

[0; 1] \ C

6

(0; 1) with

y

1

� 0, y

2

� 0 on [0; 1], y

1

(t) > 0 and y

2

(t) > 0 for t 2 [

1

4

;

3

4

] and

0 < jy

1

j

0

< 1 < jy

2

j

0

. The extra regularity and the fact that y

1

(t) > 0 and

y

2

(t) > 0 for t 2 (0; 1) follows immediately from the integral representation

of y

1

and y

2

.

3. Discrete Problem

In this section we discuss the discrete problem (1:6). We �rst obtain

an existence principle for (1:6). For convenience we note here that by a

solution to (1:6) we mean a w 2 C(I

N+2m

) such that w satis�es the

di�erence equation and the boundary data in (1:6). Recall that C(I

N+2m

)

denotes the class of maps w continuous on I

N+2m

(discrete topology) with

the norm jwj

0

= max

k2I

N+2m

jw(k)j.

Theorem 3.1. Assume that f : I

N

�R ! R is continuous (i.e., contin-

uous as a map from the topological space I

N

�R into the topological space

R (of course the topology on I

N

is the discrete topology)). Suppose there

is a constant M > 0 with

jyj

0

= max

k2I

N+2m

jy(k)j 6= M



120

for any solution y 2 C(I

N+2m

) to

(

(�1)

m

4

2m

y(k) = � f(k; y(k)) for k 2 I

N

;

4

2 i

y(0) = 4

2 i

y(N + 2m� 2 i) = 0; 0 � i � m� 1

(3:1)

�

for each � 2 (0; 1). Then (1:6) has a solution y 2 C(I

N+2m

) with jyj

0

�M .

Proof. Solving (3:1)

�

is equivalent to �nding a y 2 C(I

N+2m

) to

y(k) = �

N

X

l=0

(�1)

m

G

1

m

(k; l) f(l; y(l)) for k 2 I

N+2m

; (3:2)

�

where G

1

m

is as in Section 1. De�ne the operator N : C(I

N+2m

) !

C(I

N+2m

) by setting

N y(t) =

N

X

l=0

(�1)

m

G

1

m

(k; l) f(l; y(l)):

It is easy to see [2, 3] that N : C(I

N+2m

)! C(I

N+2m

) is continuous and

completely continuous. Let

U = fu 2 C(I

N+2m

) : juj

0

< Mg and E = C(I

N+2m

):

The nonlinear alternative of Leray{Schauder [3, 12] guarantees that N

has a �xed point in U , i.e., (1:6) has a solution y 2 C(I

N+2m

) with

jyj

0

�M .

Remark 3.1. It is clear that an existence principle could also be estab-

lished for

8

<

:

(�1)

m

4

2m

y(k)=�f(k; y(k); y(k + 1); : : : ; y(k + 2m� 1)) for k 2 I

N

;

4

2 i

y(0) = 4

2 i

y(N + 2m� 2 i) = 0; 0 � i � m � 1:

We leave the details to the reader.

Theorem 3.2. Suppose the following conditions are satis�ed:

f : I

N

� [0;1)! [0;1) is continuous with f(i; u) > 0

for (i; u) 2 I

N

� (0;1); (3.3)

(

f(k; u) � q(k)w(u) on I

N

� [0;1) with q : I

N

! (0;1)

and w � 0 continuous and nondecreasing on [0;1)

(3.4)

and

9 r > 0 with

r

w(r) max

k2I

N+2m

P

N

l=0

(�1)

m

G

1

m

(k; l) q(l)

> 1: (3.5)

Then (1:6) has a solution y

1

2 C(I

N+2m

) with y

1

� 0 on I

N+2m

and

jy

1

j

0

< r.
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Proof. The idea is to use Theorem 3.1, so look at

8

<

:

(�1)

m

4

2m

y(k) = � f

?

(k; y(k)) for k 2 I

N

;

4

2 i

y(0) =4

2 i

y(N + 2m� 2 i) = 0; 0 � i � m � 1

(3:6)

�

for 0 < � < 1; here

f

?

(k; u) =

(

f(k; u); u � 0;

f(k; 0); u < 0:

Let y be any solution of (3:6)

�

. Then

y(k) = �

N

X

l=0

(�1)

m

G

1

m

(k; l) f

?

(l; y(l));

so y(k) � 0 for k 2 I

N+2m

and

jy(k)j � w(jyj

0

) max

k2I

N+2m

N

X

l=0

(�1)

m

G

1

m

(k; l) q(l) for k 2 I

N+2m

:

Consequently

jyj

0

w(jyj

0

) max

k2I

N+2m

P

N

l=0

(�1)

m

G

1

m

(k; l) q(l)

� 1: (3.7)

Now (3:5) and (3:7) imply jyj

0

6= r. Thus Theorem 3.1 guarantees that

(3:6)

1

has a solution y

1

2 C(I

N+2m

) with jy

1

j

0

< r (note that jy

1

j

0

6= r

by an argument similar to the one above).

Note that in some application jy

1

j

0

may be zero in Theorem 3.2. We

remove this situation in the next result.

Theorem 3.3. Suppose (3:3){(3:5) are satis�ed. In addition assume that

the following conditions hold:

(

there exists � : K

N

= f1; 2; : : :; Ng ! (0;1)

with f(i; u) � � (i)w(u) on K

N

� (0;1)

(3.8)

and

9 R > r with

R

w(

b

m

a

m

c

0

R)

�

N

X

l=1

(�1)

m

G

1

m

(�; l) � (l); (3.9)

here � 2 J

N

= f1; : : : ; N + 2m� 1g is such that

N

X

l=1

(�1)

m

G

1

m

(�; l) � (l) = max

k2J

N

N

X

l=1

(�1)

m

G

1

m

(k; l) � (l); (3.10)
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and

c

0

= min

l2I

N

h

minfl + 1 ; N + 1� lg

(l + 1) (N + 1� l)

i

> 0 (3.11)

with a

m

as in (1:9) and b

m

as in (1:11). Then (1:6) has a solution y

2

2

C(I

N+2m

) with y

2

(k) > 0 for k 2 J

N

and r < jy

2

j

0

� R.

Proof. To show the existence of y

2

, we use Theorem 1.1. Let E =

(C(I

N+2m

); j : j

0

) and

K =

n

u 2 C(I

N+2m

) : u(i) � 0 for i 2 I

N+2m

and

min

k2J

N

u(k) �

b

m

a

m

c

0

juj

0

o

:

Let A : K ! C(I

N+2m

) be de�ned by

Au(k) =

N

X

l=0

(�1)

m

G

1

m

(k; l) f(l; u(l)):

To show A : K ! K , let u 2 K. Then Au(k) � 0 for k 2 I

N+2m

. Also

(1:8) implies for k 2 I

N+2m

that

Au(k) � a

m

N

X

l=0

(l + 1) (N + 1� l) f(l; u(l))

and so

jAuj

0

� a

m

N

X

l=0

(l + 1) (N + 1� l) f(l; u(l)): (3.12)

In addition (1:10) and (3:12) imply

min

k2J

N

Au(k) = min

k2J

N

N

X

l=0

(�1)

m

G

1

m

(k; l) f(l; u(l)) �

� b

m

N

X

l=0

minfl + 1 ; N + 1� lg f(l; u(l)) �

� b

m

c

0

N

X

l=0

(l + 1) (N + 1� l) f(l; u(l)) �

b

m

a

m

c

0

jAuj

0

:

Consequently Au 2 K so A : K ! K. Let




1

= fu 2 C(I

N+2m

) : juj

0

< rg and 


2

= fu 2 C(I

N+2m

) : juj

0

< Rg :

We �rst show

jAuj

0

� juj

0

for u 2 K \ @


1

: (3.13)
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Let u 2 K \ @


1

, so juj

0

= r. Now (3:4) and (3:5) imply for k 2 I

N+2m

that

Au(i) �

N

X

l=0

(�1)

m

G

1

m

(k; l) q(l)w(u(l)) �

� w(r) sup

k2I

N+2m

N

X

l=0

(�1)

m

G

1

m

(k; l) q(l) < r = juj

0

:

Thus jAuj

0

< r = juj

0

and so (3:13) is true. Next we show

jAuj

0

� juj

0

for u 2 K \ @


2

: (3.14)

Let u 2 K\@


2

, so juj

0

= R , and min

k2J

N

u(k) �

b

m

a

m

c

0

R , in particular,

u(k) 2

h

b

m

a

m

c

0

R ; R

i

for k 2 J

N

:

It is easy to see that 0 <

b

m

a

m

c

0

< 1. Now (3:8) and (3:9) (here � is as in

(3:10)) imply

Au(�) =

N

X

l=0

(�1)

m

G

1

m

(�; l) f(l; u(l)) �

N

X

l=1

(�1)

m

G

1

m

(�; l) f(l; u(l)) �

�

N

X

l=1

(�1)

m

G

1

m

(�; l) � (l)w(u(l)) �

� w

�

b

m

a

m

c

0

R

�

N

X

l=1

(�1)

m

G

1

m

(�; l) � (l) � R = juj

0

:

Thus jAuj

0

� juj

0

and so (3:14) is true. Now Theorem 1.1 guarantees that

A has a �xed point y

2

2 K\(


2

n


1

) , i.e., r � jy

2

j

0

� R. In fact jy

2

j

0

> r

(argue as in the �rst part of the theorem). Also y

2

� 0 on I

N+2m

and

y

2

(k) > 0 for k 2 J

N

since y

2

2 K and jy

2

j

0

> r.

Remark 3.2. If in (3:9) we have R < r , then (1:6) has a solution y

2

2

C(I

N+2m

) with R � jy

2

j

0

< r.

Theorem 3.4. Suppose (3:3){(3:5), (3:8) and (3:9) hold. Then (1:6) has

two solutions y

1

; y

2

2 C(I

N+2m

) with y

1

� 0 on I

N+2m

, y

2

(k) > 0 for

k 2 J

N

and 0 � jy

1

j

0

< r < jy

2

j

0

� R.

Proof. The existence of y

1

follows from Theorem 3.2 and of y

2

from The-

orem 3.3.

In Theorem 3.4 it is possible for jy

1

j

0

to be zero.
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Theorem 3.5. Suppose (3:3){(3:5), (3:8) and (3:9) hold. In addition as-

sume that

9 L; 0 < L < r with

L

w(

b

m

a

m

c

0

L)

�

N

X

l=1

(�1)

m

G

1

m

(�; l) � (l) (3.15)

is satis�ed; here � is as in (3:10), c

0

is as in (3:11), a

m

is as in (1:9),

and b

m

is as in (1:11). Then (1:6) has two solutions y

1

; y

2

2 C(I

N+2m

)

with y

1

(k) > 0, y

2

(k) > 0 for k 2 J

N

and 0 < L � jy

1

j

0

< r < jy

2

j

0

� R.

Proof. The existence of y

2

follows from Theorem 3.3 and of y

1

from Re-

mark 3.2.
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