M. Alves

ABOUT A PROBLEM ARISING IN CHEMICAL REACTOR THEORY

(Reported on December 23, 1998)

1. Notation

Throughout this paper $C \equiv C[0,1]$ denotes the Banach space of continuous functions $x:[0,1] \longrightarrow \mathbf{R}^{1}$,

$$
\|x\|_{C} \stackrel{\text { def }}{=} \max _{0 \leq t \leq 1}|x(t)|
$$

$L_{p} \equiv L_{p}[0,1](1 \leq p<\infty)$ denotes the Banach space of summable in p-th degree functions $x:[0,1] \longrightarrow \mathbf{R}^{1}$,

$$
\|x\|_{L_{p}} \stackrel{d_{e f}}{=}\left(\int_{0}^{1}|x(t)|^{p} d t\right)^{1 / p}
$$

$L_{\infty} \equiv L_{\infty}[0,1]$ denotes the Banach space of essentially bounded measurable functions $x:[0,1] \longrightarrow \mathbf{R}^{1}$,

$$
\|x\|_{L_{\infty}} \stackrel{\text { def }}{=} \underset{0 \leq t \leq 1}{\operatorname{vrai} \sup }|x(t)|
$$

$W_{p}^{2} \equiv W_{p}^{2}[0,1]$ denotes the Banach space of continuous functions $x:[0,1] \longrightarrow \mathbf{R}^{1}$ with the absolutely continuous derivative \dot{x} such that $\ddot{x} \in L_{p}$,

$$
\|x\|_{W_{p}^{2}} \stackrel{d e f}{=}\|\ddot{x}\|_{L_{p}}+|x(0)|+|\dot{x}(0)|
$$

2. The Space of Solutions D_{p}

Consider the boundary-value problem

$$
\left\{\begin{array}{l}
\left(\Im_{0} x\right)(t) \stackrel{\text { def }}{=} \ddot{x}(t)+\frac{k}{t} \dot{x}(t)=f(t), \quad t=\in[0,1] \tag{1}\\
\dot{x}(0)=0, \quad x(1)=\alpha
\end{array}\right.
$$

where $k>-\frac{1}{p^{\prime}}, f \in L_{p}, 1<p \leq \infty, \alpha \in \mathbf{R}^{1}, \frac{1}{p}+\frac{1}{p^{\prime}}=1, p^{\prime}=1$ if $p=\infty$.
Considering this problem on the traditional space W_{p}^{2}, we see that \Im_{0} is not defined as an operator acting from W_{p}^{2} into L_{p}. Following the scheme given in the monograph [1], we will investigate this problem on the space $D_{p} \subset W_{p}^{2}$ of functions $x:[0,1] \longrightarrow \mathbf{R}^{1}$, such that $\dot{x}(0)=0$ and defined by

$$
x(t)=\int_{0}^{t}(t-s) z(s) d s+\beta
$$

1991 Mathematics Subject Classification. 34B15, 34K10.
Key words and phrases. Boundary value problem, functional differential equation, chemical reactor theory.
for each pair $\{z, \beta\} \in L_{p} \times \mathbf{R}^{1}$. The space D_{p} is isomorphic to the direct product $L_{p} \times \mathbf{R}^{1}$. The isomorphisms $\mathcal{J}: L_{p} \times \mathbf{R}^{1} \longrightarrow D_{p}$ and $\mathcal{J}^{-1}: D_{p} \longrightarrow L_{p} \times \mathbf{R}^{1}$ we define by the equalities $\mathcal{J}=\{\Lambda, Y\}, \mathcal{J}^{-1}=[\delta, r]$, where

$$
\left\{\begin{array}{l}
(\Lambda z)(t)=\int_{0}^{t}(t-s) z(s) d s, \quad(Y \beta)(t)=\beta \\
\delta x=\ddot{x}, \quad r x=x(0)
\end{array}\right.
$$

The space D_{p} becomes a Banach one under the norm

$$
\|x\|_{D_{p}} \stackrel{\text { def }}{=}\|\ddot{x}\|_{L_{p}}+|x(0)|
$$

The principal part of the operator $\Im_{0}: D_{p} \longrightarrow L_{p}$ is

$$
(Q z)(t) \stackrel{\text { def }}{=}\left(\Im_{0} \Lambda z\right)(t)=z(t)+(\mathcal{P} z)(t),
$$

where $(\mathcal{P} z)(t) \stackrel{\text { def }}{=} \frac{k}{t} \int_{0}^{t} z(s) d s$ is the Cesàro operator [2] on the space L_{p}. The functions $u(t) \equiv 1$ and $v(t)=t^{1-k}$ satisfy the equation $\Im_{0} x=0$. Nevertheless the fundamental system of $\Im_{0} x=0$ consists only of $u(t) \equiv 1$, such as the other element $v(t)=t^{1-k}$ does not belong to the space D_{p}. By virtue of the results of [5, p. 102] it follows that, if $k>-\frac{1}{p^{\prime}}$, the operator $Q: L_{p} \longrightarrow L_{p}$ has the bounded inverse

$$
\left(Q^{-1} z\right)(t)=z(t)-k t^{-(1+k)} \int_{0}^{t} s^{k} z(s) d s
$$

The solution of the problem (1) on the space D_{p} is given by the expression

$$
x=\mathcal{W} f+\alpha
$$

where the Green operator $\mathcal{W}: L_{p} \longrightarrow D_{p}$ is defined by

$$
\begin{gathered}
(\mathcal{W} f)(t) \stackrel{\text { def }}{=} \int_{0}^{1} W(t, s) f(s) d s \\
W(t, s) \stackrel{\text { def }}{=} \begin{cases}\frac{s^{k}\left(t^{1-k}-1\right)}{1-k} & \text { if } 0 \leq s \leq t \leq 1, \\
\frac{s^{k}\left(s^{1-k}-1\right)}{1-k} & \text { if } 0 \leq t<s \leq 1,\end{cases}
\end{gathered}
$$

for $k>-\frac{1}{p^{\prime}}, k \neq 1$, or

$$
W(t, s) \stackrel{\text { def }}{=} \begin{cases}s \ln t & \text { if } 0 \leq s \leq t \leq 1, \\ s \ln s & \text { if } 0 \leq t<s \leq 1,\end{cases}
$$

for $k=1$. Really, using the equality

$$
\dot{x}(t)=\int_{0}^{t} \ddot{x}(s) d s
$$

for $x \in D_{p}$ we rewrite the problem (1) on the space D_{p} in the form

$$
\ddot{x}(t)=f(t)-k t^{-(1+k)} \int_{0}^{t} s^{k} f(s) d s, \quad t \in[0,1], \quad x(1)=\alpha
$$

Immediate computations show that

$$
\begin{aligned}
x(t) & =\int_{0}^{t}(t-s)\left[f(s)-k s^{-(1+k)} \int_{0}^{s} \tau^{k} f(\tau) d \tau\right] d s+x(0)= \\
& =\int_{0}^{t}\left[t-s-k s^{k} \int_{s}^{t}(t-\tau) \tau^{-(1+k)} d \tau\right] f(s) d s+x(0)
\end{aligned}
$$

The condition $x(1)=0$ gives

$$
x(0)=-\int_{0}^{1}\left[1-s-k s^{k} \int_{s}^{1}(1-\tau) \tau^{-(1+k)} d \tau\right] f(s) d s
$$

Consequently

$$
x(t)=\int_{0}^{1} W(t, s) f(s) d s+\alpha, \quad t \in[0,1]
$$

Bellow we will use results of [4] about estimation of the spectral radius $\rho(\mathcal{H})$ of the isotonic operator $\mathcal{H}: C \longrightarrow C$. We formulate this result in the form satisfying our aims:

Lemma 1. Suppose that the isotonic operator \mathcal{H} enjoys the property $(\mathcal{H} \zeta)(1)=0$ for each $\zeta \in C$. The following statements are equivalent:

1) There exists $y \in C$ such that

$$
y(t)>0, \quad y(t)-(\mathcal{H} y)(t)>0, \quad t \in[0,1)
$$

2) $\rho(\mathcal{H})<1$.

Lemma 2. The integral operator $\mathcal{W}: L_{p} \longrightarrow C$ is completely continuous, for all $1<p \leq \infty$.

Proof. We consider only the case $k>-\frac{1}{p^{\prime}}, k \neq 1$, the case $k=1$ can be proved analogously. To prove the compactness of the operator \mathcal{W} it suffices to show [5, p. 102] that, for any $t_{0} \in[0,1]$ the equality

$$
\lim _{t \rightarrow t_{0}} \int_{0}^{1}\left|W(t, s)-W\left(t_{0}, s\right)\right|^{p^{\prime}} d s=0
$$

holds. For $1 \leq p^{\prime}<\infty, 0<t_{0}<t \leq 1$ we have that

$$
\begin{aligned}
& \int_{0}^{1}\left|W(t, s)-W\left(t_{0}, s\right)\right|^{p^{\prime}} d s=\int_{0}^{t_{0}}\left|\frac{s^{k}\left(t^{1-k}-1\right)}{1-k}-\frac{s^{k}\left(t_{0}^{1-k}-1\right)}{1-k}\right|^{p^{\prime}} d s+ \\
& \quad+\int_{t_{0}}^{t}\left|\frac{s^{k}\left(s^{1-k}-1\right)}{1-k}-\frac{s^{k}\left(t_{0}^{1-k}-1\right)}{1-k}\right|^{p^{\prime}} d s \leq \\
& \leq \frac{t_{0}^{p^{\prime} k+1}}{|1-k|^{p^{\prime}}\left(p^{\prime} k+1\right)}\left(t^{1-k}-t_{0}^{1-k}\right)^{p^{\prime}}+O\left(t^{p^{\prime}+1}-t_{0}^{p^{\prime}+1}\right) \rightarrow 0, t \rightarrow t_{0}^{+}
\end{aligned}
$$

Analogously we prove the respective statement for $0=t_{0}<t \leq 1$ and $0 \leq t<t_{0} \leq 1$.

3. The de la Vallée-Poussin Like Theorem

Consider the boundary-value problem

$$
\left\{\begin{array}{l}
(\Im x)(t) \stackrel{\text { def }}{=}\left(\Im_{0} x\right)(t)-(T x)(t)=f(t), \quad t \in[0,1] \tag{2}\\
\dot{x}(0)=0, \quad x(1)=\alpha
\end{array}\right.
$$

where $k>-\frac{1}{p^{\prime}}, T: C \longrightarrow L_{p}$ is a linear antitonic operator, $f \in L_{p}$. Denote $\mathcal{A} \stackrel{\text { def }}{=} \mathcal{W} T:$ $C \longrightarrow C$.

Lemma 3. The following statements are equivalent:

1) There exists an element $y \in D_{p}$ such that

$$
\begin{gathered}
y(t)>0, \quad \phi(t) \stackrel{\text { def }}{=}\left(\Im_{0} y\right)(t)-(T y)(t) \leq 0, \quad t \in[0,1), \quad \text { and } \\
y(1)-\int_{0}^{1} \phi(s) d s>0
\end{gathered}
$$

2) $\rho(\mathcal{A})<1$;
3) The boundary value-problem (2) is uniquely solvable on D_{p} for each $f \in L_{p}, \alpha \in$ \mathbf{R}^{1}, and its Green operator \mathcal{G} is antitonic;
4) There exists a positive solution $u \in D_{p}$ on $[0,1]$ of the homogeneous equation $\Im x=0$.

Proof. Since $y(\cdot)$ satisfies

$$
\left(\Im_{0} x\right)(t)-(T x)(t)=\phi(t), \quad t \in[0,1], \quad x(1)=y(1)
$$

on the space D_{p}, it follows that

$$
y-\mathcal{A} y=\mathcal{W} \phi+y(1)>0
$$

on the space C. By virtue of Lemma 1 it follows that $\rho(\mathcal{A})<=1$. The implication 1) $\Longrightarrow 2)$ is proved.

Supposing $\alpha \geq 0$ we consider the problem (2), which is equivalent to the equation

$$
x=\mathcal{A} x+g
$$

on the space C. Here

$$
g(\cdot) \stackrel{d e f}{=} \int_{0}^{1} W(\cdot, s) f(s) d s+\alpha
$$

Since $\rho(\mathcal{A})<1$, it follows that

$$
\mathcal{G}=\left(I+\mathcal{A}+\mathcal{A}^{2}+\cdots\right) \mathcal{W}
$$

Consequently the implication 2$) \Longrightarrow 3$) is proved.
The problem

$$
\Im_{0} x-T x=0, \quad x(1)=\alpha
$$

is equivalent to the equation

$$
x=\mathcal{A} x+\alpha
$$

Since $\rho(\mathcal{A})<1$, we have $x=\alpha+\mathcal{A} \alpha+\mathcal{A}^{2} \alpha+\cdots \geq 0$ if $\alpha>0$. Thus the implication $3) \Longrightarrow 4)$ is proved.

The implication 4) $\Longrightarrow 1$), follows from Lemma 1 because the positive solution $u(t)$ of the equation $\Im x=0$ satisfies the inequalities

$$
u(t)>0, \quad u(t)-(\mathcal{A} u)(t)=\alpha>0, \quad t \in[0,1]
$$

4. The Main Result

Consider the nonlinear boundary-value problem

$$
\begin{equation*}
\Im_{0} x=f(\cdot, \Theta x), \quad \dot{x}(0)=0, x(1)=\alpha \tag{3}
\end{equation*}
$$

where $\Theta: C \longrightarrow L_{p}$ is a linear isotonic operator, $1<p \leq \infty, k>-\frac{1}{p^{\prime}}$, the function $f(\cdot, \cdot)$ satisfies the Carathéodory conditions. By definition put $\bar{v}=\Theta v, \bar{z}=\Theta z,[\bar{v}, \bar{z}] \stackrel{\text { def }}{=}$ $\left\{x \in L_{p}: \bar{v} \leq x \leq \bar{z}\right\}$.

Following [5], we will say that the function $f(\cdot, \cdot)$ satisfies the condition $\mathcal{L}^{i}[\bar{v}, \bar{z}], i=$ 1,2 , if it is possible the decomposition

$$
f[t, u(t)]=q_{i}(t) u(t)+M_{i}[t, u(t)], \quad u \in[\bar{v}, \bar{z}],
$$

where $q_{i} \in L_{\infty}, i=1,2$, the operator $\mathcal{M}_{i}:[\bar{v}, \bar{z}]_{L_{p}} \longrightarrow L_{p}$ is defined by $\left(\mathcal{M}_{i} u\right)(\cdot) \stackrel{\text { def }}{=}$ $M_{i}[\cdot, u(\cdot)], \mathcal{M}_{1}$ is isotonic and \mathcal{M}_{2} is antitonic.

Theorem 1. Let $v, z \in D_{p}$ be a pair of functions such that $v(t)<z(t), t \in[0,1]$, and

$$
\begin{equation*}
\Im_{0} v \geq f(\cdot, \Theta v), \quad \Im_{0} z \leq f(\cdot, \Theta z), \quad v(1) \leq \alpha \leq z(1) \tag{4}
\end{equation*}
$$

Suppose that the function $f(\cdot, \cdot)$ satisfies the condition $\mathcal{L}^{2}[\bar{v}, \bar{z}]$ with $q_{2} \in L_{\infty}, q_{2}(\cdot)$ ≤ 0. Then the problem (3) has at least one solution $x \in[v, z]_{D_{p}}$.

If besides the $\mathcal{L}^{1}[\bar{v}, \bar{z}]$ condition is fulfilled with a coefficient $q_{1} \in L_{\infty}$, and the Green operator of the auxiliary problem

$$
\begin{equation*}
\Im_{1} x \stackrel{\text { def }}{=} \Im_{0} x-q_{1} \Theta x=\varphi, \quad x(1)=0 \tag{5}
\end{equation*}
$$

is antitonic, then the problem (3) has only one solution $x \in[v, z]$.

Proof. Rewrite (3) in the form

$$
\left(\Im_{2} x\right)(\cdot) \stackrel{\text { def }}{=}\left(\Im_{0} x\right)(\cdot)-q_{2}(\cdot)(\Theta x)(\cdot)=M_{2}[\cdot,(\Theta x)(\cdot)], \quad x(1)=\alpha
$$

on the space D_{p}. This problem is equivalent to the equation

$$
\begin{equation*}
x=A_{2} x \tag{6}
\end{equation*}
$$

with the completely continuous isotonic operator $A_{2}:[v, z]_{C} \longrightarrow C$, defined by

$$
\left(A_{2} x\right)(\cdot) \stackrel{\text { def }}{=} \int_{0}^{1} G_{2}(\cdot, s) M_{2}[s,(\Theta x)(s)] d s+u_{2}(\cdot)
$$

where $u_{2}(\cdot)$ is the solution of the semi-homogeneous problem

$$
\left(\Im_{2} x\right)(t)=0, \quad t \in[0,1], \quad x(1)=\alpha
$$

$G_{2}(\cdot, \cdot)$ is the Green function of the problem

$$
\begin{equation*}
\Im_{2} x=\xi, \quad x(1)=0 . \tag{7}
\end{equation*}
$$

We use here the fact that the Green operator \mathcal{G}_{2} of the problem (7) has the representation $\mathcal{G}_{2}=\mathcal{W} \Gamma[1, \mathrm{p} .19]$, where $\Gamma: L_{p} \longrightarrow L_{p}$ is a linear homeomorphism, consequently \mathcal{G}_{2} is a completely continuous operator because of Lemma 2. Each continuous solution of the equation (6) belongs to the space D_{p}, because the operator A_{2} is defined on the order interval $[v, z]_{C}$ of the space C and maps this interval into the space D_{p}. Obviously the isotonic operator $\Theta: C \longrightarrow L_{p}$ maps the order interval $[v, z]_{C}$ into order interval $[\bar{v}, \bar{z}]_{L_{p}}$. The operator $\mathcal{M}_{2}:[\bar{v}, \bar{z}]_{L_{p}} \longrightarrow L_{p}$ is antitonic, therefore it maps the order interval $[\bar{v}, \bar{z}]_{L_{p}}$ into $\left[\mathcal{M}_{2} \bar{z}, \mathcal{M}_{2} \bar{v}\right]_{L_{p}}$. Let $y \stackrel{\text { def }}{=} z-v$. Then $y(t)>0, t \in[0,1]$,

$$
\Im_{2} y \leq \mathcal{M}_{2} \Theta z-\mathcal{M}_{2} \Theta v \leq 0
$$

because of the antitonicity of \mathcal{M}_{2} and

$$
y(1)-\int_{0}^{1}\left(\Im_{2} y\right)(s) d s>0
$$

Consequently, by Lemma 3 we have that the Green operator $\mathcal{G}_{2}: L_{p} \longrightarrow D_{p} \subset C$ of the problem (7) is antitonic. Thus

$$
\left[\mathcal{G}_{2} \mathcal{M}_{2} \bar{v}, \mathcal{G}_{2} \mathcal{M}_{2} \bar{z}\right]_{D_{p}} \subset\left[\mathcal{G}_{2} \mathcal{M}_{2} \bar{v}, \mathcal{G}_{2} \mathcal{M}_{2} \bar{z}\right]_{C}
$$

Therefore the equation (6) may be considered in the order interval $[v, z]_{C}$ of the space C. By virtue of the conditions (4) it follows that $z(t) \geq\left(A_{2} z\right)(t)$ and $v(t) \leq\left(A_{2} v\right)(t)$ for all $t \in[0,1]$. Because of the isotonicity of the operator $A_{2}:[v, z]_{C} \longrightarrow C$ this guarantees $A_{2}[v, z]_{C} \subset[v, z]_{C}$. For $1<p \leq \infty$ the operator $A_{2}:[v, z]_{C} \longrightarrow[v, z]_{C}$ is completely continuous as a product of the operators $\Theta:[v, z]_{C} \longrightarrow[\bar{v}, \bar{z}]_{L_{p}}, \mathcal{M}_{2}:[\bar{v}, \bar{z}]_{L_{p}} \longrightarrow$ $\left[\mathcal{M}_{2} \bar{z}, \mathcal{M}_{2} \bar{v}\right]_{L_{p}}$ and the completely continuous $\mathcal{G}_{2}: L_{p} \longrightarrow C$.

Thus, the operator A_{2} maps the closed convex set $[v, z]_{C}$ of the Banach space C into itself. In accordance with the Schauder's fixed point theorem the equation (6) has at least one solution $x \in[v, z]_{C}$.

Let us show that the set of all solutions $x \in[v, z]_{C}$ has a superior element $\bar{x} \in$ $[v, z]_{C}$ (the upper solution) and an inferior element $\underline{x} \in[v, z]_{C}$ (the lower solution). Let $x \in[v, z]_{C}$ be a solution of the equation (6). The sequence $\left\{z^{i}\right\}, z^{i+1}=A_{2} z^{i}$, $z^{0}=z$ monotonically decreases and is bounded by $x \in[v, z]_{C}$, because the operator A_{2} maps the set $[v, z]_{C}$ into itself. A compact monotone sequence $\left\{z^{i}\right\}$ converges $[2$,
p. 38] to $\bar{x}=\lim _{i \rightarrow \infty} z^{i}$. Since this limit is a solution, the inequality $\bar{x} \geq x$ for any solution $x \in[v, z]_{C}$ is proved. Analogously we show the existence of the inferior solution \underline{x}.

Now we have to show that if the condition $\mathcal{L}^{1}[\bar{v}, \bar{z}]$ is fulfilled, the solution of the problem (3) is unique, i.e. $\bar{x}=\underline{x}$. Using the $\mathcal{L}^{1}[\bar{v}, \bar{z}]$, condition we rewrite the problem (3) in the form

$$
\left(\Im_{1} x\right)(\cdot)=M_{1}[\cdot,(\Theta x)(\cdot)], \quad x(1)=\alpha
$$

This problem is equivalent to the equation

$$
x=A_{1} x
$$

on the order interval $[v, z]_{C}$ of the space C with antitonic operator $A_{1}:[v, z]_{C} \longrightarrow C$, defined by

$$
\left(A_{1} x\right)(\cdot) \stackrel{d e f}{=} \int_{0}^{1} G_{1}(\cdot, s) M_{1}[s,(\Theta=x)(s)] d s+u_{1}(\cdot)
$$

where $G_{1}(\cdot, \cdot)$ is the Green function of the problem $(5), u_{1}(\cdot)$ is the solution of semi-homogeneous problem

$$
\left(\Im_{1} x\right)(t)=0, \quad t \in[0,1], \quad x(1)=\alpha
$$

Consider the equality $\bar{x}-\underline{x}=A_{1} \bar{x}-A_{1} \underline{x}$. The left-hand side of the equality is non negative and the right-hand side is non positive, thus we get $\underline{x}=\bar{x}$.

5. EXAMPLES

Example 1. Consider the boundary-value problem

$$
\left\{\begin{array}{l}
\ddot{x}(t)+\frac{1}{t} \dot{x}(t)=-\beta \exp \left(-\frac{1}{|x(t)|}\right), \quad t \in[0,1], \tag{8}\\
\dot{x}(0)=0, \quad x(1)=0,
\end{array}\right.
$$

where $0 \leq \beta \leq e^{2}$. This problem describes processes arising in chemical reactor theory with cilindrical symmetry [7, p. 326], under the Arrhenius law. We consider this problem on the space D_{∞}.

As comparison functions we choose

$$
v(t) \equiv 0, \quad z(t)=\frac{\beta}{4}\left(1-t^{2}\right)+\frac{1}{2}
$$

A trivial verification shows that the conditions (4) are fulfilled:

$$
\begin{gathered}
\ddot{v}(t)+\frac{\dot{v}(t)}{t}+\beta \exp \left(-\frac{1}{|v(t)|}\right)=0 \\
\ddot{z}(t)+\frac{\dot{z}(t)}{t}+\beta \exp \left(-\frac{1}{|z(t)|}\right) \leq-\beta+\beta=0, \quad t \in[0,1] \\
v(1)=0=x(1)<z(1)=\frac{1}{2}
\end{gathered}
$$

The function $f(\cdot, x)=-\beta \exp \left(-\frac{1}{|x|}\right)$ satisfies the condition $\mathcal{L}^{2}[v, z]$ with the coefficient $q_{2} \equiv 0$. The boundary-value problem

$$
\Im_{0} x=\xi, \quad x(1)=0,
$$

has for each $\xi \in L_{\infty}$ a unique solution $x \in D_{\infty}$, and its Green function $W(t, s) \leq 0$ on the square $[0,1] \times[0,1]$.

Besides, the function $f(\cdot, x)=-\beta \exp \left(-\frac{1}{|x|}\right)$ satisfies the condition $\mathcal{L}^{1}[v, z]$ with the coefficient $q_{1}=-4 \beta e^{-2}$.

Taking the function $y(t)=\frac{\beta}{4}\left(1-t^{2}\right)$ we have:

$$
\left(\Im_{1} y\right)(t)=\left(\Im_{0} y\right)(t)+4 \beta e^{-2} y(t)=-\beta+\beta^{2} e^{-2}\left(1-t^{2}\right)<\beta\left(-1+\beta e^{-2}\right) \leq 0
$$

and

$$
y(1)-\int_{0}^{1}\left(\Im_{1} y\right)(s) d s=\int_{0}^{1}\left[\beta-\beta^{2} e^{-2}\left(1-s^{2}\right)\right] d s=\left(\beta-\frac{2}{3} \beta^{2} e^{-2}\right)>0
$$

since $\beta \leq e^{2}$. Consequently, by Lemma 3 , the Green operator \mathcal{G}_{1} of the problem

$$
\Im_{0} x+4 \beta e^{-2} x=\xi, \quad x(1)=0
$$

is antitonic. Then, because of Theorem 1 the problem (8) has a unique solution $x \in D_{\infty}$ such that

$$
0 \leq x(t) \leq \frac{\beta}{4}\left(1-t^{2}\right)+\frac{1}{2}, \quad t \in[0,1]
$$

Example 2. Let

$$
\left\{\begin{array}{l}
\ddot{x}(t)+\frac{2}{t} \dot{x}(t)=-\beta \exp \left(-\frac{1}{|x(t)|}\right), \quad t \in[0,1] \tag{9}\\
\dot{x}(0)=0, \quad x(1)=0
\end{array}\right.
$$

be a nonlinear boundary-value problem, $37.28 \leq \beta \leq \frac{12}{17} e^{17 / 2}$. This problem describes processes arising in chemical reactor with spherical symmetry [7, p. 326].

The problem (9) with such β has more than one solution on the space $D_{p}, 1<p \leq \infty$. Indeed, there are at least two pairs of functions

$$
v_{1}(t) \equiv 0, \quad z_{1}(t)=\frac{2\left(1-t^{2}\right)}{17}, \quad v_{2}(t)=4\left[\operatorname{erf}(1)-\operatorname{erf}\left(t^{2}\right)\right], \quad z_{2}(t)=\frac{\beta}{6}\left(1-t^{2}\right)
$$

The conditions (4) are fulfilled:

$$
\begin{gathered}
\ddot{v}_{1}(t)+\frac{2 \dot{v}_{1}(t)}{t}+\beta \exp \left(-\frac{1}{\left|v_{1}(t)\right|}\right)=0 \\
\ddot{z}_{1}(t)+\frac{2 \dot{z}_{1}(t)}{t}+\beta \exp \left(-\frac{1}{\left|z_{1}(t)\right|}\right)=\beta \exp \left(-\frac{17}{2\left(1-t^{2}\right)}\right)-\frac{12}{17}<0, \\
\ddot{v}_{2}(t)+\frac{2 \dot{v}_{2}(t)}{t}+\beta \exp \left(-\frac{1}{\left|v_{2}(t)\right|}\right)=\frac{16 \exp \left(-t^{4}\right)}{\sqrt{\pi}}\left(4 t^{4}-3\right)+ \\
+\beta \exp \left(\frac{-0.25}{\operatorname{erf}(1)-\operatorname{erf}\left(t^{2}\right)}\right)>0 \\
\ddot{z}_{2}(t)+\frac{2 \dot{z}_{2}(t)}{t}+\beta \exp \left(-\frac{1}{\left|z_{2}(t)\right|}\right)=\beta \exp \left(-\frac{6}{\beta\left(1-t^{2}\right)}\right)-\beta<0
\end{gathered}
$$

since $37.28 \leq \beta \leq \frac{12}{17} e^{17 / 2}, t \in[0,1]$. The existence of solution of the problem (9) on each interval $\left[v_{i}, z_{i}\right], i=1,2$, follows from Theorem 1. Since the intervals $\left[v_{1}, z_{1}\right],\left[v_{2}, z_{2}\right]$ are disjoint, the problem (9) has at least two solutions $x_{1}, x_{2} \in D_{p}, 1<p \leq \infty$, such that $v_{1} \leq x_{1} \leq z_{1}, v_{2} \leq x_{2} \leq z_{2}$.

References

1. N. Azbelev and L. Rakhmatullina, Theory of linear abstract functional differential equations and applications. Mem. Differential Equations Math. Phys. 8(1996), 1-102.
2. P. Zabreiko and others, Integral equations. (Russian) Nauka, Moscow, 1968.
3. I. Muntean, The spectrum of the Cesàro operator. Mathematica - Revue d'analyse numérique et de théorie de l'approximation 45(1980), 97-105.
4. N. Azbelev and L. Rakhmatullina, On the estimate for the spectral radius of a linear operator in the space of continuous functions. (Russian) Izv. Vuzov. Matematika 11(1996), 23-28.
5. N. Azbelev, V. Maksimov, and L. Rakhmatullina, Introduction to the theory of functional differential equations. (Russian) Nauka, Moscow, 1991.
6. M. Krasnosel'SkiĬ, Positive solutions of operator equations. (Russian) Izv. Vuzov. Matematika 11(1996), 23-28.
7. D. Frank-Kamenetskí, Diffusion and heat exchange in chemical kinetics. (Russian) Nauka, Moscow, 1987.

Author's address:
Eduardo Mondlane University
Department of Mathematics
P.O. Box 257 - Maputo

Mozambique

