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1. Introdution and the Main Results

Consider the Cauhy-Dirihlet mixed problem for Bellman's equation

S

t

(t; x) + max

a2A

h

1

2

�

2

(t; x; a)S

xx

(t; x) + b(t; x; a)S

x

(t; x))

i

= 0 (1)

S(T; x) = g(x); S(t; 0) = h

1

(t); S(t; l) = h

2

(t) (2)

under the following onditions on the oeÆients b; � and on the terminal reward funtions

g; h

1

; h

2

:

A1) the funtions b; � are measurable and bounded, i.e.,

jb(t; x; a)j + j�(t; x; a)j � C

for some C > 0,

A2) there exists some onstant � > 0 suh that

�

2

(t; x; a) > �

for all t 2 [0; T ℄, x 2 [0; l℄, a 2 A,

A3) the funtions b; � are ontinuous in a for eah t 2 [0; T ℄, x 2 [0; l℄;

A4) the funtions g; h

1

; h

2

belong to the Sobolev spae W

1

and g(0) = h

1

(T ); g(l) =

h

2

(T ):

The purpose of this paper is to show the existene of a unique generalized solution of

the problem (1),(2).

The novelty (of this paper) is that the question of existene of optimal ontrols is

solved without any regularity assumptions on the oeÆients and the use is made of the

integral equations. The problem for the full spae was studied in [6℄.

Our method is as follows: For the problem (1),(2) we ompose a system of nonlinear

integral equations

 (t; x) =

h

2

(t) � h

1

(t)

l

+

l

Z

0

�

r

x

(T � t; x; y)g

1

(y)dy +

+

T

Z

t

l

Z

0

�

r

x

(T � u; x; y)G

1

(u; y;  (u; y);

^

 (u; y))dydu; (3)
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e

 (t; x) =

l

Z

0

�

r

xx

(T � t; x; y)g

1

(y)dy +

+

T

Z

t

l

Z

0

�

r

xx

(u� t; x; y)G

1

(u; y;  (u; y);

e

 (u; y))dydu; (4)

where �(t; x; y) =

2

l

P

n=1

e

�

r

2

(

�

l

n)

2

t

sin

�

l

nx sin

�

l

ny; g

1

(y) = g(y)� g(0)�

y

l

(g(l)� g(0));

G(t; x; p; q) = max

a

[

1

2

(�

2

(t; x; a)� r)p+ b(t; x; a)q℄; G

1

= G� h

0

1

(t) �

x

l

(h

0

2

(t) � h

0

1

(t)):

This system an be obtained from the equation

S

t

(t; x) +

r

2

S

xx

(t; x) +G(t; x; S

x

(t; x); S

xx

(t; x)) = 0;

equivalent to (1) using the Cauhy formula

S(t; x) = h

1

(t) +

x

l

(h

2

(t) � h

1

(t)) +

l

Z

0

�

r

(T � s; x; y)g

1

(y)dy

+

T

Z

t

l

Z

0

�

r

(s� t; x; y)G

1

(s; y; S

x

(s; y); S

xx

(s; y))dsdy (5)

and taking the �rst and seond derivatives in x.

It is well known the that equation (1), (2) is losely onneted to a stohasti ontrol

problem for a system whose dynamis is disribed by the stohasti di�erential equation

(SDE)

dX

t

= b(t;X

t

; u

t

)dt + �(t; X

t

; u

t

)dW

t

; X

0

= x

0

2 (0; l): (6)

Here (W

t

; t � 0) is a standard Wiener proess de�ned on some omplete probability

spae (
;F ; P ) and the ontrol u = (u

t

; t 2 [0; T ℄) is a feedbak of the urrent state,

i.e., u

t

= u(t;X

t

) for some given funtion u(t; x) taking values in a deision set A whih

is assumed to be a separable metri spae. To eah ontrol u we assoiate one (�xed)

solution of SDE (1) (the onditions A1) � A3) imply the existene of a weak solution of

SDE (1) ([3℄)) and the notation P

u

t;x

is used for the distributon of this solution starting

at X

t

= x, before the exit time � from the set (0; l): The problem is to maximize the

expeted ost E

u

eg(T ^ � ;X

T^�

); where eg is a funtion on f(t; 0); t 2 [0; T ℄g[f(T; x); x 2

[0; l℄g [ f(t; l); t 2 [0; T ℄g and oinides with g; h

1

; h

2

on f(T; x); x 2 [0; l℄g; f(t; 0); t 2

[0; T ℄g; f(t; l); t 2 [0; T ℄g, respetively, by a suitable hoie of feedbak ontrols.

The formal appliation of Bellman's \dynami programming" idea leads to the Bell-

man equation (1), (2) whose solution, if it exists, is easily shown to be the value funtion

S(t; x) = E

u

t;x

eg(T ^ � ;X

T^�

); (7)

of the ontrol problem ( E

u

t;x

is the expetation relative to the measure P

u

t;x

). Moreover,

if S solves (1),(2) then the optimal ontrol u

�

may be onstruted by the pointwise

maximization of the hamiltonian

H(t; x; a) =

1

2

�

2

(t; x; a)S

xx

(t; x) + b(t; x; a)S

x

(t; x): (8)

Therefore the main problem onsists of �nding onditions under whih the solution of

Bellman's equation exists.
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We use the notation L

p

�

([0; T ℄� [0; l℄); (resp. L

p

�

([0; T ℄)) for the spae of p-integrable

funtions under the weight e

�p�(T�t)

dtdx; (resp. e

�p�(T�t)

dt) and the notation W

1;2

�

for the Sobolev spae with the norm

jjf jj

W

1;2

�

= sup

(t;x)2[0;T ℄�[0;l℄

jf(t; x)j+ jjf

t

jj

L

2

�

+ jjf

x

jj

L

2

�

+ jjf

xx

jj

L

2

�

:

W

1

[0; l℄ denotes the spae with the norm

jjf jj

W

1

=

�

l

Z

0

(jf(x)j

2

+ jf

x

(x)j

2

)dx

�

1

2

and W

1

0

[0; l℄ denotes its subspae ff 2 W [0; l℄; f(0) = f(l)g: The following statements

are proved in setion 3 of this paper.

Theorem 1. Let the onditions A1) and A4) be satis�ed. Then

a) If V is a solution of Bellman's equation (1), (2) from the lass W

1;2

�

0

for some �

0

,

then the pair (V

x

; V

xx

) of generalized derivatives will be a solution of the system (3) for

eah �; r > 0.

b) If for some r > 0; � there exists a pair ( ;

e

 ) from the lass L

2

�

([0; T ℄ � [0; l℄) �

L

2

�

([0; T ℄� [0; l℄) whih solves the system (3), (4) then the funtion

V (t; x) = h

1

(t) +

x

l

(h

2

(t) � h

1

(t)) +

l

Z

0

g

1

(y)�

r

(T � t; x; y)dy +

+

T

Z

t

l

Z

0

G

1

(v; y;  (v; y);

e

 (v; y))�

r

(v � t; x; y)dydv (9)

will be a solution of the problem (1), (2).

Theorem 2. Let A1)-A4) be satis�ed. Then there exists (r

�

; �

�

) suh that for any

r > r

�

; � > �

�

the operator de�ned by (3), (4) is a ontration. Consequently the system

(3), (4) has a unique solution whih belongs to the lass L

2

�

([0; T ℄� [0; l℄)� L

2

�

([0; T ℄�

[0; l℄).

As a orollary of Theorems 1 and 2 we obtain an existene of a generalized solution of

Bellman's equation. Moreover, it is shown in Setion 3 that this solution oinides with

the value funtion of the optimal ontrol problem under onsideration.

Theorem 3. The value funtion (7) uniquely solves the problem (1), (2) in the lass

W

1;2

�

. If the deision set A is a ompat subset of a metri spae, then there exists an op-

timal ontrol in the lass of Markovian strategies. The optimal ontrol u

�

is onstruted

from the maximizing of the Hamiltonian (8)

H(t; x; u

�

(t; x)) = max

a2A

H(t; x; a)

for eah (t; x) 2 [0; T ℄� [0; l℄.

Moreover, u

�

(t; x) an be found from the maximizing of the expression

1

2

�

2

(t; x; a)

e

 (t; x) + b(t; x; a) (t; x);

for eah (t; x) 2 [0; T ℄� [0; l℄, where

e

 and  are solutions of equation (3),(4).
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The dynami programming method to prove the existene of an optimal ontrol in

the ase of di�usion proesses for the �rst time was applied in [5℄ (Rishel) and [2℄ (Davis,

Varaiya). Theorem 3 was proved in [3℄ (Krylov) under the Lipshitz ondition on the

oeÆients b and �.

2. Estimates of the Norms of Some Integral Operators

Consider the operators

 (t; x) =

1

X

n=1

e

0

n

(x)

T

Z

t

e

�r=2n

2

(s�t)

ds

l

Z

0

e

n

(y)dy =

=

T

Z

t

l

Z

0

�

x

(s� t; x; y)'(s; y)dsdy (10)

e

 (t; x) =

1

X

n=1

e

00

n

(x)

T

Z

t

e

�r=2n

2

(s�t)

ds

l

Z

0

e

n

(y)dy =

=

T

Z

t

l

Z

0

�

xx

(s� t; x; y)'(s; y)dsdy (11)

in L

2

�

([0; T ℄ � [0; l℄), where e

n

(x) =

p

2=l sin

�

l

nx is an orthonormal system in L

2

[0; l℄:

Using the expansion '(t; x) =

P



n

(t)'

n

(x); ' 2 L

2

�

with

P

j

n

j

2

L

2

�

< 1, the system

(10),(11) may be rewritten as operators

K :

1

X

n=1

e

n

(x)

n

(t)!

1

X

n=1

e

0

n

(x)

T

Z

t



n

(s)e

�r=2n

2

(s�t)

ds; (12)

e

K :

1

X

n=1

e

n

(x)

n

(t)!

1

X

n=1

e

00

n

(x)

T

Z

t



n

(s)e

�r=2n

2

(s�t)

ds: (13)

Lemma 1. The norm of the operator Q

�

: (t) !

R

T

t

(s)e

��(s�t)

ds in the spae

L

p

�

[0; T ℄ is estimated by

1

+�

:

Proof. At First we onsider the ase � = 0: We have

�

T

Z

0

dt

�

�

�

T

Z

t

e

��(s�t)

(s)ds

�

�

�

p

�

1=p

�

�

T

Z

0

dt

�

�

�

T

Z

0

e

��s

(s+ t)I

(s<T�t)

ds

�

�

�

p

�

1=p

:

By generalized H�older inequality [4,134 p.℄ the seond expression is less than

T

Z

0

e

�s�

�

T

Z

0

�

�

(s+ t)

�

�

p

I

(s<T�t)

dt

�

1=p

ds;
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whih is estimated by

1

�

jj

L

p

�

[0;T ℄

:

Now onsider the ase � > 0. It is lear that

T

Z

0

e

�p�(T�t)

�

�

�

T

Z

t

e

��(s�t)

(s)ds

�

�

�

p

dt =

T

Z

0

�

�

�

T

Z

t

e

��(T�s)��(s�t)��(s�t)

(s)ds

�

�

�

p

dt =

=

T

Z

0

�

�

�

T

Z

t

e

�(�+�)(s�t)

(s)e

�(�+�)(T�s)

ds

�

�

�

p

dt:

By the obtained result for the ase � = 0 we have the estimation

T

Z

0

�

�

�

T

Z

t

e

�(�+�)(s�t)

(s)e

�(�+�)(T�s)

ds

�

�

�

p

dt �

�

�

1

� + �

�

p

T

Z

0

je

��(T�s)

(s)j

p

ds =

�

1

� + �

�

p

jj

p

L

p

�

: �

Lemma 2. The norms of K and

e

K are estimated by

1

p

�r

and

2

r

respetively.

Proof. For simpliity we onsider the ase a = �: By the Parseval identity we have

jj jj

2

L

2

�

=

1

X

n=1

n

2

T

Z

0

e

�2�(T�t)

�

�

�

T

Z

t

�

Z

0

e

n

(y)'(s; y)dye

�n

2

(s�t)r=2

ds

�

�

�

2

dt:

By Lemma 1 we have jj jj

2

L

2

�

=

P

1

n=1

n

2

=(

r

2

4

n

4

+ r�n

2

+ �

2

) � max

n�1

n

2

r�n

2

=

1

r�

:

Similarly, for the operator

e

K we have jj

e

Kjj � max

n�1

n

2

�+n

2

r

2

:

Lemma 3. A mapping  (t; x) =

R

T

0

�

x

(T � t; x; y)'(y)dy is a bounded operator from

L

2

[0; l℄ into L

2

�

([0; T ℄ � [0; l℄) and a mapping

e

 (t; x) =

R

T

0

�

xx

(T � t; x; y)e'(y)dy is

bounded as an operator W

1

[0; l℄! L

2

�

:

Proof. It is lear that  (t; x) =

P

ne

0

n

(x)e

�

r

2

n

2

(T�t)

R

l

0

e

n

(y)'(y)dy: We have

jj jj

L

2

�

=

X

n�1

n

2



2

n

1� e

�(rn

2

+�)T

n

2

r + �

; where 

n

=

l

Z

0

e

n

(y)'(y)dy

Sine a sequene f

n

2

rn

2

+�

(1 � e

�(rn

2

+�)

)g

n�1

is bounded and

P



2

n

= jj'jj

2

, then we

have jj jj

L

2

�

� onst:jj'jj:

The seond operator is bounded by the equality

jj

e

 jj =







X

n�1

e

�

r

2

n

2

(T�t)��(T�t)

e

n

(x)e

n







2

=

X

n�1

n

4

1� e

�(2n

2

��)T

n

2

r=2 + �

if

P

n

2

e

2

n

<1; whih is equivalent to e' 2W

1

0

[0; l℄:
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Proposition 1. The norm of the operator '! (K';

e

K') from L

2

�

into L

2

�

� L

2

�

is

estimated by

2

r

+

1

p

r�

=

1

r

(2 +

p

r

�

):

Proof. It is suÆient to see that jj(K';

e

K')jj=(jjK'jj

2

+jj

e

K'jj

2

)

1=2

�(

2

r

+

1

p

r�

)jj'jj:

3. Contration Property of Integral Equations and Proofs of Main Results

Now onsider the nonlinear part of the operators (3),(4). The funtion G

1

(t; x; p; q)

de�nes the nonlinear operator

('; e')!

e

G('; e') � fG

1

(t; x; '(t; x); e'(t; x))g

(t;x)2[0;T ℄�[0;l℄

from L

2

�

([0; T ℄� [0; l℄)

2

into L

2

�

([0; T ℄� [0; l℄):

Lemma 4. For eah r > f

�

= max((+ 1)

2

;

1

�

) the funtion G

1

and the operator

e

G

satisfy the Lipshitz ondition with the onstant

1

2

(r �

1

r

):

Proof. See [6℄.

Proposition 2. The system (3), (4) de�nes the ontrative operator in the spae

L

2

�

([0; T ℄� [0; l℄)

2

for some onstants r; �:

Proof. By Lemma 2 and Lemma 4 the Lipshitz onstant for the mapping (3.1) is equal

to

1

2

(r �

1

r

)(

2

r

+

1

p

�r

) = 1�

1

r

2

+

1

2

(

p

r

�

�

1

p

�r

3

):

If

1

p

�

<

2

r

3

then

1

2

(r �

1

r

)(

2

r

+

1

p

�r

) < 1:

Proof of Theorem 1. If the pair ( ;

e

 ) belongs to L

2

�

, then the funtion

e

G also belongs

to the same lass and therefore the funtion V (t; x) de�ned by (9) is a solution of the

problem

V

t

(t; x) + r=2V

xx

(t; x) = G(t; x;  (t; x);

e

 (t; x));

V (T; x) = g(x); V (t; 0) = h

1

(t); V (t; l) = h

2

(t):

Sine the pair ( ;

e

 ) is a solution of (3),(4) taking the �rst and seond derivatives (at x)

in (9) we obtain that V

x

=  ; V

xx

=

e

 dtdx� a:e: Therefore, (3) and (4) imply that

V

t

(t; x) + r=2V

xx

(t; x) = G(t; x; V

x

(t; x); V

xx

(t; x)) (14)

whih gives that the funtion V satis�es the Bellman equation (1),(2).

Now suppose that there exists a solution of the problem (1),(2), whih belongs to the

lass W

1;2

�

0

. Let r be a stritly positive onstant. Then S is a solution of (12). Clearly

G(t; x; S

x

; S

xx

) belongs to the lass L

2

�

. By the Cauhy formula

S(t; x) = h

1

(t) +

x

l

(h

2

(t) � h

1

(t)) +

l

Z

0

g

1

(y)�(T � t; x; y)dy +

T

Z

t

l

Z

0

G

1

(s; y; S

x

(s; y); S

xx

(s; y))�(s � t; x; y)dsdy:

The di�erentiation of this equation in x implies that the pair (S

x

; S

xx

) satis�es the system

(3),(4). �

As a orollary of this theorem and Proposition 2 we obtain Theorem 2.
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Proof of Theorem 3. Let V be a solution of the problem (1),(2) from the lass W

1;2

�

: Let

us show that it oinides with the value funtion of the optimal ontrol problem. Applying

the generalized Itô formula ([2℄,[1℄) for the funtion V and the ontrolled proess X

u

we

have

V (t ^ �;X

u

t^�

) = V (0; X

0

) +

t^�

Z

0

V

x

(s;X

u

s

)�(s;X

u

s

; u

s

)dW

s

+

=

t^�

Z

0

(L

u

V )(s;X

u

s

)ds; (15)

where � is a �rst exit time of X

u

t

from the open set (0; l) and

(L

u

f)(t;X

u

t

) = f

t

(t;X

u

t

) + b(t;X

u

t

; u

t

)f

x

(t;X

u

t

) +

1

2

�

2

(t;X

u

t

; u

t

)f

xx

(t;X

u

t

):

Sine the proess V (t;X

u

t

) is bounded and E

R

T^�

0

j(L

u

V )(s;X

u

s

)jds <1, the stohasti

integral in the right-hand side of (15) is a uniformly integrable martingale. On the other

hand we have from (1) that L

u

V (s;X

u

s

) � 0 and taking expetations in (15) we obtain

from the boundary ondition (2) that

V (t ^ �;X

u

t^�

) � E

u

(V (T ^ �;X

u

T^�

)=F

t

) = E

u

(eg(T ^ �;X

u

T^�

)=F

t

):

Therefore,

V (t; x) � sup

u

E

u

t;x

(eg(T ^ �X

u

T^�

) = S(t; x): (16)

Let us prove the inverse inequality. Sine the funtion H de�ned by (8) is ontinuous

in a for eah (t; x) and the deision set A is ompat, by Philippov's lemma a measurable

funtion u

�

= (u

�

(t; x); t 2 [0; T ℄; x 2 [0; l℄) exists suh that

H(t; x; u

�

(t; x)) = max

a2A

H(t; x; a):

Therefore (L

u

V )(s;X

u

�

s

) = 0 and using again the Itô formula we obtain that

V (t; x) = E

t;x

V (T ^ �;X

u

�

T^�

) = E

t;x

eg(T ^ �;X

u

�

T^�

);

hene V (t; x) = S(t; x).
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