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Introdu
tion

Boundary value problems (BVPs) of the theory of thermoelasti
ity have a

long history. They en
ounter in many physi
al, me
hani
al, and engineering

appli
ations where the thermal stresses appear. Therefore, the mathemat-

i
al model of thermoelasti
ity have re
eived 
onsiderable attention in the

s
ienti�
 literature (for exhaustive histori
al and bibliographi
al material

see [45℄, [63℄).

Without trying to dis
uss the history in detail we note that three-dimen-

sional regular problems of stati
s, pseudo-os
illations, steady state os
illa-

tions, and general dynami
s of the thermoelasti
ity theory of homogeneous

isotropi
 elasti
 bodies are 
ompletely investigated by many authors (see,

for example, [45℄, [8℄, [24℄, [63℄, [66℄, [29℄{[31℄ and referen
es therein). The

main mathemati
al tools applied for the investigation of various aspe
ts

of the above problems are variational and fun
tional methods ([14℄, [63℄),

the potential methods and the dire
t and indire
t boundary integral equa-

tions (BIE) methods ([45℄, [29℄{[31℄, [28℄), di�erent versions of the Bubnov-

Galerkin method and the method of generalized Fourier series (method of

regular sour
es) ([45℄).

To the best of the authors' knowledge the problems of thermoelasti


pseudo-os
illations and steady state os
illations for anisotropi
 bodies have

not been treated systemati
ally in the s
ienti�
 literature (
f. [33℄).

In the present memoir we undertake to examine a wide 
lass of the basi


regular, mixed, and 
ra
k type boundary value and interfa
e problems for

the systems of di�erential equations of pseudo-os
illations and steady state

os
illations of the thermoelasti
ity theory of homogeneous anisotropi
 bod-

ies. We develop the potential method to prove the existen
e and uniqueness

theorems in various fun
tional spa
es and to establish the almost best reg-

ularity properties of solutions. We note that many problems 
onsidered in

this memoir have not been treated even in the isotropi
 thermoelasti
ity.

It should be mentioned that the methods, developed for the isotropi



ase in the above 
ited referen
es, unfortunately, are not always appli
a-

ble in the 
ase of general anisotropy. It 
on
erns, espe
ially, the steady

state os
illation problems where quite new ideas are required. In parti
-

ular, the exterior BVPs of steady state thermoelasti
 os
illations in the

isotropi
 
ase have been studied on the basis of the 
lassi
al Sommerfeld-

Kupradze thermo-radiation 
onditions and the uniqueness theorems were

proved with the help of the well-known Relli
h's lemma, sin
e 
omponents

of the displa
ement ve
tor and the temperature in the isotropi
 
ase 
an be

represented as a sum of metaharmoni
 fun
tions (for details see [45℄).

In the anisotropi
 
ase we need a nontrivial generalization of the thermo-

radiation 
onditions at in�nity. We noti
e that the basi
 diÆ
ulties in deal-

ing with the steady state os
illation problems are 
onne
ted with a very


ompli
ated geometri
al form of the 
orresponding 
hara
teristi
 surfa
es
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whi
h play a signi�
ant role in the study of the far �eld behaviour of solu-

tions (
f. [80℄, [55℄).

The monograph 
onsists of six 
hapters and is organized as follows.

In the �rst 
hapter there are 
onstru
ted the matri
es of fundamental

solutions to the systems of pseudo-os
illation and steady state os
illation

equations of thermoelasti
ity theory by Fourier transform and limiting ab-

sorption prin
iple, and their asymptoti
 properties at in�nity and in a vi
in-

ity of the origin are studied.

On the basis of the results obtained the generalized Sommerfeld-Kupradze

type thermo-radiation 
onditions are formulated and the Somigliana type

integral representation formulae for bounded and unbounded domains (with


ompa
t boundaries) are derived.

We emphasize that the above mentioned fundamental matri
es are not

represented expli
itly in terms of elementary fun
tions. This essentially


ompli
ates the investigation of 
orresponding integral operators.

The se
ond 
hapter deals with the detail formulation of boundary value

and interfa
e problems for homogeneous and pie
ewise homogeneous (
om-

posed) anisotropi
 bodies. Besides the usual 
lassi
al setting in C

k;�

-
on-

tinuous H�older fun
tional spa
es here is given a weak formulation of the

problems in the Sobolev W

1

p

(W

1

p;lo


) spa
es with 1 < p < 1. The weak

setting relies upon the de�nition of generalized boundary tra
e fun
tionals

in the Besov B

s

p;q

spa
es whi
h are introdu
ed and broadly dis
ussed in

Se
tion 4. Note that 
ra
k type and mixed problems, in general, do not

admit C

�

-
ontinuous solutions (with � > 1=2) in 
losed domains even for

C

1

-regular boundary data. Therefore, these problems are formulated only

in the natural weak setting.

In the third 
hapter there are proved uniqueness theorems of solutions to

the regular and mixed homogeneous boundary value and interfa
e problems

in the appropriate fun
tional spa
es. Here the 
ru
ial moment is sele
tion

of the fun
tional 
lasses where the homogeneous steady state os
illation

problems in unbounded domain admit only the trivial solution. This is done

with the help of the above mentioned generalized Sommerfeld-Kupradze

type thermo-radiation 
onditions.

Chapter IV is entirely devoted to the study of single and double layer po-

tential type operators and boundary integral (pseudodi�erential) operators

generated by them. These results are the main tools used in the subsequent


hapters.

The existen
e theorems of solutions to the regular nonhomogeneous bo-

undary value and interfa
e problems are proved in the �fth 
hapter. By the

potential method these problems are redu
ed to the equivalent systems of

pseudodi�erential equations (	DE) on the boundary of the elasti
 body (or

on the interfa
e of the 
omposed body) under 
onsideration. It is established

that these BIEs are ellipti
 systems (in general, in the sense of Douglis-

Nirenberg) with trivial null-spa
es and zero indi
es. The general theory of

pseudodi�erential equations on 
losed smooth manifold and 
orresponding
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embedding theorems then immediately lead to the existen
e results for the

above indi
ated nonhomogeneous problems in C

k;�

fun
tional spa
es with

integer k � 1 and 0 < � < 1 in the 
ase of 
lassi
al setting or inW

1

p

(W

1

p;lo


)

spa
es with 1 < p <1 in the 
ase of weak setting (provided the boundary

data belong to appropriate natural spa
es).

Finally, in the last sixth 
hapter the existen
e theorems of solutions to

the nonhomogeneous mixed and 
ra
k type boundary value problems and

to the mixed interfa
e problems are proved again by the potential method.

These problems are redu
ed to the equivalent pseudodi�erential equations

on some proper subset of the boundary (or of the interfa
e). The investiga-

tion of these equations is 
arried out with the help of the theory of 	DEs on

manifold with boundary. The BIEs are again ellipti
 systems of 	DEs (in

general, in the sense of Douglis-Nirenberg) with positive de�nite prin
ipal

homogeneous symbol matri
ies, trivial null-spa
es and indi
es equal to zero.

Making use of these results the existen
e of solutions to the problems indi-


ated above are proved in the SobolevW

1

p

(W

1

p;lo


) spa
es with 4=3 < p < 4.

Applying the 
orresponding embedding theorems it is shown that the solu-

tions possess C

�

-smoothness (with arbitrary � < 1=2) at the 
ra
k edges

(in 
ra
k problems) and at the 
ollision 
urves of 
hanging boundary 
on-

ditions (in mixed problems) provided again that the boundary data belong

to appropriate natural spa
es.

The authors like to appre
iate very mu
h the �nan
ial support of the

Deuts
he Fors
hungsgemeins
haft under grant numbers 436 GEO 17/2/95,

436 GEO 17/4/96, 436 GEO 17/2/97.
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CHAPTER I

BASIC EQUATIONS. FUNDAMENTAL MATRICES.

THERMO-RADIATION CONDITIONS

In this 
hapter �rst we 
onstru
t exponentially de
reasing fundamental

solution to the system of pseudo-os
illation equations of the thermoelasti
ity

theory of anisotropi
 bodies and then by the limiting absorption prin
iple

we obtain two fundamental matri
es for the system of steady state os
illa-

tion equations. Further, we derive the asymptoti
 formulae for the entries

of these matri
es and formulate the generalized Sommerfeld-Kupradze type

radiation 
onditions in anisotropi
 thermoelasti
ity.

1. Basi
 Differential Equations of Thermoelasti
ity

In this se
tion we 
olle
t an auxiliary material 
on
erning the governing

equations and the basi
 me
hani
al and physi
al 
on
epts of the thermoe-

lasti
ity theory (for details we refer to [63℄, [45℄).

1.1. The system of equations of 
oupled linear thermoelastodynami
s of

homogeneous anisotropi
 elasti
 medium reads (see [63℄, Ch. V)




kjpq

D

j

D

q

u

p

(x; t) + X

k

(x; t) = %D

2

t

u

k

(x; t) + �

kj

D

j

u

4

(x; t);

�

pq

D

p

D

q

u

4

(x; t) � 


0

D

t

u

4

(x; t) � T

0

�

pq

D

t

D

p

u

q

(x; t) = �Q(x; t);

(1.1)

where 


kjpq

= 


pqkj

= 


jkpq

are elasti
 
onstants, �

pq

= �

qp

are heat 
on-

du
tivity 
oeÆ
ients, 


0

> 0 is the thermal 
apa
ity, T

0

> 0 is the tem-

perature of the medium in the natural state, �

pq

= �

qp

are expressed in

terms of the thermal and elasti
 
onstants, % =
onst> 0 is the density

of the medium; u = (u

1

; u

2

; u

3

)

>

is the displa
ement ve
tor, u

4

is the

temperature, X = (X

1

; X

2

; X

3

)

>

is the bulk for
e, Q is the heat sour
e;

x = (x

1

; x

2

; x

3

) denotes the spatial variable, while t is the time variable;

here and in what follows the summation over repeated indi
es is meant from

1 to 3, unless otherwise stated; the supers
ript > denotes transposition and

D

p

= D

x

p

:= �=�x

p

; D

t

:= �=�t.

In the sequel, we usually 
onsider the homogeneous version of equations

(1.1), i.e., we assume X = 0; Q = 0: In addition, without any restri
tion of

generality % = 1 is assumed as well.

In (1.1) the term �T

0

�

pq

D

t

D

p

u

q

(x; t) des
ribes the 
oupling between the

temperature and strain �elds. It vanishes only for a stationary heat 
ow.

In that 
ase or if this term is negle
ted, we have the so-
alled de
oupled

thermoelasti
ity theory.

In the thermoelasti
ity theory the stress tensor f�

kj

g; the strain tensor

f"

kj

g and the temperature �eld u

4

are related by Duhamel{Neumann law

�

kj

= 


kjpq

"

pq

� �

kj

u

4

; "

kj

= 2

�1

(D

k

u

j

+ D

j

u

k

), k; j = 1; 2; 3; the k-th


omponent of the ve
tor of thermostresses, a
ting on a surfa
e element with

the unit normal ve
tor n = (n

1

; n

2

; n

3

); is 
al
ulated by the formula

�

kj

n

j

= 


kjpq

"

pq

n

j

��

kj

n

j

u

4

= 


kjpq

n

j

D

q

u

p

��

kj

n

j

u

4

; k = 1; 2; 3: (1.2)



13

The formal Lapla
e transform of the equations (1.1) (with respe
t to t)

leads to the so-
alled pseudo-os
illation equations of the thermoelasti
ity

theory




kjpq

D

j

D

q

u

p

(x) = �

2

u

k

(x) + �

kj

D

j

u

4

(x);

�

pq

D

p

D

q

u

4

(x)� �


0

u

4

(x)� �T

0

�

pq

D

p

u

q

(x) = 0;

(1.3)

here � = � � i! is a 
omplex parameter with ! 2 R and � 2 R n f0g.

If all data involved in (1.1) are harmoni
 time dependent, i.e., u

k

(x; t) =

1

u

k

(x) 
os!t +

2

u

k

(x) sin!t, k = 1; 2; 3; 4, ! 2 R, then we get the so-
alled

steady state os
illation equations of the theory of thermoelasti
ity




kjpq

D

j

D

q

u

p

(x) = �!

2

u

k

(x) + �

kj

D

j

u

4

(x);

�

pq

D

p

D

q

u

4

(x) + i!


0

u

4

(x) + i!T

0

�

pq

D

p

u

q

(x) = 0;

(1.4)

where the following notation u

k

(x) =

1

u

k

(x) + i

2

u

k

(x); k = 1; 2; 3; 4; is em-

ployed.

It is evident that system (1.4) formally 
an be obtained from (1.3) pro-

vided � = 0, but this similarity is a very formal one and it will be
ome

apparent later on.

Finally, let us note that, if the displa
ement ve
tor and the temperature

do not depend on the time variable t, then from (1.1) we obtain equations

of the so-
alled de
oupled thermoelastostati
s




kjpq

D

j

D

q

u

p

(x) = �

kj

D

j

u

4

(x); k = 1; 2; 3; (1.5)

�

pq

D

p

D

q

u

4

(x) = 0: (1.6)

In this monograph we shall not systemati
ally treat the equations of de-


oupled thermoelastostati
s (1.5)-(1.6), sin
e in this 
ase all the boundary

value and interfa
e problems, we intend to 
onsider, are also 
ompletely de-


oupled into two independent problems for the temperature �eld and the di
-

pla
ement �eld. The 
orresponding problems of elastostati
s of anisotropi


bodies for the system (1.5) have been studied in [8℄, [56℄, while the problems

for the stationary distribution of the temperature �eld whi
h, in fa
t, are

BVPs for the se
ond order s
alar ellipti
 di�erential equation (1.6) 
an be

found, for example, in [52℄.

1.2. In order to rewrite the above equations in the matrix form, let us

set

U = (u

1

; u

2

; u

3

; u

4

)

>

= (u; u

4

)

>

; u = (u

1

; u

2

; u

3

)

>

;

C(D) = [C

kp

(D)℄

3�3

; C

kp

(D) = 


kjpq

D

j

D

q

; (1.7)

�(D) = �

pq

D

p

D

q

; D = r = (D

1

; D

2

; D

3

): (1.8)

For the sake of simpli
ity we shall use also the notation either [A℄

m�n

or

[A

kp

℄

m�n

for the m� n matrix A:
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Now we 
an represent equations (1.3) and (1.4) in the following form,

respe
tively,

A(D; �)U(x) = 0; (1.9)

A(D;�i!)U(x) = 0; (1.10)

where

A(D;{) =

�

[C(D)� {

2

I

3

℄

3�3

[��

kj

D

j

℄

3�1

[�{T

0

�

kj

D

j

℄

1�3

�(D)� {


0

�

4�4

; (1.11)

I

m

= [Æ

kj

℄

m�m

stands for the identity m � m matrix, Æ

kj

is Krone
ker's

symbol.

Clearly, { = � = � � i ! 
orresponds to the pseudo{os
illations, while

{ = �i! 
orresponds to the steady state os
illations, and { = 0 to the

de
oupled thermoelastostati
s.

Further we introdu
e the 
lassi
al stress operator

T (D;n) = [T

kp

(D;n)℄

3�3

= [


kjpq

n

j

D

q

℄

3�3

; (1.12)

and the thermoelasti
 stress operator

P (D;n) = [ [T (D;n)℄

3�3

; [��

kj

n

j

℄

3�1

℄

3�4

: (1.13)

Due to (1.2) we have

[P (D;n)U ℄

k

= �

kj

n

j

= [T (D;n)u℄

k

� �

kj

n

j

u

4

; k = 1; 2; 3:

1.3. From the physi
al 
onsiderations it follow that (see [22℄, [63℄):

a) the matrix [�

pq

℄

3�3

is positive de�nite, i.e.,

�(�) = �

pq

�

p

�

q

� Æ

0

j�j

2

; � 2 R

3

; Æ

0

= 
onst > 0; (1.14)

b) the quadrati
 form 


kjpq

e

kj

e

pq

is positive de�nite in the real symmetri


variables e

kj

= e

jk

;




kjpq

e

kj

e

pq

� Æ

0

e

kj

e

kj

; Æ

0

= 
onst > 0; (1.15)

whi
h implies positive de�niteness of the matrix C(�); � 2 R

3

nf0g; de�ned

by (1.7), i.e.,

C

kj

(�)�

j

�

k

� Æ

1

j�j

2

j�j

2

; �; � 2 R

3

; Æ

1

= 
onst > 0: (1.16)

Inequalities (1.14) and (1.16) together with the symmetry properties of the

matri
es [�

pq

℄ and C(�) yield

C(�)� � � = C

kj

(�)�

j

�

k

� Æ

1

j�j

2

j�j

2

; � 2 R

3

; (1.17)

�

pq

�

p

�

q

� Æ

0

j�j

2

; (1.18)

for an arbitrary 
omplex ve
tor � 2 C

3

: Here a � b =

P

m

k=1

a

k

b

k

denotes

the usual s
alar produ
t of the two 
omplex ve
tors a = (a

1

; � � � ; a

m

) and

b = (b

1

; � � � ; b

m

) in C

m

, while upper bar denotes 
omplex 
onjugate. We
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shall also employ the following notation (\real" s
alar produ
t of 
omplex

ve
tors)

ha ; bi =

m

X

k=1

a

k

b

k

; a; b 2 C

m

: (1.19)

1.4. We emphasize that the di�erential operator A(D;{) de�ned by

(1.11) is not formally self-adjoint. Denote by A

�

(D;{) the operator formally

adjoint to A(D;{)

A

�

(D;{) = A

>

(�D;{) = A

>

(�D;{) =

=

�

[C(D)� {

2

I

3

℄

3�3

[{T

0

�

kj

D

j

℄

3�1

[�

kj

D

j

℄

1�3

�(D)� {


0

�

4�4

: (1.20)

Let us note here that throughout this memoir we shall use the following

notations (when no 
onfusion 
an be 
aused by this):

a) if all elements of a ve
tor v = (v

1

; :::; v

m

) (matrix a = [a

kj

℄

m�n

)

belong to one and the same spa
e X , we shall write v 2 X (a 2 X) instead

of v 2 [X ℄

m

(a 2 [X ℄

m�n

);

b) if K : X

1

� � � ��X

m

! Y

1

� � � ��Y

n

and X

1

= � � � = X

m

= X; Y

1

=

� � � = Y

n

= Y; we shall write K : X ! Y rather than K : [X ℄

m

! [Y ℄

n

:

Let 


+

� R

3

be a bounded domain with a C

2

�smooth 
onne
ted bound-

ary S = �


+

; 


+

= 


+

[ S and 


�

= R

3

n


+

: We assume that 


+

(


�

)

is �lled by a homogeneous anisotropi
 medium with the elasti
 and thermal


hara
teristi
s des
ribed above.

Now we present the so-
alled Green formulae for the operator A(D;{)

whi
h will be used many times in the sequel.

Let U = (u

1

; u

2

; u

3

; u

4

)

>

; V = (v

1

; v

2

; v

3

; v

4

)

>

2 C

2

(


+

)\C

1

(


+

) (i.e.,

U and V are regular ve
tors in 


+

) and A(D;{)U; A

�

(D;{)V 2 L

1

(


+

).

Then the following equations hold for arbitrary { 2 C (
f. [57℄, [55℄, [16℄):

R




+

A(D;{)U � V dx =

R

S

[B(D;n)U ℄

+

� [V ℄

+

dS �

R




+

E(U; V ) dx; (1.21)

R




+

fA(D;{)U � V � U � A

�

(D;{)V g dx =

R

S

f[B(D;n)U ℄

+

� [V ℄

+

�

�[U ℄

+

� [Q(D;n;{)V ℄

+

o

dS; (1.22)

R




+

n

[A(D;{)U ℄

k

u

k

+

1

{T

0

[A(D;{)U ℄

4

u

4

o

dx =

=�

R




+

n




kjpq

D

p

u

q

D

k

u

j

+{

2

juj

2

+

1

{T

0

�

kj

D

k

u

4

D

j

u

4

+




0

T

0

ju

4

j

2

o

dx+

+

R

S

n

[B(D;n)U ℄

+

k

[u

k

℄

+

+

1

{T

0

[u

4

℄

+

[�

n

u

4

℄

+

o

dS; (1.23)

where

�

n

= �(D;n) := �

pq

n

p

D

q

; (1.24)

B(D;n) =

�

[T (D;n)℄

3�3

[��

kj

n

j

℄

3�1

[0℄

1�3

�(D;n)

�

4�4

; (1.25)
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Q(D;n;{) =

�

[T (D;n)℄

3�3

[{T

0

�

kj

n

j

℄

3�1

[0℄

1�3

�(D;n)

�

4�4

; (1.26)

E(U; V ) = 


kjpq

D

p

u

q

D

k

v

j

+ {

2

u

k

v

k

� �

kj

u

4

D

j

v

k

+

+ �

pq

D

q

u

4

D

p

v

4

+ 


0

{u

4

v

4

+ {T

0

v

4

�

pq

D

p

u

q

: (1.27)

Here and in what follows n(x) denotes the exterior unit normal ve
tor of

S at the point x 2 S: The symbols [ � ℄

�

denote limits on S from 


�

.

Note that, if we 
onsider the �rst three 
omponents of the U as the

displa
ement ve
tor and the fourth one as the temperature, then the ve
-

tor B(D;n)U has the following thermo-me
hani
al sense: the �rst three


omponents of the B(D;n)U represent the 
orresponding ve
tor of thermal

stresses (see (1.13)), while the fourth 
omponent des
ribes the heat 
ux

through the surfa
e S.

The similar formulae hold valid also for the domain 


�

, when { = 0 or

Re{ > 0, with the following 
hanges (related to the 
hoi
e of dire
tion of

the normal ve
tor): the supers
ript \+" must be repla
ed everywhere by

the supers
ript \�" and in front of the surfa
e integrals the sign \�" is to

be put.

In this 
ase the ve
tors U and V have to satisfy the 
onditions

U; V 2 C

2

(


�

) \C

1

(


�

); A(D;{)U; A

�

(D;{)V 2 L

1

(


�

); (1.28)

A(D;{)U and A

�

(D;{)V have 
ompa
t supports and, in addition, U and

V have the following asymptoti
 behaviour at in�nity

u

k

(x); v

k

(x) =

�

o(1) for { = 0;

O(jxj

N

) for Re{ = � > 0; k = 1; 2; 3; 4;

(1.29)

with an arbitrary �xed positive number N . In fa
t, it 
an be proved that, if

U and V are solutions of the 
orresponding homogeneous equations , then

the 
onditions (1.29) imply

D

�

u

k

(x); D

�

v

k

(x)=

�

O(jxj

�1�j�j

) for { = 0;

O(jxj

��

) for Re{=�>0; k=1; 2; 3; 4;

(1.30)

where � is an arbitrary positive number, � = (�

1

; �

2

; �

3

) is an arbitrary

multi-index and j�j = �

1

+ �

2

+ �

3

(see, for example, [7℄, [44℄, [56℄.

The prin
ipal remark here is that for solutions U and V of the steady state

os
illation equation (1.10) (i.e., when { = �i!) the Green formulae, similar

to (1.21)-(1.23), are not valid any more for the unbounded domain 


�

.

1.5. In this subse
tion, before starting the 
onstru
tion of the funda-

mental matri
es, we shall analyse the so-
alled 
hara
teristi
 matri
es 
or-

responding to the above di�erential operators of the thermoelasti
ity theory.

They will play a fundamental role in the sequel.

Let us introdu
e the 
hara
teristi
 polynomial of the operator A(D;{)

M(�;{) = detA(�i�;{): (1.31)

Denote by N(�i�;{) the matrix adjoint to A(�i�;{); i.e.,

A(�i�;{)N(�i�;{) = N(�i�;{)A(�i�;{) =M(�;{)I

4

: (1.32)
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Clearly, we have

[A(�i�;{)℄

�1

= [M(�;{)℄

�1

N(�i�;{); (1.33)

where [A(�i�;{)℄

�1

is the matrix inverse to A(�i�;{). Equations (1.31),

(1.11), and (1.7) yield

M(�;{) = det

�

[�C(�)� {

2

I

3

℄

3�3

[i�

kj

�

j

℄

3�1

[i{T

0

�

kj

�

j

℄

1�3

�{


0

�

4�4

+

+det

�

[�C(�)� {

2

I

3

℄

3�3

[i�

kj

�

j

℄

3�1

[0℄

1�3

��(�)

�

4�4

= �(�) det[C(�) + {

2

I

3

℄�

�{T

0

det

�

[�C(�)� {

2

I

3

℄

3�3

[�

kj

�

j

℄

3�1

[�

kj

�

j

℄

1�3




0

T

�1

0

�

4�4

=

= �(�) det[C(�) + {

2

I

3

℄�

�{T

0

det

�

[�C(�)�{

2

I

3

℄

3�3

�[


�1

0

T

0

�

kj

�

j

�

pq

�

q

℄

3�3

[�

kj

�

j

℄

3�1

[0℄

1�3




0

T

�1

0

�

4�4

=

= �(�) det[C(�) + {

2

I

3

℄ + {


0

det[

e

C(�) + {

2

I

3

℄; (1.34)

where C(�) and �(�) are de�ned by (1.7) and (1.8), respe
tively, and

e

C(�) = [

e

C

kp

(�)℄

3�3

= C(�) + [


�1

0

T

0

�

kj

�

pq

�

j

�

q

℄

3�3

; (1.35)

e

C

kp

(�) = (


kjpq

+ 


�1

0

T

0

�

kj

�

pq

)�

j

�

q

; k; p = 1; 2; 3:

Next, we set

	(�;{) = det[C(�) + {

2

I

3

℄; (1.36)

e

	(�;{) = det[

e

C(�) + {

2

I

3

℄: (1.37)

The relations (1.35) and (1.17) imply that the matrix

e

C(�) for any � 2

R

3

n f0g is positive de�nite and, therefore,

e

C(�)� � � = C(�)� � � + 


�1

0

T

0

j�

kj

�

j

�

k

j

2

� Æ

1

j�j

2

j�j

2

(1.38)

for an arbitrary � 2 C

3

and the same Æ

1

as in (1.17).

Thus, we have

M(�;{) = �(�)	(�;{) + {


0

e

	(�;{): (1.39)

It is evident that, if j{j < {

0

with some positive {

0

, then there exists a

positive number %

0

su
h that

j	(�;{)j � 1; j

e

	(�;{)j � 1; jM(�;{)j � 1; (1.40)

for j�j � %

0

; here %

0

depends on {

0

and the thermoelasti
 
onstants.

Lemma 1.1. Let � = ��i!; Re � = � > 0 and � 2 R

3

: ThenM(�; �) 6= 0

for any ! 2 R. Moreover, [A(�i�; �)℄

�1

2 L

2

(R

3

).
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Proof. Let us suppose that the assertion of the lemma is false, i.e.,M(�; �) =

0. Then the homogeneous system of linear algebrai
 equations

A(�i�; �) a = 0 (1.41)

has some nontrivial solution a = (a

1

; � � � ; a

4

)

>

2 C

4

n f0g.

Multiplying the k�th equation of (1.41) by a

k

and summing the �rst

three equations we get

�


kjpq

�

j

�

q

a

p

a

k

� �

2

Æ

kp

a

p

a

k

+ i�

kj

�

j

a

4

a

k

= 0;

i�T

0

�

kj

�

j

a

k

a

4

� �

pq

�

p

�

q

ja

4

j

2

� �


0

ja

4

j

2

= 0:

Deviding the latter equation by �T

0

; taking the 
omplex 
onjugate and

adding to the �rst one, we obtain




kjpq

�

j

�

q

a

p

a

k

+ �

2

a

k

a

k

+ � [j� j

2

T

0

℄

�1

�

pq

�

p

�

q

ja

4

j

2

+ 


0

T

�1

0

ja

4

j

2

= 0:

Due to (1.17) we dedu
e by separating the real and imaginary parts

�

C(�)ea � ea+ (�

2

� !

2

)jeaj

2

+ �[j� j

2

T

0

℄

�1

�(�)ja

4

j

2

+ 


0

T

�1

0

ja

4

j

2

= 0;

!f2�jeaj

2

+ [j� j

2

T

0

℄

�1

�(�)ja

4

j

2

g = 0;

where ea = (a

1

; a

2

; a

3

)

>

.

From this system and the inequality (1.14) it follows that a

1

= � � � =

a

4

= 0; for any � 2 R

3

, ! 2 R, and � > 0: This 
ontradi
tion proves the

�rst part of the lemma.

The se
ond part of the lemma is a 
onsequen
e of the inequality

[A(�i�; �)℄

�1

kj

�


(�)

1 + j�j

2

for � 2 R

3

;

where the positive 
onstant 
(�) does not depend on � (it depends on � and

on the thermoelasti
 
onstants of the medium in question). �

1.6. Now we shall analyse the 
hara
teristi
 polynomial M(�;�i!) of

the operator A(D;�i!). It 
an be easily shown that (see (1.36), (1.37),

(1.39))

M(�;�i!) = �(�)�(�; !)� i!


0

e

�(�; !); (1.42)

where

�(�; !) = det[C(�)� !

2

I

3

℄ = 	(�;�i!); (1.43)

e

�(�; !) = det[

e

C(�)� !

2

I

3

℄ =

e

	(�;�i!): (1.44)

Chara
teristi
 surfa
es of the operator A(D;�i!) are de�ned by the

equation

M(�;�i!) = 0; � 2 R

3

; (1.45)

whi
h, in turn, due to (1.42), is equivalent to the following system

�

�(�; !) = 0;

e

�(�; !) = 0; � 2 R

3

:

(1.46)
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Passing on the spheri
al 
o-ordinates

�

1

= % 
os' sin �; �

2

= % sin' sin �; �

3

= % 
os �;

0 � % < +1; 0 � ' < 2�; 0 � � � �;

and, taking into a

ount formulae (1.43), (1.44), (1.17) and (1.38), we 
on-


lude that ea
h equation of the system (1.46) has three positive roots with

respe
t to %

2

. These roots are proportional to !

2

, and polynomials �(�; !)

and

e

�(�; !) 
an be represented in the form:

�(�; !) = �(�; 0) [%

2

� !

2

%

2

1

(�; ')℄[%

2

� !

2

%

2

2

(�; ')℄[%

2

� !

2

%

2

3

(�; ')℄;

e

�(�; !) =

e

�(�; 0) [%

2

� !

2

e%

2

1

(�; ')℄[%

2

� !

2

e%

2

2

(�; ')℄[%

2

� !

2

e%

2

3

(�; ')℄;

(1.47)

where � = �=%; % = j�j; �(�; 0) = detC(�) > 0;

e

�(�; 0) = det

e

C(�) > 0;

here f%

2

k

(�; ')g

3

k=1

and fe%

2

k

(�; ')g

3

k=1

do not depend on ! and are solutions

of the following equations (with respe
t to %

2

):

�(�; 1) = �(�; 0)%

6

+�

(2)

(�)%

4

+�

(1)

(�)%

2

� 1 = 0; (1.48)

e

�(�; 1) =

e

�(�; 0)%

6

+

e

�

(2)

(�)%

4

+

e

�

(1)

(�)%

2

� 1 = 0; (1.49)

where �

(j)

(�) and

e

�

(j)

(�) are even, homogeneous fun
tions of order 2j in �

(see (1.43), (1.44)).

In what follows we 
onsider the so-
alled regular 
ase, i.e., we assume the

following 
onditions to be ful�lled (
f. [55℄, [80℄):

I

0

: r

�

�(�; !) 6= 0 at real zeros of the polynomial �(�; !);

II

0

: Gaussian 
urvature of the manifold, de�ned by the real zeros of the

polynomial �(�; !); does not vanish anywhere.

From the above 
onditions I

0

{II

0

it follows that the real zeros of the

polynomial �(�; !) form nonsel�nterse
ting, 
losed, 
onvex two-dimensional

surfa
es S

0

j

; j = 1; 2; 3; enveloping the origin of 
o-ordinates. For an arbi-

trary ve
tor x 2 R

3

n f0g there exist exa
tly two points on ea
h S

0

j

, namely

�

j

= (�

j

1

; �

j

2

; �

j

3

) and �

j

�

= ��

j

, at whi
h the exterior unit normal is parallel

to the ve
tor x. We provide that at �

j

the normal ve
tor n(�

j

) and x have

the same dire
tion, while at �

j

�

they are opposite dire
ted. Note that, if

�

j

2 S

0

j

and �

k

2 S

0

k


orrespond to the same ve
tor x, then (due to the


onvexity property of the above surfa
es) (�

j

� x) 6= (�

k

� x) for k 6= j:

In the sequel, the �

j

2 S

0

j

will be referred to as the point whi
h 
orre-

sponds to the ve
tor x (i.e., to the dire
tion x=jxj).

Clearly, % = j!j %

k

(�; ') > 0; k = 1; 2; 3; represent the equations of the

surfa
es S

0

k

in the spheri
al 
o-ordinates.

The set of points in R

3

de�ned by the system of equations (1.46) may

have a very 
ompli
ated geometri
 form. Among these forms we single out

and study the following regular 
ase: The system (1.46) is either in
onsis-

tent in R

3

(i.e., it de�nes the empty set) or it de�nes a two-dimensional

manifold, i.e., equations (1.48) and (1.49) have m (1 � m � 3) 
ommon
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roots and, if 1 � m < 3; the remaining two groups of the roots form disjoint

sets for arbitrary values of � and '. We denote these 
ommon roots by

�

1

(�; '); � � � ; �

m

(�; ') (1 � m � 3) and without loss of generality assume

that

0<%

1

(�; ')<%

2

(�; ')<%

3

(�; '); 0<�

1

(�; ')< � � �<�

m

(�; '): (1.50)

Thus, in this 
ase the 
hara
teristi
 equation (1.45) (i.e., the system

(1.46)) de�nes analyti
 (
hara
teristi
) surfa
es S




1

; � � � ; S




m

; whose equa-

tions in the spheri
al 
o-ordinates read as % = j!j �

k

(�; ') > 0, k =

1; � � � ;m:

The BVPs 
orresponding to the 
ase m = 0 turned out to be very similar

to those of the pseudo-os
illation ones (see Remark 2.7) and therefore in

what follows we shall mainly 
onsider the 
ase 1 � m � 3:

1.7. From the above arguments it follows that

	(�;{)=�(�; 0)[%

2

+{

2

%

2

1

(�; ')℄[%

2

+{

2

%

2

2

(�; ')℄[%

2

+{

2

%

2

3

(�; ')℄; (1.51)

e

	(�;{)=

e

�(�; 0)[%

2

+{

2

e%

2

1

(�; ')℄[%

2

+{

2

e%

2

2

(�; ')℄[%

2

+{

2

e%

2

3

(�; ')℄; (1.52)

for any � 2 R

3

and { 2 C .

Consequently, a

ording to (1.39) we have

M(�;{)=�(�; 0)�(�) [%

2

+ {

2

%

2

1

(�; ')℄[%

2

+ {

2

%

2

2

(�; ')℄[%

2

+ {

2

%

2

3

(�; ')℄+

+{


0

e

�(�; 0) [%

2

+ {

2

e%

2

1

(�; ')℄[%

2

+ {

2

e%

2

2

(�; ')℄[%

2

+ {

2

e%

2

3

(�; ')℄ =

= �

m

(%; �; ';{)	

m

(%; �; ';{); (1.53)

where

�

m

(%; �; ';{) = �

m

(�;{) = �

m

(��;{) = �

m

(�;�{) =

= (�1)

m

[%

2

+ {

2

�

2

1

(�; ')℄ � � � [%

2

+ {

2

�

2

m

(�; ')℄; (1.54)

	

m

(%; �; ';{) = 	

m

(�;{) = 	

m

(��;{) =

= (�1)

m

f�(�; 0)�(�) [%

2

+ {

2

�

2

1

(�; ')℄ � � � [%

2

+ {

2

�

2

3�m

(�; ')℄+

+{


0

e

�(�; 0) [%

2

+ {

2

e

�

2

1

(�; ')℄ � � � [%

2

+ {

2

e

�

2

3�m

(�; ')℄; (1.55)

here �

2

j

(�; ') and

e

�

2

j

(�; ') denote the di�erent (non-
ommon) roots of the

equations (1.48) and (1.49), respe
tively. Note that formulae (1.51)-(1) are

valid for arbitrary � 2 R

3

and { 2 C .

The multiplier (�1)

m

in (1) ensures the inequality

�

m

(0;�i!) > 0 (1.56)

whi
h will be employed later on.

Remark 1.2. Note that the polynomial �

m

(%; �; ';�i!) in % vanishes

on S




j

; j = 1; � � � ;m (i.e., when % = j!j�

j

(�; %)) while 	

m

(%; �; ';�i!)

is di�erent from zero for any real % and !. Therefore, for any �xed !

and %

0

there exists a positive number "

0

su
h that j	

m

(%; �; ';{)j > 0 for

jIm %j � "

0

, jRe{j � "

0

and j%j � 2%

0

, where % = %

0

+ i%

00

, { = � � i!.
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Now from equations (1) and (1) it follows that, if jRe{j = j�j < "

0

and j� �

j

(�; ')j < "

0

; then the 
omplex numbers � (! + i�)�

j

(�; ') =

� i{�

j

(�; '); j = 1; � � � ;m; are the only zeros of the polynomial (1) with

respe
t to % in the strip jIm %j = j%

00

j < "

0

: As a 
onsequen
e we have that

M(�;{) 6= 0 for � 2 R

3

and 0 < j�j = jRe{j < "

0

: �

2. Fundamental Matri
es

In this se
tion with the help of the fundamental matrix of the pseudo-

os
illation equations we will 
onstru
t maximally de
reasing fundamental

matri
es of the steady state os
illation operator by limiting absorption prin-


iple (
f. [55℄).

Denote by �(x; �) a fundamental matrix of the operator A(D; �):

A(D; �)�(x; �) = I

4

Æ(x); � = � � i!, � 6= 0, where Æ(x) is Dira
's distribu-

tion.

Let 0 < jRe� j = j�j < "

0

with "

0

> 0 from Remark 1.2 or � > 0. Then

due to the representation (1), Remark 1.2, equation (1.33) and Lemma 1.1

we have

M(�; �) 6= 0; � 2 R

3

; [A(�i�; �)℄

�1

2 L

2

(R

3

): (2.1)

Therefore, we 
an represent �(x; �) by the Fourier integral [57℄

�(x; �)=F

�1

�!x

�

[A(�i�; �)℄

�1

�

=(2�)

�3

lim

R!1

R

j�j<R

[A(�i�; �)℄

�1

e

�ix�

d�: (2.2)

By F

x!�

and F

�1

�!x

we denote the generalized Fourier and inverse Fourier

transforms whi
h for summable fun
tions are de�ned as follows (see, e.g.,

[20℄)

F

x!�

[f ℄ =

R

R

n

f(x) e

ix�

dx; F

�1

�!x

[g℄ = (2�)

�n

R

R

n

g(�) e

�ix�

d�:

From the 
onditions � 6= 0 and (2.1), and properties of the Fourier

transform it easily follows that the entries of the matrix �(x; �) together

with all derivatives de
rease more rapidly than any negative power of jxj as

jxj ! +1: The behaviour of this matrix in a neighbourhood of the origin

will be established below (see Lemma 2.1) (
f. [23℄).

Let h be a 
ut o� fun
tion with properties

h(�) = h(��); h 2 C

1

(R

3

); h(�) = 1 for j�j < %

0

;

h(�) = 0 for j�j > 2%

0

(2.3)

with %

0

from (1.40).

Now we de
ompose (2.2) into the two parts

�(x; �) = �

(1)

(x; �) + �

(2)

(x; �);

where

�

(1)

(x; �) = F

�1

�!x

�

[1� h(�)℄ [A(�i�; �)℄

�1

�

; (2.4)

�

(2)

(x; �) = F

�1

�!x

�

h(�) [A(�i�; �)℄

�1

�

=
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= (2�)

�3

R

j�j<2%

0

h(�) [A(�i�; �)℄

�1

e

�ix�

d�: (2.5)

The main result of this se
tion will follow from two the lemmata whi
h

we now present.

Let �

(0)

(x) be the homogeneous (of order �1) fundamental matrix of the

operator C(D) (see [55℄, [56℄)

�

(0)

(x) = F

�1

�!x

�

[C(�i�)℄

�1

�

= (�8�

2

jxj)

�1

2�

R

0

[C(a�)℄

�1

d'; (2.6)

where x 2 R

3

n f0g, a = [a

kj

℄

3�3

is an orthogonal matrix with property

a

>

x

>

= (0; 0; jxj)

>

; � = (
os'; sin'; 0)

>

. Further, let 


(0)

(x) be the ho-

mogeneous (of order �1) fundamental fun
tion of the operator �(D) (see

[52℄)




(0)

(x) = F

�1

�!x

�

[�(�i�)℄

�1

�

= �[4� jLj

1=2

(L

�1

x � x)

1=2

℄

�1

(2.7)

with L = [�

pq

℄

3�3

; jLj = detL.

Lemma 2.1. The entries of the matrix �

(1)

(x; �) belong to C

1

(R

3

nf0g)

and for an arbitrary � 2 [�"

0

; "

0

℄ together with all derivatives de
rease more

rapidly than any negative power of jxj as jxj ! +1.

The limit

lim

�!0

D

�

x

�

(1)

(x; � � i!) = D

�

x

�

(1)

(x;�i!)

exists uniformly for jxj > Æ with an arbitrary Æ > 0 and in a neigbourhood

of the origin (say jxj < 1=2) the following inequalities

jD

�

x

�

(1)

kj

(x; � � i!)�D

�

x

�

(1)

kj

(x;�i!)j � j�j 
 '

(kj)

j�j

(x);

jD

�

x

�

(1)

kj

(x; � � i!)�D

�

x

�

kj

(x)j � 
 '

(kj)

j�j

(x)

hold, where 
 = 
onst > 0 does not depend on �;

�(x) =

�

[�

(0)

(x)℄

3�3

[0℄

3�1

[0℄

1�3




(0)

(x)

�

4�4

; (2.8)

'

(kj)

0

(x) = 1; '

(kj)

1

(x) = �lnjxj; '

(kj)

l

(x) = jxj

1�l

; l � 2;

for 1 � k; j � 3 and k = j = 4;

'

(k4)

0

(x) = '

(4k)

0

(x) = �lnjxj; '

(k4)

m

(x) = '

(4k)

m

(x) = jxj

�m

; m � 1;

for k = 1; 2; 3; � is an arbitrary multi-index.

Proof. Note that the relations D

�

[A(�i�; �)℄

�1

kj

= O([1 + j�j℄

�2�j�j

) and

[A(�i�; �)℄

�1

=

�

[(C(�i�))

�1

℄

3�3

[0℄

3�1

[0℄

1�3

[�(�i�)℄

�1

�

+

+

�

[O(j�j

�4

)℄

3�3

[O(j�j

�3

)℄

3�1

[O(j�j

�3

)℄

1�3

O(j�j

�4

)

�

;

hold for suÆ
iently large j�j.
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Now the proof follows from Lemma 1.1, equations (2.6), (2.7), and prop-

erties of the Fourier transform of homogeneous fun
tions (see, for example,

[20℄, [54℄, Lemma 2.17, [55℄, Lemma 3.1). �

Now we analyse properties of the matrix �

(2)

(x; �).

Going to the spheri
al 
o-ordinates in the integral (2) we get

�

(2)

(x; �) = (2�)

�3

R

�

1

d�

1

n

%

0

R

0

+

2%

0

R

%

0

o

h(�)[A(�i�; �)℄

�1

e

�ix�

%

2

d%; (2.9)

where �

1

is the unit sphere in R

3


entered at the origin.

Taking into a

ount Remark 1.2, the analyti
ity of the integrand with

respe
t to %, and introdu
ing the 
omplex % = %

0

+ i%

00

plane we 
an rewrite

(2.9) by Cau
hy theorem as follows

�

(2)

(x; �) = (2�)

�3

R

�

1

d�

1

n

R

l

�

[A(�i�; �)℄

�1

e

�ix�

%

2

d%+

+

2%

0

R

%

0

h(�) [A(�i�; �)℄

�1

e

�ix�

%

2

d%

o

; (2.10)

where l

�

= [0; j!j�

1

�Æ℄[ l

�

1;Æ

[ [j!j�

1

+Æ; j!j�

2

�Æ℄[ l

�

2;Æ

[� � �[ l

�

m;Æ

[ [j!j�

m

+

Æ; %

0

℄; Æ > 0 is a suÆ
iently small number, l

+

j;Æ

[l

�

j;Æ

℄ is the semi
ir
le in the

upper [lower℄ half-plane 
entered at j!j�

j

and radius Æ oriented 
lo
kwise

[
ounter-
lo
kwise℄; in (2.10) the 
ontour l

+

[l

�

℄ 
orresponds to the 
ase

�! < 0 [�! > 0℄.

Now passing to the limit in (2.10) as � ! 0� we get

lim

�!0

�

(2)

(x; � � i!) =

= (2�)

�3

R

�

1

d�

1

n

R

l

�

[A(�i�;�i!)℄

�1

e

�ix�

%

2

d%+

+

2%

0

R

%

0

h(�) [A(�i�;�i!)℄

�1

e

�ix�

%

2

d%

o

=: �

(2)

+

(x;�i!); �! > 0; (2.11)

lim

�!0

�

(2)

(x; � � i!) =

= (2�)

�3

R

�

1

d�

1

n

R

l

+

[A(�i�;�i!)℄

�1

e

�ix�

%

2

d%+

+

2%

0

R

%

0

h(�) [A(�i�;�i!)℄

�1

e

�ix�

%

2

d%

o

=: �

(2)

�

(x;�i!); �! < 0: (2.12)

These limits exist uniformly for jxj < R

0

with an arbitrary R

0

:

Su
h type of integrals have been studied in [55℄. Applying the arguments

quite similar to that of [55℄ we arrive at the formulae

�

(2)

�

(x;�i!) = (2�)

�3

h

lim

Æ!0

R

j�

m

j>Æ

h(�) [A(�i�;�i!)℄

�1

e

�ix�

d��
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�i�

m

X

j=1

R

�

1

n

N(�i�;�i!)e

�ix�

%

2

[�=�%�

m

(%; �; ';�i!)℄	

m

(%; �; ';�i!)

o

%=j!j�

j

d�

1

i

; (2.13)

where �

m

and 	

m

are de�ned by (1) and (1), respe
tively.

We need to go over to the integrals over S




j

in the last summand of (2).

To this end let us note that the exterior unit normal of S




j

is de�ned by the

equation

n(�) = (�1)

j

r

�

�

m

(�;�i!)

jr

�

�

m

(�;�i!)j

; � 2 S




j

; j = 1; : : : ;m;

sin
e due to (1), (1.50) and(1.56)

(�1)

j

[�=�%�

m

(�;�i!)℄

%=j!j�

j

> 0; j = 1; : : : ;m: (2.14)

Further,

d�

1

=

�

�=j�j � n(�)

%

2

�

%=j!j�

j

dS




j

= (�1)

j

�

�=�%�

m

(�;�i!)

%

2

jr�

m

(�;�i!)j

�

%=j!j�

j

dS




j

:

Therefore, (2) implies

�

(2)

�

(x;�i!) = (2�)

�3

h

V.P.

R

R

3

h(�) [A(�i�;�i!)℄

�1

e

�ix�

d��

�i�

m

X

j=1

(�1)

j

R

S




j

N(�i�;�i!)e

�ix�

jr�

m

(�;�i!)j	

m

(�;�i!)

dS




j

i

; (2.15)

where

V.P.

R

R

3

h(�) [A(�i�;�i!)℄

�1

e

�ix�

d� =

= lim

Æ!0

R

j�

m

(�;�i!)j>Æ

h(�) [A(�i�;�i!)℄

�1

e

�ix�

d�:

Existen
e and asymptoti
 behaviour of integrals similar to the above ones

are investigated in [21℄, [81℄, [82℄. Namely, in [81℄ there are analysed the

following fun
tions (n-dimensional version of the 
ase in question)

I

j

(x) =

R

S




j

f(�)e

ix�

jr�

m

(�)j

dS




j

; j = 1; : : : ;m; (2.16)

J(x) = V.P.

R

R

n

f(�)e

ix�

�

m

(�)

d�; n � 2; (2.17)

where

i) diam(supp f) <1; f;�

m

2 C

1

(R

n

);

ii) the equation �

m

(�) = 0; � 2 R

n

; de�nes (n � 1)-dimensional 
losed

nonsel�nterse
ting surfa
es S




j

; j = 1; : : : ;m; with the Gaussian 
urvature

di�erent from zero everywhere; moreover, r�

m

(�) 6= 0 for � 2 S




j

;

iii) for an arbitrary unit ve
tor � the system

�

�

m

(�) = 0;

r�

m

(�)jr�

m

(�)j

�1

= ��;

(2.18)
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has only a �nite number of solutions with respe
t to �.

Clearly, in the 
ase under 
onsideration the above 
onditions for the

fun
tions o

ured in (2) are ful�lled due to (2.3) and I

0

-II

0

. Moreover,

�

m

(�;�i!) = �

m

(�; i!) = �

m

(��; i!); and the 
orresponding system of

type (2.18) de�nes 2m points ��

j

2 S




j

j = 1; : : : ;m (the so{
alled station-

ary points); we emphasize also that the unit exterior normal ve
tor n(�

j

)

has the same dire
tion as �; while n(��

j

) is opposite dire
ted.

We assume the fun
tion �

m

(�) in (2.16) and (2.17) to possess the anal-

ogous symmetry property with respe
t to �.

Now let jxj be suÆ
iently large, � = x=jxj, and let ��

j

2 S




j

; j =

1; : : : ;m; be the stationary points 
orresponding to �, i.e., n(�

j

) = �;

n(��

j

) = �n(�

j

) = ��:

A

ording to the results in referen
es [21℄, [81℄, we have then the following

asymptoti
 formulae for the fun
tions I

j

and J :

I

j

(x) = [a

j

e

ix�

j

+ ea

j

e

�ix�

j

℄ jxj

�(n�1)=2

+O(jxj

�(n+1)=2

);

J(x) =

m

X

j=1

[b

j

e

ix�

j

+

e

b

j

e

�ix�

j

℄ jxj

�(n�1)=2

+O(jxj

�(n+1)=2

);

(2.19)

where

a

j

= a

j

(�

j

) = (2�)

(n�1)=2

1

[�(�

j

)℄

1=2

f(�

j

)

jr�

m

(�

j

)j

e

�i(n�1)�=4

;

ea

j

= ea

j

(��

j

) = (2�)

(n�1)=2

1

[�(��

j

)℄

1=2

f(��

j

)

jr�

m

(��

j

)j

e

i(n�1)�=4

;

b

j

= i�a

j

sgn(� � r�

m

(�

j

)) = i�(�1)

j

a

j

;

e

b

j

= i�ea

j

sgn(� � r�

m

(��

j

)) = �i�(�1)

j

ea

j

;

(2.20)

�(�) is the Gaussian 
urvature at the point � 2 S




j

:

The asymptoti
 formulae (2.19) 
an be di�erentiated any times with

respe
t to x:

It is easy to see that the symmetry properties of S




j

imply

�(�) = �(��); r�

m

(��) = �r�

m

(�) (2.21)

for any � 2 S




j

; j = 1; : : : ;m:

By virtue of (2.16), (2.17), and (2.19) we derive

J(x) + �

m

X

j=1

i�(�1)

j

I

j

(x) =

m

X

j=1

i�(�1)

j

[(1 + �)a

j

e

ix�

j

�

�(1� �)ea

j

e

�ix�

j

℄ jxj

�(n�1)=2

+O(jxj

�(n+1)=2

) (2.22)

with a

j

and ea

j

de�ned by (2.20) and an arbitrary �:
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Lemma 2.2. Entries of matri
es (2) belong to C

1

(R

3

) and for suÆ
iently

large jxj the asymptoti
 formulae

�

(2)

�

(x;�i!) =

m

X

j=1




(j)

�

(�

j

;�i!) e

�ix�

j

jxj

�1

+ O(jxj

�2

) (2.23)

hold, where the point �

j

2 S




j


orresponds to x (i.e., n(�

j

) = x=jxj) and




(j)

+

=


(j)

1

(�

j

;�i!) :=(�1)

j

1

2�[�(�

j

)℄

1=2

N(i�

j

;�i!)

jr�

m

(�

j

;�i!)j	

m

(�

j

;�i!)

;




(j)

�

=


(j)

2

(�

j

;�i!) :=(�1)

j

1

2�[�(�

j

)℄

1=2

N(�i�

j

;�i!)

jr�

m

(�

j

;�i!)j	

m

(�

j

;�i!)

;

(2.24)

moreover, (2:23) 
an be di�erentiated any times with respe
t to x.

Proof. The �rst part of the lemma is evident due to (2.3) and I

0

{II

0

. To

prove the asymptoti
 formulae (2.23), we �rst perform the 
hange of variable

� by �� in (2) and afterwards rewrite it as follows

�

(2)

�

(x;�i!) = (2�)

�3

[J(x)�

m

X

j=1

i�(�1)

j

I

j

(x)℄; (2.25)

where I

j

(x) and J(x) are given by (2.16) and (2.17), respe
tively, with

n = 3; moreover,

f(�) =

h(�)N(i�;�i!)

	

m

(�;�i!)

; (2.26)

h(�), �

m

(�;�i!), and 	

m

(�;�i!) are de�ned by (2.3), (1), and (1), respe
-

tively; here we have used the fa
t that h; �

m

, and 	

m

are even fun
tions

in �.

Now (2.23) follows from (2.25), (2), (2.21), (2.26), and (2.20). �

Thus, we have proved that there exist one sided limits of the matrix (2.2)

as Re� = � ! 0� :

Let us set

�!>0 : lim

�!0

�(x; � � i!)=�

(1)

(x;�i!)+�

(2)

+

(x;�i!)=: �(x; !; 1); (2.27)

�!<0 : lim

�!0

�(x; � � i!)=�

(1)

(x;�i!)+�

(2)

�

(x;�i!)=: �(x; !; 2); (2.28)

where �

(1)

; �

(2)

+

and �

(2)

�

are given by (2.4), (2.11) and (2.12), respe
tively.

Combining the two latter formulae we have

�(x; !; r) = F

�1

�!x

[(1� h(�))fA(�i�;�i!)g

�1

℄+

+(2�)

�3

V.P.

R

R

3

h(�)fA(�i�;�i!)g

�1

e

�ix�

d�+

+(�1)

r+1

i�

(2�)

3

m

X

j=1

(�1)

j

R

S




j

N(�i�;�i!)e

�ix�

jr�

m

(�;�i!)j	

m

(�;�i!)

dS




j

; r=1; 2: (2.29)

Now we formulate the main result of this se
tion.
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Theorem 2.3. The matrix{fun
tions �(x; !; r); r = 1; 2; de�ned by

(2), are fundamental matri
es of the operator A(D;�i!) and satisfy the

following 
onditions:

i) �(�; !; r) 2 C

1

(R

3

n f0g) and in a neighbourhood of the origin (jxj<1=2)

jD

�

x

�

kj

(x; !; r) �D

�

x

�

kj

(x)j � 
 '

(kj)

j�j

(x); 
 = 
onst > 0; k; j = 1; : : : ; 4;

where �

kj

(x); '

(kj)

j�j

; 
 = 
onst > 0 and � are the same as in Lemma 2:1;

ii) for suÆ
iently large jxj

�(x� y; !; r) =

m

X

j=1




(j)

r

(�

j

;�i!) e

(�1)

r+1

i(x�y)�

j

jxj

�1

+O(jxj

�2

); (2.30)

where 


(j)

r

are de�ned by (2:24), �

j

2 S




j


orresponds to the ve
tor x and the

range of the variable y is a bounded subset of R

3

; the equation (2:30) 
an be

di�erentiated any times with respe
t to x and y.

Proof. It follows immediately from Lemmata 2.1 and 2.2. �

Remark 2.4. Note that, if in (2.30) the ve
tor (x � y) is repla
ed by

�(x� y), then the point �

j

is to be 
hanged by ��

j

, simultaneously, sin
e

to the ve
tor �x there 
orresponds the point ��

j

2 S




j

(�x=jxj = n(��

j

)).

As a result the exponential fa
tor in (2.30) will not be 
hanged. �

Remark 2.5. The fundamental matrix of the adjoint operator A

�

(D; �),


learly, has the form

�

�

(x; �) = F

�1

�!x

[fA

�

(�i�; �)g

�1

℄ = F

�1

�!x

[fA

>

(i�; � )g

�1

℄ =

= F

�1

�!x

[fA

>

(�i�; �)g

�1

℄ = (2�)

�3

R

R

3

[A

>

(�i�; �)℄

�1

e

ix�

d� =

= �

>

(�x; �); � = � � i!; � 6= 0; (2.31)

where �(x; �) is given by (2.2).

Therefore, there exist limits similar to (2.27) and (2.28)

�

�

(x; !; r) = lim

�!0

�

�

(x; �)= lim

�!0

�

>

(�x; �)=�

>

(�x; !; r); r=1; 2; (2.32)

where (�1)

r+1

�! > 0 is assumed.

The entries of matrix (2.5) and their derivatives de
rease more rapidly

then any negative power of jxj as jxj ! +1 if 0 < j�j < "

0

(see Remark 1:2).

The asymptoti
 formulae for �

�

(x; !; r) follow from (2.32) and Theorem 2:3

�

�

(x; !; r) =

m

X

j=1

e


(j)

r

e

(�1)

r

ix�

j

jxj

�1

+O(jxj

�2

);

where jxj is suÆ
iently large, e


(j)

r

= [


(j)

r

(��

j

;�i!)℄

>

with 


(j)

r

de�ned by

(2.24), and �

j

2 S




j


orresponds to x.

From Lemmata 2:1, 2:2, and Theorem 2:3 together with the equations

(2.5), (2.32), and �(x) = �(x) = �

>

(x) = �(�x), �(tx) = t

�1

�(x), t > 0;

we infer that the matri
es �(x; �); �(x; !; r); �

�

(x; �), and �

�

(x; !; r) have
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the matrix �(x) as the dominant singular part in a neighbourhood of the

origin. �

Remark 2.6. Equation (2.30) implies the following representation

�(x� y; !; r) =

m

X

j=1

(j)

�

(x� y; !; r);

where for suÆ
iently large jxj

(j)

�

(x � y; !; r) = 


(j)

r

e

(�1)

r+1

i(x�y)�

j

jxj

�1

+O(jxj

�2

);

D

x

p

(j)

�

(x� y; !; r) + i(�1)

r

�

j

p

(j)

�

(x� y; !; r) = O(jxj

�2

);

j = 1; : : : ;m; p = 1; 2; 3; r = 1; 2;

�

j

2 S




j


orresponds to x and the range of y is again a bounded subset of

R

3

; here the matri
es 


(j)

r

are given by (2.24). �

Remark 2.7. If the system of equations (1.46) is in
onsistent in R

3

for

some ! > 0, then M(�;�i!) = detA(�i�;�i!) 6= 0 for arbitrary � 2 R

3

and ! 2 R; and

�(x;�i!) = F

�1

�!x

�

[A(�i�;�i!)℄

�1

�

2 C

1

(R

3

n f0g) (2.33)

is a fundamental matrix of the operator A(D;�i!) whose entries together

with all derivatives de
rease more rapidly than any negative power of jxj

as jxj ! +1: The main singular part of (2.33) in a neighbourhood of the

origin is again the matrix �(x). Therefore this 
ase is very similar to the

pseudo-os
illation one [57℄. �

3. Thermo-Radiation Conditions. Somigliana Type Integral

Representations

In this se
tion we formulate the generalized Sommerfeld-Kupradze type

radiation 
onditions in the thermoelasti
ity theory of anisotropi
 bodies and

derive Somigliana type integral representation formulae.

3.1. Let us introdu
e the 
lasses SK

m

r

(


�

) of ve
tor-fun
tions de�ned on

an unbounded domain of type 


�

(whi
h is the 
omplement to a 
ompa
t

region 


+

in R

3

).

A ve
tor-fun
tion U = (u

1

; u

2

; u

3

; u

4

)

>

belongs to the 
lass SK

m

r

(


�

);

r = 1; 2; if it is C

1

-smooth in 


�

, and for suÆ
iently large jxj the following

relations hold (no summation over the repeated index j in the last equation)

U(x) =

m

X

j=1

(j)

U (x);

(j)

U (x) = (

(j)

u

1

; � � � ;

(j)

u

4

)

>

= O(jxj

�1

);

D

p

(j)

U (x) + i(�1)

r

�

j

p

(j)

U (x) = O(jxj

�2

); p = 1; 2; 3; j = 1; : : : ;m; (3.1)

where �

j

2 S




j


orresponds to the ve
tor x.
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Clearly, this de�nition is essentially related to the operator A(D;�i!)

and its 
hara
teristi
 equation (1.45). The 
onditions (3.1) will be referred

to as generalized Sommerfeld-Kupradze type radiation 
onditions in the ther-

moelasti
ity theory of anisotropi
 bodies (
f. [45℄).

A four-dimensional ve
tor U = (u

1

; � � � ; u

4

)

>

; satisfying 
onditions (3.1),

will also be referred to as (m; r)�thermo-radiating ve
tor. We say that a

4� 4 matrix belongs to the 
lass SK

m

r

(


�

) if ea
h 
olumn of the matrix is

a (m; r)�thermo-radiating ve
tor.

Remark 2.6 implies that �(�; !; r) 2 SK

m

r

(R

3

n f0g):

In the isotropi
 
ase m = 1 and S




1

is de�ned by the equation %

2

= k

2

1

with k

2

1

= !

2

�

�1

(� is the Lam�e 
onstant and ! is the os
illation parame-

ter). Therefore the point �

1

2 S




1

, whi
h 
orresponds to the given dire
tion

(ve
tor) x, is given by �

1

= k

1

�, � = x=jxj, and 
onditions (3.1) are equiv-

alent to the well-known thermoelasti
 radiation 
onditions (see, e.g., [45℄,

Ch. III).

3.2. Let U = (u

1

; � � � ; u

4

)

>

be a regular ve
tor-fun
tion in 


�

; i.e.,

U 2 C

2

(


�

) \ C

1

(


�

):

In addition, let A(D; �)U 2 L

1

(


�

) and 
onditions (1.30) be satis�ed (in

the 
ase of the domain 


�

). If we assume that either 0 < jRe� j = j�j < "

0

or � > 0, and use the identity (1.22), by standard arguments we obtain the

following integral representation formulae (see, for example, [56℄, [16℄)

R




�

�(x�y; �)A(D

y

; �)U(y)dy �

R

S

�

[Q(D

y

; n(y); �)�

>

(x�y; �)℄

>

[U(y)℄

�

�

��(x� y; �)[B(D

y

; n(y))U(y)℄

�

	

dS

y

=

�

U(x); x 2 


�

;

0; x 2 


�

;

(3.2)

where boundary operators B and Q are given by (1.25) and (1.26), respe
-

tively, and the fundamental matrix �(x; �) is de�ned by (2.2); n(y) is the

outward unit normal ve
tor of S at the point y 2 S and S is a C

2

-smooth

surfa
e.

From the representation formula (3) it follows that any solution of equa-

tion (1.9) for � > 0, satisfying the 
ondition (1.29), a
tually, is a C

1

-regular

in 


�

ve
tor-fun
tion whi
h de
rease, together with all derivatives, more

rapidly than any negative power of jxj as jxj ! +1.

Due to Theorem 2.3 and equalities (2.27), (2.28) analogous representation

formulae 
an be written by means of the fundamental matri
es �(x; !; r) in

the 
ase of the domain 


+

: One needs only to repla
e A(D; �) and �(x; �)

in (3) by A(D;�i!) and �(x; !; r), respe
tively. Con
erning the domain




�

we will prove the following proposition.

Theorem 3.1. Let �


�

= S be a C

2

-smooth surfa
e and U be a reg-

ular (m; r)�thermo-radiating ve
tor in 


�

, i.e., U 2 C

2

(


�

) \ C

1

(


�

) \

SK

m

r

(


�

): Let, in addition, A(D;�i!)U have a 
ompa
t support and belong

to the spa
e L

1

(


�

). Then

U(x) =

R




�

�(x� y; !; r)A(D

y

;�i!)U(y) dy+



30

+

R

S

�

�(x� y; !; r)[B(D

y

; n(y))U(y)℄

�

�

�[Q(D

y

; n(y);�i!)�

>

(x� y; !; r)℄

>

[U(y)℄

�

	

dS

y

; x 2 


�

; (3.3)

here B, Q and n are the same as in (3).

Proof. Let R be a suÆ
iently large positive number and 


+

� B

R

:= fx 2

R

3

: jxj < Rg. We assume also that suppA(D;�i!)U � B

R

. Denote




�

R

= 


�

\ B

R

and �B

R

= �

R

. Then the ve
tor-fun
tion U is regular in




�

R

: Therefore, we 
an write the following integral representation (
f. (3))

U(x) =

R




�

R

�(x� y; !; r)A(D

y

;�i!)U(y) dy+

+

n

R

�

R

�

R

S

o

f[Q(D

y

; n(y);�i!)�

>

(x � y; !; r)℄

>

[U(y)℄�

��(x� y; !; r)[B(D

y

; n(y))U(y)℄g dS

y

; x 2 


�

R

; (3.4)

where n(y) is the exterior normal on the both surfa
es S and �

R

; 
learly,

n(y) = y=R for y 2 �

R

: Note that in the �rst integral the domain 


�

R


an

be repla
ed by 


�

; sin
e A(D

y

;�i!)U has a 
ompa
t support.

Our goal is to show that the integral over �

R

tends to zero as R! +1.

To this end, denote the right-hand side expression in (3.1) by T [U ℄. Then

by integrating of (3) from � to 2� with respe
t to R and deviding the result

by �; we get U(x) = T [U ℄(x) +X(�); where

X(�) =

1

�

2�

R

�

dR

R

�

R

f[Q(D

y

; �;�i!)�

>

(x � y; !; r)℄

>

[U(y)℄�

� �(x� y; !; r)[B(D

y

; �)U(y)℄g d�

R

; � = n(y) = y=R:

Next we prove that X(�)! 0 as � ! +1:

It 
an be done by applying the arguments similar to that of [80℄. In fa
t,

for de�niteness, let r = 1. Then due to the thermo-radiation 
onditions

(3.1)

B(D

y

; �)U(y) =

m

X

j=1

B(i�

j

; �)

(j)

U (y) +O(R

�2

);

where �

j

2 S




j


orresponds to the ve
tor �:

A

ording to Remarks 2.4, 2.6, and Theorem 2.3 analogous formulae

hold also for [Q(D

y

; �;�i!)�

>

(x � y; !; 1)℄

>

and �(x � y; !; 1) (note that

x is some �xed point in 


�

R

). The terms 
orresponding to O(R

�3

) in the

expression of X(�) de
ay as O(�

�1

), while all other summands have the

following stru
ture

v

st

(�) =

1

�

2�

R

�

dR

R

�

1

 (�) g

s

(R�)h

t

(R�)R

2

d�

1

;
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where  2 C

1

(�

1

); � 2 �

1

; g

s

and h

t

(s; t = 1; � � � ;m) are smooth fun
-

tions satisfying the following inequalities

jg

s

(R�)j <
R

�1

; j�=�Rg

s

(R�)� i�

s

(�)g

s

(R�)j < 
R

�2

;

jh

t

(R�)j <
R

�1

; j�=�Rh

t

(R�)� i�

t

(�)h

t

(R�)j < 
R

�2

;

�

j

(�) = (� � �

j

) > 0; 
 = 
onst > 0;

due to (3.1).

The last inequality is a 
onsequen
e of (2.14), sin
e

(� � �

j

) = (n(�

j

) � �

j

) = (�1)

j

�

r�

m

(�

j

;�i!)

jr�

m

(�

j

;�i!)j

� �

j

�

=

= (�1)

j

j�

j

j

jr�

m

(�

j

;�i!)j

�

�

�j�j

�

m

(�

j

;�i!)

�

�=�

j

> 0:

Now we pro
eed as follows

v

st

(�) =

1

i�

2�

R

�

dR

R

�

1

 (�)

�

s

(�) + �

t

(�)

[i�

s

(�) g

s

(R�)h

t

(R�)+

+g

s

(R�) i�

t

(�)h

t

(R�)℄R

2

d�

1

=

=

1

i�

R

�

1

d�

1

2�

R

�

�

 (�)

�

s

(�) + �

t

(�)

�

�R

[g

s

(R�)h

t

(R�)℄ +O(R

�3

)

�

R

2

dR =

=

1

i�

R

�

1

 (�)

�

s

(�) + �

t

(�)

f(2�)

2

g

s

(2��)h

t

(2��)� �

2

g

s

(��)h

t

(��)�

�

2�

R

�

g

s

(R�)h

t

(R�) 2RdRg d�

1

+O(�

�1

) = O(�

�1

):

Thus, X(�)! 0 as � ! +1 whi
h 
ompletes the proof. �

Remark 3.2. From the above proof it follows that, if U satis�es the

assumptions of Theorem 3:1 and R is a suÆ
iently large positive number

su
h that supp A(D;�i!)U � B

R

; then

R

�

R

f[Q(D

y

; n(y);�i!)�

>

(x� y; !; r)℄

>

[U(y)℄�

��(x� y; !; r)[B(D

y

; n(y))U(y)℄g d�

R

= 0

for an arbitrary x 2 B

R

\ 


�

: �

Corollary 3.3. Let U be the same as in Theorem 3:1. Then the deriva-

tives D

�

U are again (m; r)�thermo-radiating ve
tors for an arbitrary multi-

index � and the asymptoti
 representation of D

�

U at in�nity 
an be obtained

by the dire
t di�erentiation from the 
orresponding asymptoti
 formula of

U .

Corollary 3.4. Let A(D;�i!)U(x) = 0 in R

3

and U 2 SK

m

r

(R

3

): Then

U = 0 in R

3

:
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Corollary 3.5. Let F = (F

1

; : : : ; F

4

)

>

2 C

1

(R

3

) and diam supp F <

+1: Then the equation A(D;�i!)U(x) = F (x), x 2 R

3

is uniquely solvable

in the 
lass C

2

(R

3

) \ SK

m

r

(R

3

) and the solution is representable by the

following 
onvolution type integral

U(x) =

R

R

3

�(x� y; !; r)F (y) dy; x 2 R

3

:
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CHAPTER II

FORMULATION OF BOUNDARY VALUE

AND INTERFACE PROBLEMS

Here we present the 
lassi
al and weak formulations of the boundary

value and interfa
e problems of the thermoelasti
ity theory whi
h will be

investigated in the subsequent 
hapters.

4. Fun
tional Spa
es

In this se
tion we introdu
e some fun
tional spa
es whi
h will be needed

in the formulation of boundary value and interfa
e problems. We re
all here

some properties of these spa
es and for details refer to, for example, [78℄,

[79℄, [49℄, [47℄, [1℄.

Let 


+

, 


�

, and S be the same as in Subse
tion 1.5.

By C

k

(


�

); C

k

(


�

); C

k

(S); and C

k;�

(


�

); C

k;�

(


�

), C

k;�

(S), with

integer k � 0 and 0 < � � 1, we denote the usual k-smooth and H�older

(k; �)-smooth fun
tion spa
es. Note that here we assume S to be a C

k;�

-

smooth manifold. Further, C

1


omp

(


�

) stands for the 
lass of C

1

-regular

fun
tions with 
ompa
t supports in 


�

, C(


�

) and C(S) denote the spa
es

of 
ontinuous fun
tions in 


�

and S, respe
tively, and C

�

:= C

0;�

for

0 < � < 1.

By W

1

p

(


�

); W

1

p;lo


(


�

); and W

1

p;
omp

(


�

) we denote the usual Sobolev

spa
es, i.e., spa
es of measurable, in general, 
omplex-valued fun
tions that

together with their �rst order generalized derivatives are p-integrable, lo-


ally p-integrable, and 
ompa
tly supported p-integrable fun
tions, respe
-

tively, in 
orresponding domains. Further, L

p

(


�

), L

p;lo


(


�

); L

p;
omp

(


�

),

and L

p

(S) denote the usual (Lebesgue) measurable fun
tion spa
es.

Let s 2 R, 1 < p < 1, 1 � q � 1, and S 2 C

1

. Then B

s

p;q

(


�

);

B

s

p;q;lo


(


�

); B

s

p;q

(S), and H

s

p

(


�

); H

s

p;lo


(


�

); H

s

p

(S), stand for the Besov

and the Bessel-potential spa
es, respe
tively.

Next, let S

1

be a submanifold of S with a C

1

-smooth boundary �S

1

.

We introdu
e the following spa
es on S

1

:

B

s

p;q

(S

1

) = ff j

S

1

: f 2 B

s

p;q

(S)g; H

s

p

(S

1

) = ff j

S

1

: f 2 H

s

p

(S)g;

e

B

s

p;q

(S

1

) = ff 2 B

s

p;q

(S) : supp f � S

1

g;

e

H

s

p

(S

1

) = ff 2 H

s

p

(S) : supp f � S

1

g;

where f j

S

1

denotes the restri
tion of f to S

1

, and s, p, and q are as above.

The appearan
e of the Besov and Bessel-potential spa
es with p 6= 2 and

q 6= 2 is not only of mathemati
al interest. The 
ase is that for parti
ular

mixed and 
ra
k type boundary value and interfa
e problems with spe
i�


geometry studied in mathemati
al physi
s and me
hani
s it is well known

that, in general, solutions or their derivatives have singularities at the 
ol-

lision 
urves of 
hanging boundary 
onditions or edge points of 
ra
ks and
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they do not belong to the 
lass of C

1

-regular fun
tions in 
losed domains

(see,e.g.,[74℄, [84℄).

Be
ause of this fa
t and in order to allow a wide 
lass of boundary data,

on one side, and to establish optimal regularity properties of the solutions,

on the other hand, we state the basi
 and mixed interfa
e (transmission)

problems in Sobolev spa
es with p > 1. If we invoke that u 2 W

1

p

(


+

)

[W

1

p;lo


(


�

)℄ implies uj

�


�
2 B

1�1=p

p;p

(�


�

), then the need of Besov spa
es

in formulation of our BVPs and interfa
e problems be
omes transparent.

Clearly, here uj

S

is de�ned in the tra
e sense.

We re
all that H

s

2

= W

s

2

= B

s

2;2

, W

t

p

= B

t

p;p

, and H

k

p

= W

k

p

, for any

s 2 R; for any positive and non-integer t, and for any non-negative integer

k.

It is evident that �rst order derivatives of fun
tions from W

1

p

(


+

) and

W

1

p;lo


(


�

) belong to L

p

(


+

) and L

p;lo


(


�

), respe
tively, and, in general,

they have no tra
es on S. However, for ve
tor-fun
tions U 2 W

1

p

(


+

)

[W

1

p;lo


(


�

)℄, satisfying, in addition, A(D;{)U 2 L

p

(


+

) [L

p;lo


(


�

)℄ the

fun
tionals [P (D;n)U ℄

�

S

2 [B

�1=p

p;p

(S)℄

3

and [�(D;n)U

4

℄

�

S

2 B

�1=p

p;p

(S), i.e.,

the fun
tional [B(D;n)U ℄

�

S

2 [B

�1=p

p;p

(S)℄

4

(see (1.25)), 
an be de�ned 
or-

re
tly by means of the Green formulae (1.21).

To this end, let us set

h [B(D;n)U ℄

+

S

; [V ℄

+

S

i

S

:=

R




+

E(U; V ) dx+

R




+

A(D;{)U � V dx (4.1)

h

h[B(D;n)U ℄

�

S

; [V ℄

�

S

i

S

:= �

R




�

E(U; V )dx�

R




�

A(D;{)U � V dx

i

; (4.2)

where E(U; V ) is given by (1.27), and V 2 W

1

p

0

(


+

) [V 2 W

1

p

0

;
omp

(


�

) ℄,

1=p+ 1=p

0

= 1. Clearly, by the tra
e theorem [V ℄

�

S

2 B

1�1=p

0

p

0

;p

0

(S).

It is easy to see that the right-hand side expression in (4.1) [(4.2)℄ gives

the same value for arbitrary ve
tor-fun
tions V 2 W

1

p

0

(


+

) [V 2

W

1

p

0

;
omp

(


�

)℄ having the same tra
es on S (provided U is �xed). This

in turn shows, that the fun
tionals de�ned by the above equations are, a
-

tually, supported on S. We also note that, if U 2 C

1

(


+

) [U 2 C

1

(


�

) ℄

and A(D;{)U 2 L

1

(


+

) [L

1;lo


(


�

) ℄, then the above introdu
ed fun
tion-

als 
orrespond to the usual boundary values [B(D;n)U ℄

+

and [B(D;n)U ℄

�

,

respe
tively. Therefore, we 
an 
onsider h � ; � i

S

in (4.1) and (4.2) as

dualities between the spa
es B

�1=p

p;p

(S) and B

1=p

p

0

;p

0

(S). Note that

h f ; g i

S

=

R

S

h f ; g i dS =

R

S

4

P

j=1

f

j

g

j

dS

for the smooth ve
tor fun
tions f = (f

1

; � � � ; f

4

)

>

and g = (g

1

; � � � ; g

4

)

>

,

i.e., the above duality extends the usual \real" L

2

-s
alar produ
t.

Throuhgout this monograph all boundary and interfa
e 
onditions for

the displa
ement ve
tor and temperature always are understood in the tra
e
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sense, while for the stress ve
tor and heat 
ux they are to be 
on
idered in

the above duality sense, i.e., in the sense of 
ontinuous linear fun
tionals.

Remark 4.1. Let us note the following two simple things. Firstly, the


ondition [B(D;n)U ℄

+

= F on S, where U 2 [W

1

p

(


+

)℄

4

, A(D;{)U 2

[L

p

(


+

)℄

4

, and F 2 [B

�1=p

p;p

(S)℄

4

, means in the above fun
tional sense that

R




+

E(U; V ) dx +

R




+

A(D;{)U � V dx = hF ; [V ℄

+

S

i

S

(4.3)

for arbitrary V 2 [W

1

p

0

(


+

)℄

4

.

Se
ondly, let U 2 [W

1

p

(


+

)℄

4

, A(D;{)U 2 [L

p

(


+

)℄

4

, F 2 [B

�1=p

p;p

(S

1

)℄

4

,

where S

1

is a submanifold of the surfa
e S as des
ribed above. Then the


ondition [B(D;n)U ℄

+

= F on S

1

, is understood as follows

R




+

E(U; V ) dx+

R




+

A(D;{)U � V dx = hF ; [V ℄

+

S

i

S

=: hF ; [V ℄

+

S

1

i

S

1

(4.4)

for arbitrary V 2 [W

1

p

0

(


+

)℄

4

whose tra
e [V ℄

+

S

is supported on S

1

, i.e.,

[V ℄

+

SnS

1

= 0. Evidently, [V ℄

+

S

1

2 [

e

B

1=p

p

0

;p

0

(S

1

)℄

4

. Here h � ; � i

S

1

is the duality

between the spa
es [B

�1=p

p;p

(S

1

)℄

4

and [

e

B

1=p

p

0

;p

0

(S

1

)℄

4

. Boundary 
onditions for

the exterior domain 


�

are understood quite analogously. We have only to


hange the sign \+" by the sign \�" in front of the volume integrals in the

left-hand sides of (4.3) and (4.4), and the supers
ript \+" is to be repla
ed

by the supers
ript \�" in the right-hand sides. Moreover, a test fun
tion V

is to be taken from the same type of Sobolev spa
es as above but now with

a 
ompa
t support in 


�

. �

5. Formulation of the Basi
 and Mixed BVPs

In this se
tion and in what follows boundary value and interfa
e prob-

lems for the pseudo-os
illation and steady state os
illation equations will be

marked by the subs
ripts � and !, respe
tively (unless otherwise stated).

We note that in the pseudo-os
illation problems � = �� i! with � > 0 and

! 2 R.

We start by the formulation of the so-
alled basi
 and mixed boundary

value problems for the bounded domain 


+

and its unbounded 
omplement




�

. As above, we assume that S = �


�

is a C

2

-smooth manifold. More-

over, U = (u; u

4

)

>

is again a four-dimensional ve
tor-fun
tion whose �rst

three 
omponents 
orrespond to the displa
ement ve
tor, while the fourth


omponent des
ribes the temperature �eld.

We 
onsider the following BVPs.

Find a solution U to the system of di�erential equations (1.9) [(1.10)℄ in




�

satisfying one of the boundary 
onditions on S:

Problem (P

1

)

�

�

[(P

1

)

�

!

℄:

[u℄

�

=

e

f;

e

f = (f

1

; f

2

; f

3

)

>

; (5.1)

[u

4

℄

�

= f

4

; (5.2)

i.e., the di
pla
ement ve
tor and the temperature are pres
ribed on S.



36

Problem (P

2

)

�

�

[(P

2

)

�

!

℄:

[u℄

�

=

e

f; (5.3)

[�(D;n)u

4

℄

�

= F

4

; (5.4)

i.e., the di
pla
ement ve
tor and the heat 
ux through the surfa
e S are

given on S. Here �(D;n) = �

n

is given by (1.24). The 
ase [�

n

u

4

℄

�

= 0

des
ribes a thermal insulation over the surfa
e bounding the body.

Problem (P

3

)

�

�

[(P

3

)

�

!

℄:

[P (D;n)U ℄

�

=

e

F ;

e

F = (F

1

; F

2

; F

3

)

>

; (5.5)

[u

4

℄

�

= f

4

; (5.6)

i.e., the ve
tor of thermal stresses and the temperature are given on S. Here

P (D;n) is de�ned by (1.13).

Problem (P

4

)

�

�

[(P

4

)

�

!

℄:

[P (D;n)U ℄

�

=

e

F ; (5.7)

[�(D;n)u

4

℄

�

= F

4

; (5.8)

i.e., the ve
tor of thermal stresses and the heat 
ux are pres
ribed on S.

Problem (P

mix

)

�

�

[(P

mix

)

�

!

℄:

[u℄

�

=

e

f

(1)

and [u

4

℄

�

= f

(1)

4

on S

1

;

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

; (5.9)

[P (D;n)U ℄

�

=

e

F

(2)

and [�(D;n)u

4

℄

�

= F

(2)

4

on S

2

;

e

F

(2)

= (F

(2)

1

; F

(2)

2

; F

(2)

3

)

>

;

(5.10)

where S

1

[ S

2

= S; S

1

\ S

2

= ?; S

j

6= ?, j = 1; 2; we assume here that the


ommon boundary of �S

1

= �S

2

is also a smooth 
urve.

The fun
tions f

k

; F

k

; f

(1)

k

and F

(2)

k

are given fun
tions and in the sequel

they will be referred as boundary data of the BVPs.

Let us introdu
e the matrix boundary operators

B

(1)

(D;n) :=I

4

=[Æ

kj

℄

4�4

; B

(2)

(D;n) :=

�

I

3

[0℄

3�1

[0℄

1�3

�(D;n)

�

4�4

;

B

(3)

(D;n) :=

�

[T (D;n)℄

3�3

[��

kj

n

j

℄

3�1

[0℄

1�3

1

�

4�4

; B

(4)

(D;n) :=B(D;n);

(5.11)

where T (D;n) and B(D;n) are given by formulae (1.12) and (1.25), re-

spe
tively. The boundary 
onditions 
orresponding to the above problems

(P

k

)

�

�

[(P

k

)

�

!

℄ 
an be then written as follows

[B

(k)

(D;n)U ℄

�

= g; k = 1; 2; 3; 4; (5.12)

where the four-dimensional ve
tor g is 
onstru
ted by the boundary data of

the 
orresponding problem.

By a solution of the interior BVPs (P

k

)

+

�

and (P

k

)

+

!

we understand a

ve
tor U from the spa
e either C

1

(


+

) \ C

2

(


+

) or W

1

p

(


+

) with p > 1.
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The mixed BVPs (P

mix

)

+

�

and (P

mix

)

+

!

will be 
onsidered only in the

spa
e W

1

p

(


+

) sin
e, in general, they have no solutions in the spa
e of

smooth fun
tions C

1

(


+

).

Clearly, in the 
ase of the Sobolev spa
es W

1

p

(


+

) the di�erential equa-

tions (1.9) and (1.10) are to be 
onsidered in the distributional (weak) sense,

while the boundary 
onditions are to be understood in the fun
tional-tra
e

sense des
ribed in the previous se
tion.

Moreover, in the exterior BVPs for the domain 


�

we provide that a so-

lution to the pseudo-os
illation equations (1.9) has to satisfy the 
onditions

(1.29) at in�nity (i.e., (1.30)), while a solution to the steady state os
il-

lation equations (1.10) has to meet the generalized Sommerfeld-Kupradze

type (m; r)�thermo-radiation 
onditions (3.1). It is also evident that in

the exterior problems for the homogeneous pseudo-os
illation equations we

may assume U 2 W

1

p

(


�

) (due to the required asymptoti
 behaviour at

in�nity), while in the exterior problems for the homogeneous steady state

os
illation equations we have to look for solution in the spa
e W

1

p;lo


(


�

).

We remark that every solution to the homogeneous ellipti
 equations

with 
onstant 
oeÆ
ients (1.9) and (1.10) is C

1

-regular in 


+

and 


�

.

Therefore, we have to 
ontrol the smoothness of the solutions only near the

boundary S.

Con
erning the boundary data in the above formulated problems we note

that the pre
ised fun
tional spa
es for them will be given below when we

start the systemati
 study of the existen
e of solutions to the nonhomoge-

neous BVPs (see Chapter V).

However, we mention here only some ne
essary (
ompatibility) 
ondi-

tions. Namely, when we look for a solution U 2 C

1

(


�

), then the bound-

ary fun
tions f

k

and F

k

(k = 1; � � � ; 4) have to belong to some subspa
es

of C

1

(S) and C

0

(S), respe
tively, while the following natural 
onditions

f

k

2 B

1�1=p

p;p

(S) and F

k

2 B

�1=p

p;p

(S) must be satis�ed when we seek a so-

lution U in the spa
e W

1

p

(


�

) [W

1

p;lo


(


�

)℄. Analogously, in the mixed

BVPs we have to require the natural restri
tions f

(1)

k

2 B

1�1=p

p;p

(S

1

) and

F

(2)

k

2 B

�1=p

p;p

(S

2

).

We note here that in the elasti
ity theory of isotropi
 bodies the basi


BVPs in the 
lassi
al setting by potential methods have been exaustively

investigated in [45℄, while the mixed BVPs have been studied in [50℄, [13℄,

[75℄, [76℄ (L

2

-setting) (see also referen
es therein). The same problems of

the elasti
ity theory of anisotropi
 bodies are 
onsidered in [56℄, [8℄, [59℄

(
lassi
al and L

p

-setting).

6. Formulation of Cra
k Type Problems

This type of problems appear when the elasti
 body under 
onsideration

has interior 
ra
ks of the form of two-dimensional open manifolds. We


onsider the 
ase when these 
ra
k surfa
es are disjoint and do not hit the

boundary of the body.
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We deal with the following model problems.

Let S

1

be an open, two-dimensional, C

1

-regular, two-sided, 
onne
ted

manifold with C

1

-regular boundary �S

1

. Moreover, we assume S

1

to be a

subset of some 
losed C

1

-regular surfa
e S surrounding a bounded domain,

say 


+

. Further, let R

3

S

1

= R

3

n S

1

, S

1

= S

1

[ �S

1

, and as usual, 


�

=

R

3

n 


+

. We 
hoose that dire
tion of the unit normal ve
tor on S

1

whi
h


orresponds to the outward normal ve
tor on S (with respe
t to 


+

). Due

to this 
hoi
e, the symbols [ � ℄

�

denote again limits on S

1

from 


�

either

in the usual 
lassi
al-tra
e sense or in the fun
tional-tra
e sense des
ribed

in Se
tion 5.

Let the whole unbounded domain R

3

S

1

be �lled up by an anisotropi


elasti
 material with thermoelasti
 
hara
teristi
s introdu
ed in Se
tion 1.

The 
ra
k type problems in the thermoelasti
ity theory are formulated

as follows (
f. [16℄, [38℄).

Find a solution U = (u; u

4

)

>

2 W

1

p;lo


(R

3

S

1

), p > 1, to the system of

steady state os
illation equation (1.10) in R

3

S

1

satisfying the generalized

Sommerfeld-Kupradze type (m; r)�thermo-radiation 
onditions at in�nity

(3.1) and one of the following boundary 
onditions on S

1

:

Problem (CR:D)

!

:

(

[u℄

+

=

e

f

(+)

;

[u

4

℄

+

= f

(+)

4

;

and

(

[u℄

�

=

e

f

(�)

;

[u

4

℄

�

= f

(�)

4

;

(6.1)

where

e

f

�

= (f

�

1

; f

�

2

; f

�

3

)

>

, f

�

= (f

�

1

; � � � ; f

�

4

)

>

;

Problem (CR:N )

!

:

(

[P (D;n)U ℄

+

=

e

F

(+)

;

[�(D;n)u

4

℄

+

= F

(+)

4

;

and

(

[P (D;n)U ℄

�

=

e

F

(�)

;

[�(D;n)u

4

℄

�

= F

(�)

4

;

(6.2)

where

e

F

�

= (F

�

1

; F

�

2

; F

�

3

)

>

, F

�

= (F

�

1

; � � � ; F

�

4

)

>

.

The boundary data f

�

k

and F

�

1

belong again to the natural spa
es

f

�

k

2 B

1�1=p

p;p

(S

1

); F

�

k

2 B

�1=p

p;p

(S

1

); k = 1; � � � ; 4: (6.3)

Moreover, we assume

f

+

k

� f

�

k

2

e

B

1�1=p

p;p

(S

1

); F

+

k

� F

�

k

2

e

B

�1=p

p;p

(S

1

); k = 1; � � � ; 4; (6.4)

whi
h is stipulated by the fa
t that an arbitrary solution U to the equation

(1.10) is C

1

-regular in R

3

S

1

and, obviously,

[U ℄

+

� [U ℄

�

= 0 and [B(D;n)U ℄

+

� [B(D;n)U ℄

�

= 0; on S n S

1

: (6.5)

The formulation of 
ra
k type BVPs for the pseudo-os
illation equations

are similar to the above ones.

In this 
ase we look for a solution U = (u; u

4

)

>

2W

1

p

(R

3

S

1

), p > 1, to the

system of equations (1.9) in R

3

S

1

satisfying the de
ay 
onditions (1.30) at

in�nity, and either the boundary 
onditions (6.1) (in Problem (CR:D)

�

) or
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the boundary 
onditions (6.2) (in Problem (CR:N )

�

) on S

1

. The boundary

data f

�

k

and F

�

1

are supposed again to meet embeddings (6.3) and (6.4).

If one 
onsiders the 
ra
k type problems for the domains 


�

with the

interior 
ut S

1

, then to the above boundary 
onditions (6.1) and (6.2) on

S

1

, 
learly, one has to add one of the basi
 boundary 
onditions on S 
or-

responding to the BVPs (P

k

)

�

�

[(P

k

)

�

!

℄. As it be
omes transparent later

on, these type of BVPs 
an be investigated by slight and evident modi�
a-

tions of our analysis developed in the next 
hapters. Therefore, we 
on�ne

ourselves to deal with only the above formulated model problems.

We remark that analogous problems of elastostati
s of isotropi
 and

anisotropi
 bodies have been investigated in [13℄, [17℄, [18℄ (see also ref-

eren
es therein). The above formulated 
ra
k problems for the pseudo-

os
illation equations of the thermoelasti
ity theory in the general anisotropi



ase have been treated in [16℄.

7. Basi
 and Mixed Interfa
e Problems

In this se
tion we formulate the basi
 and mixed interfa
e problems of

the thermoelasti
ity theory for pie
ewise homogeneous anisotropi
 bodies.

In the s
ienti�
 literature the mixed interfa
e problems are 
alled also as

interfa
e 
ra
k problems.

The most general 
ase of the stru
ture of a pie
ewise homogeneous elas-

ti
 body under 
onsideration 
an be mathemati
aly des
ribed as follows. In

three-dimensional Eu
lidean spa
e R

3

we have some 
losed, smooth, 
on-

ne
ted, nonsel�nterse
ting surfa
es

e

S

1

;

e

S

2

; : : : ;

e

S

n

(

e

S

j

\

e

S

k

= ?; j 6= k):

By these surfa
es the whole spa
e R

3

is devided into several 
onne
ted do-

mains 


1

; : : : ;


l

. Ea
h domain is supposed to be �lled up by an anisotropi


material with 
orresponding, in general, di�erent thermoelasti
 
oeÆ
ients.

Common boundaries of the two distin
t materials are 
alled interfa
es

or 
onta
t surfa
es of the pie
ewise homogeneous elasti
 body. If some do-

mains represent empty in
lusions, then 
orresponding to them surrounding

surfa
es are 
alled boundary surfa
es of the 
omposed elasti
 body in ques-

tion. Su
h type of pie
ewise homogeneous stru
tures en
ounter in many

physi
al, me
hani
al and engineering appli
ations. Therefore, besides the

theoreti
al importan
e of the transmission problems we intend to study, this

interest is also motivated by their fundamental appli
ations to many areas

of s
ien
e and te
hnology.

7.1. For illustration of the method suggested we 
onsider the following

model problems. We assume that the pie
ewise homogeneous 
omposed

anisotropi
 body 
onsists of two elasti
 
omponents o

upying bounded

domain 


1

= 


+

and its unbounded 
omplement 


2

= 


�

= R

3

n


+

;

�


�

= S; 


�

= 


�

[ S; � = 1; 2: Thus, the whole spa
e R

3


an be 
onsid-

ered as a pie
ewise homogeneous anisotropi
 body with the single 
onta
t

(interfa
e) surfa
e S.
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Let a smooth, 
onne
ted, nonsel�nterse
ting 
urve l � S devide the


onta
t surfa
e S into two open parts S

1

and S

2

: S = S

1

[ S

2

[ l, S =

S

1

\ S

2

= ?, S

j

= S

j

[ l; j = 1; 2.

We treat the two groups of interfa
e 
onditions:

I. Basi
 interfa
e problems. On the whole 
onta
t surfa
e S there are

given

a) jumps of the displa
ement ve
tor, the temperature, the ve
tor of ther-

mal stresses, and the heat 
ux (Problem (C)) or

b) jumps of the temperature, the heat 
ux, and the normal 
omponents

of the displa
ement and the stress ve
tors; in addition to these 
onditions,

the limits of either the tangent 
omponents of the stress ve
tors (Problem

(G)) or the tangent 
omponents of the displa
ement ve
tors (Problem (H))

are given from both sides of the interfa
e (
f. [45℄, [29℄, [32℄, [34℄).

II. Mixed interfa
e problems. On the submanifold S

1

the 
onditions

of Problem (C) are pres
ribed, while on S

2

there are given:

a) the 
onditions of Problem (G) (Problem (C � G)) or

b) the 
onditions of Problem (H) (Problem (C �H)) or


) the displa
ement ve
tor and the temperature (on the both sides of S

2

)

(Problem (C � DD)) or

d) the thermal stresses and the heat 
ux (on the both sides of S

2

) (Prob-

lem (C �NN )) or

e) the displa
ement [stress℄ ve
tor (on the both sides of S

2

) and the

jumps of the temperature and the heat 
ux (Problem (C �DC) [Problem

(C �NC)℄) (
f. [58℄, [33℄, [35℄, [41℄, [40℄).

The analogous basi
 interfa
e problems in the 
lassi
al elasti
ity and

thermoelasti
ity of isotropi
 bodies have been studied by the potential and

variational methods in [45℄, [32℄, [67℄, [84℄ (see also [75℄, [61℄, [62℄). In

anisotropi
 elasti
ity the basi
 interfa
e problems have been 
onsidered in

[34℄, [41℄, [22℄, while the mixed interfa
e problems have been investigated in

[35℄, [58℄, [67℄, [41℄, [9℄.

7.2. Before we start the mathemati
al formulation of the above interfa
e

problems let us introdu
e some notations.

We assume that the domain 


�

(� = 1; 2) is �lled up by elasti
 material

whose thermoelasti
 
onstants are 


(�)

kjpq

, �

(�)

pq

, �

(�)

pq

, 


(�)

0

, with the same

properties as in Se
tion 1. The displa
ement ve
tor and the temperature in




�

are denoted by u

(�)

and u

(�)

4

, respe
tively. All operators and thermo-

me
hani
al 
hara
teristi
s 
orresponding to the elasti
 material o

upying

the domain 


�

we mark with the supers
ript �. For example, the basi


equations of pseudo-os
illations and steady state os
illations now read as

(see (1.7){refn1.12)

A

(�)

(D; �)U

(�)

(x) = 0 in 


�

; (7.1)

A

(�)

(D;�i!)U

(�)

(x) = 0 in 


�

: (7.2)



41

The symbols T

(�)

(D;n), P

(�)

(D;n), and �

(�)

(D;n) stand now for the 
or-

responding 
lassi
al stress operator, thermo-stress operator, and heat 
ux

operator, respe
tively (see (1.11), (1.13), (1.24)).

First we formulate the basi
 interfa
e problems for the steady state os-


illation equations of thermoelasti
ity.

Find ve
tor fun
tions U

(�)

(� = 1; 2) that solve the equations (7.2) in




�

and that satisfy the following interfa
e (transmission) 
onditions on S:

Problem (C)

!

:

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f; [u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; (7.3)

[P

(1)

(D;n)U

(1)

℄

+

� [P

(2)

(D;n)U

(2)

℄

�

=

e

F ;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

;

)

(7.4)

where f = (

e

f; f

4

)

>

,

e

f = (f

1

; f

2

; f

3

)

>

, F = (

e

F ; F

4

)

>

,

e

F = (F

1

; F

2

; F

3

)

>

.

Problem (G)

!

:

[P

(1)

(D;n)U

(1)

� l℄

+

=

e

F

(+)

l

; [P

(1)

(D;n)U

(1)

�m℄

+

=

e

F

(+)

m

; (7.5)

[P

(2)

(D;n)U

(2)

� l℄

�

=

e

F

(�)

l

; [P

(2)

(D;n)U

(2)

�m℄

�

=

e

F

(�)

m

; (7.6)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

n

; [P

(1)

(D;n)U

(1)

� n℄

+

�

�[P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

n

; (7.7)

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; [�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

: (7.8)

Problem (H)

!

: 
onditions (7.7), (7.8), and

[u

(1)

� l℄

+

=

e

f

(+)

l

; [u

(1)

�m℄

+

=

e

f

(+)

m

; (7.9)

[u

(2)

� l℄

�

=

e

f

(�)

l

; [u

(2)

�m℄

�

=

e

f

(�)

m

: (7.10)

Here and in what follows we denote by n(x) again the outward (to 


+

) unit

normal ve
tor at the point x 2 S, and by l(x) and m(x) orthogonal unit

ve
tors in the tangent plane. The orthogonal lo
al 
o-ordinate system n, l,

and m at x 2 S is orientated as follows: l�m = n; where � � � denotes the

ve
tor produ
t of two ve
tors.

The 
onditions (7.5){(7.6) and (7.9){(7.10), in fa
t, represent limits on S

of the tangent 
omponents of the thermo-stress ve
tor and the displa
ement

ve
tor, respe
tively, while the se
ond equation in (7.4) represents the jump

of the heat 
ux on S.

The 
onditions (7.3) and (7.4) 
an be written then as follows:

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S; (7.11)

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S; (7.12)

where B

(�)

(D;n) is de�ned by (1.25).

Next, we re
all that S

1

and S

2

are the two disjoint submanifolds of S

su
h that S

1

[ S

2

= S, and formulate the mixed interfa
e problems.
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Find ve
tor fun
tions U

(�)

(� = 1; 2) that solve the equations (7.2) in




�

and that satisfy one of the following mixed interfa
e 
onditions on S:

Problem (C � DD)

!

:

[U

(1)

℄

+

� [U

(2)

℄

�

= f

(1)

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

(1)

�

on S

1

; (7.13)

[U

(1)

℄

+

= '

(+)

; [U

(2)

℄

�

= '

(�)

on S

2

; (7.14)

where

f

(1)

= (

e

f

(1)

; f

(1)

4

)

>

;

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

; F

(1)

= (

e

F

(1)

; F

(1)

4

)

>

;

e

F

(1)

=(F

(1)

1

; F

(1)

2

; F

(1)

3

)

>

; '

(�)

=(e'

(�)

; '

(�)

4

)

>

; e'

(�)

=('

(�)

1

; '

(�)

2

'

(�)

3

)

>

:

Problem (C �NN )

!

: 
onditions (7.13) on S

1

and

[B

(1)

(D;n)U

(1)

℄

+

= �

(+)

; [B

(2)

(D;n)U

(2)

℄

�

= �

(�)

on S

2

; (7.15)

�

(�)

= (

e

�

(�)

;�

(�)

4

)

>

;

e

�

(�)

= (�

(�)

1

;�

(�)

2

;�

(�)

3

)

>

:

Problem (C � DC)

!

: 
ondition (7.8) on S and

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f

(1)

; [P

(1)

(D;n)U

(1)

℄

+

�

�[P

(2)

(D;n)U

(2)

℄

�

=

e

F

(1)

on S

1

; (7.16)

[u

(1)

℄

+

= e'

(+)

; [u

(2)

℄

�

= e'

(�)

on S

2

: (7.17)

Problem (C �NC)

!

: 
onditions (7.8) on S, (7.16) on S

1

, and

[P

(1)

(D;n)U

(1)

℄

+

=

e

�

(+)

; [P

(2)

(D;n)U

(2)

℄

�

=

e

�

(�)

on S

2

: (7.18)

Problem (C � G)

!

: 
onditions (7.8) on S, (7.16) on S

1

, and

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

(2)

n

[P

(1)

(D;n)U

(1)

� n℄

+

� [P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

(2)

n

)

on S

2

; (7.19)

[P

(1)

(D;n)U

(1)

� l℄

+

=

e

�

(+)

l

; [P

(1)

(D;n)U

(1)

�m℄

+

=

e

�

(+)

m

on S

2

;

[P

(2)

(D;n)U

(2)

� l℄

�

=

e

�

(�)

l

; [P

(2)

(D;n)U

(2)

�m℄

�

=

e

�

(�)

m

on S

2

:

Problem (C � H)

!

: 
onditions (7.8) on S, (7.16) on S

1

, (7.19) on S

2

,

and

[u

(1)

� l℄

+

= e'

(+)

l

; [u

(1)

�m℄

+

= e'

(+)

m

on S

2

;

[u

(2)

� l℄

�

= e'

(�)

l

; [u

(2)

�m℄

�

= e'

(�)

m

on S

2

:

In the all above steady state os
illation problems we require that the

ve
tor fun
tion U

(2)

satis�es the (m; r)�thermo-radiation 
onditions at in-

�nity.

Moreover, by a solution to the above interfa
e problems we understand

a pair of ve
tor-fun
tions (U

(1)

; U

(2)

) satisfying the 
onditions of the 
orre-

sponding problem.
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We note that the basi
 interfa
e problems formulated above will be

studied in both the regular (C

1

(


1

);C

1

(


2

)) and the Sobolev (W

1

p

(


1

);

W

1

p;lo


(


2

)) spa
es.

Therefore, the given data of the interfa
e problems belong to the 
or-

responding natural fun
tional spa
es, and the transmission 
onditions are

to be understood in the 
lassi
al sense and in the fun
tional-tra
e sense,

respe
tively.

Parti
ularly, in the regular 
ase, all data 
orresponding to the displa
e-

ment ve
tor and the temperature are embedded in C

1

(S) spa
e, while the

data 
orresponding to the thermo-stress ve
tor and the heat 
ux are em-

bedded in C

0

(S) spa
e. In the 
ase of weak setting (in Sobolev spa
es),

these data are in B

1�1=p

p;p

(S) and B

�1=p

p;p

(S) spa
es, respe
tively.

The above mixed type interfa
e problems will be treated only in the weak

setting, i.e., in this 
ase we look for the unknown ve
tor fun
tions U

(1)

and

U

(2)

in the Sobolev spa
es

U

(1)

2 W

1

p

(


1

) and U

(2)

2W

1

p;lo


(


2

) \ SK

m

r

(


2

); 1<p<1: (7.20)

This implies that the data of the mixed interfa
e problems have to meet

the following natural restri
tions 
aused by (7.20):

f

4

2 B

1�1=p

p;p

(S); F

4

2 B

�1=p

p;p

(S);

f

(1)

k

2B

1�1=p

p;p

(S

1

); F

(1)

k

2B

�1=p

p;p

(S

1

); '

(�)

k

;

e

f

(2)

n

; e'

(�)

l

; e'

(�)

m

2 B

1�1=p

p;p

(S

2

);

�

(�)

k

;

e

F

(2)

n

;

e

�

(�)

l

;

e

�

(�)

m

2 B

�1=p

p;p

(S

2

); k = 1; 4: (7.21)

Moreover, the in
lusions (7.20) lead also to the following ne
essary (
om-

patibility) 
onditions:

a) in the problem (C � DD)

!

:

f =

�

f

(1)

on S

1

;

'

(+)

� '

(�)

on S

2

;

f 2 [B

1�1=p

p;p

(S)℄

4

; (7.22)

b) in the problem (C �NN )

!

:

F =

�

F

(1)

on S

1

;

�

(+)

��

(�)

on S

2

;

F 2 [B

�1=p

p;p

(S)℄

4

; (7.23)


) in the problem (C � DC)

!

:

e

f =

�

e

f

(1)

on S

1

;

e'

(+)

� e'

(�)

on S

2

;

e

f 2 [B

1�1=p

p;p

(S)℄

3

; (7.24)

d) in the problem (C �NC)

!

:

e

F =

(

e

F

(1)

on S

1

;

e

�

(+)

�

e

�

(�)

on S

2

;

e

F 2 [B

�1=p

p;p

(S)℄

3

; (7.25)
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e) in the problem (C � G)

!

:

e

f

n

=

(

e

f

(1)

� n on S

1

;

e

f

(2)

n

on S

2

;

e

f

n

2 B

1�1=p

p;p

(S); (7.26)

e

F =

(

e

F

(1)

on S

1

;

[

e

�

(+)

l

�

e

�

(�)

l

℄l+[

e

�

(+)

m

�

e

�

(�)

m

℄m+

e

F

(2)

n

n on S

2

;

e

F 2 [B

�1=p

p;p

(S)℄

3

;(7.27)

f) in the problem (C �H)

!

:

e

f=

(

e

f

(1)

on S

1

;

[e'

(+)

l

� e'

(�)

l

℄l+[e'

(+)

m

� e'

(�)

m

℄m+

e

f

(2)

n

n on S

2

;

e

f 2 [B

1�1=p

p;p

(S)℄

3

; (7.28)

e

F

n

=

(

e

F

(1)

� n on S

1

;

e

F

(2)

n

on S

2

;

e

F

n

2 B

�1=p

p;p

(S): (7.29)

In the sequel all these 
onditions are supposed to be ful�lled. Note that

the 
onditions (7.22), (7.24), (7.26), (7.28), and (7.23), (7.25), (7.27), (7.29),

hold for arbitrary fun
tions satisfying (7) with 1 < p < 2 and 2 < p < 1,

respe
tively. This follows from the multipli
ation properties of Besov spa
es

(see [79℄, Ch. 3, Se
tion 3.3.2).

Finally, we note that for the domains of general stru
ture, des
ribed in the

beginning of the se
tion, the basi
 and mixed transmission problems math-

emati
ally 
ould be formulated quite similarly: on the 
onta
t surfa
es the


onditions one of the interfa
e problems stated above are assigned, while on

the boundary of the 
omposed body the 
onditions of the basi
 (or mixed)

boundary value problemes are given. We observe that the all prin
ipal dif-

�
ulties arising in the study of problems for the 
omposed bodies of general

stru
ture are presented in the above model problems as well.

7.3 The basi
 and mixed interfa
e problems for the pseudo-os
illation


ase are formulated in the same way. The only di�eren
e is that a solution

U

(2)

to the equation (7.1) in 


2

has to satisfy the natural de
ay 
ondition

(1.30) at in�nity. Therefore, in the weak setting, we look for solutions in

the spa
es

U

(1)

2W

1

p

(


1

) and U

(2)

2W

1

p

(


2

); 1 < p <1: (7.30)

These problems, due to the above agreement, we denote by symbols (C)

�

,

(G)

�

, (H)

�

, (C�DD)

�

, (C�NN )

�

, (C�DC)

�

, (C�NC)

�

, (C�G)

�

, (C�H)

�

,

respe
tively.

The interfa
e 
onditions on S in the regular and weak setting of these

problems read again as in the steady state os
illation 
ase.
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CHAPTER III

UNIQUENESS THEOREMS

In this 
hapter we study the homogeneous versions of the above problems

and prove the 
orresponding uniqueness theorems. The problems in the


lassi
al formulation will be analysed 
ompletely, while the problems in the

weak setting will be treated only partially. Namely, we 
onsider here the


ase p = 2. The general 
ase (p > 1) will be 
onsidered later together with

the existen
e questions.

8. Uniqueness Theorems for Pseudo-Os
illation Problems

8.1. Let us begin with the 
onsideration of the basi
 BVPs of pseudo-

os
illations.

Theorem 8.1. The homogeneous versions of the problems (P

k

)

+

�

; k =

1; 2; 3; 4; have only the trivial solutions in the 
lass of regular ve
tor fun
-

tions C

1

(


+

).

Proof. Let U = (u; u

4

)

>

2 C

1

(


+

) \ C

1

(


+

) be a solution to one of the

homogeneous BVPs indi
ated in the theorem. Making use of the identity

(1.23) with { = � = � � i!, where � > 0 and ! 2 R, we get

R




+

n

kjpq

D

p

u

q

D

k

u

j

+ �

2

juj

2

+

1

�T

0

�

pq

D

q

u

4

D

p

u

4

+




0

T

0

ju

4

j

2

o

dx = 0;(8.1)

sin
e the two other integrals in (1.23) vanish due to the homogeneity of the

di�erential equation (1.9) and the boundary 
onditions (see (5.1)-(5.8)).

Separating the real and imaginary parts leads to the system of equations
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!
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T
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�
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D

q

u

4

D

p

u

4

o

dx = 0: (8.3)

Hen
e, by (1.14) and (1.15), we infer that u = 0 and u

4

= 0 in 


+

. �

Theorem 8.2. Let U = (u; u

4

)

>

2 W

1

2

(


+

) be a solution to one of the

homogeneous BVPs (P

k

)

+

�

; k = 1; 2; 3; 4: Then U = 0 in 


+

.

Proof. We prove the theorem for the problem (P

4

)

+

�

: The other problems


an be treated analogously.

In the 
ase under 
onsideration the homogeneous boundary 
onditions

(5.7) and (5.8) (with F = 0) are understood in the fun
tional-tra
e sense

des
ribed in Se
tion 4. Invoking the de�nition (4.1) with { = � , and noting

that A(D; �)U(x) = 0 in 


+

, we 
on
lude

h [B(D;n)U ℄

+

S

; [V ℄

+

S

i

S

=

R




+

E(U; V ) dx; (8.4)
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where V = (v; v

4

)

>

, with v = (v

1

; v

2

; v

3

)

>

, is an arbitrary ve
tor fun
tion of

the spa
e [W

1

2

(


+

)℄

4

, and E(U; V ) is given by (1.27). Clearly, (8.4) implies

h [P (D;n)U ℄

+

S
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+
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i

S

=

=
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dx; (8.5)
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0
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�
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dx; (8.6)

where v=(v

1

; v

2

; v

3

)

>

and v

4

are arbitrary elements of the spa
es [W

1

2

(


+

)℄

3

and W

1

2

(


+

), respe
tively.

Multiplying (8) by (�T

0

)

�1

, taking its 
omplex 
onjugate, and adding

the result termwise to the (8) lead then us to the equation

h [P (D;n)U ℄

+

S

; [v℄

+

S

i

S

+

1

�T

0

h [�(D;n)u
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℄

+

S

; [v

4

℄

+

S

i

S

=

=
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0

T
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4

v

4

o

dx: (8.7)

It is evident that, if U is a solution to the homogeneous BVP (P

4

)

+

�

; then

the left-hand side expression in (8.7) vanishes. When
e
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0

T

0
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4

v

4

o

dx = 0 (8.8)

for arbitrary v

j

2 W

1

2

(


+

); j = 1; 4: Sin
e we are allowed to put here

v

j

= u

j

and apply the arguments of the proof of Theorem 8.1, we get

u

j

= 0 (j = 1; 4) in 


+

.

Now we make some remarks 
on
erning the other homogeneous boundary

value problems. First of all we note that the starting point to prove the

uniqueness of solutions in Sobolev spa
es always is the formula (8.4). For

example, let us 
onsider the homogeneous problem (P

1

)

+

�

; and let some

ve
tor-fun
tion U 2 W

1

2

(


+

) be its solution. Due to the homogeneity of

the problem, obviousely, [U ℄

+

= 0 on S in the usual tra
e sense. Next, let

us 
al
ulate the 
orresponding thermo-stress ve
tor and the heat 
ux on S,

i.e., the ve
tor [B(D;n)U ℄

+

S

whi
h is understood in the fun
tional sense. To

this end we have to apply the de�nition (4.1) whi
h in the 
ase in question

reads as (8.4). Surely, we may substitute the solution U 2 W

1

2

(


+

) in the

pla
e of the ve
tor-fun
tion V 2W

1

2

(


+

) in the equations (8.4){(8.8). Sin
e

the tra
e [U ℄

+

S

vanishes on S, we again arrive at the equations (8) and (8.3).

When
e U = 0 in 


+

follows. �

Theorem 8.3. The homogeneous mixed BVP (P

mix

)

+

�

in the 
lass

W

1

2

(


+

) has only the trivial solution.

Proof. Denote by U = (u; u

4

)

>

2 W

1

2

(


+

) an arbitrary solution of the

homogeneous mixed problem (P

mix

)

+

�

. Clearly, [U ℄

+

S

1

= 0 in the usual tra
e

sense and, therefore, [U ℄

+

S

2

2

e

B

1=2

2;2

(S

2

); sin
e U 2 B

1=2

2;2

(S): Further, let us
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note that the homogeneous boundary 
onditions for the ve
tor U on S

2

,

due to Remark 4.1, imply

R




+

E(U; V ) dx = h [B(D;n)U ℄

+

S

2

; [V ℄

+

S

2

i

S

2

= 0 (8.9)

for arbitrary V 2 W

1

2

(


+

) with the property [V ℄

+

S

2

2

e

B

1=2

2;2

(S

2

): Clearly,

the equation (8.9) is equivalent to (8.8), where we may again substitute the

ve
tor-fun
tion U in the pla
e of V , sin
e the U satis�es the restri
tions

required above for V in (8.9). Therefore, with the help of the arguments in

the proof of Theorems 8.1 and 8.2 we easily 
on
lude that u

j

= 0 (j = 1; 4)

in 


+

. �

The uniqueness theorems for the exterior basi
 BVPs for the pseudo-

os
illation equations 
an be proved quite analogously.

Theorem 8.4. The homogeneous BVPs (P

k

)

�

�

; k = 1; 2; 3; 4; and

(P

mix

)

�

�

have only the trivial solutions in the spa
e W

1

2

(


�

):

Proof. We will prove the theorem only for the problem (P

mix

)

�

�

; sin
e for

the other problems it is verbatim.

Let U = (u; u

4

)

>

2 W

1

2

(


�

) \ C

1

(


�

) be an arbitrary solution to

the mixed homogeneous BVP for the pseudo-os
illation equations. Then,

in addition, the U satis�es the de
ay 
ondition (1.30) at in�nity. Due to

Remark 4.1 and the homogeneity of the boundary 
onditions for stresses on

S

2

the following equation

h [B(D;n)U ℄

�

S

2

; [V ℄

�

S

2

i

S

= �

R




�

E(U; V ) dx = 0 (8.10)

holds for arbitrary V 2 W

1

2;
omp

(


�

) with [V ℄

�

S

2

2

e

B

1=2

2;2

(S

2

); i.e., [V ℄

�

S

1

= 0.

As in the proof of Theorem 8.2 we 
an easily show that (8.10) yields
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0

T
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4
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dx = 0: (8.11)

Note that C

1

-regular ve
tor fun
tions having 
ompa
t supports in 


�

and zero tra
es on S

1

are densely embedded in the spa
e X = fV 2

W

1

2

(


�

) : [V ℄

�

S

1

= 0g. Thus, for V 2 X we 
an 
hoose a sequen
e

fV

(n)

2 C

1


omp

(


�

) : [V

(n)

℄

�

S

1

= 0g whi
h 
onverges to the ve
tor fun
tion

V in the W

1

2

(


�

)-norm. Therefore, simple limiting arguments yield that

(8.11) is valid for V 2 X . Now, we may substitute u

k

in the pla
e of v

k

in

(8.11). As a result we �nally obtain
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dx=0; (8.12)

whi
h 
ompletes the proof (see the proof of Theorem 8.1). �

8.2. Now we 
onsider the 
ra
k type problems.

Theorem 8.5. The homogeneous problems (CR:D)

�

and (CR:N )

�

have

only the trivial solutions in the spa
e W

1

2

(R

3

S

1

):
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Proof. Let U 2 W

1

2

(R

3

S

1

) be some solution to the homogeneous problem

(CR:D)

�

. Clearly, [U ℄

+

S

1

= 0 and [U ℄

�

S

1

= 0 in the usual tra
e sense. Re
all

that S

1

� S; where S = �


+

for some bounded domain 


+

. Next, let

us 
al
ulate the fun
tional tra
es [B(D;n)U ℄

�

S

. Note that [B(D;n)U ℄

�

SnS

1

exist in the usual tra
e sense and [B(D;n)U ℄

+

SnS

1

= [B(D;n)U ℄

�

SnS

1

sin
e

U 2 C

1

(R

3

S

1

). We apply again the de�nitions (4.1) and (4.2) to write the

equations

h [B(D;n)U ℄
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E(U; V ) dx; (8.13)
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) dx; (8.14)

where V = (v; v

4

)

>

2 W

1

2

(


+

), V

0

= (v

0

; v

0

4

)

>

2 W

1

2;
omp

(


�

), v =

(v

1

; v

2

; v

3

)

>

, v

0

= (v

0

1

; v

0

2

; v

0

3

)

>

. Making again use of the limiting arguments

from the proof of Theorem 8.4, we easily 
on
lude by virtue of (8.13) and

(8.14)
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for arbitrary V 2 [W

1

2

(


+

)℄

4

and arbitrary V

0

2 [W

1

2;
omp

(


�

)℄

4

.

By the same manipulations as in the proof of Theorem 8.2, we derive

from (8.15)
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We may substitute in this equation V = U j




+
and V

0

= U j




�
, where U j




�

denotes the restri
tion of U onto 


�

. Taking into a

ount the equalities

[U ℄

�

S

1

= 0, [B(D;n)U ℄

+
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1

= [B(D;n)U ℄

�

SnS

1

, and [U ℄

+

SnS

1

= [U ℄

�

SnS

1

, we

easily see that (see also Remark 4.1)
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Therefore, (8.16) implies
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When
e U = 0 in R

3

S

1

follows. �

8.3. To prove the uniqueness theorems for the basi
 and mixed homo-

geneous interfa
e problems, one has to apply the arguments quite similar

to the above ones to derive the following basi
 equation for solutions of the

indi
ated homogeneous problems
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dx = 0: (8.17)

For regular solutions this formula 
an be obtained from the following Green

identities for 


�

(� = 1; 2)
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�

dx; (8.18)

where [�℄

(1)

:= [�℄

+

S

and [�℄

(2)

:= [�℄

�

S

.

For solutions of the homogeneous problems in the Sobolev spa
esW

1

2

(


�

)

formula (8.17) follows from the de�nitions of fun
tional tra
es given in Se
-

tion 4.

Now we formulate the uniqueness results for the interfa
e problems of

thermoelasti
 pseudo-os
illations.

Theorem 8.6. The homogeneous basi
 and mixed interfa
e problems

(C)

�

, (G)

�

, (H)

�

, (C �DD)

�

, (C �NN )

�

, (C �DC)

�

, (C �NC)

�

, (C �G)

�

,

(C�H)

�

, have only the trivial solutions in the 
orresponding Sobolev spa
es,

i.e., if (U

1

; U

2

) 2 (W

1

2

(


1

);W

1

2

(


2

)) solves one of the above homogeneous

problems, then U

(�)

= 0 in 


�

, � = 1; 2:

Proof. By the reasonings similar to the already applied ones in the previous

subse
tion, we 
an easily 
on
lude that for the pair of ve
tor fun
tions

(U

1

; U

2

) 2 (W

1

2

(


1

);W

1

2

(


2

)), whi
h is solution to one of the homogeneous

problems indi
ated in the theorem, the formula (8.17) holds. When
e the

proof follows. �

We remark that the regular 
ase (i.e., when (U

(1)

; U

(2)

) 2 (C

1

(


1

);

C

1

(


2

))) is 
overed by this theorem.

9. Uniqueness Theorems for the Steady State Os
illation

Problems

9.1. First we shall establish some auxiliary results 
on
erning the 
o-

eÆ
ients of asymptoti
 formulae (2.30) and as
ertain the stru
ture of the

matrix fun
tions (2.24).
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We re
all that

N(�i�;�i!) = [N

kj

(�i�;�i!)℄

4�4

(9.1)

is the adjoint matrix to

A(�i�;�i!) =

�

[!

2

I

3

� C(�)℄

3�3

[i�

kj

�

j

℄

3�1

[!T

0

�

kj

�

j

℄

1�3

��(�) + i!


0

�

4�4

; (9.2)

where C(�) and �(�) are de�ned by (1.7) and (1.8), respe
tively, while

N

kj

(�i�;�i!) denotes the 
ofa
tor of the element A

jk

(�i�;�i!) of the

matrix (9.2) (
f. (1.32), (1.33)).

Let us set

C(�; !) = !

2

I

3

� C(�);

~

C(�; !) = !

2

I

3

�

~

C(�); (9.3)

where

~

C(�) is given by (1.35). Denote by C

�

(�; !) and

~

C

�

(�; !) the 
orre-

sponding adjoint matri
es.

Due to (1.43) and (1.44) we have

C(�; !)C

�

(�; !) = ��(�; !) I

3

;

~

C(�; !)

~

C

�

(�; !) = �

~

�(�; !) I

3

: (9.4)

From the 
ondition I

0

(see Subse
tion 1.6) it follows that rankC(�; !) = 2

and, 
onsequently, rankC

�

(�; !) = 1 for an arbitrary � 2 S

0

l

. Moreover (for

the same � 2 S

0

l

) there exists an orthogonal real matrix G(�; !) su
h that

G

>

(�; !)C

�

(�; !)G(�; !) = �

1

I

0

; I

0

=

2

4

1 0 0

0 0 0

0 0 0

3

5

; (9.5)

where �

1

= �

1

(�; !) 6= 0 is a real eigenvalue of the matrix C

�

(�; !) (two

other eigenvalues are equal to zero; for details see [55℄).

Further, let d(�; !) = �!


0

[�(�)℄

�1

and

d(�; !)G

>

(�; !)

~

C

�

(�; !)G(�; !) = [b

kj

(�; !)℄

3�3

: (9.6)

Lemma 9.1. Let � 2 S




j

; j = 1; : : : ;m; where S




j

are the 
hara
teristi


surfa
es de�ned in Subse
tion 1:6: Then the matrix N has the following

stru
ture

N(�i�;�i!) =

�

[N (�; !)℄

3�3

[0℄

3�1

[0℄

1�3

0

�

4�4

;

where N (�; !) = ��(�)[1 + ib

11

(�; !)�

�1

1

(�; !)℄C

�

(�; !):

Proof. Let � 2 S




j

be an arbitrary point (1 � j � m). Clearly, � belongs to

some surfa
e S

0

l

, 1 � l � 3, as well (see Subse
tion 1.6). Therefore,

N

44

(�i�;�i!) = ��(�; !) = 0; (9.7)

due to (1.46).

By dire
t 
al
ulations we get

N

4k

(�i�;�i!) = �i!T

0

N

k4

(�i�;�i!); k = 1; 2; 3; (9.8)

N

pq

(�i�;�i!) = ��(�)C

�

pq

(�; !) + i!


0

~

C

�

pq

(�; !) =

= N

pq

(i�;�i!); 1 � p; q � 3: (9.9)
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The 
ondition I

0

of Subse
tion 1.6 implies (see (1.42)) rM(�;�i!) =

�(�)r�(�; !)� i!


0

r

~

�(�; !) 6= 0; sin
e �(�) 6= 0 on S




j

:

This relation together with the equations (1.31), (1.32), (1), and

detA(�i�

0

;�i!) = detA(i�

0

;�i!) =M(��

0

;�i!) =M(�

0

;�i!); �

0

2 R

3

;

yields

rankA(i�;�i!) = 3; rankN(i�;�i!) = 1; (9.10)

i.e., any two 
olumns (rows) of the matrix (9.1) are linearly dependent.

Taking into a

ount the equations (9.8) and (9.7) it 
an be easily proved

that N

k4

(�i�;�i!) = 0, N

4k

(�i�;�i!) = 0, k = 1; 2; 3.

Thus, we have obtained the following representation

N(�i�;�i!) =

�

[N

(0)

(�; !)℄

3�3

[0℄

3�1

[0℄

1�3

0

�

4�4

with

N

(0)

(�; !) = [N

pq

(i�;�i!)℄

3�3

; (9.11)

where N

pq

(i�;�i!) = N

qp

(i�;�i!) are given by (9.9).

Now from (9.9) and (9.11) together with (9.5) and (9.6) it follows

N

(0)

(�; !) = ��(�)C

�

(�; !) + i!


0

~

C

�

(�; !) ;

G

>

(�; !)N

(0)

(�; !)G(�; !) = ��(�)�

1

(�; !)I

0

+

+i!


0

G

>

(�; !)

~

C

�

(�; !)G(�; !)=��(�)

2

4

�

1

(�; !)+ib

11

ib

12

ib

13

ib

12

ib

22

ib

23

ib

13

ib

23

ib

33

3

5

; (9.12)

where b

pq

are real fun
tions de�ned by (9.6).

By virtue of (9.10) we have rankN

(0)

(�;�i!) = 1; and, 
onsequently,

rank [G

>

(�; !)N

(0)

(�; !)G(�; !)℄ = 1;

sin
eG is an orthogonal matrix. This, in turn, implies that the matrix (9.12)

has only one linearly independent 
olumn (row). Inasmu
h as �

1

6= 0, there

exist 
omplex numbers � = �

1

+ i�

2

and � = �

1

+ i�

2

su
h that

0

�

ib

12

ib

22

ib

23

1

A

= �

0

�

�

1

+ ib

11

ib

12

ib

13

1

A

;

0

�

ib

13

ib

23

ib

33

1

A

= �

0

�

�

1

+ ib

11

ib

12

ib

13

1

A

: (9.13)

Equating the 
orresponding elements and separating the real and imag-

inary parts lead to the equations (�

2

1

+ �

2

2

)�

1

= 0, (�

2

1

+ �

2

2

)�

1

= 0, i.e.,

� = � = 0: But then from (9.13), (9.12), and (9.5) we derive

N

(0)

(�; !) = ��(�)f�

1

(�; !)G(�; !)I

0

G

>

(�; !) +

+ib

11

(�; !)G(�; !)I

0

G

>

(�; !)g = ��(�)[�

1

(�; !) +

+ib

11

(�; !)℄G(�; !)I

0

G

>

(�; !) = ��(�)[1 + i�

�1

1

(�; !)b

11

(�; !)℄C

�

(�; !);

whi
h 
ompletes the proof. �
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Remark 9.2. Due to equation (2.24) and Lemma 4:1 we get (for arbitrary

� 2 S




j

; j = 1; : : : ;m; and r = 1; 2)




(j)

r

(�;�i!) = d

j

(�;�i!)

�

[C

�

(�; !)℄

3�3

[0℄

3�1

[0℄

1�3

0

�

4�4

(9.14)

with

d

j

(�;�i!) = (�1)

j+1

�(�)[1 + i�

�1

1

(�; !)b

11

(�; !)℄

[2�(�(�))

1=2

jr�

m

(�;�i!)j	

m

(�;�i!)℄

:

Lemma 9.3. Let U = (u; u

4

)

>

be a regular ve
tor in 


�

of the 
lass

SK

m

r

(


�

), and let A(D;�i!)U have a 
ompa
t support.

Then for suÆ
iently large jxj

u(x) =

m

P

j=1

jxj

�1

d

j

(�

j

;�i!)e

(�1)

r+1

ix�

j

C

�

(�

j

; !)

e

b(�

j

) +O(jxj

�2

); (9.15)

u

4

(x) = O(jxj

�2

); (9.16)

with the same d

j

as in Remark 9:2; here C

�

(�; !) is the adjoint matrix to

C(�; !);

e

b = (b

1

; b

2

; b

3

)

>

is uniquely determined by the ve
tor U (see below

(9:18)); and the point �

j

2 S




j


orresponds to the ve
tor x=jxj:

Proof. Denote by 
 the support of A(D;�i!)U . Then by Theorems 2.3,

3.1 and Remark 2.6 we have (for suÆ
iently large jxj)

U(x) =

m

P

j=1

n

R




jxj

�1

e

(�1)

r+1

i(x�y)�

j




(j)

r

(�

j

;�i!)[A(D

y

;�i!)U(y)℄ dy +

+

R

S

jxj

�1

e

(�1)

r+1

i(x�y)�

j




(j)

r

(�

j

;�i!)[B(D

y

; n(y))U(y)℄

�

dS

y

�

�

R

S

jxj

�1

e

(�1)

r+1

i(x�y)�

j

fQ((�1)

r

i�

j

; n(y);�i!)�

�[


(j)

r

(�

j

;�i!)℄

>

g

>

[U(y)℄

�

dS

y

o

+

+O(jxj

�2

) =

m

P

j=1

jxj

�1

e

(�1)

r+1

ix�

j




(j)

r

(�

j

;�i!) b(�

j

) +O(jxj

�2

); (9.17)

where

b(�

j

) = (

e

b(�

j

); b

4

(�

j

))

>

=

R




e

(�1)

r

iy�

j

[A(D

y

;�i!)U(y)℄ dy +

+

R

S

e

(�1)

r

iy�

j

[B(D

y

; n(y))U(y)℄

�

dS

y

�

�

R

S

e

(�1)

r

iy�

j

Q

>

((�1)

r

i�

j

; n(y);�i!)[U(y)℄

�

dS

y

; (9.18)

here �

j


orresponds to the ve
tor x=jxj:

Now (9.15) and (9.16) follow immediately from (9.17) and (9.14). Note

that the ve
tor b(�

j

) is represented expli
itly by (9.18). �
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Remark 9.4. From (9.15) with the help of equation (9.5) we get the

following equivalent asymptoti
 formula for u

u(x) =

m

P

j=1

jxj

�1

e

(�1)

r+1

ix�

j

�

1

(�

j

; !)G(�

j

; !)I

0

G

>

(�

j

!; !)a

(j)

(�

j

; !) +

+O(jxj

�2

); (9.19)

where

a

(j)

(�

j

; !) = d

j

(�

j

;�i!)

e

b(�

j

); (9.20)

d

j

and

e

b are the same as in Lemma 9:3: Note that due to (9.5)

I

0

G

>

a

(j)

= ([G

>

a

(j)

℄

1

; 0; 0)

>

: (9.21)

9.2. In this subse
tion we assume S = �


�

to be a 
onne
ted C

1

-regular

surfa
e and prove the following uniqueness theorem.

Theorem 9.5. Let U be a regular solution to the homogeneous exterior

problem (P

k

)

�

!

(k = 1; : : : ; 4) and U 2 SK

m

r

(


�

) with r = 1 for ! > 0 and

r = 2 for ! < 0.

Then U = 0 in 


�

:

Proof. Let R; B

R

; �

R

and 


�

R

be the same as in the proof of Theorem 3.1.

Sin
e U satis�es the homogeneous 
onditions of the problem (P

k

)

�

!

, from

(1.23) (with 


+

= 


�

R

and � = �i!) it follows that

R




�

R

�




kjpq

D

p

u

q

D

k

u

j

� !

2

juj

2

� i(!T

0

)

�1

�

kj

D

k

u

4

D

j

u

4

+

+


0

(T

0

)

�1

ju

4

j

2

	

dx =

R

�

R

n

[B(D;n)U ℄

k

[u

k

℄�

i

!T

0

[u

4

℄ [�

n

u

4

℄

o

d�

R

;

where B(D;n) and �

n

are de�ned by (1.25) and (1.24), respe
tively.

Owing the fa
t that 


kjpq

D

p

u

q

D

k

u

j

and �

kj

D

k

u

4

D

j

u

4

are non-negative

real quantities, from the last equation by separating the imaginary part we

get

Im

n

R

�

R

n

[B(D

x

; �)U(x)℄

k

[u

k

(x)℄ �

i

!T

0

[u

4

(x)℄ [�

�

u

4

(x)℄

o

d�

R

o

+

+

1

!T

0

R




�

R

�

kj

D

k

u

4

(x)D

j

u

4

(x) dx = 0; (9.22)

where � = x=jxj is the unit outward normal at the point x 2 �

R

:

Due to Lemma 9.3 it is easily seen that

R




�

R

�

kj

D

k

u

4

(x)D

j

u

4

(x) dx =

R




�

�

kj

D

k

u

4

(x)D

j

u

4

(x) dx +O(R

�1

);

R

�

R

ju

4

(x) �

�

u

4

(x)j d�

R

= O(R

�2

);

R

�

R

ju

4

(x)u

k

(x)j d�

R

= O(R

�1

);

as R! +1 (k = 1; 2; 3): Clearly, �

�

= �

n

on �

R

:

Taking into a

ount (1.25) and applying the above relations to (9.22) we

obtain

Im

n

R

�

R

[T (D

x

; �)u℄

k

[u

k

℄ d�

R

o

+

1

!T

0

R




�

�

kj

D

k

u

4

D

j

u

4

dx=O(R

�1

); (9.23)

where T (D; �) is the stress operator of elastostati
s de�ned by (1.12).
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In the same way as in the proof of Theorem 3.1 (by integrating with

respe
t to R from � to 2� and deviding the result by �) from (9.23) we

derive

Im

n

1

�

2�

R

�

R

�

R

[T (D

x

; �)u℄

k

[u

k

℄d�

R

dR

o

+

1

!T

0

R




�

�

kj

D

k

u

4

D

j

u

4

dx=O(�

�1

);(9.24)

where � is large enough.

Further, by Lemma 9.3 the �rst summand in the left-hand side of (9.24)


an be transformed as follows

F (�) := Im

(

1

�

2�

R

�

R

�

R

[T (D

;

�)u℄

k

[u

k

℄ d�

R

dR

)

=

= Im

(

1

�

2�

R

�

R

�

R

m

P

j=1

[i(�1)

r+1

R

�1

d

j

(�

j

;�i!)�

�e

(�1)

r+1

ix�

j

T (�

j

; �)C

�

(�

j

; !)

e

b(�

j

)℄

k

�

�

m

P

l=1

[R

�1

d

l

(�

l

;�i!)e

(�1)

r

ix�

l

C

�

(�

l

; !)

e

b(�

l

)℄

k

d�

R

dR+O(�

�1

)

�

=

= Re

(

(�1)

r+1

�

R

�

1

m

P

j;l=1

d

j

(�

j

;�i!)d

l

(�

l

;�i!)[T (�

j

; �)C

�

(�

j

; !)

e

b(�

j

)℄

k

�

�[C

�

(�

l

; !)

e

b(�

l

)℄

k

�

2�

R

�

e

(�1)

r+1

iR[�

j

(�)��

l

(�)℄

dR

�

d�

1

�

+O(�

�1

); (9.25)

where �

j

(�) = (� � �

j

) and �

j


orresponds to the ve
tor x=jxj.

It 
an be easily proved that �

j

(�) 6= �

l

(�) if j 6= l (see Subse
tion 1.6).

Therefore, if j 6= l, 
learly,

2�

R

�

e

�iR[�

j

(�)��

l

(�)℄

dR = O(1);

and (9.25) implies

F (�) = Re

n

(�1)

r+1

m

P

j=1

R

�

1

T (�

j

; �)C

�

(�

j

; !)a

(j)

� C

�

(�

j

; !)a

(j)

d�

1

o

+

+O(�

�1

) (9.26)

with a

(j)

de�ned by (9.20).

In view of the symmetry property of C

�

(�; �) and equality T

>

(�; �) =

T (�; �) we have from (9.26)

F (�) =

(�1)

r+1

2

m

P

j=1

R

�

1

C

�

(�

j

; !)[T (�

j

; �) +

+T (�; �

j

)℄C

�

(�

j

; !)a

(j)

� a

(j)

d�

1

+O(�

�1

): (9.27)
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Now passing to the limit in (9.24) as � ! +1 and bearing in mind (9.25)

and (9.27) we arrive at the equation

1

!T

0

R




�

�

kj

D

k

u

4

D

j

u

4

dx+

(�1)

r+1

2

m

P

j=1

R

�

1

E

j

(�

j

; !) d�

1

= 0 (9.28)

with

E

j

(�

j

; !) = C

�

(�

j

; !)[T (�

j

; �) + T (�; �

j

)℄C

�

(�

j

; !)a

(j)

� a

(j)

; (9.29)

where �

j

2 S




j


orresponds again to �, i.e., n(�

j

) = �:

In what follows we 
laim that the integral in the se
ond term of (9.28) is

a non-negative fun
tion for all �

j

2 S




j

.

To see this, let us note that

T (�; �) + T (�; �) =

�

�n(�)

C(�) = �

�

�n(�)

C(�; !);

where � = n(�); �=�n(�) = n

k

(�)D

k

is a dire
tional derivative, C(�) and

C(�; !) are de�ned by (1.7) and (9.3), respe
tively.

We re
all that in Subse
tion 1.6 we introdu
ed the two sets of surfa
es

fS




j

g

m

j=1

and fS

0

p

g

3

p=1

de�ned by equations (1.46) and by the �rst equation

of the same system, respe
tively. Therefore, ea
h S




j


oin
ides with some

S

0

p

for some p = p(j). Let us �x this 
orresponden
e, i.e., S




j

= S

0

p(j)

:

Further, we pro
eed as follows. Note that

�

h

C

�

(�; !)

�

�

�n(�

j

)

C(�; !)

�

C

�

(�; !)

i

=

= �

�

�n(�

j

)

[C

�

(�; !)C(�; !)C

�

(�; !)℄ =

h

�

�n(�

j

)

�(�; !)

i

C

�

(�; !) (9.30)

for all � = �

j

2 S




j

(see (9.4)).

With the help of (9.5), (9.30), and (9.29) we dedu
e
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Now we show that the fun
tion

 (�) =

h

�

�n(�)

�(�; !)

i

�

1

(�; !); � 2 S




j

; (9.32)

is stri
tly positive.

Sin
e �

1

(�; !) is the only nonzero eigenvalue of the matrix C

�

(�; !) for

� 2S




j

= S

0

p

, we have
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where � = �=j�j; �(�; 0) > 0; here we employed the representation (1.47).

It is easy to 
he
k that the exterior unit normal ve
tor of S

0

p

is 
al
ulated

by the following formula

n(�) = (�1)

p+1

r�(�;!)

jr�(�;!)j

; � 2 S

0

p

:

Therefore,

n

�

�n(�)

�(�; !)

o

�2S
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=

n
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r�(�;!)
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� r�(�; !)

o

�2S

0

p

=

=

�

(�1)
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jr�(�; !)j

	

�2S

0

p

; (9.34)

whi
h together with (9) yields

 (�) = jr�(�; !)j j�

1

(�; !)j > 0 for � 2 S

0

p

= S




j

: (9.35)

Hen
e by virtue of (9.31)-(9.35) we get
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jr�(�; !)j j�
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(�; !)j

�

�

�

h

G

>

(�; !)a

(j)

i

1

�

�

�

2

�

�=�

j

� 0: (9.36)

Now from (9.28) it follows that �

kj

D

k

u

4

(x)D

j

u

4

(x) = 0, x 2 


�

,

E

j

(�

j

; !) = 0, � 2 S




j

, if (�1)

r+1

! > 0:

Applying (1.18), (9.35), (9.36), and (9.19){(9.21) we 
on
lude that u

4

(x) =

0 in 


�

and [G

>

(�

j

; !)a

(j)

(�

j

; !)℄

1

= 0; i.e.,

D

�

u(x) = O(jxj

�2

) as jxj ! +1 (9.37)

for an arbitrary multi-index �.

Thus, we have obtained that u is a solution to the steady state os
illation

equations of elasti
ity theory C(D)u(x) + !

2

u(x) = 0, x 2 


�

, satisfying

the homogeneous boundary 
ondition either [u℄

�

= 0 or [Tu℄

�

= 0 on S

(see (5.1)-(5.8)) and the de
ay 
ondition (9.37) at in�nity.

Due to Lemma 3.4 in [41℄ (see also [55℄, Se
tion 4) we then have u(x) = 0

in 


�

, whi
h 
ompletes the proof. �

9.3 In this subse
tion we 
onsider the same basi
 BVPs (P

k

)

�

!

(k =

1; 4) together with the mixed BVP (P

mix

)

�

!

in the weak setting in the

Sobolev spa
e W

1

2;lo


(


�

): Here the prin
ipal di�eren
e in 
omparison with

the pseudo-os
illation 
ase is that the steady state os
illation equations do

not admit nontrivial square integrable in 


�

solutions, as it 
an be seen from

the previous subse
tion (see the 
orresponding results for the Helmholtz

equation and for the elasti
 os
illation equations, for example, in [10℄, [11℄,

[80℄, [83℄, [45℄).
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As it is evident from the proof of Theorem 8.5, one of the 
entral moments

to establish the uniqueness of solutions to the homogeneous steady state

os
illation problems is the derivation of formula (9.22) whi
h follows from

the 
orresponding Green identities for regular fun
tions. In the sequel we

shall show that the same type formula 
an be derived for weak solutions as

well.

Theorem 9.6. The homogeneous exterior BVPs (P

k

)

�

!

(k = 1; : : : ; 4) and

(P

mix

)

�

!

have only the trivial solutions in the 
lass W

1

2;lo


(


�

) \ SK

m

r

(


�

)

with r = 1 for ! > 0 and r = 2 for ! < 0.

Proof. For de�niteness, let U 2W

1

2;lo


(


�

)\ SK

m

r

(


�

) be a solution of the

homogeneous problem (P

4

)

�

!

.

Due to the de�nition (4.2) the homogeneous boundary 
ondition

[B(D;n)U ℄

�

= 0, whi
h is understood in the fun
tional sense, is equiva-

lent to the equation

h [B(D;n)U ℄

�

S

; [V ℄

�

S

i

S

= �

R




�

E(U; V ) dx = 0; (9.38)

where V 2 W

1

2;
omp

(


�

) is an arbitrary ve
tor fun
tion and E(U; V ) is

de�ned by (1.27) with { = �i!.

In the same way as in the proof of Theorem 8.2 we easily derive from

(9.38)
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dx = 0: (9.39)

Further, let h

R

(x) be a real 
ut o� fun
tion with the following properties:

h

R

2 C

1

(R

3

); h

R

(x) = 1 for jxj � R; h

R

(x) = 0 for jxj � 2R; (9.40)

where R > 0 is an arbitrary real number su
h that the open ball B

R

= fx 2

R

3

: jxj < Rg 
ontains the 
losed domain 


+

as a proper subset. Re
all

that �B

R

=: �

R

:

Next, we set V

R

(x) := h

R

(x)U(x): Clearly, V

R

(x) 2 W

1

2;
omp

(


�

) \

C

1

(


�

): Substitution of this ve
tor fun
tion in (9.39) in the pla
e of V

implies

E

1

+ E

2

= 0; (9.41)

where
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dx; (9.42)
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dx; (9.43)

here 


�

R

= 


�

\ B

R

.



58

The integration by parts in (9.43) leads to the equation
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sin
e A(D;�i!)U = 0 in 


�

and n = � on �

R

.

Therefore, (9.41), (9.42), and (9.43), due to the formulae (1.13) and

(1.25), yield
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for arbitrary solution U 2 W

1

2;lo


(


�

) to the homogeneous problem (P

4

)

�

!

.

Thus, we have obtained again the relation (9.22). This formula 
an be

derived in the same way for weak solutions of the other basi
 and mixed

BVPs indi
ated in the theorem. Now applying the same analysis as in the

proof of Theorem 9.5 we 
an show that U = 0 in 


�

. �

9.4. The uniqueness theorems for the homogeneous 
ra
k type problems

of thermoelasti
 os
illations 
an be proved by quite the same approa
h as

above. To avoid the repetition of the arguments outlined in the previous

subse
tions, we only note here that with the help of the identity (9.45)

these problems by the analysis given in the proof of Theorem 9.5 are again

redu
ed to the 
orresponding homogeneous BVPs of steady state os
illa-

tions of the elasti
ity theory with the displa
ement ve
tor whi
h behaves

like O(jxj

�2

) at in�nity. Therefore, due to the results in [55℄, [56℄, [17℄, [41℄,

su
h a displa
ement ve
tor identi
ally vanishes in the domain of analyti
ity.

This �nally leads to the 
orresponding uniqueness results for the above men-

tioned homogeneous 
ra
k type problems of the steady state thermoelasti


os
illations. As a 
onsequen
e we have the following uniqueness theorem.

Theorem 9.7. The homogeneous 
ra
k type BVPs (CR:D)

!

and (CR:N )

!

have only the trivial solutions in the 
lassW

1

2;lo


(R

3

S

1

)\SK

m

r

(R

3

S

1

) with r = 1

for ! > 0 and r = 2 for ! < 0.

9.5. For the homogeneous basi
 and mixed interfa
e problems of the

steady state thermoelasti
 os
illations we have a di�erent situation sin
e

not all of them have only the trivial solution.

Let us �rst 
onsider the basi
 homogeneous problem (C)

!

(see (7.3),

(7.4)).

Theorem 9.8. The homogeneous problem (C)

!

has only the trivial so-

lution in the 
lass (C

1

(


1

) ; C

1

(


2

) \ SK

m

r

(


2

)) with r = 1 for ! > 0 and

r = 2 for ! < 0.

Proof. Let (U

(1)

; U

(2)

) be a solution of the homogeneous problem (C)

!

from

the 
lass indi
ated in the theorem. Further, let R, B

R

, �

R

, and 


�

R

=: 


2

R
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be the same as in the proof of Theorem 9.6. By the Green formula (1.23)

then we have
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due to the homogeneity of the transmission 
onditions.

In turn (9.48) implies (if we look at the imaginary part)
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From this equation, as in the proof of Theorem 9.5, we 
an show that

u

(1)

4

= 0 in 


1

; u

(2)

4

= 0 in 


2

; and u

(2)

= 0 in 


2

with r = 1 for ! > 0 and

r = 2 for ! < 0.

Next, the homogeneous interfa
e 
onditions (7.3) and (7.4) imply that

[U

(1)

℄

+

= 0 and [B

(1)

(D;n)U

(1)

℄

+

= 0 on S, whi
h together with the fol-

lowing general integral representation formula of the solution U
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in 


1
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1

; (9.50)


ompletes the proof. �

It is evident that in the 
ase of the homogeneous problems (G)

!

and (H)

!

we again obtain the equation (9.49). Therefore,

U

(2)

(x) = 0 in 


2

; (9.51)

u

(1)

4

(x) = 0 in 


1

: (9.52)
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From these equations and the 
orresponding homogeneous transmission 
on-

ditions we 
on
lude:

i) In the 
ase of the homogeneous problem (G)

!

the displa
ement ve
tor

u

(1)

solves the following BVP

C
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(D)u
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(x) + !

2
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(1)

(x) = 0
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)

in 
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; (9.53)
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= 0 and [u
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� n℄

+

= 0 on S: (9.54)

ii) In the 
ase of the homogeneous problem (H)

!

the displa
ement ve
tor

u

(1)

solves the following BVP
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= 0 and [T
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(D;n)u

(1)

� n℄

+

= 0 on S: (9.56)

These homogeneous problems for the elasti
 �eld have not, in general, the

only trivial solutions.

Denote by J

G

(


1

) and J

H

(


1

), respe
tively, the set of values of the fre-

quen
y parameter ! for whi
h the above problems (9.53)-(9.54) and (9.55)-

(9.56) admit nontrivial solutions. Obviously, J

G

(


1

) is the interse
tion of

the spe
tral sets of the so-
alled se
ond and third interior BVPs of the the-

ory of steady state elasti
 os
illations (in terms of the monograph [45℄),

while J

H

(


1

) is the interse
tion of the spe
tral sets of the �rst and fourth

interior BVPs.

Su
h frequen
ies are 
alled also Jones eigenfrequen
ies, while the 
or-

responding nontrivial solutions are referred to as Jones modes. Spe
tral

problems similar to (9.53)-(9.54) en
ounter also in the 
uid-stru
ture inter-

a
tion problems (see, e.g., [26℄, [27℄, [48℄, [36℄, [39℄, and referen
es therein).

Clearly, J

G

(


1

) and J

H

(


1

) are at most 
ountable and to ea
h Jones

eigenfrequen
y there 
orrespond only �nitely many linearly independent

Jones modes (
f. [56℄). In general, J

G

(


1

) and J

H

(


1

) are not empty (see

[45℄, [42℄), hoewer there exist domains for whi
h they are empty sets (for

details see [45℄, [25℄, [37℄).

The above arguments easily lead to the following proposition.

Theorem 9.9. The homogeneous problems (G)

!

and (H)

!

have only the

trivial solutions in the 
lass (C

1

(


1

) ; C

1

(


2

) \ SK

m

r

(


2

)) with r = 1 for

! > 0 and r = 2 for ! < 0, provided that ! is not a 
orresponding Jones

eigenfrequen
y.

Analogous uniqueness theorems hold valid also in the 
ase of the weak

formulation of the basi
 steady state os
illation interfa
e problems.

Theorem 9.10. The homogeneous interfa
e problem (C)

!

has only the

trivial solution in the 
lass (W

1

2

(


1

) ; W

1

2;lo


(


2

)\SK

m

r

(


2

)) with r = 1 for

! > 0 and r = 2 for ! < 0.
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Theorem 9.11. The homogeneous interfa
e problems (G)

!

and (H)

!

have only the trivial solutions in the 
lass (W

1

2

(


1

) ; W

1

2;lo


(


2

)\SK

m

r

(


2

))

with r = 1 for ! > 0 and r = 2 for ! < 0, provided that ! is not a


orresponding Jones eigenfrequen
y.

The proofs of these assertions are quite similar to the proof of Theo-

rem 9.6.

The uiqueness theorems for the homogeneous mixed interfa
e problems

requires some new ideas whi
h will be presented below.

Theorem 9.12. The homogeneous mixed interfa
e problems (C �DD)

!

,

(C � NN )

!

, (C � DC)

!

, (C � NC)

!

, (C � G)

!

, (C � H)

!

, have only the

trivial solutions in the 
lass (W

1

2

(


1

) ; W

1

2;lo


(


2

) \ SK

m

r

(


2

)) with r = 1

for ! > 0 and r = 2 for ! < 0.

Proof. We demonstrate the proof for the problem (C � DD)

!

sin
e it is

verbatim for the other problems.

Let (U

(1)

; U

(2)

) be an arbitrary solution of the homogeneous interfa
e

problem (C � DD)

!

of the 
lass indi
ated in the theorem. By the same

analysis as in the proof of Theorems 9.6 and 9.8 we again arrive at the

equations (9.51) and (9.52). To see this, one has to apply the identities (9)

and (9) where the surfa
e integrals over S should be repla
ed by the ap-

propriate duality relations, in a

ordan
e with the de�nitions of fun
tional

tra
es, and afterwards to take into a

ount the homogeneity of the 
orre-

sponding transmission and boundary 
onditions of the problem in question

(see (7.13), (7.14)).

As a result we obtain that the ve
tor fun
tion U

(1)

= (u

(1)

; 0)

>

2W

1

2

(


1

)

has to satisfy the 
onditions:

A

(1)

(D;�i!)U

(1)

(x) = 0 in 


1

; (9.57)

[U

(1)

℄

+

= 0 on S = S

1

[ S

2

; (9.58)

[B

(1)

(D;n)U

(1)

℄

+

= 0 on S

1

: (9.59)

Note that we may apply the representation (9.50) for the ve
tor-fun
tion

U

(1)

under 
onsideration (see Theorem 10.8, item ii) in Se
tion 10). There-

fore, we have

U

(1)

(x) =

R

S

2

�

(1)

(x � y; !; r) [B

(1)

(D;n)U

(1)

℄

+

dS; x 2 


1

; (9.60)

where [B

(1)

(D;n)U

(1)

℄

+

2

e

B

�1=2

2;2

(S

2

) due to the 
ondition (9.59).

It is evident that we 
an extend the ve
tor fun
tion U

(1)

from 


1

onto

the whole R

3

S

2

by the same formula (9.60) sin
e the right-hand side integral

is de�ned in R

3

S

2

. Denote this extension by the symbol

e

U

(1)

From the above representation it follows that (
f. Theorem 10.8)

e

U

(1)

2W

1

2;lo


(R

3

S

2

) \ SK

m

r

(R

3

S

2

); (9.61)

[

e

U

(1)

℄

+

= 0 and [

e

U

(1)

℄

�

= 0 on S

2

; (9.62)

A

(1)

(D;�i!)

e

U

(1)

(x) = 0 in R

3

S

2

: (9.63)
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The se
ond equation in (9.62) is a 
onsequen
e of the \
ontinuity" property

of the so-
alled single layer integral operator (9.60) (see below Theorem

10.8).

Thus, we have established that the ve
tor fun
tion

e

U

(1)

given by the

integral (9.60) solves the homogeneous 
ra
k type problem (9.61)-(9.63) in

the sap
e W

1

2;lo


(R

3

S

2

) \ SK

m

r

(R

3

S

2

) where r and ! are as in Theorem 9.12.

Due to Theorem 9.7 we then 
on
lude that

e

U

(1)

vanishes in R

3

S

2

, whi
h


ompletes the proof. �

We note that properties of surfa
e potentials similar to (9.60) and bound-

ary integral operators 
orresponding to them will be studied in detail in

various fun
tional spa
es in the next 
hapter.
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CHAPTER IV

POTENTIALS AND BOUNDARY INTEGRAL OPERATORS

In this 
hapter we introdu
e and study the generalized single and double

layer potentials of the thermoelastisity theory of anisotropi
 bodies. We

investigate their smoothness properties in the 
losed domains, asymtoti


behaviour at in�nity and establish jump relations on the surfa
e of inte-

gration. We analyse also boundary integral (pseudodi�erential) operators

generated by these potentials and 
onsider their mapping properties in var-

ious fun
tional spa
es. Note that the analogous questions for the potential

type operators in the elasti
ity theory of isotropi
 and anisotropi
 bodies

have been exaustively studied in [45℄, [8℄, [34℄, [35℄, [59℄, [17℄, [41℄, [13℄, [56℄,

[32℄.

In Se
tion 10 we examine in detail properties of the thermoelasti
 steady

state os
illation potentials and afterwards, in Se
tion 11, we brie
y treat

the same topi
s for the pseudo-os
illation potentials.

10. Thermoelasti
 Steady State Os
illation Potentials

10.1. Let us introdu
e the following generalized single and double layer

steady state os
illation potentials 
onstru
ted by the fundamental solution

(2.29)

V (g)(x) :=

R

S

�(x� y; !; r) g(y) dS

y

; x 2 R

3

n S; (10.1)

W (g)(x) :=

R

S

[Q(D

y

; n(y);�i!)�

>

(x� y; !; r)℄

>

g(y)dS

y

; x2R

3

n S; (10.2)

where S = �


�

, g = (g

1

; : : : ; g

4

)

>

= (eg; g

4

)

>

, eg = (g

1

; g

2

; g

3

)

>

; the operator

Q(D;n;�i!) is de�ned by (1.26) with { = �i!.

Note that here and in what follows, for simpli
ity of the notations, we do

not mark with the subs
ript ! the steady state os
illation potentials and

the integral operators 
orresponding to them.

To investigate the existen
e of solutions to the nonhomogeneous BVPs

posed in Chapter II we need spe
ial mapping properties of the above po-

tentials and the boundary integral (pseudodi�erential) operators generated

by them.

Let

H g(z) =

R

S

�(z � y; !; r) g(y) dS

y

; z 2 S; (10.3)

K

1

g(z) =

R

S

[B(D

z

; n(z))�(z � y; !; r)℄ g(y) dS

y

; z 2 S; (10.4)

K

2

g(z) =

R

S

[Q(D

y

; n(y);�i!)�

>

(z � y; !; r)℄

>

g(y) dS

y

; z 2 S; (10.5)

L

�

g(z) = lim




�

3x!z2S

B(D

x

; n(z))W (g)(x); z 2 S; (10.6)
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where the boundary di�erential operator B(D;n) is given by (1.25). Here

the integrals (10.4) and (10.5) are understood in the Cau
hy prin
ipal value

sense.

In the sequel everywhere the two positive numbers � and �

0

are subje
ted

to the inequalities 0 < � < �

0

� 1:

Lemma 10.1. Let k � 0 be an integer and S 2 C

k+1;�

0

. Then for an ar-

bitrary summable g the potentials V (g) and W (g) are C

1

-smooth solutions

to the equation (1:10) in 


�

and belong to the 
lass SK

m

r

(


�

).

The following formulae

[V (g)(z)℄

+

= [V (g)(z)℄

�

= H g(z); g 2 C(S); (10.7)

[B(D;n)V (g)(z)℄

�

= (�2

�1

I

4

+K

1

) g(z); g 2 C

�

(S); (10.8)

[W (g)(z)℄

�

= (�2

�1

I

4

+K

2

) g(z); g 2 C

�

(S); (10.9)

hold and the operators

H : C

l;�

(S)! C

l+1;�

(S); (10.10)

K

1

; K

2

: C

l;�

(S)! C

l;�

(S); (10.11)

V : C

l;�

(S)! C

l+1;�

(


�

); (10.12)

W : C

l;�

(S)! C

l;�

(


�

); (10.13)

where 0 � l � k, are bounded.

Proof. The �rst part of the lemma follows immediately from the properties

of the fundamental matrix �(x� y; !; r) and is trivial, sin
e the 
olumns of

�(x� y; !; r) are solutions of the homogeneous equation (1.10) for x 6= y.

To prove the se
ond part, we pro
eed as follows.

From equations (1.25), (1.26), and Theorem 2.3 we have

�(x� y; !; r)� �(x� y) =:

e

�(x � y; !; r); (10.14)

B(D;n) = B

0

(D;n)�

e

B(n); (10.15)

Q(D;n;�i!) = B

0

(D;n)� i!T

0

e

B(n); (10.16)

where jD

�

e

�

kj

(x; !; r)j < 
'

(kj)

j�j

(x); k; j = 1; : : : ; 4; in a vi
inity of the

origin,

B

0

(D;n)=

�

[T (D;n)℄

3�3

[0℄

3�1

[0℄

1�3

�

n

�

4�4

;

e

B(n)=

�

[0℄

3�3

[�

kj

n

j

℄

3�1

[0℄

1�3

0

�

4�4

;

here �(x), �, 
 and '

(kj)

j�j

are as in Lemma 2.1.

Therefore, we 
an single out the dominant singular terms in the above

potentials and represent them in the form

V (g)(x) = V

0

(g)(x) +

e

V (g)(x); (10.17)

W (g)(x) =W

0

(g)(x) +

f

W (g)(x); (10.18)

B(D;n)V (g)(x) �B

0

(D;n)V

0

(g)(x) =: R(g)(x);
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where

V

0

(g)(x) =

R

S

�(x� y) g(y) dS

y

;

W

0

(g)(x) =

R

S

[B

0

(D

y

; n(y))�(x� y)℄

>

g(y) dS

y

:

The kernels of the potentials

e

V (g),

f

W (g) and R(g) have singularities of type

O(jx� yj

�1

) as jx� yj ! 0: Therefore,

e

V ,

f

W , and R are 
ontinuous ve
tors

in R

3

provided g 2C(S).

It is easy to see that

V

0

(g) = (v

(0)

(eg); v

(0)

4

(g

4

))

>

; W

0

(g) = (w

(0)

(eg); w

(0)

4

(g

4

))

>

;

B

0

(D;n)V

0

(g) = (T (D;n)v

(0)

(eg); �

n

v

(0)

4

(g

4

))

>

;

where v

(0)

(eg) and w

(0)

(eg) are single and double layer potentials of elastostat-

i
s (
orresponding to the operator C(D)) 
onstru
ted by the fundamental

matrix �

(0)

(x):

v

(0)

(eg)(x) :=

R

S

�

(0)

(x� y) eg(y) dS

y

; (10.19)

w

(0)

(eg)(x) :=

R

S

[T (D

y

; n(y))�

(0)

(y � x)℄

>

eg(y) dS

y

; (10.20)

while v

(0)

4

(g

4

) and w

(0)

4

(g

4

) are potentials of the same type (
orresponding to

the homogeneous operator �(D)) 
onstru
ted by the fundamental fun
tion




(0)

(x):

v

(0)

4

(g

4

)(x) :=

R

S




(0)

(x� y) g

4

(y) dS

y

; (10.21)

w

(0)

4

(g

4

)(x) :=

R

S

�

n(y)




(0)

(y � x) g

4

(y) dS

y

(10.22)

(see Lemma 2.1).

The properties of the latter potentials and boundary integral operators

on S, generated by them, are studied in detail for regular fun
tion spa
es

in [8℄, [52℄, [56℄, [57℄, [59℄. The results in the above mentioned referen
es

together with the representation formulae (10.17)-(10.18) yield equations

(10.7)-(10.9) and mapping properties (10.10)- (10.13). �

For a pseudodi�erential operator (	DO) K on S we denote by (K)

0

and

�(K)(x;

e

�) (x 2 S;

e

� 2 R

2

nf0g) the dominant singular part and the prin
ipal

homogeneous symbol, respe
tively. As usual, if no 
onfusion arises, in the

sequel the arguments x and

e

� will be omitted.

Lemma 10.2. The operators H; �2

�1

I

4

+ K

1

, and �2

�1

I

4

+ K

2

are

ellipti
 	DOs of order �1; 0; and 0, respe
tively, with index equal to zero.

Proof. From equations (10.14)-(10.16) and (10.3)-(10.5) it follows that

(H)

0

=

�

[H

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

H

(0)

4

�

4�4

; (10.23)
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(�2

�1

I

4

+K

1

)

0

=

�

[�2

�1

I

3

+K

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�1

I

1

+K

(0)

4

�

4�4

; (10.24)

(�2

�1

I

4

+K

2

)

0

=

2

4

[�2

�1

I

3

+

�

K

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�1

I

1

+

�

K

(0)

4

3

5

4�4

; (10.25)

where

H

(0)

eg(z) =

R

S

�

(0)

(z � y) eg(y) dS

y

; H

(0)

4

g

4

(z) =

R

S




(0)

(z � y) g

4

(y) dS

y

;

K

(0)

eg(z) =

R

S

[T (D

z

; n(z))�

(0)

(z � y)℄ eg(y) dS

y

;

�

K

(0)

eg(z) =

R

S

[T (D

y

; n(y))�

(0)

(y � z)℄

>

eg(y) dS

y

;

K

(0)

4

g

4

(z) =

R

S

�

n(z)




(0)

(z � y) g

4

(y) dS

y

;

�

K

(0)

4

g

4

(z) =

R

S

�

n(y)




(0)

(y � z) g

4

(y) dS

y

:

(10.26)

Due to the general theory of 	DOs (see, e.g., [77℄, [20℄) we have to show

that the prin
ipal symbol matri
es of the operators (10.23), (10.24), and

(10.25) are nonsingular and that the indi
es of these operators are equal to

zero.

It is evident that K

(0)

[K

(0)

4

℄ and

�

K

(0)

[

�

K

(0)

4

℄ are mutually adjoint sin-

gular integral operators while H

(0)

[H

(0)

4

℄ is a formally self-adjoint integral

operator with a weakly singular kernel of the type O(jx� yj

�1

).

For the prin
ipal symbols we have (see [56℄, [59℄, [39℄)

�(H

(0)

) = �

1

2�

R

l

�

[C(a�)℄

�1

d�

3

= �

1

2�

+1

R

�1

[C(a�)℄

�1

d�

3

; (10.27)

�(�2

�1

I

3

+K

(0)

) =

i

2�

R

l

�

T (a�; n) [C(a�)℄

�1

d�

3

=

= [�(�2

�1

I

3

+

�

K

(0)

)℄

>

; (10.28)

�(H

(0)

4

) = �

1

2�

R

l

�

[�(a�)℄

�1

d�

3

= �

1

2�

+1

R

�1

[�(a�)℄

�1

d�

3

< 0; (10.29)

�(�2

�1

I

1

+K

(0)

4

) =

i

2�

R

l

�

�(a�; n) [�(a�)℄

�1

d�

3

=

= �(�2

�1

I

1

+

�

K

(0)

4

) = �2

�1

; (10.30)

where � = (

e

�; �

3

);

e

� = (�

1

; �

2

) 2 R

2

n f0g, �(�; n) is de�ned by (1.24),

a(x) =

2

4

l

1

(x) m

1

(x) n

1

(x)

l

2

(x) m

2

(x) n

2

(x)

l

3

(x) m

3

(x) n

3

(x)

3

5
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is an orthogonal matrix with deta(x) = +1, l = (l

1

; l

2

; l

3

)

>

; m = (m

1

;m

2

;

m

3

)

>

and n = (n

1

; n

2

; n

3

)

>

is a triple of orthogonal ve
tors at x 2 S (l

and m lie in the tangent plane at x 2 S and n is again the exterior unit

normal), l

�

(l

+

) is a 
losed 
lo
kwise (
ounter-
lo
kwise) oriented 
ontour

in the lower (upper) 
omplex half-plane �

3

= �

0

3

+ i�

00

3

en
losing all roots of

the equations detC(a�) = 0, �(a�) = 0, with respe
t to �

3

with negative

(positive) imaginary parts. The last equation in (10.30) follows due to the

fa
t that the kernel-fun
tion of the integral operators K

(0)

4

and

�

K

(0)

4

have

weak singularities of type O(jx � yj

�2+�

0

) on a C

1;�

0

-smooth manifold.

The entries of the matri
es (10.28) are homogeneous fun
tions of order

0, while (10.27) and (10.29) are homogeneous fun
tions of order �1 in

e

�.

Moreover, all the above prin
ipal homogeneous symbols are nonsingular for

j

e

�j = 1, the 
orresponding integral operators are ellipti
 	DOs of order 0

and �1, respe
tively, and their indi
es are equal to zero (for details see [56℄,

[59℄, [41℄, [16℄).

Now (10.23), (10.24), and (10.25) imply

�(H) =

�

[�(H

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(H

(0)

4

)

�

4�4

; (10.31)

�(�2

�1

I

4

+K

1

) = [�(�2

�1

I

4

+K

2

)℄

>

=

=

"

[�(�2

�1

I

3

+K

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(�2

�1

I

1

+K

(0)

4

)

#

4�4

; (10.32)

whi
h together with equations (10.23){(10.25) 
ompletes the proof. �

Remark 10.3. More subtle analysis of the fundamental solution �(x; !; r)

shows that in a vi
inity of the origin the following representation

�(x; !; r) = �(x) + i

e

�

0

(x)� !T

0

[

e

�

0

(x)℄

>

+

e

�

00

(x; !; r); (10.33)

e

�

0

(x) =

�

[0℄

3�3

[

e

�

0

k4

(x)℄

3�1

[0℄

1�3

0

�

4�4

;

holds, where �(x) is the same as in Lemma 2:1 and

e

�

0

k4

(x) is independent

of !; �rst order derivatives of

e

�

0

k4

(x) are homogeneous fun
tions of order

�1 and jD

�

e

�

0

k4

(x)j < 
'

(k4)

j�j

(x) with the same '

(k4)

j�j

(x) as in Lemma 2:1;

the se
ond order derivatives of the entries of the matrix

e

�

00

(x; !; r) have

singularities of the type O(jxj

�1

).

Remark 10.4. Note that the operator �H

(0)

[�H

(0)

4

℄ is a positive operator

whi
h implies that the 
orresponding prin
ipal homogeneous symbol is a

positive de�nite matrix [is a positive fun
tion℄ (see [56℄). Therefore, the

prin
ipal homogeneous symbol matrix �(�H) is also positive de�nite due

to the equation (10.31) and the inequality (10.29).
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10.2. Now we turn our attention to the equation (10.6). To prove the

existen
e of limits (10.6) and to study properties of the operators L

�

we

need some auxiliary results whi
h are now presented.

Lemma 10.5. Let U = (u; u

4

)

>

be a regular solution of the homogeneous

interior problem (P

1

)

+

!

. Then u

4

(x) = 0 in 


+

and u is a solution to

the following interior homogeneous BVP of steady state os
illations of the

elasti
ity theory

C(D)u(x) + !

2

u(x) = 0 in 


+

; (10.34)

[u(z)℄

+

= 0 on S; (10.35)

satisfying, in addition, the equation �

kj

D

j

u

k

= 0 in 


+

.

Proof. The equation u

4

(x) = 0 in 


+

follows from the identity (1.23), if

we look at the imaginary part. Then we obtain the BVP (10.34)-(10.35)

for the displa
ement ve
tor u with the additional equation indi
ated in the

lemma due to the homogeneous 
onditions of the problem (P

1

)

+

!

. �

By �[(P

1

)

+

!

℄ we denote the spe
tral set 
orresponding to the problem

(P

1

)

+

!

(i.e., the set of values of the parameter ! for whi
h the homogeneous

problem (P

1

)

+

!

possesses a nontrivial solution). Note that the spe
tral set


orresponding to the problem (10.34){(10.35) is at most 
ountable. There-

fore, Lemma 10.5 implies the following proposition (
f. [56℄).

Corollary 10.6. The set �[(P

1

)

+

!

℄ is either �nite or 
ountable (with the

only possible a

umulation point at in�nity).

Now we are ready to examine the properties of the hypersingular opera-

tors L

�

.

Lemma 10.7. Let S 2 C

2;�

0

and g 2 C

1;�

(S). Then limits (10:6) exist

and

L

+

g(z) = L

�

g(z) =: L g(z); z 2 S: (10.36)

Moreover, the operator

L : C

l+1;�

(S)! C

l;�

(S); S 2 C

k+2;�

0

; k � 0; 0 � l � k; (10.37)

is a bounded singular integro-di�erential operator with nonsingular positive

de�nite prin
ipal homogeneous symbol matrix and with index equal to zero.

Proof. First we prove the existen
e of limits (10.6). With the help of

equations (10.15), (10.16), and (10.33) we dedu
e

B(D

x

; n(x))[Q(D

y

; n(y);�i!)�

>

(x� y; !; r)℄

>

=

e

K

3

(x; y; x� y) +

+[

e

K

0

2

(x; y; x� y) + !T

0

e

K

00

2

(x; y; x � y)℄ +

e

K

1

(x; y; x� y;!); (10.38)

where

e

K

3

(x; y; x� y) = B

0

(D

x

; n(x))[B

0

(D

y

; n(y))�(y � x)℄

>

=

=

�

[T (D

x

; n(x))[T (D

y

; n(y))�(y � x)℄

>

℄

3�3

[0℄

3�1

[0℄

1�3

�

n(x)

�

n(y)




(0)

(y � x)

�

4�4
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is a hypersingular kernel with the entries of the type O(jx�yj

�3

) as jx�yj !

0; while

e

K

0

2

(x; y; x� y) = iB

0

(D

x

; n(x))fB

0

(D

y

; n(y))[

e

�

0

(x� y)℄

>

g

>

�

�

e

B(n(x))[B

0

(D

y

; n(y))�(x � y)℄

>

and

e

K

00

2

(x; y; x� y) = �B

0

(D

x

; n(x))[B

0

(D

y

; n(y))

e

�

0

(x � y)℄

>

�

�i[B

0

(D

x

; n(x))�(x � y)℄

e

B

>

(n(y))

are singular kernels on S with the entries of the type O(jx�yj

�2

) as jx�yj !

0, and the entries of the matrix

e

K

1

(x; y; x � y;!) have singularities of the

type O(jx � yj

�1

). Note that here either x 2 


+

or x 2 


�

.

In turn, (10.38) implies

B(D

x

; n(x))W (g)(x) = (T (D

x

; n(x))w

(0)

(eg)(x); �

n(x)

w

(0)

4

(g

4

)(x))

>

+

+

R

S

[

e

K

0

2

(x; y; x� y) + !T

0

e

K

00

2

(x; y; x� y)℄ g(y) dS

y

+

+

R

S

e

K

1

(x; y; x� y;!) g(y) dS

y

; (10.39)

where w

(0)

(eg) and w

(0)

4

(g

4

) are de�ned by (10.20) and (10.22), respe
tively.

It 
an be shown (see [56℄, [59℄, [16℄, [39℄) that the limits

lim




�

3x!z2S

T (D

x

; n(x))w

(0)

(eg)(x) = L

(0)

eg(z); (10.40)

lim




�

3x!z2S

�

n(x)

w

(0)

4

(g

4

)(x) = L

(0)

4

g

4

(z) (10.41)

exist for any g

k

2C

1;�

(S); k = 1; : : : ; 4; and that the operators L

(0)

and L

(0)

4

are non-negative, formally self-adjoint singular integro-di�erential operators

with positive de�nite prin
ipal symbols

�(L

(0)

) = �

1

2�

R

l

�

T (a�; n) [C(a�)℄

�1

T

>

(a�; n) d�

3

; (10.42)

�(L

(0)

4

) = �

1

2�

R

l

�

�

2

(a�; n) [�(a�)℄

�1

d�

3

= �[4�(H

(0)

4

)℄

�1

: (10.43)

Here the 
ontours l

�

are the same as in formulae (10.27)-(10.30).

The operators L

(0)

and L

(0)

4

are ellipti
 	DOs of order 1 with index equal

to zero and they possess mapping property (10.37) (for details see [16℄).

Further, Remark 10.3 yields that there exist limits on S from 


�

of the

se
ond term in the right-hand side expression of (10.39)

lim




�

3x!z2S

R

S

[

e

K

0

2

(x; y; x� y) + !T

0

e

K

00

2

(x; y; x� y)℄ g(y) dS

y

=

= [�

0

�

(z) + !T

0

�

00

�

(z)℄g(z) +

e

K

0

2

g(z) + !T

0

e

K

00

2

g(z);
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where

e

K

0

2

and

e

K

00

2

are singular integral operators with singular kernels

e

K

0

2

and

e

K

00

2

, respe
tively; �

0

�

and �

00

�

are some smooth matri
es independent of

! (we do not need their expli
it expressions for our purposes).

The existen
e of the limits on S (from 


�

) of the third term in the right-

hand side of (10.39) is evident. It is also obvious that these limits are equal

to ea
h other and that the boundary operator

e

K

1

, generated by this term,

is a weakly singular integral operator (	DO of order s � �1).

Thus, the existen
e of the operators L

�

is proved in the spa
e C

1;�

(S)

and we have

L

�

g(z) =

�

[L

(0)

eg(z)℄

3�3

[0℄

3�1

[0℄

1�3

L

(0)

4

g

4

(z)

�

4�4

+

+[�

0

�

(z) + !T

0

�

00

�

(z)℄g(z) +

e

K

0

2

g(z) + !T

0

e

K

00

2

g(z) +

e

K

1

g(z): (10.44)

We also see that the operators (10) possess the mapping property (10.37).

It remains to show L

+

= L

�

:

The integral representation formulae (3.2) and (3.3) of a regular ve
tor

U we rewrite as follows

U(x) = �fW ([U ℄

�

)(x)� V ([BU ℄

�

)(x)g; x 2 


�

; (10.45)

provided A(D;�i!)U(x) = 0 in 


�

and U 2 SK

m

r

(


�

); here W and V are

double and single layer potentials operators (see (10.1) and (10.2)).

Due to Lemma 10.1 from (10.45) we have

(�2

�1

I

4

+K

2

)[U ℄

+

= H[BU ℄

+

; (2

�1

I

4

+K

2

)[U ℄

�

= H[BU ℄

�

;

where the operatorsH and K

2

are de�ned by (10.3) and (10.5), respe
tively.

If in these equations we substitute U(x) = W (g)(x) with an arbitrary

g 2C

1;�

(S), apply the same Lemma 10.1 and the above results 
on
erning

the limits (10.6), we arrive at the following relations

(�2

�1

I

4

+K

2

)(2

�1

I

4

+K

2

) g = HL

+

g;

(2

�1

I

4

+K

2

)(�2

�1

I

4

+K

2

) g = HL

�

g:

(10.46)

When
e

H(L

+

g �L

�

g) = 0: (10.47)

By (10) we have L

+

g�L

�

g =: h 2 C

�

(S) and, therefore, V (h) is a regular

ve
tor in 


�

.

Now, on one side, (10.47) yields that V (h) is a regular solution to the

homogeneous roblem (P

1

)

�

!

and we 
on
lude V (h)(x) = 0; x 2 


�

; due

to Theorem 9.5.

On the other side, the same equation (10.47) implies that V (h) is a regular

solution to the homogeneous problem (P

1

)

+

!

as well, and, by Corollary 10.6,

we get V (h)(x) = 0; x 2 


+

; provided ! 62 �[(P

1

)

+

!

℄:

The above equations imply h = [BV (h)℄

�

� [BV (h)℄

+

= 0:
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Thus, we have proved that L

+

g = L

�

g for all g 2 C

1;�

(S) if ! 62

�[(P

1

)

+

!

℄; whi
h a

ording to (10) leads to the equation

[�

0

+

(z)� �

0

�

(z)℄g(z) + !T

0

[�

00

+

(z)� �

00

�

(z)℄g(z) = 0:

Consequently, �

0

+

(z) = �

0

�

(z); �

00

+

(z) = �

00

�

(z); and (10.36) holds for

an arbitrary value of the parameter !.

It is also evident that the dominant singular part (L)

0

of the operator L

and the 
orresponding prin
ipal homogeneous symbol matrix read

(L)

0

=

�

[L

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(0)

4

�

4�4

; (10.48)

�(L) =

�

[�(L

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(L

(0)

4

)

�

4�4

(10.49)

(see (10.40){(10.43)). When
e the positive de�niteness of the matrix (10.49)

and the formally self-adjointness of the operator (10.48) follow immediately,

sin
e the matrix �(L

(0)

) is positive de�nite and, as formulae (10.46), (10.29),

and (10.30) show

�(L

(0)

4

) = �[4�(H

(0)

4

)℄

�1

> 0: (10.50)

The proof is 
ompleted. �

10.3. In this subse
tion we 
olle
t the known results 
on
erning some

properties of the above introdu
ed single and double layer potentials in

Besov and Bessel-potential spa
es. The proof of the theorem below is, in

fa
t, the same as proof of analogous theorem in the elasti
ity theory (or

even in the theory of harmoni
 fun
tions). One has to relay on the fa
t that

regular fun
tion spa
es are densely embedded in Besov and Bessel-potential

fun
tional spa
es, and apply the usual limiting extension pro
edure together

with the duality and interpolation prin
iples (for details we refer to, for

example, [16℄, [17℄, [13℄, [53℄).

Theorem 10.8. The operators (10:12), (10:13), (10:10), (10:11), and

(10:37) 
an be extended by 
ontinuity to the following bounded operators

V : B

s

p;p

(S)!H

s+1+1=p

p

(


+

) [B

s

p;p

(S)!H

s+1+1=p

p;lo


(


�

)\SK

m

r

(


�

)℄;

: B

s

p;q

(S)!B

s+1+1=p

p;q

(


+

) [B

s

p;q

(S)!B

s+1+1=p

p;q;lo


(


�

)\SK

m

r

(


�

)℄;

W : B

s

p;p

(S)!H

s+1=p

p

(


+

) [B

s

p;p

(S)!H

s+1=p

p;lo


(


�

)\SK

m

r

(


�

)℄;

: B

s

p;q

(S)!B

s+1=p

p;q

(


+

) [B

s

p;q

(S)!B

s+1=p

p;q;lo


(


�

)\SK

m

r

(


�

)℄;

H : H

s

p

(S)! H

s+1

p

(S) [B

s

p;q

(S)! B

s+1

p;q

(S)℄;

K

1

;K

2

: H

s

p

(S)! H

s

p

(S) [B

s

p;q

(S)! B

s

p;q

(S)℄;

L : H

s+1

p

(S)! H

s

p

(S) [B

s+1

p;q

(S)! B

s

p;q

(S)℄;

for arbitrary s 2 R; 1 < p <1; 1 � q � 1; provided S 2 C

1

. Moreover,

i) for these extended operators the formulae (10:7), (10:8), (10:9), and

(10:36) remain valid in the 
orresponding spa
es;
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ii) the integral representation formula (3:3) remains valid for U 2W

1

p

(


�

)

\ SK

m

r

(


�

) with A(D;�i!)U = 0 in 


�

; the integral representation for-

mula (3:2) in 


+

remains valid for U 2 W

1

p

(


+

) with � = �i! and

A(D;�i!)U = 0 in 


+

.

11. Thermoelasti
 Pseudo-Os
illation Potentials

In this se
tion we deal with the single and double layer pseudo-os
illation

potentials whi
h are de�ned as follows

V

�

(g)(x) :=

R

S

�(x� y; �) g(y) dS

y

; x 2 R

3

n S; (11.1)

W

�

(g)(x) :=

R

S

[Q(D

y

; n(y); �)�

>

(x � y; �)℄

>

g(y) dS

y

; x 2 R

3

n S; (11.2)

where �(x � y; �) is the fundamental matrix de�ned by (2.2), S = �


�

,

g = (g

1

; : : : ; g

4

)

>

= (eg; g

4

)

>

, eg = (g

1

; g

2

; g

3

)

>

; the operator Q(D;n; �) is

de�ned by (1.26) with { = � .

Due to the results of Se
tion 2 it is evident that the mapping properties

and the jump relations of the above pseudo-os
illation potentials and the

steady state os
illation potentials (10.1){(10.2) are the same. It is also

obvious that the asymptoti
 behaviour of the potentials (11.1){(11.2) at

in�nity is quite similar to the asymptoti
 behaviour of the fundamental

matrix �(x� y; �) sin
e S is a 
ompa
t surfa
e.

Next, we introdu
e the boundary integral (pseudodi�erential) operators

generated by the pseudo-os
illation potentials

H

�

g(z) =

R

S

�(z � y; �) g(y) dS

y

; z 2 S; (11.3)

K

1;�

g(z) =

R

S

[B(D

z

; n(z))�(z � y; �)℄ g(y) dS

y

; z 2 S; (11.4)

K

2;�

g(z) =

R

S

[Q(D

y

; n(y); �)�

>

(z � y; �)℄

>

g(y) dS

y

; z 2 S; (11.5)

L

�

�

g(z) = lim




�

3x!z2S

B(D

x

; n(z))W

�

(g)(x); z 2 S; (11.6)

where the boundary di�erential operator B(D;n) is given again by (1.25),

and the integrals (11.4) and (11.5) are understood in the Cau
hy prin
ipal

value sense.

The properties of the above introdu
ed operators are des
ribed by the

following propositions.

Theorem 11.1. Let k � 0 be an integer and S 2 C

k+1;�

0

. Then for

an arbitrary summable g the potentials V

�

(g) and W

�

(g) are C

1

-smooth

solutions to the equation (1:9) in 


�

and together with all derivatives they

de
rease more rapidly then any negative power of jxj as jxj ! +1.

Moreover, if 0 � l � k, then

i) the operators

V

�

: C

l;�

(S)! C

l+1;�

(


�

); (11.7)

W

�

: C

l;�

(S)! C

l;�

(


�

) (11.8)
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are bounded, and

[V

�

(g)(z)℄

+

= [V

�

(g)(z)℄

�

= H

�

g(z); g 2 C(S); (11.9)

[B(D;n)V

�

(g)(z)℄

�

= (�2

�1

I

4

+K

1;�

) g(z); g 2 C

�

(S); (11.10)

[W

�

(g)(z)℄

�

= (�2

�1

I

4

+K

2;�

) g(z); g 2 C

�

(S); (11.11)

L

+

�

g = L

�

�

g =: L

�

g; g 2 C

1;�

(S); k � 1; (11.12)

ii) the operators

H

�

: C

l;�

(S)! C

l+1;�

(S); (11.13)

K

1;�

; K

2;�

: C

l;�

(S)! C

l;�

(S); (11.14)

L

�

: C

l+1;�

(S)! C

l;�

(S); (11.15)

are bounded.

Theorem 11.2. The operators H

�

, �2

�1

I

4

+K

1;�

, �2

�1

I

4

+K

2;�

, and L

�

are ellipti
 	DOs of order �1; 0; 0; and 1, respe
tively, with index equal to

zero. Moreover, the prin
ipal homogeneous symbol matri
es of the operators

�H

�

and L

�

are positive de�nite.

Theorem 11.3. The operators (11:7), (11:8), and (11:13){(11:15) 
an

be extended by 
ontinuity to the following bounded operators

V

�

: B

s

p;p

(S)! H

s+1+1=p

p

(


�

) [B

s

p;q

(S)! B

s+1+1=p

p;q

(


�

)℄;

W

�

: B

s

p;p

(S)! H

s+1=p

p

(


�

) [B

s

p;q

(S)! B

s+1=p

p;q

(


�

)℄;

H

�

: H

s

p

(S)! H

s+1

p

(S) [B

s

p;q

(S)! B

s+1

p;q

(S)℄;

K

1;�

;K

2;�

: H

s

p

(S)! H

s

p

(S) [B

s

p;q

(S)! B

s

p;q

(S)℄;

L

�

: H

s+1

p

(S)! H

s

p

(S) [B

s+1

p;q

(S)! B

s

p;q

(S)℄;

for arbitrary s 2 R; 1 < p <1; 1 � q � 1; provided S 2 C

1

. Moreover,

i) for these extended operators the formulae (11:9){(11:12) remain valid

in the 
orresponding spa
es;

ii) the integral representation formula (3:2) remains valid for U 2W

1

p

(


�

)

with A(D; �)U = 0 in 


�

, provided that U satis�es the de
ay 
ondition

(1:30) at in�nity in the 
ase of the domain 


�

.

Clearly, the proofs of these theorems are verbatim the proofs of the anal-

ogous propositions in the previous se
tion and, therefore, we omit them (for

details see [16℄).

We note here that the formula similar to (10.46) holds also for the pseudo-

os
illation operators and read as

(�2

�1

I

4

+K

2;�

)(2

�1

I

4

+K

2;�

) = H

�

L

�

: (11.16)

Applying the general integral representation formula (3.2) for U(x) =

V

�

(g)(x) we 
an also easily derive the following identity

(�2

�1

I

4

+K

1;�

)(2

�1

I

4

+K

1;�

) = L

�

H

�

: (11.17)

Remark 11.4. The results of Se
tion 2 imply that the dominant singular

parts and the prin
ipal homogeneous symbol matri
es of the operators H

�

,
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�2

�1

I

4

+K

1;�

, �2

�1

I

4

+K

2;�

, and L

�

read as (
f. (10.23)-(10.25), (10.48),

(10.31), (10.32), (10.49))

(H

�

)

0

=

�

[H

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

H

(0)

4

�

4�4

; (11.18)

(�2

�1

I

4

+ K

1;�

)

0

=

�

[�2

�1

I

3

+K

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�1

I

1

+K

(0)

4

�

4�4

; (11.19)

(�2

�1

I

4

+K

2;�

)

0

=

2

4

[�2

�1

I

3

+

�

K

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�1

I

1

+

�

K

(0)

4

3

5

4�4

; (11.20)

(L

�

)

0

=

�

[L

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(0)

4

�

4�4

; (11.21)

and

�(�2

�1

I

4

+K

1;�

) = [�(�2

�1

I

4

+K

2;�

)℄

>

=

=

"

[�(�2

�1

I

3

+K

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(�2

�1

I

1

+K

(0)

4

)

#

4�4

; (11.22)

�(H

�

) =

�

[�(H

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(H

(0)

4

)

�

4�4

; (11.23)

�(L

�

) =

�

[�(L

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(L

(0)

4

)

�

4�4

: (11.24)

The matri
es (11.22){(11.24), as it has been shown in the previous se
-

tion, are nonsingular. Moreover, �(�H

�

) and �(L

�

) are positive de�nite.
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CHAPTER V

REGULAR BOUNDARY VALUE AND

INTERFACE PROBLEMS

Here we 
onsider the nonhomogeneous regular basi
 boundary value and

interfa
e problems formulated in Chapter II for the pseudo-os
illation and

steady state os
illation equations of the thermoelasti
ity theory of anisotropi


bodies. The existen
e theorems will be proved in the H�older 
ontinuous and

Sobolev fun
tional spa
es with the help of the boundary integral equation

method.

12. Basi
 BVPs of Pseudo-Os
illations

12.1. Let us �rst 
onsider the regular problem (P

1

)

+

�

(see (5.1) and

(5.2)) S 2 C

2;�

0

.

We look for a solution in the form of the double layer potential (see

(11.2))

U(x) =W

�

(g)(x); x 2 


+

; (12.1)

where g = (g

1

; � � � ; g

4

)

>

2 C

1;�

(S) is the unknown density. As above, here

and in what follows we again provide that 0 < � < �

0

� 1.

Applying the jump formula for a double layer potential (see Theorem

11.1, item i)) and taking into a

ount the boundary 
onditions of the prob-

lem in question we arrive at the boundary integral equation (BIE)

N

+

1;�

g(x) := [2

�1

I

4

+K

2;�

℄ g(x) = G

(1)

(x); x 2 S; (12.2)

where G

(1)

= (f

1

; � � � ; f

4

)

>

2 C

1;�

(S) is the given ve
tor fun
tion on S (see

(5.1){(5.2)), and K

2;�

is de�ned by (11.5).

Due to Theorem 11.2 the singular integral operator in the left-hand side

of (12.2) is an ellipti
 	DO with zero index.

Further, we show that the homogeneous version of the equation (12.2)

(i.e., when G

(1)

= 0) has only the trivial solution. Let g

0

2 C

1;�

(S) be an

arbitrary solution of the equation

[2

�1

I

4

+K

2;�

℄ g(x) = 0; x 2 S: (12.3)

It is evident that the ve
tor fun
tion

U

0

(x) =W

�

(g

0

)(x) 2 C

1;�

(


+

) (12.4)

represents then a regular solution of the homogeneous problem (P

1

)

+

�

due

to (12.3). Therefore, by the uniqueness Theorem 8.1 we 
on
lude U

0

(x) = 0

in 


+

whi
h, in turn, implies

[B(D;n)U

0

℄

+

= L

�

g

0

= 0 on S;

where L

�

= L

�

�

is de�ned by (11.6).

In a

ordan
e with equation (11.12) we get

[B(D;n)U

0

℄

�

= 0 on S; (12.5)
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where U

0

is given again by (12.4) in 


�

.

Thus, we have obtained that the ve
tor fun
tion

U

0

(x) =W

�

(g

0

)(x) 2 C

1;�

(


�

) (12.6)

represents a regular solution to the problem (P

2

)

�

�

. Therefore, U

0

(x) = 0

in 


�

due to Theorem 8.1.

As a result we have for arbitrary x 2 S

[U

0

(x)℄

+

� [U

0

(x)℄

�

= [W

�

(g

0

)(x)℄

+

� [W

�

(g

0

)(x)℄

�

= g

0

= 0

whi
h proves that the equation (12.3) has only the trivial solution.

A

ording to the general theory of singular integral equations (see, e.g.,

[51℄, [45℄, Ch.IV), the nonhomogeneous equation (12.2) is uniquely solvable

for an arbitrary right-hand side. Moreover, the 
orresponding embedding

theorems for the solution of SIE on 
losed manifold yield that, if S 2 C

k+1;�

0

and f 2 C

k;�

(S), then g 2 C

k;�

(S).

Finally, we arrive at the following existen
e theorem.

Theorem 12.1. Let S 2 C

k+1;�

0

and f

j

2 C

k;�

(S) where j = 1; 4

and k � 1 is an arbitrary integer. Then the problem (P

1

)

+

�

(i.e., (1:9),

(5:1), (5:2)) is uniquelly solvable in the spa
e C

k;�

(


+

) and the solution is

representable in the form (12:1), where g 2 C

k;�

(S) solves the BIE (12:2).

Remark 12.2. Note that, if one looks for a regular solution to the BVP

problem (P

1

)

+

�

in the form of a single layer potential (see (11.1))

U(x) = V

�

(h)(x); x 2 


+

; (12.7)

then one gets the 	DE

H

�

h(x) = G

(1)

(x); x 2 S; (12.8)

due to Theorem 11:1 (see (11.9)).

Applying again the uniqueness Theorem 8:1 and properties of the single

layer potential, by the arguments similar to the above ones it 
an be easily

shown that kerH

�

is trivial. Note that �H

�

is an ellipti
 	DO of order

�1 (with positive de�nite prin
ipal homogeneous symbol matrix) and its

index equals zero. Invoking the general theory of 	DO on 
losed smooth

manifolds (see,e.g., [77℄) we 
on
lude that the operator

H

�

: C

l;�

(S)! C

l+1;�

(S); S 2 C

k;�

0

0 � l � k � 1; k � 1; (12.9)

is an isomorphism. Therefore, the equation (12.8) is uniquely solvable in

the spa
e C

k�1;�

(S) provided that S 2 C

k;�

0

and f 2 C

k;�

(S) (k � 1).

As a result we obtain that the solution of the problem (P

1

)

+

�


an also be

uniquely represented as a single layer potential (12.7), where h 2 C

k�1;�

(S)

is the unique solution of the equation (12.8). Clearly, we again have U =

V

�

(h) 2 C

k;�

(


+

).

We remark that applying the equation (11.17) one 
an show that, in fa
t,

the operator

H

�1

�

: C

l+1;�

(S)! C

l;�

(S); S 2 C

k;�

0

0 � l � k� 1; k � 1; (12.10)
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whi
h is inverse to the operator (12.9), is a singular integro-di�erential oper-

ator (i.e., a 	DO of order 1). Obviously, the prin
ipal homogeneous symbol

matrix of the operator �H

�1

�

is also positive de�nite.

It should be noted that to prove the existen
e of a regular solution by

the single layer approa
h, as it is evident from the above arguments, C

1;�

0

-

smoothness of the boundary surfa
e �


+

= S is suÆ
ient, while by the

double layer approa
h we need S 2 C

2;�

0

:

12.2. Let us look for a regular solution of the problem (P

2

)

+

�

(see (5.3){

(5.4)) again in the form (12.1). The boundary 
onditions of the problem

in question and the properties of the double layer potential lead to the

following system of equations for the unknown density g on S

f[2

�1

I

4

+K

2;�

℄ g(x)g

j

= f

j

(x); j = 1; 2; 3; (12.11)

fL

�

g(x)g

4

= F

4

(x): (12.12)

Note that the operators involved in the �rst three equations are singular in-

tegral operators (SIO), i.e., 	DOs of zero order, while in the fourth equation

we have singular integro-di�erential operators, i.e., 	DOs of order 1.

In order to rewrite these equations in the matrix form we set

N

+

2;�

:=

�

[(2

�1

I

4

+K

2;�

)

pq

℄

3�4

[(L

�

)

4q

℄

1�4

�

4�4

(12.13)

with p = 1; 2; 3 and q = 1; 4.

Clearly, then (12.11) and (12.12) are equivalent to the equation

N

+

2;�

g(x) = G

(2)

(x); x 2 S; G

(2)

= (f

1

; f

2

; f

3

; F

4

)

>

: (12.14)

We assume that G

(2)

2 [C

k;�

(S)℄

3

� [C

k�1;�

(S)℄, i.e.,

S 2 C

k+1;�

0

; f

j

2 C

k;�

(S); j = 1; 2; 3; F

4

2 C

k�1;�

(S); (12.15)

where k � 1; 0 < � < �

0

� 1: Moreover, we seek the unknown density

ve
tor g in the spa
e [C

k;�

(S)℄

4

.

The system of 	DEs (12.13) is ellipti
 in the sense of Douglis{Nirenberg

(
f. [3℄, [2℄, [85℄) and its prin
ipal symbol matrix

�(N

+

2;�

) =

"

[�(2

�1

I

3

+K

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(L

(0)

4

)

#

4�4

(12.16)

is nonsingular for arbitrary x 2 S and j

e

�j = 1 (see Remark 11.4, the formulae

(10.26), (10.28), (10.41), (10.43), and the proofs of Lemmata 10.2 and 10.7).

The index of the operator N

+

2;�

is equal to zero, sin
e the index of the


orresponding dominant singular part is zero.

Next, we show that the system (12.11)-(12.12) (i.e., (12.14)) 
an be equiv-

alently redu
ed to the system of singular integral equations (SIEs). To this

end we formulate the following lemma whi
h will be frequently used in the

sequel (see, e.g., [60℄, [20℄).
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Lemma 12.3. The s
alar operator

Rh(z) =

1

2�

R

S

jz � yj

�1

h(y) dS

y

; z 2 S; S 2 C

1;�

0

; (12.17)

generated by the harmoni
 single layer potential, is a formally self-adjoint,

equivalent smoothing lifting 	DO of order �1, (i.e., Rh = 0 implies h = 0)

with the prin
ipal homogeneous symbol equal to j

~

�j

�1

(i.e., �(R)(x;

~

�) =

j

~

�j

�1

; x 2 S;

~

� 2 R

2

n f0g).

Due to this lemma it is evident that the system (12.11){(12.12) is equiv-

alent to the system of SIEs on S

f[2

�1

I

4

+K

2;�

℄ g(x)g

j

= f

j

(x); j = 1; 2; 3; (12.18)

RfL

�

g(x)g

4

= RF

4

(x); (12.19)

whi
h 
an also be written as

R

2

N

+

2;�

g(x) = G

(2)

�

; (12.20)

where

R

2

=

�

[I

3

℄

3�3

[0℄

3�1

[0℄

1�3

R

�

4�4

(12.21)

and

G

(2)

�

= (f

1

; f

2

; f

3

;RF

4

)

>

: (12.22)

Clearly, (12.20) is an ellipti
 SIE with index zero.

Further, we prove that the nonhomogeneous system (12.11)-(12.12) (i.e.,

(12.14) and (12.20)) is uniquely solvable. Invoking again the theory of SIEs

on smooth manifolds ([51℄, [45℄), we have to show that the homogeneous

version of the system (12.11)-(12.12) admits only the trivial solution. It is

an easy 
onsequen
e of the 
orresponding uniqueness theorem and the jump

relations of the double layer potential, and 
an be shown by the same argu-

ments as in the previous subse
tion. These results imply that the equation

(12.20) has a unique solution g 2 C

k;�

(S) for arbitrary G

(2)

�

2 C

k;�

(S).

This immediately leads to the following assertion.

Theorem 12.4. Let 
onditions (12:15) be ful�lled. Then the problem

(P

2

)

+

�

(i.e., (1:9), (5:3), (5:4)) is uniquely solvable in the spa
e C

k;�

(


+

)

and the solution is representable in the form (12:1), where g 2 C

k;�

(S)

solves the system of BIEs (12:11){(12:12) (i.e., (12:20)).

Let us note here that the single layer aproa
h is again appli
able and leads

to the existen
e of a unique solution in the spa
e C

k;�

(


+

) (
f. Remark

12.2).

12.3. In this subse
tion we 
onsider the nonhomogeneous problem (P

3

)

+

�

(see (5.5){(5.6)). We look for a regular solution U again in the form (12.1)

whi
h yields the following system of BIEs on S:

fL

�

g(x)g

j

= F

j

(x); j = 1; 2; 3; (12.23)

f[2

�1

I

4

+K

2;�

℄ g(x)g

4

= f

4

(x); (12.24)
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where we provide

S 2 C

k+1;�

0

; F

j

2 C

k�1;�

(S); j = 1; 2; 3; f

4

2 C

k;�

(S) (12.25)

with the same k; �

0

; and � as in (12.15). The unknown density g is again

assumed to belong to the 
lass C

k;�

(S).

We set

N

+

3;�

:=

�

[(L

�

)

pq

℄

3�4

[(2

�1

I

4

+K

2;�

)

4q

℄

1�4

�

4�4

(12.26)

with p = 1; 2; 3; and q = 1; 4.

The equations (12.23)-(12.24) 
an be then written in the matrix form as

N

+

3;�

g(x) = G

(3)

(x); x 2 S;

G

(3)

= (F

1

; F

2

; F

3

; f

4

)

>

2 [C

k�1;�

(S)℄

3

�C

k;�

(S):

(12.27)

The operator N

+

3;�

is ellipti
 (again in the sense of Douglis-Nirenberg) with

the nonsingular prin
ipal symbol matrix

�(N

+

3;�

) =

�

[�(L

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(2

�1

I

1

+K

(0)

4

)

�

4�4

(12.28)

(see Se
tion 10 and Remark 11.4) and the index equal to zero.

Introdu
e the matrix operator

R

3

=

�

[I

3

R℄

3�3

[0℄

3�1

[0℄

1�3

I

1

�

4�4

; (12.29)

where R is the equivalent lifting operator (12.17).

Now it 
an be easily seen that

R

3

N

+

3;�

g(x) = G

(3)

�

; G

(3)

�

= (RF

1

;RF

2

;RF

3

; f

4

)

>

2 C

k;�

(S); (12.30)

is an ellipti
 system of SIEs equivalent to (12.23){(12.24), due to Lemma

12.3.

As in the previous subse
tion we 
an easily establish that the homoge-

neous version of the system (12.23){(12.24) admits only the trivial solution.

Therefore, the nonhomogeneous system (12.30) and, 
onsequently, (12.23){

(12.24) are uniquely solvable in the 
lass C

k;�

(S) if the boundary data meet

the 
onditions (12.25). Thus, we have proved the following existen
e result.

Theorem 12.5. Let 
onditions (12:25) be ful�lled. Then the problem

(P

3

)

+

�

(i.e., (1:9), (5:5), (5:6)) is uniquely solvable in the spa
e C

k;�

(


+

)

and the solution is representable in the form (12:1), where g 2 C

k;�

(S)

solves the system of BIEs (12:23){(12:24) (i.e., (12:30)).

We emphasize that the single layer aproa
h is again appli
able.

12.4. Here we 
onsider the nonhomogeneous boundary value problem

(P

4

)

+

�

(see (5.7), (5.8)). We look for a regular solution U again in the form
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(12.1) whi
h now leads to the hypersingular BIE (	DE of order +1) on S

N

+

4;�

g(x) := L

�

g(x) = G

(4)

(x);

G

(4)

= (F

1

; � � � ; F

4

)

>

2 [C

k�1;�

(S)℄

4

:

(12.31)

Due to Remark 11.4 the dominant singular part and the prin
ipal homo-

geneous positive de�nite symbol matrix of the singular integro-di�erential

operator N

+

4;�

:= L

�

are given by formulae (11.21) and (11.24), respe
tively.

Moreover, the index of L

�

is equal to zero.

The 	DE (12.31) is equivalent to the ellipti
 system of SIEs

R

4

N

+

4;�

g(x) = G

(4)

�

; G

(4)

�

= (RF

1

; � � � ;RF

4

)

>

2 C

k;�

(S); (12.32)

where

R

4

= [I

4

R℄

4�4

(12.33)

with R de�ned by (12.17).

Applying uniqueness Theorem 8.1 and formula (11.12) we 
on
lude that

the homogeneous version of equation (12.31) has only the trivial solution.

Therefore, the nonhomogeneous systems (12.32) and (12.31) are uniquely

solvable in the spa
e C

k;�

(S). This implies the following proposition.

Theorem 12.6. Let S 2 C

k+1;�

0

and F 2 [C

k�1;�

(S)℄

4

with the same k;

�

0

; and � as in (12:15). Then the problem (P

4

)

+

�

(i.e., (1:9), (5:7), (5:8)) is

uniquely solvable in the spa
e C

k;�

(


+

) and the solution is representable in

the form (12:1), where g 2 C

k;�

(S) solves the system of BIEs (12:31) (i.e.,

(12:32)).

Remark 12.7. The 
lassi
al single layer approa
h for the problem (P

4

)

+

�

(see (12.7)) redu
es the BVP to the system of SIEs on S 2 C

k;�

0

(k � 1)

(�2

�1

I

4

+K

1;�

)h(x) = G

(4)

;

G

(4)

= (F

1

; � � � ; F

4

)

>

2 C

k�1;�

(S):

(12.34)

The SIO in the left-hand side is ellipti
 with index zero. Moreover, Theorems

8:1 and 11:1, item i) imply ker(�2

�1

I

4

+ K

1;�

) = f0g. Therefore, the

mapping

�2

�1

I

4

+K

1;�

: C

l;�

(S)! C

l;�

(S); 0 � l � k � 1; (12.35)

is an isomorphism.

These arguments show that the equation (12.34) is always solvable in the

spa
e C

k�1;�

(S): This, in turn, proves that the unique solution to the BVP

(P

4

)

+

�

is representable also in the form of a single layer potential

U(x) = V

�

(h)(x) 2 C

k;�

(


+

);

where h 2 C

k�1;�

(S) solves the SIE (12.34).

12.5. The existen
e theorems of solutions to the basi
 exterior BVPs for

the pseudo-os
illation equations of thermoelasti
ity theory 
an be proved
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by the word for word repetition of the arguments outlined in the previ-

ous subse
tions. Therefore, we 
on�ne oureselves by formulation the �nal

results.

Theorem 12.8. The basi
 exterior nonhomogeneous BVPs (P

n

)

�

�

(n =

1; 4), formulated in Se
tion 5 (see (5:1){(5:8)) are uniquely solvable in the

spa
e C

k;�

(


�

) provided that

S 2 C

k+1;�

0

; f

j

2 C

k;�

(S); F

j

2 C

k�1;�

(S); j = 1; 4; (12.36)

where 0 < � < �

0

� 1 and k � 1 is an arbitrary integer. The solutions are

representable in the form of a double layer potential

U(x) =W

�

(g)(x); x 2 


�

; (12.37)

where g 2 C

k;�

(S) solves the ellipti
 (in general, in the sense of Douglis-

Nirenberg) system of boundary integral (pseudodi�erential) equation on S

N

�

n;�

g(x) = G

(n)

(x): (12.38)

Here the BIOs are de�ned as follows

N

�

1;�

:= �2

�1

I

4

+K

2;�

; N

�

4;�

:= L

�

; (12.39)

N

�

2;�

:=

�

[(�2

�1

I

4

+K

2;�

)

pq

℄

3�4

[(L

�

)

4q

℄

1�4

�

4�4

;

N

�

3;�

:=

�

[(L

�

)

pq

℄

3�4

[(�2

�1

I

4

+K

2;�

)

4q

℄

1�4

�

4�4

;

(12.40)

where p = 1; 3, q = 1; 4, and K

2;�

and L

�

are given by (11:5) and (11:12),

respe
tively.

The right-hand side ve
tor fun
tions G

(n)

in (12:38) are 
onstru
ted by

the boundary data of the BVPs under 
onsideration and read as

G

(1)

= (f

1

; � � � ; f

4

)

>

2 [C

k;�

(S)℄

4

;

G

(2)

= (f

1

; f

2

; f

3

; F

4

)

>

2 [C

k;�

(S)℄

3

�C

k�1;�

(S);

G

(3)

= (F

1

; F

2

; F

3

; f

4

)

>

2 [C

k�1;�

(S)℄

3

�C

k;�

(S);

G

(4)

= (F

1

; � � � ; F

4

)

>

2 [C

k�1;�

(S)℄

4

:

(12.41)

Note that the mappings

N

�

1;�

: [C

l;�

(S)℄

4

! [C

l;�

(S)℄

4

; 0 � l � k;

N

�

2;�

: [C

l;�

(S)℄

4

! [C

l;�

(S)℄

3

�C

l�1;�

(S); 1 � l � k;

N

�

3;�

: [C

l;�

(S)℄

4

! [C

l�1;�

(S)℄

3

�C

l;�

(S); 1 � l � k;

N

�

4;�

: [C

l;�

(S)℄

4

! [C

l�1;�

(S)℄

4

; 1 � l � k;

are again isomorphisms. Moreover, the equations (12:38) (n=2,3,4) 
an be

equivalently redu
ed to the 
orresponding ellipti
 SIEs by the same lifting

pro
edure as above with the help of the lifting operators R

n

.
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Finally, we remark that one 
an apply the single layer approa
h in the

all above exterior BVPs to prove the existen
e theorems.

12.6. In this subse
tion we shall study the above 
onsidered problems

in the weak setting. Let us �rst treat the problems (P

1

)

�

�

. We again look

for the solutions U 2 W

1

p

(


�

), 1 < p < 1, in the form of double layer

potentials (12.1) and (12.37). Now the unknown density ve
tor fun
tion g

should be found in the natural spa
e B

1�1=p

p;p

(S) sin
e W

�

: B

1�1=p

p;p

(S) !

W

1

p

(


�

) (see Theorem 11.3 and Se
tion 4).

In what follows, for simpli
ity, we illustrate our approa
h for the 
ase

S 2 C

1

, and at the same time noti
e that, a
tually, some �nite smoothness

is suÆ
ient for our purposes (for details see [59℄).

Applying again Theorem 11.3 and taking into a

ount the boundary 
on-

ditions (5.1){(5.2) we arrive at the BIEs on S

N

�

1;�

g(x) := [�2

�1

I

4

+K

2;�

℄ g(x) = G

(1)

(x); G

(1)

= (f

1

; � � � ; f

4

)

>

; (12.42)

whi
h formally 
oin
ide with the equations (12.2) and (12.38) (for n = 1).

But now here

G

(1)

2 B

1�1=p

p;p

(S) (12.43)

and we look for the unknown ve
tor fun
tion g in the same spa
e, i.e.,

g 2 B

1�1=p

p;p

(S); 1 < p <1: (12.44)

Now we prove the following proposition.

Lemma 12.9. The operators

N

�

1;�

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

4

(12.45)

are isomorphisms for arbitrary s 2 R; 1 < p <1, and 1 � q �1.

Proof. We outline the proof for the operator N

+

1;�

. For N

�

1;�

it is verbatim.

The mapping property (12.45) follows from Theorem 11.3. Sin
e N

+

1;�

is

an ellipti
 	DO on 
losed smooth manifold S, the null-spa
e kerN

+

1;�

and

the index indN

+

1;�

are the same for arbitrary two pairs (s

1

; p

1

) and (s

2

; p

2

),

where s

1

; s

2

2 R and p

1

; p

2

2 (1;1), and for arbitrary 1 � q � 1 (see

[4℄, [43℄, [77℄, Ch.2). Let s = 0 and p = q = 2, and prove that in this

parti
ular 
ase the null-spa
e of the operator N

+

1;�

is trivial and the index

equals zero. In fa
t, let g

0

2 B

0

2;2

(S) = L

2

(S) be some solution to the

homogeneous equation N

+

1;�

g

0

= 0. The embedding theorems for solutions

of ellipti
 SIEs (see, e.g., [45℄, Ch.4) imply that, a
tually, g

0

2 C

k;�

(S)

for any k � 0, due to the smoothness of the boundary surfa
e S and the

right-hand side of the homogeneous SIE in question. The double layer

potential U

0

(x) = W

�

(g

0

)(x) represents then a regular ve
tor fun
tion of

the 
lass C

1;�

(


+

) whi
h solves the homogeneous BVP (P

1

)

+

�

. Therefore,

in the same way as above (see Subse
tion 12.1) we 
on
lude that g

0

= 0 on

S, whi
h proves that kerN

+

1;�

is trivial in L

2

(S). A

ording to the above

remark it then follows that kerN

+

1;�

is trivial also in the spa
e B

s

p;q

(S) for

arbitrary s 2 R; 1 < p <1, and 1 � q � 1.
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Finally we note that the equality indN

+

1;�

= 0 follows from Theorem 11.2

whi
h 
ompletes the proof. �

This lemma yields the following existen
e results.

Theorem 12.10. Let the boundary data meet the 
ondition (12:43). Then

the BVP (P

1

)

+

�

[(P

1

)

�

�

℄ is uniquelly solvable in the Sobolev spa
e W

1

p

(


+

)

[W

1

p

(


�

)℄ with 1 < p <1 and the solution is representable in the form of a

double layer potential (12:1) [(12:37)℄ with the density g 2 B

1�1=p

p;p

(S) whi
h

solves the 
orresponding SIE (12:42).

Proof. Solvability of the problems (P

1

)

�

�

is a ready 
onsequen
e of Lemma

12.9 (for s = 1� 1=p and q = p).

Now let us prove that the homogeneous BVP (P

1

)

+

�

has only the trivial

solution in the spa
e W

1

p

(


+

) for 1 < p < 1: Obviously, this implies that

the 
orresponding nonhomogeneous problem is uniquely solvable in the same

spa
e. Note that the 
ase p = 2 has already been 
onsidered in Se
tion 8.

We pro
eed as follows. Let U 2 W

1

p

(


+

) be some solution to the ho-

mogeneous problem (P

1

)

+

�

. Then by Theorem 11.3, item ii), U 
an be

represented as (
f. (3.2))

U(x) =W

�

([U ℄

+

)(x) � V

�

([B(D;n)U ℄

+

)(x) =

= �V

�

([B(D;n)U ℄

+

)(x); x 2 


+

; (12.46)

sin
e by assumption [U ℄

+

= 0 on S.

On the other hand the same homogeneous boundary 
ondition and the

representation (12.46) together with Theorem 11.3, item i) imply

[U ℄

+

= �H

�

([B(D;n)U ℄

+

) = 0 on S; (12.47)

where [B(D;n)U ℄

+

2 B

�1=p

p;p

(S).

Noting that �H

�

: B

s

p;q

(S)! B

s+1

p;q

(S) is an ellipti
 	DO on the 
losed

smooth surfa
e S (with the positive de�nite prin
ipal homogeneous symbol

matrix) we 
on
lude that the null-spa
e kerH

�

and the index indH

�

in the

spa
es B

s

p;q

(S) do not depend on s 2 R; 1 < p < 1, and 1 � q � 1, and

are the same as, for example, in the sap
e B

�1=2

2;2

(S) = H

�1=2

2

(S). Apply-

ing the embeding theorem for the solution of the ellipti
 	DEs on 
losed

smooth manifold (see, e.g., [77℄, Ch.2) we easily show that kerH

�

is trivial

in B

�1=2

2;2

(S). Further, we observe that the operator �H

�

: B

�1=2

2;2

(S) !

B

1=2

2;2

(S) and its adjoint �H

�

�

have the same mapping properties, i.e., �H

�

�

:

B

�1=2

2;2

(S)! B

1=2

2;2

(S). Sin
e the dominant singular part of the operator H

�

is self-adjoint we 
on
lude that indH

�

= 0 in B

�1=2

2;2

(S). Therefore, the

equation (12.47) has only the trivial solution in the spa
e B

�1=p

p;p

(S) for ar-

bitrary p > 1. Thus, [B(D;n)U ℄

+

= 0, whi
h shows that U = 0 in 


+

due

to (12.46).

The proof for the BVP (P

1

)

�

�

is verbatim. �
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The analogous theorems hold valid for the problems (P

n

)

�

�

, n = 2; 3; 4:

The proofs rely upon the following assertions whi
h 
an be proved by the

arguments quite similar to that ones applied in the proof of Lemma 12.9.

Lemma 12.11. Let s 2 R; 1 < p <1, and 1 � q � 1.

Then the mappings

N

�

2;�

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

3

�B

s�1

p;q

(S);

N

�

3;�

: [B

s

p;q

(S)℄

4

! [B

s�1

p;q

(S)℄

3

�B

s

p;q

(S);

N

�

4;�

: [B

s

p;q

(S)℄

4

! [B

s�1

p;q

(S)℄

4

are isomorphisms.

Here N

�

2;�

, N

�

3;�

, N

�

4;�

are de�ned as in Subse
tions 12:1{12:5.

Proof. One needs only to apply the equivalent lifting operator R

n

, de�ned

by formulae (12.21), (12.29), and (12.33), to the operators N

�

l;�

and show

that the mappings

R

n

N

�

n;�

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

4

; n = 2; 3; 4;

are isomorphisms. Sin
e the operators R

n

N

�

n;�

are ellipti
 singular opera-

tors (i.e., 	DOs of order 0) on the 
losed smooth manifold S, we 
an use the

same arguments as in the proof of Lemma 12.9 to see that kerR

n

N

�

n;�

= f0g

and indR

n

N

�

n;�

= 0 in the spa
e [B

s

p;q

(S)℄

4

. When
e kerN

�

n;�

= f0g and

indN

�

n;�

= 0 (in the 
orresponding fun
tional spa
e) follow immediately. �

This lemma (for s = 1 � 1=p and q = p) together with Theorem 8.2

implies the following existen
e theorem.

Theorem 12.12. Let 1 < p < 1 and the boundary data in (5:3){(5:8)

meet the 
onditions

f

j

2 B

1�1=p

p;p

(S); F

j

2 B

�1=p

p;p

(S); j = 1; 4: (12.48)

Then the BVP (P

n

)

�

�

(n = 2; 3; 4) are uniquelly solvable in the Sobolev

spa
es W

1

p

(


�

) and the solutions are representable in the form of double

layer potentials (12:1) and (12:37) with the density g 2 B

1�1=p

p;p

(S) whi
h

solves the 
orresponding 	DE on S

N

�

n;�

g = G

(n)

: (12.49)

Here N

�

n;�

are the same as in Subse
tions 12:1{12:5.

Proof. For illustration of the method we outline the proof in the 
ase of

BVP (P

4

)

�

�

. For the other problems it is quite analogous.

Let us look for a solution in the form of a double layer potential (12.37),

where g belongs to the natural spa
e B

1�1=p

p;p

(S). Then due to Theorem 11.3

and the boundary 
onditions (5.7){(5.8) we get the following 	DE on S for

the unknown density g

N

�

4;�

g := L

�

g(x) = G

(4)

; (12.50)

where G

(4)

:= (F

1

; � � � ; F

4

)

>

2 B

�1=p

p;p

(S).
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By Lemma 12.11 (for s = 1 � 1=p and q = p) the equation (12.50) is

uniquely solvable in the spa
e g 2 B

1�1=p

p;p

(S). When
e W

�

(g) 2 H

1

p

(


�

) =

B

1

p;p

(


�

) = W

1

p

(


�

) by Theorem 11.3. Moreover, W

�

(g) represents a so-

lution of the BVP in question due to (12.50). Now by virtue of Theorems

8.2 and 11.3, and the arguments in the �nal part of the proof of Theorem

12.10, we 
on
lude that the ve
tor fun
tion U(x) = W

�

(g) 2 W

1

p

(


�

) is a

unique solution of the problem (P

4

)

�

�

whi
h 
ompletes the proof. �

Remark 12.13. It is evident that one 
an apply a single layer approa
h

to obtain the same existense results in the Sobolev spa
es W

1

p

(


�

) (see

Remarks 12:2 and 12:7).

We illustrate this alternative approa
h for the problem (P

1

)

�

�

. We look

for a solution in the form of a single layer potential (12.7) where the den-

sity h is to be found in the appropriate spa
e B

�1=p

p;p

(S). We re
all that

V

�

: B

�1=p

p;p

(S) ! W

1

p

(


�

) (see Theorem 11:3). Taking into a

ount the

boundary 
onditions (5.1){(5.2) and applying the tra
e properties of a single

layer potential, we arrive at the ellipti
 BIE (ellipti
 	DE of order �1)

H

�

h = G

(1)

; (12.51)

where

G

(1)

:= f = (f

1

; � � � ; f

4

)

>

2 B

1�1=p

p;p

(S): (12.52)

By the same arguments as above we 
an easily show that the mapping

�H

�

: B

s

p;q

(S)! B

s+1

p;q

(S); (12.53)

where s 2 R; 1 < p <1, and 1 � q � 1, is an isomorphism.

Therefore, there exists the unique solution h 2 B

�1=p

p;p

(S) of the equation

(12.51) with the right-hand side (12.52). Further, invoking Theorem 8:2 it


an be established that the single layer potential U(x) = V

�

(h)(x) represents

the unique solution to the problems (P

1

)

�

�

in the spa
e W

1

p

(


�

).

We note that the ellipti
 	DO of order +1

�H

�1

�

: B

s+1

p;q

(S)! B

s

p;q

(S) (12.54)

is a singular integro-di�erential operator with a positive de�nite prin
ipal

homogeneous symbol matix. Here H

�1

�

stands for the inverse of H

�

, and

s 2 R; 1 < p <1, and 1 � q �1.

A ready 
onsequen
e of the above results is that every solution U 2

W

1

p

(


�

); 1 < p < 1; of the homogeneous equation (1.9) 
an be uniquely

represented in the form of the single layer potential

U(x) = V

�

(H

�1

�

[U ℄

�

)(x); x 2 


�

; (12.55)

where [U ℄

�

are the tra
es of the solution U on S from 


�

.
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13. Basi
 exterior BVPs of Steady State Os
illations

In this se
tion we shall investigate the basi
 exterior BVPs for steady

state os
illation equations of thermoelasti
ity theory. In what follows we

provide that r = 1 for ! > 0 and r = 2 for ! < 0.

13.1. First we present the following lemma whi
h will essentially be used

below in the proof of existen
e theorems.

Lemma 13.1. Let g 2 C

1;�

(S); S 2 C

2;�

0

, and

U(x) =W (g)(x) + p

0

V (g)(x); x 2 R

3

n S; S = �


�

; (13.1)

p

0

= p

1

+ ip

2

; p

1

� 0; p

2

! < 0; (13.2)

where V and W are single and double layer potentials de�ned by (10:1) and

(10:2), respe
tively, while ! is the frequen
y parameter.

If the ve
tor U vanishes in 


�

, then the density g = 0 on S.

Proof. Due to Lemmata 10.1 and 10.7 we have

g = [U ℄

+

� [U ℄

�

= [U ℄

+

;

�p

0

g = [B(D;n)U ℄

+

� [B(D;n)U ℄

�

= [B(D;n)U ℄

+

;

(13.3)

when
e

[B(D;n)U ℄

+

= �p

0

[U ℄

+

on S (13.4)

follows.

Sin
e U is a regular ve
tor in 


+

we 
an apply the identity (1.23). Taking

into a

ount (13.4) and separating the imaginary part, we arrive at the

equation

1

!T

0

R




+

�

kj

D

k

u

4

D

j

u

4

dx� p

2

R

S

j[u℄

+

j

2

dS +

p

1

!T

0

R

S

j[u

4

℄

+

j

2

dS = 0:

In view of (1.18), (13.2), and (13.4) from this equality it follows that

[U ℄

+

= 0 and by (13.3) we get g = 0: �

In the sequel we �x the 
omplex number p

0

as follows

p

0

= 1� i!: (13.5)

Remark 13.2. In what follows we shall use the representation (13.1)

to prove the existen
e of solutions to the exterior BVPs for the steady

state os
illation equations of the thermoelasti
ity theory. The similar rep-

resentation for the Helmholtz equation has been �rst applied in the papers

[6℄, [64℄, [46℄. This type of representation of solutions proved to be very

useful sin
e it redu
es the exterior BVPs to the uniquely solvable BIEs for

arbitrary values of the frequen
y parameter ! (for details see below).

Remark 13.3. In 
ontrast to the pseudo-os
illation 
ase the 
lassi
al single

layer or double layer approa
h redu
es the exterior BVPs of steady state

os
illations to the BIEs whi
h for a 
ountable set of the so-
alled ex
ep-

tional values of the frequen
y parameter ! are not solvable for arbitrary

boundary data (see [83℄, [45℄, [10℄, [11℄). To investigate the solvability of

these BIEs one needs to �nd expli
itly all eigenvalues and eigenfun
tions of
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the 
orresponding boundary integral operators and their adjoint ones (for

details see [83℄, [45℄).

13.2. We start with the problem (P

1

)

�

!

. We look for a solution of

the problem in the form (13.1) with p

0

de�ned by (13.5). By virtue of the

boundary 
onditions (5.1){(5.2) and Lemma 10.1, we get the following 	DE

on S for the unknown density ve
tor g

N

�

1

g := (�2

�1

I

4

+K

2

+ p

0

H) g = G

(1)

(13.6)

with G

(1)

= (f

1

; : : : ; f

4

)

>

2 C

k;�

(S):

Lemma 13.4. Let

S 2 C

k+1;�

0

with integer k � 1 and 0 < � < �

0

� 1: (13.7)

Then the 	DE (13.6) is an ellipti
 SIO with index zero, while the mapping

N

�

1

:= �2

�1

I

4

+K

2

+ p

0

H : C

l;�

(S)! C

l;�

(S); 0 � l � k; (13.8)

is an isomorphism.

Proof. First let us note that the operator N

�

1

is an ellipti
 singular integral

operator with index equal to zero and possesses the mapping property (13.8)

due to Lemmata 10.1 and 10.2. Therefore, it remains to prove that

N

�

1

g = 0 (13.9)

has only the trivial solution in C

l;�

(S).

Let g be some solution of (13.9) and 
onstru
t the ve
tor U by for-

mula (13.1). Applying the embedding theorems for solutions to a singular

integral equation of normal type on 
losed smooth manifold we infer that

g 2 C

k;�

(S) (see, e.g., [45℄, Ch. 4). This implies that U is a regular ve
tor in




�

. Now the equation (13.9) yields that [U ℄

�

= 0 on S, and, 
onsequently,

U(x) = 0 in 


�

follows immediately by Theorem 9.5, sin
e U 2 SK

m

r

(


�

).

Then g = 0 by Lemma 13.1. Therefore (13.8) is a one-to-one 
orresponden
e

and N

�

1

is invertible. �

The material 
olle
ted until now is enough to prove the existen
e theorem.

Theorem 13.5. Let S, k, �

0

, and � be as in (13:7) and let f

j

2 C

k;�

(S)

(j = 1; : : : ; 4). Then Problem (P

1

)

�

!

has a unique regular solution of the


lass C

k;�

(


�

) \ SK

m

r

(


�

) and the solution is representable in the form

(13:1) with the density g 2 C

k;�

(S) de�ned by the uniquely solvable SIE

(13:6).

Proof. It follows from Lemmata 10.1, 13.4, and Theorem 9.5. �

Remark 13.6. We note that the spe
ial representation (13.1) redu
es

the BVP (P

1

)

�

!

to the equivalent boundary integral equation (13.6) for an

arbitrary value of the frequen
y parameter !. If one seeks the solution in

the form of either single or double layer potential then su
h equivalen
e will

be, in general, violated (see Remark 13:3).
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13.3. We look for a regular solution to the problem (P

2

)

�

!

again in

the form (13.1). Then the boundary 
onditions (5.3) and (5.4) lead to the

following system of 	DEs on S for the unknown density g

N

�

2

g := fB

(2)

(D;n)[W (g) + p

0

V (g)℄g

�

= G

(2)

; G

(2)

= (f

1

; f

2

; f

3

; F

4

)

>

;

i.e.,

f[�2

�1

I

4

+K

2

+ p

0

H℄ gg

q

= f

q

; q = 1; 2; 3; (13.10)

f[L+ p

0

(2

�1

I

4

+K

1

)℄ gg

4

= F

4

; (13.11)

where (13.12)

f

q

2 C

k;�

(S); F

4

2 C

k�1;�

(S); q = 1; 2; 3: (13.12)

Therefore, the operator N

�

2

is represented as

N

�

2

=

�

[f�2

�1

I

4

+K

2

+ p

0

Hg

ql

℄

3�4

[fL+ p

0

(2

�1

I

4

+ K

1

)g

4l

℄

1�4

�

4�4

= (N

�

2

)

0

+

e

N

�

2

; (13.13)

q = 1; 2; 3; l = 1; : : : ; 4;

where (N

�

2

)

0

is the dominant singular part of N

�

2

. Due to (10.25), (10.48),

and Lemma 10.1 we have

(N

�

2

)

0

=

"

[�2

�1

I

3

+

�

K

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(0)

4

#

4�4

: (13.14)

The entries of the �rst three rows of the matrix

e

N

�

2

are weakly singular

integral operators (	DOs of order s � �1), while the fourth row 
ontains

singular integral operators (	DOs of order s � 0). It is easy to see that

(13.14) is a 	DO ellipti
 in the sense of Douglis-Nirenberg.

Now it is also evident that the operator R

2

, de�ned by (12.21), is an

equivalent lifting operator whi
h redu
es the system (13.10)-(13.11) to the

equivalent system of singular integral equations

R

2

N

�

2

g = G

(2)

�

; G

(2)

�

= (f

1

; f

2

; f

3

;RF

4

)

>

:

For the prin
ipal homogeneous symbol matrix we have

�(R

2

N

�

2

) =

"

[�(�2

�1

I

3

+

�

K

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(RL

(0)

4

)

#

4�4

;

whi
h is nonsingular due to Lemmata 10.2, 10.7, and 12.3.

Lemma 13.7. Let 
onditions (13:7) be ful�lled. Then the 	DO

N

�

2

: [C

l;�

(S)℄

4

! [C

l;�

(S)℄

3

�C

l�1;�

(S); 1 � l � k; (13.15)

is an isomorphism.

Proof. The mapping property (13.15) of the operator N

�

2

is an easy 
onse-

quen
e of Lemmata 10.1 and 10.7. Clearly, the invertibility of the operator

(13.15) is equivalent to the invertibility of the operator

R

2

N

�

2

: [C

l;�

(S)℄

4

! [C

l;�

(S)℄

4

; 0 � l � k; (13.16)
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a

ording to Lemma 12.3.

Now from Lemmata 10.2, 10.7, and 12.3 it follows that R

2

N

�

2

is an

ellipti
 singular integral operator with index zero. By the arguments applied

in the proof of Lemma 13.4 we 
an show that the homogeneous equation

N

�

2

g = 0; where g 2 C

l;�

(S), has only the trivial solution g = 0. Further,

by Lemma 12.3 we 
on
lude that the null-spa
e of the operator R

2

N

�

2

in

C

l;�

(S) is trivial, whi
h 
ompletes the proof. �

Theorem 13.8. Let 
onditions (13:7) and (13:12) be ful�lled. Then

the problem (P

2

)

�

!

has a unique regular solution of the 
lass C

k;�

(


�

) \

SK

m

r

(


�

) and the solution is representable in the form (13:1) with the den-

sity g 2 C

k;�

(S) de�ned by the uniquely solvable 	DEs (13:10){(13:11).

Proof. It is a ready 
onsequen
e of Lemmata 10.1, 13.7 and Theorem 9.5.

�

13.4. Here we 
onsider the problem (P

3

)

�

!

. Applying again the same

representation formula (13.1) and taking into a

ount the boundary 
on-

ditions (5.7) and (5.8), we arrive at the following system of 	DEs for the

unknown density g on S:

N

�

3

g := fB

(3)

(D;n)[W (g) + p

0

V (g)℄g

�

= G

(3)

; G

(3)

= (F

1

; F

2

; F

3

; f

4

)

>

;

i.e.,

f[L+ p

0

(2

�1

I

4

+K

1

)℄ gg

q

= F

q

; q = 1; 2; 3; (13.17)

f[�2

�1

I

4

+K

2

+ p

0

H℄ gg

4

= f

4

; (13.18)

where

F

q

2 C

k�1;�

(S); f

4

2 C

k;�

(S); q = 1; 2; 3: (13.19)

Clearly, N

�

3

is representable in the form

N

�

3

=

�

[fL+ p

0

(2

�1

I

4

+K

1

)g

ql

℄

3�4

[f�2

�1

I

4

+K

2

) + p

0

Hg

4l

℄

1�4

�

4�4

= (N

�

3

)

0

+

e

N

�

3

; (13.20)

q = 1; 2; 3; l = 1; : : : ; 4;

where

(N

�

3

)

0

=

"

[L

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�1

I

1

+

�

K

(0)

4

#

4�4

is the dominant singular part of N

�

3

due to (10.25) and (10.48); the operator

e

N

�

3


ontains 	DOs of order s � 0 in the �rst three rows and 	DOs of order

s � �1 in the fourth row. Obviously, N

�

3

is again an ellipti
 	DO in the

sense of Douglis-Nirenberg.

The diagonal operator R

3

, de�ned by (12.29), is an equivalent lifting

operator whi
h redu
es (13.17)-(13.18) to the equivalent system of singular

integral equations

R

3

N

�

3

g = G

(3)

�

; G

(3)

�

= (RF

1

;RF

2

;RF

3

; f

4

)

>

:
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The prin
ipal homogeneous symbol matrix of the operator R

3

N

�

3

reads

�(R

3

N

�

3

) =

"

[�(RL

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(�2

�1

I

1

+

�

K

(0)

4

)

#

4�4

and is nonsingular a

ording to the results of Se
tion 10.

Now in the same way as in the previous subse
tion we 
an prove the

following assertions.

Lemma 13.9. Let the 
onditions (13:7) be ful�lled. Then the 	DO

N

�

3

: [C

l;�

(S)℄

4

! [C

l�1;�

(S)℄

3

�C

l;�

(S); 1 � l � k;

is an isomorphism.

Theorem 13.10. Let the 
onditions (13:7) and (13:19) be ful�lled. Then

the problem (P

3

)

�

!

has a unique regular solution of the 
lass C

k;�

(


�

) \

SK

m

r

(


�

) and the solution is representable in the form (13:1) with the den-

sity g 2 C

k;�

(S) de�ned by the uniquely solvable 	DEs (13:17){(13:18).

13.5. The representation (13.1) of a regular solution and the boundary


onditions (5.7), (5.8) redu
e the BVP (P

4

)

�

!

to the system of 	DEs on S

N

�

4

g := [L+ p

0

(2

�1

I

4

+K

1

)℄ g = G

(4)

; G

(4)

= (F

1

; : : : ; F

4

)

>

: (13.21)

For the dominant singular part we have the following ellipti
 	DO (of order

1) (N

�

4

)

0

= (L)

0

, where (L)

0

is given by (10.48). It is easy to 
he
k that

the diagonal operator R

4

= I

4

R with R de�ned by (12.17), is a lifting

operator, whi
h redu
es equivalently the equations (13.21) to the following

ellipti
 system of singular integral equations with index equal to zero

R

4

N

�

4

g = G

(4)

�

; G

(4)

�

= (RF

1

; : : : ;RF

4

)

>

:

The proofs of the next lemma and theorem are quite similar to the proofs

of Lemma 13.4 and Theorem 13.5.

Lemma 13.11. Let the 
onditions (13:7) be ful�lled. Then the 	DO

N

�

4

: C

l;�

(S)! C

l�1;�

(S); 1 � l � k;

is an isomorphism.

Theorem 13.12. Let the 
onditions (13:7) be ful�lled and F

j

2 C

k�1;�

(S),

j = 1; 4: Then the problem (P

4

)

�

!

has a unique regular solution of the 
lass

C

k;�

(


�

) \ SK

m

r

(


�

) and the solution is representable in the form (13:1)

with the density g 2 C

k;�

(S) de�ned by the uniquely solvable 	DE (13:21).

13.5. In this subse
tion we 
onsider the problems (P

n

)

�

!

(n = 1; 4) in

the Sobolev spa
e W

1

p;lo


(


�

). The 
orresponding existen
e theorems 
an

be proved with the help of the following lemma (
f. Lemmata 12.9 and

12.11).

Lemma 13.13. Let S be a C

1

-regular surfa
e and let s 2 R; 1 < p <1,

1 � q � 1. Then the mappings

N

�

1

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

4
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N

�

2

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

3

�B

s�1

p;q

(S);

N

�

3

: [B

s

p;q

(S)℄

4

! [B

s�1

p;q

(S)℄

3

�B

s

p;q

(S);

N

�

4

: [B

s

p;q

(S)℄

4

! [B

s�1

p;q

(S)℄

4

are isomorphisms.

Here the 	DOs N

�

1

, N

�

2

, N

�

3

,and N

�

4

are given by formulae (13:8),

(13:13), (13:20), and (13:21), respe
tively.

Proof. The mapping properties indi
ated in the lemma follow from Theorem

10.8. The operators N

�

n

(n = 1; 4) have zero indi
es sin
e N

�

n

� N

�

n;�

are


ompa
t operators in the 
orresponding fun
tional spa
es due to the results

of Se
tion 2 and sin
e indN

�

n;�

= 0 (n = 1; 4) (see Lemmata 12.9 and 12.11).

Here the operators N

�

n;�

are the same as in Se
tion 12.

It remains to prove that kerN

�

n

is trivial. To see this, let us 
onsider

the homogeneous equations N

�

n

g = 0 whi
h are equivalent to the SIEs

R

n

N

�

n

g = 0, where R

n

(n = 2; 4) are the same invertible lifting operators

as in Se
tion 12, R

1

= I

4

, and g 2 B

s

p;q

(S): Bearing in mind that R

n

N

�

n

(n = 1; 4) are ellipti
 SIOs on the 
losed smooth manifold S we infer that

any solution g 2 L

2

(S) to the above SIEs, a
tually, belongs to the spa
e

C

1;�

(S) due to the embedding theorems. Moreover, by the above men-

tioned equivalen
e we get N

�

n

g = 0. These relations imply that the linear


ombination of the double and single layer potentials W (g)(x) + p

0

V (g)(x)


onstru
ted by the density g 2 C

1;�

(S) and p

0

given by (13.5), belong to the


lass C

1;�

(


�

)\SK

m

r

(


�

) and solves the homogeneous exterior BVP (P

n

)

�

!

.

By the uniqueness theorems (see Se
tion 9) W (g)(x) + p

0

V (g)(x) = 0 in




�

when
e g = 0 on S follows by Lemma 13.1. Thus, kerR

n

N

�

n

is trivial

in the spa
e L

2

(S). It is then trivial also in the spa
e B

s

p;q

(S) for arbitrary

s 2 R, 1 < p < 1; and 1 � q � 1 (see the reasonings in the proof of

Lemma 12.9). Terefore, kerR

n

N

�

n

= f0g again due to the invertibility of

the operator R

n

(n = 1; 4) whi
h 
ompletes the proof. �

This lemma implies the following existen
e results.

Theorem 13.14. Let 1 < p < 1 and the boundary data in (5:1){(5:8)

satisfy the 
onditions

f

j

2 B

1�1=p

p;p

(S); F

j

2 B

�1=p

p;p

(S); j = 1; 4:

Then the BVP (P

n

)

�

!

(n = 1; 4) are uniquely solvable in the 
lassW

1

p;lo


(


�

)

\ SK

m

r

(


�

) and the solutions are representable in the form (13:1), where

the density g 2 B

1�1=p

p;p

(S) solves the 
orresponding 	DE on S

N

�

n

g = G

(n)

; n = 1; 4:

Here G

(n)

are the ve
tors given by (12:41).

Proof. It is quite similar to the proof of Theorems 12.10 and 12.12. In-

deed, the solvability of the BVPs indi
ated in the theorem follows from

Lemma 13.13. To prove the uniqueness of solutions in the 
lassW

1

p;lo


(


�

)\

SK

m

r

(


�

), we 
an again apply the general integral representation formula
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(see Theorem 10.8, item ii)) and show that all solutions to the homogeneous

BVPs (P

n

)

�

!

of this 
lass, a
tually, belong to the 
lass of regular ve
tor fun
-

tions C

1

(


�

) \ SK

m

r

(


�

) due to the ellipti
ity of the 
orresponding 	DEs

on 
losed smooth surfa
e S. This 
ompletes the proof. �

14. Basi
 Interfa
e Problems of Pseudo-Os
illations

In this se
tion we shall 
onstru
t an \expli
it" solution to the basi
 non-

homogeneous interfa
e problem (C)

�

whi
h will essentially be employed af-

terwards in the study of the other regular and mixed interfa
e problems.

14.1. Let us 
onsider the problem (C)

�

, i.e., we look for four-dimensional

ve
tor fun
tions U

(1)

= (u

(1)

; u

(1)

4

)

>

2 C

1

(


1

) and U

(2)

= (u

(2)

; u

(2)

4

)

>

2

C

1

(


2

) whi
h are solutions of the pseudo-os
illation equations

A

(1)

(D; �)U

(1)

(x) = 0 in 


1

; (14.1)

A

(2)

(D; �)U

(2)

(x) = 0 in 


2

; (14.2)

and satisfy the transmission 
onditions on the interfa
e S

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f; [u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; (14.3)

[P

(1)

(D;n)U

(1)

℄

+

� [P

(2)

(D;n)U

(2)

℄

�

=

e

F ;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

;

)

(14.4)

where P

(�)

(D;n) and �

(�)

(D;n) are the thermostress and heat 
ux opera-

tors de�ned by (1.13) and (1.24), respe
tively. Here

S 2 C

k+1;�

0

; f

j

2 C

k;�

(S); F

j

2 C

k�1;�

(S); j = 1; 4;

f = (f

1

; : : : ; f

4

)

>

; F = (F

1

; : : : ; F

4

)

>

;

(14.5)

where as above k � 1 is an integer and 0 < � < �

0

� 1.

Making use of the notation (1.25) the above transmission 
onditions 
an

be written as follows

[U

(1)

℄

+

� [U

(2)

℄

�

= f; (14.6)

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F: (14.7)

We look for a solution to the problem (C)

�

in the form of single layer

potentials

U

(1)

(x) = V

(1)

�

[(H

(1)

�

)

�1

g

(1)

℄(x); x 2 


1

; (14.8)

U

(2)

(x) = V

(2)

�

[(H

(2)

�

)

�1

g

(2)

℄(x); x 2 


2

; (14.9)

where g

(�)

= (eg

(�)

; g

(�)

4

)

>

; eg

(�)

= (g

(�)

1

; g

(�)

2

; g

(�)

3

)

>

; � = 1; 2; are unknown

densities and (H

(�)

�

)

�1

is the operator inverse to H

(�)

�

(see Remark 12.2).

Here and in what follows the supers
ript � (� = 1; 2) denotes that the


orresponding operator is 
onstru
ted by the thermoelasti
 
hara
teristi
s

of the elasti
 material o

upying the domain 


�

.
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Due to Theorem 11.1, the transmission 
onditions (14.3) and (14.4), i.e.,

(14.6) and (14.7), lead to the following system of boundary equations on S:

g

(1)

� g

(2)

= f; (14.10)

(�2

�1

I

4

+K

(1)

1;�

)(H

(1)

�

)

�1

g

(1)

� (2

�1

I

4

+K

(2)

1;�

)(H

(2)

�

)

�1

g

(2)

= F; (14.11)

where K

(�)

1;�

; � = 1; 2; are de�ned by (11.4).

Let

N

1;�

= (�2

�1

I

4

+K

(1)

1;�

)(H

(1)

�

)

�1

; N

2;�

= �(2

�1

I

4

+K

(2)

1;�

)(H

(2)

�

)

�1

;

N

�

= N

1;�

+N

2;�

: (14.12)

Then equations (14.10) and (14.11) yield:

g

(1)

= f + g

(2)

; (14.13)

N

�

g

(2)

= F �N

1;�

f: (14.14)

Now we will study properties of the boundary operatorsN

1;�

;N

2;�

, and N

�

.

Lemma 14.1. Let S be as in (14:5). Then

N

�

; N

j;�

: C

l;�

(S)! C

l�1;�

(S); j = 1; 2; 1 � l � k; (14.15)

are bounded operators with the trivial null-spa
es.

Operators N

�

; N

j;�

; j = 1; 2, de�ned by (14:12) and (14:15), are iso-

morphisms.

Proof. The mapping property (14.15) is an easy 
onsequen
e of Theorem

11.1, item ii), sin
e the operator (H

(�)

�

)

�1

: C

l;�

(S) ! C

l�1;�

(S) is an

isomorphism due to Remark 12.2.

From Remark 12.7 it follows also that the equations N

j;�

h = 0 (j = 1; 2)

have only the trivial solutions. Therefore, the operators N

j;�

; (j = 1; 2)

de�ned by (14.12), (14.15) are invertible and their inverses are bounded.

It remains to prove that the null-spa
e of the operatorN

�

is trivial as well.

Let h = (h

1

; : : : ; h

4

)

>

2 C

1;�

(S) be an arbitrary solution of the equation

N

�

h = 0; i.e., N

1;�

h+N

2;�

h = 0: Then it 
an be easily seen that the ve
tors

U

(1)

(x) = V

(1)

�

[(H

(1)

�

)

�1

h℄(x); x 2 


1

and U

(2)

(x) = V

(2)

�

[(H

(2)

�

)

�1

h℄(x);

x 2 


2

; are regular and they solve the homogeneous problem (C)

�

, sin
e

[U

(1)

℄

+

= h, [U

(2)

℄

�

= h, and [B

(1)

U

(1)

℄

+

� [B

(2)

U

(2)

℄

�

= N

�

h = 0.

Therefore, by Theorem 8.6 we have U

(1)

= 0 in 


1

and U

(2)

= 0 in 


2

,

when
e h = 0 on S follows immediately. �

Lemma 14.2. The prin
ipal homogeneous symbol matri
es of the oper-

ators N

1�

; N

2;�

, and N

�

are positive de�nite.

Proof. Here again �(K)(x; �) with x 2 S and

e

� 2 R

2

nf0g denotes the

prin
ipal homogeneous symbol of the pseudodi�erential operator K.

Equations (14.12) imply

�(N

�

) = �(N

1;�

) + �(N

2;�

); �(N

1;�

) = �(�2

�1

I

4

+K

(1)

1;�

) [�(H

(1)

�

)℄

�1

;

�(N

2;�

) = ��(2

�1

I

4

+K

(2)

1;�

) [�(H

(2)

�

)℄

�1

: (14.16)
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In the same way as in the proof of Lemma 10.2 we 
an easily show that

�(H

(�)

�

) = �((H

(�)

)

0

), �(K

(�)

1;�

) = �((K

(�)

)

0

), where (H

(�)

)

0

and (K

(�)

)

0

are 4� 4 matrix boundary operators on S:

(H

(�)

)

0

g(x) :=

R

S

�

(�)

(x � y) g(y) dS

y

; x 2 S;

(K

(�)

)

0

g(x) :=

R

S

[B

(�)

0

(D

x

; n(x))�

(�)

(x� y)℄ g(y) dS

y

; x 2 S;

with g = (eg; g

4

)

>

and eg = (g

1

; g

2

; g

3

)

>

; here �

(�)

(x) is given by (2.8) and

B

(�)

0

(D;n) =

�

[T

(�)

(D;n)℄

3�3

[0℄

3�1

[0℄

1�3

�

(�)

(D;n)

�

4�4

:

Therefore,

(H

(�)

)

0

=

�

[H

(�;0)

℄

3�3

[0℄

3�1

[0℄

1�3

H

(�;0)

4

�

4�4

; (14.17)

(K

(�)

)

0

=

�

[K

(�;0)

℄

3�3

[0℄

3�1

[0℄

1�3

K

(�;0)

4

�

4�4

; (14.18)

whereH

(�;0)

, K

(�;0)

, andH

(�;0)

4

, K

(�;0)

4

are 3�3 matrix and s
alar operators,

respe
tively, generated by the single layer potentials 
onstru
ted by the

fundamental matrix �

(�;0)

(x) and the fundamental fun
tion 


(�;0)

(x)℄ (see

(2.6), (2.7), (10.19){(10.22), (10.26)):

H

(�;0)

eg(x) =

R

S

�

(�;0)

(x � y) eg(y) dS

y

;

H

(�;0)

4

g

4

(x) =

R

S




(�;0)

(x� y) g

4

(y) dS

y

; (14.19)

K

(�;0)

eg(x) =

R

S

[T

(�)

(D

x

; n(x))�

(�;0)

(x� y)℄ eg(y) dS

y

;

K

(�;0)

4

g

4

(x) =

R

S

�

(�)

(D

x

; n(x))


(�;0)

(x� y) g

4

(y) dS

y

:

Taking into a

ount the stru
ture of the matri
es (14.17) and (14.18) we

get from (14.16)

�(N

1;�

) = �

�

�2

�1

I

4

+ (K

(1)

)

0

�

[�((H

(1)

)

0

)℄

�1

= (14.20)

=

"

�

�(�2

�1

I

3

+K

(1;0)

)[�(H

(1;0)

)℄

�1

�

3�3

[0℄

3�1

[0℄

1�3

�(�2

�1

I

1

+K

(1;0)

4

)[�(H

(1;0)

4

)℄

�1

#

4�4

;

�(N

2;�

) = ��

�

2

�1

I

4

+ (K

(2)

)

0

�

[�((H

(2)

)

0

)℄

�1

= (14.21)

=�

"

�

�(2

�1

I

3

+K

(2;0)

)[�(H

(2;0)

)℄

�1

�

3�3

[0℄

3�1

[0℄

1�3

�(2

�1

I

1

+K

(2;0)

4

)[�(H

(2;0)

4

)℄

�1

#

4�4

:

Next, let us note that the following Green formulae hold for regular solutions

to the system of 
lassi
al elastostati
s C

(�)

(D)u

(�)

= 0 and to the ellipti
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s
alar equation �

(�)

kj

D

k

D

j

u

(�)

4

= 0 in 


�

:

R




1

E

(1)

0

(u

(1)

; u

(1)

) dx =

R

�


1

[u

(1)

℄

+

[T

(1)

(D;n)u

(1)

℄

+

dS;

R




2

E

(2)

0

(u

(2)

; u

(2)

) dx = �

R

�


2

[u

(2)

℄

�

[T

(2)

(D;n)u

(2)

℄

�

dS;

R




1

�

(1)

kj

D

k

u

(1)

4

D

j

u

(1)

4

dx =

R

�


1

[u

(1)

4

℄

+

[�

(1)

(D;n)u

(1)

4

℄

+

dS;

R




2

�

(2)

kj

D

k

u

(2)

4

D

j

u

(2)

4

dx = �

R

�


2

[u

(2)

4

℄

�

[�

(2)

(D;n)u

(2)

4

℄

�

dS;

(14.22)

where E

(�)

0

(u

(�)

; u

(�)

) = 


(�)

kjpq

D

k

u

(�)

j

D

j

u

(�)

k

� 0 (see (1.15)), the 
lassi
al

stress operator T

(�)

(D;n) and the 
o-normal derivative (the heat 
ux op-

erator) �

(�)

(D;n) are given by (1.12) and (1.24), respe
tively; moreover,

u

(2)

= o(1) and u

(2)

4

= o(1) at in�nity.

Further, if we substitute in these formulae the 
orresponding single layer

potentials v

(�;0)

and v

(�;0)

4

(see (10.19), (10.21)) with densities (H

(�;0)

)

�1

eg

and (H

(�;0)

4

)

�1

g

4

, respe
tively, in the pla
e of u

(�)

and u

(�)

4

, we 
an show

that (�2

�1

I

3

+K

(1;0)

)(H

(1;0)

)

�1

and �(2

�1

I

3

+K

(2;0)

)(H

(2;0)

)

�1

are non-

negative 3 � 3 matrix pseudodi�erential operators with positive de�nite

prin
ipal symbol matri
es, while (�2

�1

I

1

+K

(1;0)

4

)(H

(1;0)

4

)

�1

and �(2

�1

I

1

+

K

(2;0)

4

)(H

(2;0)

4

)

�1

are non-negative s
alar 	DOs with positive prin
ipal sym-

bol fun
tions (here we note that the Fourier transform is unitary and that

the prin
ipal symbol of the produ
t of two operators is equal to the prod-

u
t of the prin
ipal symbols of these operators; for details see the proof of

Lemma 4.2 in [41℄).

Therefore, the equations (14.20) and (14.21) together with (14.16) yield

that �(N

1;�

), �(N

2;�

), and �(N

�

) are positive de�nite matri
es for arbitrary

x 2 S and

e

� 2 R

2

nf0g. �

Corollary 14.3. Let S; k; �

0

, and � be as in (14:5). Then the operator

N

�1

�

, inverse to the operator N

�

de�ned by (14:15), is an isomorphism;


onsequently, N

�1

�

: C

l�1;�

(S)! C

l;�

(S), 1 � l � k, is a bounded operator.

Applying the above results we get from (14.13) and (14.14):

g

(1)

= N

�1

�

(F +N

2;�

f); g

(2)

= N

�1

�

(F �N

1;�

f): (14.23)

Clearly, g

(�)

2 C

k;�

(S); (� = 1; 2) if 
onditions (14.5) are ful�lled. Now we

are ready to formulate the following existen
e results.

Theorem 14.4. Let S; k; �

0

, �, f and F meet the 
onditions (14:5).

Then the nonhomogeneous problem (C)

�

is uniquely solvable, and the

solution is representable in the form of potentials

U

(1)

(x) = V

(1)

�

h

(H

(1)

�

)

�1

N

�1

�

(F +N

2;�

f)

i

(x); x 2 


1

; (14.24)

U

(2)

(x) = V

(2)

�

h

(H

(2)

�

)

�1

N

�1

�

(F �N

1;�

f)

i

(x); x 2 


2

: (14.25)

Moreover,

U

(�)

2 C

k;�

(


�

); � = 1; 2; (14.26)
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and

jjU

(�)

jj

(


�

;k;�)

� C

0

�

jjf jj

(S;k;�)

+ jjF jj

(S;k�1;�)

�

; C

0

=
onst>0; (14.27)

where jj � jj

(M;k;�)

denotes the norm in the spa
e C

k;�

(M).

Proof. It follows from (14.8), (14.9), (14.23), Corollary 14.3 and Remark

12.2. �

14.2. In this subse
tion we assume S 2 C

1

, and establish the existen
e

results for the problem (C)

�

in the weak setting with 1 < p <1.

First we prove the following statement.

Lemma 14.5. The operators (14:15) 
an be extended by 
ontinuity to

the following bounded ellipti
 	DOs (of order �1)

N

�

; N

j;�

: H

s+1

p

(S)! H

s

p

(S) [B

s+1

p;q

(S)! B

s

p;q

(S)℄ (14.28)

for arbitrary s 2 R; 1 < p < 1; 1 � q � 1: Moreover, the operator N

�

de�ned by (14:28) is invertible.

Proof. The boundedness, ellipti
ity, and mapping properties (14.28) of the

operators N

�

and N

j;�

easily follow from Theorem 11.3 and Lemma 14.2.

The invertibility of the operator N

�

is a 
onsequense of the embed-

ding theorems for solutions of ellipti
 pseudodi�erential equations on 
losed

smooth manifold (see the proof of the analogous assertions in Se
tion 12).

In fa
t, any solution h 2 H

s+1

p

(S) [B

s+1

p;q

(S)℄ of the homogeneous pseudo-

di�erential equation N

�

h = 0; belongs also to the spa
e C

k;�

(S), where

k � 1 is an arbitrary integer and 0 < � < 1. Therefore, we 
an derive h = 0

on S, due to Corollary 14.3. Thus kerN

�

= f0g. Moreover, indN

�

= 0;

sin
e the prin
ipal homogeneous symbol matrix of N

�

is positive de�nite.

These results imply the unique solvability of the nonhomogeneous equation

N

�

h = f in the spa
es H

s+1

p

(S) [B

s+1

p;q

(S)℄ for the arbitrary right-hand side

ve
tor f 2 H

s

p

(S) [B

s

p;q

(S)℄. �

Now we are able to prove the existen
e theorem.

Theorem 14.6. Let

S 2 C

1

; f

j

2 B

1�1=p

p;p

(S); F 2 B

�1=p

p;p

(S); j = 1; 4; 1 < p <1: (14.29)

Then the problem (C)

�

is uniquely solvable in the spa
e (W

1

p

(


1

);W

1

p

(


2

))

and the solution is representable by formulae (14:24){(14:25).

Proof. Let 
onditions (14.29) be ful�lled. Then Lemma 14.5 and Theorem

11.3 imply that the pair of ve
tors (U

(1)

; U

(2)

) de�ned by (14.24) and (14.25)

represent a solution to the problem (C)

�

of the 
lass (W

1

p

(


1

);W

1

p

(


2

)).

Next we show the uniqueness of solution to the problem (C)

�

in the

Sobolev spa
es (W

1

p

(


1

);W

1

p

(


2

)).

Let (U

(1)

; U

(2)

) 2 (W

1

p

(


1

);W

1

p

(


2

)) be some solution to the homoge-

neous problem (C)

�

. We re
all that U

(�)

2 C

1

(


�

). Then Theorem 11.3,

item ii) yield

U

(1)

(x)=W

(1)

�

�

[U

(1)

℄

+

�

(x)�V

(1)

�

�

[B

(1)

(D;n)U

(1)

℄

+

�

(x); x2


1

; (14.30)
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U

(2)

(x)=�W

(2)

�

�

[U

(2)

℄

�

�

(x)+V

(2)

�

�

[B

(2)

(D;n)U

(2)

℄

�

�

(x); x2


2

;(14.31)

where [U

(1)

℄

+

; [U

(2)

℄

�

2 B

1�1=p

p;p

(S), [B

(1)

(D;n)U

(1)

℄

+

, [B

(2)

(D;n)U

(2)

℄

�

2

B

�1=p

p;p

(S). The homogeneous transmission 
onditions read as (see (14.6),

(14.7))

[U

(1)

℄

+

= [U

(2)

℄

�

; [B

(1)

(D;n)U

(1)

℄

+

= [B

(2)

(D;n)U

(2)

℄

�

: (14.32)

Denote

[U

(1)

℄

+

=: g; [B

(1)

(D;n)U

(1)

℄

+

=: h: (14.33)

Then (14.32) along with (14.30), (14.31), and Theorem 11.3 implies that

the ve
tor fun
tions h and g solve the homogeneous system of boundary

	DEs:

�(H

(1)

�

+H

(2)

�

)h+ (K

(1)

2;�

+K

(2)

2;�

) g = 0; (14.34)

�(K

(1)

1;�

+K

(2)

1;�

)h+ (L

(1)

�

+ L

(2)

�

) g = 0: (14.35)

From the positive de�niteness of the prin
ipal symbol matri
es ��(H

(�)

�

),

�(L

(�)

�

) (see Theorem 11.2), and the equation �(K

(�)

2;�

) = [�(K

(�)

1;�

)℄

>

, it

follows that the system of 	DEs (14.34) and (14.35) is strongly ellipti
 in

the sense of Douglis-Nirenberg. Therefore, by the embedding theorems we


on
lude that h and g are smooth ve
tor fun
tions on S, i.e. h 2 C

k�1;�

(S)

and g 2 C

k;�

(S) for any k � 1 and 0 < � < 1. But then the ve
tors

U

(�)

; � = 1; 2; given by (14.30) and (14.31), are regular due to the for-

mulae (14.32), (14.33), and Theorem 11.1. Now the 
onditions (14.32) and

Theorem 8.6 
omplete the proof. �

Remark 14.7. Using the representation formulae (14:30) and (14:31) we


an solve the problem (C)

�

by the so-
alled dire
t boundary integral equa-

tion method. This method redu
es the transmission problem in question to

the strongly ellipti
 (in the sense of Douglis-Nirenberg) system of 	DEs on S

G

�

 = Q; (14.36)

where  = ( 

0

;  

00

)

>

is the unknown ve
tor with  

0

= [B

(1)

(D;n)U

(1)

℄

+

and  

00

= [U

(1)

℄

+

; the matrix operator G

�

is given by formula

G

�

=

"

[�H

(1)

�

�H

(2)

�

℄

4�4

[K

(1)

2;�

+K

(2)

2;�

℄

4�4

[�K

(1)

1;�

�K

(2)

1;�

℄

4�4

[L

(1)

�

+ L

(2)

�

℄

4�4

#

8�8

;

while the given on S right hand-side 8-ve
tor Q reads as

Q =

�

(2

�1

I

4

+K

(2)

2;�

) f �H

(2)

�

F ; L

(2)

�

f + (2

�1

I

4

�K

(2)

1;�

)F

�

>

:

A
tually, in the proof of Theorem 14:6 we have shown that the operators

G

�

: [C

k�1;�

(S)℄

4

� [C

k;�

(S)℄

4

! [C

k;�

(S)℄

4

� [C

k�1;�

(S)℄

4

: [H

s

p

(S)℄

4

� [H

s+1

p

(S)℄

4

! [H

s+1

p

(S)℄

4

� [H

s

p

(S)℄

4

: [B

s

p;q

(S)℄

4

� [B

s+1

p;q

(S)℄

4

! [B

s+1

p;q

(S)℄

4

� [B

s

p;q

(S)℄

4
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are invertible.

Therefore, the unique solution to the problem (C)

�


an be represented

also in the form

U

(1)

(x) =W

(1)

�

( 

00

)(x) � V

(1)

�

( 

0

)(x);

U

(2)

(x) = �W

(2)

�

( 

00

� f)(x) + V

(2)

�

( 

0

� F )(x);

(14.37)

where  solves the system of 	DEs (14:36).

Note that the 
on
lusions of Theorems 14:4 and 14:6 remain valid for the

ve
tors de�ned by (14.37) if the 
onditions (14.5) and (14.29) are ful�lled.

14.3. In this subse
tion we investigate the problem (G)

�

.

First let us rewrite the transmission 
onditions (7.5){(7.8) in the following

equivalent form

[P

(1)

(D;n)U

(1)

� l℄

+

+ [P

(2)

(D;n)U

(2)

� l℄

�

=

e

F

(+)

l

+

e

F

(�)

l

; (14.38)

[P

(1)

(D;n)U

(1)

�m℄

+

+ [P

(2)

(D;n)U

(2)

�m℄

�

=

e

F

(+)

m

+

e

F

(�)

m

; (14.39)

[P

(1)

(D;n)U

(1)

� l℄

+

� [P

(2)

(D;n)U

(2)

� l℄

�

=

e

F

(+)

l

�

e

F

(�)

l

; (14.40)

[P

(1)

(D;n)U

(1)

�m℄

+

� [P

(2)

(D;n)U

(2)

�m℄

�

=

e

F

(+)

m

�

e

F

(�)

m

; (14.41)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

n

; (14.42)

[P

(1)

(D;n)U

(1)

� n℄

+

� [P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

n

; (14.43)

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; [�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

:(14.44)

Clearly, due to (14.40), (14.41), (14.43), and (14.44), the ve
tor

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F is a given ve
tor on S with

F =

�

(

e

F

(+)

l

�

e

F

(�)

l

) l + (

e

F

(+)

m

�

e

F

(�)

m

)m+

e

F

n

n; F

4

�

>

: (14.45)

Denote

[u

(1)

� l℄

+

� [u

(2)

� l℄

�

=  

1

; [u

(1)

�m℄

+

� [u

(2)

�m℄

�

=  

2

; (14.46)

where  

1

and  

2

are the unknown s
alar fun
tions. Equations (14.42),

(14.44), and (14.46) imply [U

(1)

℄

+

� [U

(2)

℄

�

= f; where

f = ( 

1

l +  

2

m+

e

f

n

n; f

4

)

>

: (14.47)

Now let us look for a solution to the problem (G)

�

in the form (14.24) and

(14.25), where F and f are given by (14.45) and (14.47), respe
tively. Then

from the results of the previous subse
tion it follows that the transmission


onditions (14.40)-(14.44) are automati
ally satis�ed. It remains to satisfy

only the 
onditions (14.38) and (14.39). Taking into a

ount Theorem 11.1

and the equations (14.12), we get from (14.24) and (14.25):

[B

(1)

(D;n)U

(1)

℄

+

= [(P

(1)

(D;n)U

(1)

; �

(1)

(D;n)u

4

)

>

℄

+

=

= N

1;�

N

�1

�

(F +N

2;�

f);

[B

(2)

(D;n)U

(2)

℄

�

= [(P

(2)

(D;n)U

(2)

; �

(2)

(D;n)u

4

)

>

℄

�

=

= �N

2;�

N

�1

�

(F �N

1;�

f):
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Further, we put

l

�

= [(l; 0)

>

℄

4�1

; m

�

= [(m; 0)

>

℄

4�1

; n

�

= [(n; 0)

>

℄

4�1

; (14.48)

where l; m and n are again the tangent and the normal ve
tors introdu
ed

in Subse
tion 7.2.

Conditions (14.38) and (14.39) then imply

[P

(1)

(D;n)U

(1)

� l℄

+

+ [P

(2)

(D;n)U

(2)

� l℄

�

=

= [B

(1)

(D;n)U

(1)

� l

�

℄

+

+ [B

(2)

(D;n)U

(2)

� l

�

℄

�

=

=(N

1;�

�N

2;�

)N

�1

�

F � l

�

+ 2N

2;�

N

�1

�

N

1;�

f � l

�

=

e

F

(+)

l

+

e

F

(�)

l

;

[P

(1)

(D;n)U

(1)

�m℄

+

+ [P

(2)

(D;n)U

(2)

�m℄

�

= [B

(1)

(D;n)U

(1)

�m

�

℄

+

+

+[B

(2)

(D;n)U

(2)

�m

�

℄

�

= (N

1;�

�N

2;�

)N

�1

�

F �m

�

+

+2N

2;�

N

�1

�

N

1;�

f �m

�

=

e

F

(+)

m

+

e

F

(�)

m

; (14.49)

sin
e N

2;�

N

�1

�

N

1;�

= N

1;�

N

�1

�

N

2;�

: By virtue of (14.47) from (14.49) we

have the following system of 	DEs for the unknown fun
tions  

1

and  

2

:

3

X

k;j=1

[(N

2;�

N

�1

�

N

1;�

)

kj

( 

1

l

j

+  

2

m

j

)℄l

k

= q

1

; (14.50)

3

X

k;j=1

[(N

2;�

N

�1

�

N

1;�

)

kj

( 

1

l

j

+  

2

m

j

)℄m

k

= q

2

; (14.51)

where

q

1

= 2

�1

f

e

F

(+)

l

+

e

F

(�)

l

� (N

1;�

�N

2;�

)N

�1

�

F � l

�

g�

�

3

X

k=1

[(N

2;�

N

�1

�

N

1;�

)

k4

f

4

℄l

k

�

3

X

k;j=1

[(N

2;�

N

�1

�

N

1;�

)

kj

(

e

f

n

n

j

)℄l

k

;

q

2

= 2

�1

f

e

F

(+)

m

+

e

F

(�)

m

� (N

1;�

�N

2;�

)N

�1

�

F �m

�

g�

�

3

X

k=1

[(N

2;�

N

�1

�

N

1;�

)

k4

f

4

℄m

k

�

3

X

k;j=1

[(N

2;�

N

�1

�

N

1;�

)

kj

(

e

f

n

n

j

)℄m

k

(14.52)

are given fun
tions on S.

Now let

M

G;�

:=

�

l

k

(N

2;�

N

�1

�

N

1;�

)

kj

l

j

l

k

(N

2;�

N

�1

�

N

1;�

)

kj

m

j

m

k

(N

2;�

N

�1

�

N

1;�

)

kj

l

j

m

k

(N

2;�

N

�1

�

N

1;�

)

kj

m

j

�

2�2

:

We re
all that the summation over repeated indi
es is meant from 1 to 3.

Clearly, (14.50) and (14.51) 
an be written in the matrix form as

M

G;�

 = q

�

(14.53)

with the unknown ve
tor  = ( 

1

;  

2

)

>

and the right-hand side q

�

=

(q

1

; q

2

)

>

given by formulae (14.52).
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Lemma 14.8. The operator M

G;�

is an ellipti
 	DO of order 1 with a

positive de�nite prin
ipal homogeneous symbol matrix and the index equal

to zero.

Proof. The equations (14.12), (14.20), and (14.21) imply that M

G;�

is a

	DO of order 1 with the prin
ipal homogeneous symbol matrix

�(M

G;�

) =

�

l

k

l

j

E

kj

l

k

m

j

E

kj

m

k

l

j

E

kj

m

k

m

j

E

kj

�

2�2

= E

1

EE

>

1

; (14.54)

where

E

1

=

�

l

1

; l

2

; l

3

; 0

m

1

; m

2

; m

3

; 0

�

2�4

;

E = �(N

2;�

N

�1

�

N

1;�

) = �(N

2;�

)�(N

�1

�

)�(N

1;�

) =

= �(N

2;�

)[�(N

1;�

) + �(N

2;�

)℄

�1

�(N

1;�

):

Due to Lemma 14.2 the matri
es �(N

j;�

); j = 1; 2; are positive de�nite

for arbitrary x 2 S and

e

� 2 R

2

n0 (see (14.20), (14.21)). Therefore, the

matrix E is positive de�nite as well. Next, for arbitrary � = (�

1

; �

2

)

>

2 C

2

we have

�(M

G;�

)� � � = (E

1

EE

>

1

)� � � = E(E

>

1

�) � (E

>

1

�) =

= E(l

�

�

1

+m

�

�

2

) � (l

�

�

1

+m

�

�

2

) � 
j

e

�j j�

1

l

�

+ �

2

m

�

j

2

=

= 
 j

e

�j (j�

1

j

2

+ j�

2

j

2

); 
 > 0;

when
e the positive de�niteness of the matrix (14.54) follows. This implies

that the index of the operator M

G;�

is equal to zero sin
e the positive

de�niteness of �(M

G;�

) yields the formally self-adjointness of the dominant

singular part of the M

G;�

. �

Lemma 14.9. Let S; k; �, and �

0

be as in (14:5). Then the operator

M

G;�

: C

l;�

(S)! C

l�1;�

(S); 1 � l � k; (14.55)

is an isomorphism.

If S 2 C

1

, then (14:55) 
an be extended by 
ontinuity to the following

bounded, invertible, ellipti
 	DO (of order 1)

M

G;�

: H

s+1

p

(S)! H

s

p

(S) [B

s+1

p;q

(S)! B

s

p;q

(S)℄;

s 2 R; 1 < p <1; 1 � q �1:

Proof. It is quite similar to the proofs of Lemmata 14.1 and 14.5. �

The above results yield the following existen
e theorems.

Theorem 14.10. Let S; k; �

0

, and � be as in (14:5), and let

e

F

(�)

l

;

e

F

(�)

m

;

e

F

n

; F

4

2 C

k�1;�

(S);

e

f

n

; f

4

2 C

k;�

(S):

Then the problem (G)

�

is uniquelly solvable, and the solution is representable

in the form (14:24) � (14:25) with F and f given by (14:45) and (14:47),

where  

1

;  

2

2 C

k;�

(S) are de�ned by the system of 	DEs (14:50) and

(14:51) (i.e., (14:53)). Moreover, (14:26) and the inequality (14:27) hold.
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Theorem 14.11. Let S 2 C

1

and

e

F

(�)

l

;

e

F

(�)

m

;

e

F

n

; F

4

2 B

�1=p

p;p

(S);

e

f

n

; f

4

2 B

1�1=p

p;p

(S):

Then the problem (G)

�

is uniquely solvable in the spa
e (W

1

p

(


1

);W

1

p

(


2

));

and the solutions are representable by the formulae (14:24){(14:25) with F

and f given by (14:45) and (14:47), where  

1

;  

2

2 B

1�1=p

p;p

(S) are de�ned

by the system of 	DEs (14:50) and (14:51) (i.e., (14:53)).

The proof of these theorems are quite similar (in fa
t, verbatim) to the

proofs of Theorems 14.4 and 14.6. �

14.4. In this subse
tion we shall study the problem (H)

�

. As in the

previous subse
tion let us rewrite the transmission 
onditions of the problem

(see Subse
tion 7.2) in the equivalent form

[u

(1)

� l℄

+

+ [u

(2)

� l℄

�

=

e

f

(+)

l

+

e

f

(�)

l

; (14.56)

[u

(1)

�m℄

+

+ [u

(2)

�m℄

�

=

e

f

(+)

m

+

e

f

(�)

m

; (14.57)

[u

(1)

� l℄

+

� [u

(2)

� l℄

�

=

e

f

(+)

l

�

e

f

(�)

l

; (14.58)

[u

(1)

�m℄

+

� [u

(2)

�m℄

�

=

e

f

(+)

m

�

e

f

(�)

m

; (14.59)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

n

; (14.60)

[P

(1)

(D;n)U

(1)

� n℄

+

� [P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

n

; (14.61)

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; [�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

=F

4

: (14.62)

Equations (14.58){(14.60) imply [U

(1)

℄

+

� [U

(2)

℄

�

= f; where f is a given

ve
tor on S

f =

�

(

e

f

(+)

l

�

e

f

(�)

l

) l + (

e

f

(+)

m

�

e

f

(�)

m

)m+

e

f

n

n; f

4

�

>

: (14.63)

It is also evident that [B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F with

F = ( 

1

l +  

2

m+

e

F

n

n; F

4

)

>

; (14.64)

where

e

F

n

and F

4

are given fun
tions on S; while  

1

= [P

(1)

(D;n)U

(1)

� l℄

+

�

[P

(2)

(D;n)U

(2)

� l℄

�

and  

2

= [P

(1)

(D;n)U

(1)

�m℄

+

� [P

(2)

(D;n)U

(2)

�m℄

�

;

are yet unknown s
alar fun
tions.

We look for a solution to the problem (H)

�

again in the form (14.24)-

(14.25), with F and f de�ned by (14.63) and (14.64), respe
tively. It 
an

be easily 
he
ked that the transmission 
onditions (14.58)-(14.62) are then

automati
ally satis�ed, while the equations (14.56) and (14.57) lead to the

following system of 	DEs for the unknown ve
tor  = ( 

1

;  

2

)

>

on S:

M

H;�

 = q

�

; (14.65)

where

M

H;�

=

�

l

k

(N

�1

�

)

kj

l

j

l

k

(N

�1

�

)

kj

m

j

m

k

(N

�1

�

)

kj

l

j

m

k

(N

�1

�

)

kj

m

j

�

2�2

(14.66)
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and the right hand-side ve
tor q

�

= (q

1

; q

2

)

>

is de�ned by formulae:

q

1

= 2

�1

f

e

f

(+)

l

+

e

f

(�)

l

� [N

�1

�

(N

2;�

�N

1;�

)f � l

�

℄g

� [(N

�1

�

)

kj

(

e

F

n

n

j

)℄l

k

� [(N

�1

�

)

k4

F

4

℄l

k

;

q

2

= 2

�1

f

e

f

(+)

m

+

e

f

(�)

m

� [N

�1

�

(N

2;�

�N

1;�

)f �m

�

℄g

� [(N

�1

�

)

kj

(

e

F

n

n

j

)℄m

k

� [(N

�1

�

)

k4

F

4

℄m

k

;

here l

�

and m

�

are given by (14.48).

By quite the same arguments as in Subse
tion 14.3 we 
an easily show

thatM

H;�

is an ellipti
 invertible 	DO of order �1 with a positive de�nite

prin
ipal symbol matrix.

Therefore the operators

M

H;�

: C

k�1;�

(S)! C

k;�

(S); S 2 C

k+1;�

0

;

: H

s

p

(S)! H

s+1

p

(S); S 2 C

1

;

: B

s

p;q

(S)! B

s+1

p;q

(S); S 2 C

1

;

are isomorphisms.

These results lead us to the following existen
e theorems.

Theorem 14.12. Let S; k; �; and �

0

be as in (14:5) and let

e

f

(�)

l

;

e

f

(�)

m

;

e

f

n

; f

4

2 C

k;�

(S);

e

F

n

; F

4

2 C

k�1;�

(S):

Then the problem (H)

�

has the unique solution representable in the form

(14:24){(14:25) with f and F given by (14:63) and (14:64), where  

1

;  

2

2

C

k�1;�

(S) in (14:64) are de�ned by the system of 	DEs (14.65).

Theorem 14.13. Let S 2 C

1

and

e

f

(�)

l

;

e

f

(�)

m

;

e

f

n

; f

4

2 B

1�1=p

p;p

(S);

e

F

n

; F

4

2 B

�1=p

p;p

(S):

Then the problem (H)

�

is uniquely solvable in the spa
e (W

1

p

(


1

);W

1

p

(


2

));

and the solution is representable by the formulae (14.24) and (14.25) with

f and F given by (14:63) and (14:64), where  

1

;  

2

2 B

�1=p

p;p

(S) in (14:64)

are de�ned by the system of 	DEs (14:65).

Again proofs are verbatim the proofs of Theorems 14.4 and 14.6.

15. Basi
 Interfa
e Problems of Steady State Os
illations

In this se
tion we deal with the basi
 interfa
e problems (C)

!

, (G)

!

, and

(H)

!

of steady state thermoelasti
 os
illations formulated in Se
tion 7. In


ontrast to the pseudo-os
illation 
ase, one 
an not here apply the single

layer approa
h to obtain the \expli
it" solution to the basi
 interfa
e prob-

lem (C)

!

for an arbitrary value of the frequen
y parameter !, sin
e the

integral operator H (see (10.3)) is not invertible for the so-
alled ex
ep-

tional values of !. Therefore, we o�er another approa
h whi
h relays on the

representation of a solution in the form of a 
omplex linear 
ombination of

the single and double layer potentials (see Se
tion 13).



103

15.1. Here we again assume that the 
onditions (14.5) are ful�lled and

look for the solution to the nonhomogeneous interfa
e problem (C)

!

(see

(7.3){(7.4) or (7.11){(7.12)) in the following form

U

(1)

(x) =W

(1)

(g

(1)

)(x); x 2 


1

; (15.1)

U

(2)

(x) =W

(2)

(g

(2)

)(x) + p

0

V

(2)

(g

(2)

)(x); x 2 


2

; (15.2)

whereW

(�)

and V

(�)

are the double and single layer potentials 
onstru
ted

by the fundamental solution �

(�)

(x � y; !; r) (see (10.1){(10.2)), g

(�)

=

(g

(�)

1

; � � � ; g

(�)

4

)

>

(� = 1; 2) are unknown densities, and p

0

is given by (13.5).

Moreover, in the sequel we again provide that

r = 1 for ! > 0 and r = 2 for ! < 0: (15.3)

Taking into a

ount the properties of the above potentials and inserting

the representations (15.1)-(15.2) into the transmission 
onditions (7.11){

(7.12), we get the system of 	DEs on S for g

(�)

(� = 1; 2):

[2

�1

I

4

+K

(1)

2

℄ g

(1)

� [�2

�1

I

4

+K

(2)

2

+ p

0

H

(2)

℄ g

(2)

= f; (15.4)

L

(1)

g

(1)

� [L

(2)

+ p

0

(2

�1

I

4

+K

(2)

1

)℄ g

(2)

= F; (15.5)

where H

(�)

, K

(�)

1

, K

(�)

2

, and L

(�)

(� = 1; 2) are de�ned by (10.3), (10.4),

(10.5), and (10.6), respe
tively.

To investigate the solvability of the above system of 	DEs we �rst prove

the following lemma.

Lemma 15.1. Let g

(�)

2 C

1;�

(S) (� = 1; 2) and let the ve
tor fun
tions,

represented by (15:1){(15:2), vanish in 


1

and 


2

, respe
tively.

Then g

(�)

= 0 (� = 1; 2) on S.

Proof. Obviously, the regular ve
tor fun
tion U

(1)

, de�ned by (15.1), 
an

be extended by the same formula from the domain 


1

into 


2

. Denote the

extended ve
tor fun
tion again by U

(1)

. By Lemmata 10.1 and 10.7 then

we have

[U

(1)

℄

�

= �g

(1)

and [B

(1)

(D;n)U

(1)

℄

�

= 0 on S; (15.6)

in a

ordan
e with the assumption U

(1)

= 0 in 


1

. Sin
e U

(1)

is a (m; r)-

thermo-radiating regular ve
tor fun
tion, we dedu
e by virtue of Theorem

9.5 and the se
ond equation in (15.6) that U

(1)

= 0 in 


2

; when
e g

(1)

= 0

on S follows.

The assertion for g

(2)

is a ready 
onsequen
e of Lemma 13.1. �

In the matrix form the system (15.4)-(15.5) reads

M

C

g = Q; (15.7)

where g = (g

(1)

; g

(2)

)

>

, Q = (f; F )

>

, and

M

C

=

"

[2

�1

I

4

+K

(1)

2

℄

4�4

[2

�1

I

4

�K

(2)

2

� p

0

H

(2)

℄

4�4

[L

(1)

℄

4�4

[�L

(2)

� p

0

(2

�1

I

4

+K

(2)

1

)℄

4�4

#

8�8

: (15.8)
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Next, let us introdu
e the following operators

�

1

:= 2

�1

I

4

+K

(1)

2

; 	

1

:= L

(1)

; (15.9)

�

2

:= �2

�1

I

4

+K

(2)

2

+ p

0

H

(2)

; 	

2

:= L

(2)

+ p

0

(2

�1

I

4

+K

(2)

1

); (15.10)

and rewrite the system (15.4)-(15.5) as

�

1

g

(1)

��

2

g

(2)

= f; (15.11)

	

1

g

(1)

�	

2

g

(2)

= F: (15.12)

Note that the mappings

�

2

: C

l;�

(S)! C

l;�

(S); 0 � l � k; (15.13)

	

2

: C

l;�

(S)! C

l�1;�

(S); 1 � l � k; (15.14)

are isomorphisms due to Lemmata 13.4 and 13. 11. Therefore, (15.11)-

(15.12) equivalently 
an be redu
ed to the system

g

(2)

= �

�1

2

�

1

g

(1)

��

�1

2

f; (15.15)

[	

1

�	

2

�

�1

2

�

1

℄ g

(1)

= F �	

2

�

�1

2

f: (15.16)

Remark 15.2. Note that the system (15.4)-(15.5) (i.e., (15.11)-(15.12)) is

equivalent to the following system of SIEs

�

1

g

(1)

��

2

g

(2)

= f; (15.17)

R

4

	

1

g

(1)

�R

4

	

2

g

(2)

= R

4

F; (15.18)

where the equivalent lifting matrix operator R

4

is given by (12.33).

Lemma 15.3. The operator M

C

is ellipti
 in the sense of Douglis-Ni-

renberg with index equal to zero. The mapping

M

C

: [C

l;�

(S)℄

8

! [C

l;�

(S)℄

4

� [C

l�1;�

(S)℄

4

; 1 � l � k; (15.19)

is an isomorphism.

Proof. First we show that M

C

is an ellipti
 	DO in the sense of Douglis-

Nirenberg. To this end let us remark that, due to the results of Se
tion 10

(see (10.23){(10.30),(10.48), (10.49)), for the prin
ipal homogeneous symbol

matri
es of the operators (15.9) and (15.10) we have the following expres-

sions:

�(�

1

) = �((2

�1

I

4

+K

(1)

2

)

0

) =:

�

[K

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

K

(1)

44

�

4�4

; (15.20)

�(�

2

) = �((�2

�1

I

4

+K

(2)

2

)

0

) =:

�

[K

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

K

(2)

44

�

4�4

; (15.21)

�(	

1

) = �((L

(1)

)

0

) =:

�

[L

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1)

44

�

4�4

; (15.22)

�(	

2

) = �((L

(2)

)

0

) =:

�

[L

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(2)

44

�

4�4

; (15.23)
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where (K)

0

denotes again the dominant singular part of the operator K;

here we employed the notations:

K

(1)

= �(2

�1

I

3

+

�

K

(1;0)

) = [�(2

�1

I

3

+K

(1;0)

)℄

>

; (15.24)

K

(2)

= �(�2

�1

I

3

+

�

K

(2;0)

) = [�(�2

�1

I

3

+K

(2;0)

)℄

>

; (15.25)

K

(1)

44

= �(2

�1

I

3

+

�

K

(1;0)

4

) =

1

2

; (15.26)

K

(2)

44

= �(�2

�1

I

3

+

�

K

(2;0)

4

) = �

1

2

; (15.27)

L

(�)

= �(L

(�;0)

); � = 1; 2; (15.28)

L

(�)

44

= �(L

(�;0)

4

) = �[4�(H

(�;0)

4

)℄

�1

> 0; � = 1; 2; (15.29)

where by

�

K

(�;0)

, K

(�;0)

,

�

K

(�;0)

4

, K

(�;0)

, L

(�;0)

, and L

(�;0)

4

are denoted again

the operatos (10.26), (10.40), and (10.41) 
orresponding to the thermo-

elasti
 
hara
teristi
s of the medium o

upying the domain 


�

(
f. (14.19)).

In Lemma 3.3 of the referen
e [41℄ it has been proved that

�

�

= det

�

[K

(1)

℄

3�3

�[K

(2)

℄

3�3

[L

(1)

℄

3�3

[�L

(2)

℄

3�3

�

6�6

6= 0 (15.30)

for arbitrary x 2 S and

e

� 2 R

2

n f0g:

Let us now 
onsider the symbol matrix of the operator M

C

�(M

C

) =

�

�(�

1

) ��(�

2

)

�(	

1

) ��(	

2

)

�

8�8

(15.31)

and show that the 
orresponding determinant does not vanish for arbitrary

x 2 S and

e

� 2 R

2

n f0g; whi
h in turn implies the usual ellipti
ity of the

system (15.17)-(15.18) (or the ellipti
ity of the system (15.4)-(15.5) in the

sense of Douglis-Nirenberg). By virtue of formulae (15.20)-(15.29) we get

from (15.31) after some simple rearrangements

det�(M

C

) = det

2

6

6

4

[K

(1)

℄

3�3

[0℄

3�1

�[K

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

1

2

[0℄

1�3

�

1

2

[L

(1)

℄

3�3

[0℄

3�1

[�L

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1)

44

[0℄

1�3

�L

(2)

44

3

7

7

5

8�8

=

= det

�

[K

(1)

℄

3�3

�[K

(2)

℄

3�3

[L

(1)

℄

3�3

[�L

(2)

℄

3�3

�

6�6

det

�

1

2

1

2

L

(1)

44

�L

(2)

44

�

2�2

=

= �

1

2

�

L

(1)

44

+ L

(2)

44

�

�

�

6= 0; (15.32)

due to (15.29) and (15.30).

Next we show that the index of the operator M

C

equals zero. To see

this, let us note that the index does not depend on a 
ompa
t pertubation,
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and 
onsider the following operator

f

M

C

=

"

[

f

M

(1)

C

℄

4�4

[

f

M

(2)

C

℄

4�4

[

f

M

(3)

C

℄

4�4

[

f

M

(4)

C

℄

4�4

#

8�8

; (15.33)

where

f

M

(1)

C

=

2

4

[2

�1

I

3

+

�

K

(1;0)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

I

1

+

�

K

(1;0)

4

3

5

4�4

;

f

M

(2)

C

=

2

4

[2

�1

I

3

�

�

K

(2;0)

� fH

(2;0)

g℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

I

1

�

�

K

(2;0)

4

�fH

(2;0)

4

g

3

5

4�4

;

f

M

(3)

C

=

�

[L

(1;0)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1;0)

4

�

4�4

;

f

M

(4)

C

=

�

[�L

(2;0)

�f2

�1

I

3

+K

(2;0)

g℄

3�3

[0℄

3�1

[0℄

1�3

�L

(2;0)

4

�f2

�1

I

1

+K

(2;0)

4

g

�

4�4

:

Clearly, the dominant singular parts (M

C

)

0

and (

f

M

C

)

0


oin
ide. In-

deed, these dominant singular parts in the both 
ases 
an be represented in

the form (15.33) where the summands in 
urly bra
kets are removed.

The 
orresponding formally adjoint operator to

f

M

C

reads as

f

M

�

C

=

"

[

f

M

(1)�

C

℄

4�4

[

f

M

(2)�

C

℄

4�4

[

f

M

(3)�

C

℄

4�4

[

f

M

(4)�

C

℄

4�4

#

8�8

; (15.34)

where

f

M

(1)�

C

=

�

[2

�1

I

3

+K

(1;0)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

I

1

+K

(1;0)

4

�

4�4

;

f

M

(2)�

C

=

�

[L

(1;0)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1;0)

4

�

4�4

;

f

M

(3)�

C

=

�

[2

�1

I

3

�K

(2;0)

�H

(2;0)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

I

1

�K

(2;0)

4

�H

(2;0)

4

�

4�4

;

f

M

(4)�

C

=

2

4

[�L

(2;0)

� 2

�1

I

3

�

�

K

(2;0)

℄

3�3

[0℄

3�1

[0℄

1�3

�L

(2;0)

4

�2

�1

I

1

�

�

K

(2;0)

4

3

5

4�4

:

We again re
all that the operators involved in (15.33) and (15.34) are de�ned

in Se
tion 10. Moreover, here we have applied that the operators L

(�;0)

,

L

(�;0)

4

, H

(�;0)

, and H

(�;0)

4

are formally self-adjoint (see [34℄, [59℄).

In what follows we prove that the homogeneous equations

f

M

C

' = 0; ' = ('

(1)

; '

(2)

)

>

; '

(j)

= ('

(j)

1

; � � � ; '

(j)

4

)

>

; j = 1; 2; (15.35)
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and

f

M

�

C

 = 0;  = ( 

(1)

;  

(2)

)

>

;  

(j)

=( 

(j)

1

; � � � ;  

(j)

4

)

>

; j=1; 2; (15.36)

have only the trivial solutions.

Due to the above established ellipti
ity we 
onsider these equations in

the regular spa
e of C

1;�

-smooth ve
tor fun
tions.

Note that the system (15.35) 
an be de
omposed into the following two

independent systems:

[2

�1

I

3

+

�

K

(1;0)

℄ e'

(1)

� [� 2

�1

I

3

+

�

K

(2;0)

+H

(2;0)

℄ e'

(2)

= 0;

L

(1;0)

e'

(1)

� [L

(2;0)

+ 2

�1

I

3

+K

(2;0)

℄ e'

(2)

= 0;

)

(15.37)

[2

�1

I

1

+

�

K

4

(1;0)

℄'

(1)

4

� [� 2

�1

I

1

+

�

K

4

(2;0)

+H

(2;0)

4

℄'

(2)

4

= 0;

L

(1;0)

4

'

(1)

4

� [L

(2;0)

4

+ 2

�1

I

1

+K

(2;0)

4

℄'

(2)

4

= 0;

)

(15.38)

where e'

(j)

= ('

(j)

1

; '

(j)

2

; '

(j)

3

)

>

; j = 1; 2:

These systems are generated by the following interfa
e problems for the

equations of elastostati
s and the stationary distribution of temperature

C

(�)

(D)u

(�)

= 0 in 


�

; u

(�)

= (u

(�)

1

; u

(�)

2

; u

(�)

3

)

>

; � = 1; 2;

[u

(1)

℄

+

� [u

(2)

℄

�

= 0 and [T

(1)

(D;n)u

(1)

℄

+

�

�[T

(2)

(D;n)u

(2)

℄

�

= 0 on S;

u

(2)

(x) = o(1) as jxj ! +1;

9

>

>

=

>

>

;

(15.39)

and

�

(�)

pq

D

p

D

q

u

(�)

4

= 0 in 


�

; � = 1; 2;

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= 0 and [�

(1)

(D;n)u

(1)

4

℄

+

�

�[�

(2)

(D;n)u

(2)

4

℄

�

= 0 on S;

u

(2)

4

(x) = o(1) as jxj ! +1;

9

>

>

>

=

>

>

>

;

(15.40)

where C

(�)

(D), T

(�)

(D;n), and �

(�)

(D;n) are given by (1.7), (1.12), and

(1.24), respe
tively.

If one looks for solutions (u

(1)

; u

(2)

) and (u

(1)

4

; u

(2)

4

) in the form of follow-

ing potentials (see (10.19){(10.22))

u

(1)

(x) =

R

S

[T

(1)

(D

y

; n(y))�

(1;0)

(y � x)℄

>

e'

(1)

(y) dS

y

=:

=: w

(1;0)

(e'

(1)

)(x); (15.41)

u

(2)

(x) =

R

S

[T

(2)

(D

y

; n(y))�

(2;0)

(y � x)℄

>

e'

(2)

(y) dS

y

+

+

R

S

�

(2;0)

(y � x) e'

(2)

(y) dS

y

=: w

(2;0)

(e'

(2)

)(x) + v

(2;0)

(e'

(2)

)(x); (15.42)

u

(1)

4

(x) =

R

S

�

(1)

(D

y

; n(y))


(1;0)

(y � x)'

(1)

4

(y) dS

y

=:

=: w

(1;0)

4

('

(1)

4

)(x); (15.43)

u

(2)

4

(x) =

R

S

�

(2)

(D

y

; n(y))


(2;0)

(y � x)'

(2)

4

(y) dS

y

+

+

R

S




(2;0)

(y � x)'

(2)

4

(y) dS

y

=: w

(2;0)

4

('

(2)

4

)(x) + v

(2;0)

4

('

(2)

4

)(x); (15.44)

one arrives at the systems (15.37) and (15.38).
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Using the usual Green identities (14.22) it 
an be easily shown that the

homogeneous problems (15.39) and (15.40) have only the trivial solutions.

These uniqueness results and standard arguments of the potential theory

imply that the systems (15.37) and (15.38) possess only the trivial solutions

as well.

Indeed, let ('

(1)

; '

(2)

)

>

be some solution to the homogeneous system

(15.37), and let us 
onstru
t by these densities the potentials (15.41) in 


1

and (15.42) in 


2

: Due to the above uniqueness u

(�)

(x) = 0 in 


�

, � = 1; 2:

Applying the jump properties of the single and double layer potentials of

elastostati
s (see [8℄, [34℄, [56℄) we 
on
lude that '

(1)

= '

(2)

= 0 on S. For

the system (15.38) the proof is verbatim. Thus, ker

f

M

C

= f0g:

To prove that ker

f

M

�

C

= f0g; we de
ompose analogously the system

(15.36) into the two systems

[2

�1

I

3

+K

(1;0)

℄

e

 

(1)

+ L

(1;0)

e

 

(2)

= 0;

[� 2

�1

I

3

+K

(2;0)

+H

(2;0)

℄

e

 

(1)

+

+[L

(2;0)

+ 2

�1

I

3

+

�

K

(2;0)

℄

e

 

(2)

= 0;

9

>

=

>

;

(15.45)

[2

�1

I

1

+K

(1;0)

4

℄ 

(1)

4

+ L

(1;0)

4

 

(2)

4

= 0;

[� 2

�1

I

1

+K

(2;0)

4

+H

(2;0)

4

℄ 

(1)

4

+

+[L

(2;0)

4

+ 2

�1

I

1

+

�

K

(2;0)

4

℄ 

(2)

4

= 0:

9

>

=

>

;

(15.46)

Denote by (

e

 

(1)

;

e

 

(2)

)

>

some solution of the homogeneous system (15.45)

and by these densities 
onstru
t the ve
tors (see (15.41){(15.44))

u

(1)

�

(x) = v

(1;0)

(

e

 

(1)

)(x) + w

(1;0)

(

e

 

(2)

)(x) in 


�

= 


2

; (15.47)

u

(2)

�

(x) = v

(2;0)

(

e

 

(1)

)(x) + w

(2;0)

(

e

 

(2)

)(x) in 


+

= 


1

: (15.48)

Obviously, C

(1)

(D)u

(1)

�

= 0 in 


�

= 


2

and C

(2)

(D)u

(2)

�

= 0 in 


+

= 


1

.

It 
an be also easily veri�ed that the equations (15.45) 
orrespond to the


onditions

[T

(1)

(D;n)u

(1)

�

℄

�

= 0; (15.49)

[T

(2)

(D;n)u

(2)

�

℄

+

+ [u

(2)

�

℄

+

= 0: (15.50)

Therefore, u

(1)

�

is a solution of the homogeneous exterior stress problem

in 


�

, while u

(2)

�

represents a solution to the Robin type problem in 


+

.

By uniqueness theorems, whi
h 
an be established again with the help of

(14.22), we 
on
lude u

(1)

�

= 0 in 


�

, and u

(2)

�

= 0 in 


+

. The jump relations

then lead to the equations

[u

(1)

�

℄

+

=

e

 

(2)

; [T

(1)

(D;n)u

(1)

�

℄

+

= �

e

 

(1)

;

[u

(2)

�

℄

�

= �

e

 

(2)

; [T

(2)

(D;n)u

(2)

�

℄

�

=

e

 

(1)

;

(15.51)
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when
e

[u

(1)

�

℄

+

+ [u

(2)

�

℄

�

= 0;

[T

(1)

(D;n)u

(1)

�

℄

+

+ [T

(2)

(D;n)u

(2)

�

℄

�

= 0:

(15.52)

Making use on
e again of Green formulae (14.22) together with homoge-

neous 
onditions (15.52) we obtain that u

(1)

�

= 0 in 


+

and u

(2)

�

= 0 in 


�

.

Now (15.51) shows

e

 

(1)

=

e

 

(2)

= 0 on S. In the same way we 
an show that

the system (15.46) has also only the trivial solution. Thus, ker

f

M

�

C

= f0g as

well, and, therefore, ind

f

M

C

= 0; whi
h proves the �rst part of the lemma.

Next we prove that the mapping (15.19) is an isomorphism. Due to the

�rst part of the lemma it remains to 
he
k that the homogeneous equation

f

M

C

g = 0 admits only the trivial solution. Let g = (g

(1)

; g

(2)

)

>

be an

arbitrary solution of this equation. Then the potentials (15.1) and (15.2)

solve the homogeneous problem (C)

!

and by Theorem 9.8 they vanish in

the 
orresponding domains. Now Lemma 15.1 
ompletes the proof. �

Corollary 15.4. Let S 2 C

1

and let s 2 R; 1 < p < 1, 1 � q � 1.

Then the operators

M

C

: [H

s

p

(S)℄

8

! [H

s

p

(S)℄

4

� [H

s�1

p

(S)℄

4

;

: [B

s

p;q

(S)℄

8

! [B

s

p;q

(S)℄

4

� [B

s�1

p;q

(S)℄

4

are isomorphisms.

Proof. It follows from the fa
t that, due to the general theory of ellipti


	DEs on 
losed smooth manifolds, the uniqueness of solution implies the


orresponding existen
e results for the nonhomogeneous equation (15.7) in

the Besov B

s

p;q

(S) and the Bessel-potential H

s

p

(S) spa
es (see the proof of

Lemma 12.9). �

We are now ready to present the solution of the system (15.4)-(15.5) (i.e.,

(15.17)-(15.18)) in terms of expli
itly given boundary integral operators and

their inverses. To this end we need the following lemma.

Lemma 15.5. Let S, k, and � be as in (14:5). Then the mapping

[	

1

�	

2

�

�1

2

�

1

℄ : [C

l;�

(S)℄

4

! �[C

l�1;�

(S)℄

4

; 1 � l � k; (15.53)

is an ellipti
 invertible 	DO of order +1.

Proof. First we show the ellipti
ity of the prin
ipal homogeneous symbol

matrix of the operator in question. Due to the equations (15.20)-(15.29) we

have

M := �(	

1

�	

2

�

�1

2

�

1

) = �(	

1

)� �(	

2

)[�(�

2

)℄

�1

�(�

1

) =

=

�

�(	

1

)[�(�

1

)℄

�1

� �(	

2

)[�(�

2

)℄

�1

	

�(�

1

) =

=

��

[L

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1)

44

� �

[(K

(1)

)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

2

�

�

�

�

[L

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(2)

44

��

[(K

(2)

)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

�2

��

�
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�

�

[K

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

�

=

=

�

[L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

2L

(1)

44

+ 2L

(2)

44

�

�

�

�

[K

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

�

: (15.54)

We used here that the matri
esK

(1)

andK

(2)

de�ned by (15.24) and (15.25)

are not singular (see, e.g., [34℄, [56℄) and employed the following simple fa
ts:

if

X =

�

[

e

X ℄

3�3

[0℄

3�1

[0℄

1�3

x

44

�

4�4

and Y =

�

[

e

Y ℄

3�3

[0℄

3�1

[0℄

1�3

y

44

�

4�4

;

then

XY =

�

[

e

X

e

Y ℄

3�3

[0℄

3�1

[0℄

1�3

x

44

y

44

�

4�4

and X

�1

=

�

[(

e

X)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

(x

44

)

�1

�

4�4

where det

e

X 6= 0 and x

44

6= 0 are assumed.

We re
all that the matri
es (15.28) are nonsingular, too. Moreover, by

the arguments similar to that of applied in the proof of Lemma 14.2 we 
an

show that the matri
es

L

(1)

(K

(1)

)

�1

and � L

(2)

(K

(2)

)

�1

(15.55)

are positive de�nite (for details see [41℄, [59℄, [34℄, [57℄). Therefore, the

matrix

M

0

:=

�

[L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

2L

(1)

44

+ 2L

(2)

44

�

4�4

; (15.56)

is positive de�nite. Consequently, the matrix M de�ned by (15.54), whi
h

represents the prin
ipal homogeneous symbol matrix of the operator (15.53),

is nonsingular. Thus, the operator (15.53) is an ellipti
 	DO.

Further, from (15.54) it follows that the dominant singular part of the

operator (15.53) 
an be represented as the 
omposition of two operators

where the �rst one is the operator with the positive de�nite prin
ipal symbol

matrix (15.56), while the se
ond one is the following invertible operator

"

[2

�1

I

3

+

�

K

(1;0)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

#

4�4

;

whi
h 
orresponds to the se
ond matrix multiplyer in (15.54). These fa
ts

yield that the index of the operator (15.53) is equal to zero.

Next we prove that the operator (15.53) has the trivial null-spa
e . Let

the homogeneous equation

[	

1

�	

2

�

�1

2

�

1

℄ g

0

= 0; g

0

= (g

0

1

; � � � ; g

0

4

)

>

; (15.57)
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admits a nontrivial solution g

0

6=0. Then the nontrivial ve
tor (g

0

;�

�1

2

�

1

g

0

)

>

6= 0 solves the system (15.11){(15.12) (with f = 0, F = 0). This 
ontra-

di
ts to Lemma 15.3. Therefore, (15.57) has only the trivial solution, whi
h


ompletes the proof. �

Corollary 15.6. Let S 2 C

1

and let s 2 R; 1 < p < 1, 1 � q � 1.

Then the operators

	

1

�	

2

�

�1

2

�

1

: [H

s

p

(S)℄

4

! [H

s�1

p

(S)℄

4

;

: [B

s

p;q

(S)℄

4

! [B

s�1

p;q

(S)℄

4

are ellipti
 invertible 	DOs of order +1.

Proof. It is verbatim the proof of Corollary 15.4. �

Let us introdu
e the following 	DO of order �1

	 := [	

1

�	

2

�

�1

2

�

1

℄

�1

: (15.58)

From Lemma 15.5 it follows that we 
an represent the solution of the system

(15.7) \expli
itly" by formulae

g

(1)

= 	F �		

2

�

�1

2

f; (15.59)

g

(2)

= �

�1

2

�

1

	F ��

�1

2

(�

1

		

2

�

�1

2

+ I) f; (15.60)

where I is again the identity operator.

Substituting (15.59) and (15.60) into (15.1) and (15.2) we obtain the

following representation of solution of the problem (C)

!

:

U

(1)

(x) =W

(1)

�

	F �		

2

�

�1

2

f

�

(x); (15.61)

U

(2)

(x) =

�

W

(2)

+ p

0

V

(2)

�

�

�

�1

2

�

1

	F�

��

�1

2

[�

1

		

2

�

�1

2

+ I ℄ f

�

(x); (15.62)

where F and f are the boundary data of the interfa
e problem under 
on-

sideration (see (7.3){(7.4) or (7.11){(7.12)).

Now we are in the position to formulate the basi
 existen
e results in the

form of the following propositions.

Theorem 15.7. Let 
onditions (14:5) be ful�lled. Then the formulae

(15:61){(15:62) de�ne the unique regular solution to the problem (C)

!

of the


lass

(U

(1)

; U

(2)

) 2 ([C

k;�

(


1

)℄

4

; [C

k;�

(


2

) \ SK

m

r

(


2

)℄

4

) (15.63)

(with r and ! as in (15:3)).

Proof. It is a ready 
onsequen
e of the uniqueness Theorem 9.8 and Lem-

mata 10.1, 15.3, and 15.5. �

Theorem 15.8. Let S 2 C

1

, 1 < p <1, and

f 2 [B

1�1=p

p;p

(S)℄

4

; F 2 [B

�1=p

p;p

(S)℄

4

: (15.64)
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Then the formulae (15:61){(15:62) represent the unique solution to the prob-

lem (C)

!

of the 
lass

(U

(1)

; U

(2)

) 2 ([W

1

p

(


1

)℄

4

; [W

1

p;lo


(


2

) \ SK

m

r

(


2

)℄

4

) (15.65)

(with r and ! as in (15:3)).

Proof. Solvability of the problem (C)

!

in the 
lass indi
ated in the theorem

is an immediate 
onsequen
e of the formulae (15.61)-(15.62), and Theorem

10.8 (with s = 1� 1=p).

To prove the uniqueness of solution to the problem (C)

!

for arbitrary

p 2 (1;1), we have to repeate word for word the arguments of the proof

of Theorem 14.6. The 
ase is that the key integral representation formulae

similar to (14.30)-(14.31) we 
an also write for a solution (U

(1)

; U

(2)

) to

the homogeneous problem (C)

!

of the 
lass (15.65) (see Theorem 10.8, item

ii)). �

15.2. In this subse
tion we present the existen
e results for the prob-

lem (G)

!

. First we transform the interfa
e 
onditions (7.5){(7.8) to the

equivalent equations on S (
f. Subse
tion 14.3):

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F; (15.66)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

n

; [u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; (15.67)

[P

(1)

(D;n)U

(1)

� l℄

+

+ [P

(2)

(D;n)U

(2)

� l℄

�

=

e

F

(+)

l

+

e

F

(�)

l

; (15.68)

[P

(1)

(D;n)U

(1)

�m℄

+

+ [P

(2)

(D;n)U

(2)

�m℄

�

=

e

F

(+)

m

+

e

F

(�)

m

; (15.69)

where

F =

�

(

e

F

(+)

l

�

e

F

(�)

l

) l + (

e

F

(+)

m

�

e

F

(�)

m

)m+

e

F

n

n; F

4

�

>

; (15.70)

and l, m, and n are as in Subse
tion 7.2.

We seek the solution of the problem (G)

!

in the form of potentials (15.61)-

(15.62), where F is given by (15.70), and

[U

(1)

℄

+

� [U

(2)

℄

�

= f = (' l +  m+

e

f

n

n; f

4

)

>

: (15.71)

Here ' and  are unknown s
alar fun
tions of the spa
e C

k;�

(S), while

e

F

(�)

l

,

e

F

(�)

m

,

e

F

n

, F

4

,

e

f

n

, and f

4

are given fun
tions on S. We assume that

e

F

(�)

l

;

e

F

(�)

m

;

e

F

n

; F

4

2 C

k�1;�

(S);

e

f

n

; f

4

2 C

k;�

(S);

S 2 C

k+1;�

0

; k � 1; 0 < � < �

0

� 1:

(15.72)

From the results of the previous subse
tion it is evident that the ve
tors U

(1)

and U

(2)

given by (15.61) and (15.62) are regular solutions to the steady

state os
illation equations of thermoelasti
ity theory (7.2). Moreover, they

automati
ally satisfy the 
onditions (15.66) and (15.67). It remains to ful�l

the 
onditions (15.68) and (15.69) by 
hoosing the unknown fun
tions '

and  appropriately.
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Due to the jump relations of the single and double layer potentials (see

Lemmata 10.1 and 10.7) we have from (15.61)-(15.62) (see also (15.9),

(15.10) and (15.58))

[B

(1)

(D;n)U

(1)

℄

+

= L

(1)

	 [F �	

2

�

�1

2

f ℄ = 	

1

	 [F �	

2

�

�1

2

f ℄ =

= 	

1

	F �	

1

		

2

�

�1

2

(' l +  m+

e

f

n

n; f

4

)

>

; (15.73)

[B

(2)

(D;n)U

(2)

℄

�

= [L

(2)

+ p

0

(2

�1

I

4

+K

(2)

1

)℄ �

�1

2

[�

1

	F �

�(�

1

		

2

�

�1

2

+ I)f ℄ = 	

2

�

�1

2

[�

1

	F � (�

1

		

2

�

�1

2

+ I)f ℄ =

=	

2

�

�1

2

�

1

	F�	

2

�

�1

2

(�

1

		

2

�

�1

2

+I)('l+ m+

e

f

n

n; f

4

)

>

: (15.74)

Now let l

�

, m

�

, and n

�

, be the 4-ve
tors de�ned by (14.48) and let

e

�

= (0; 0; 0; 1)

>

: (15.75)

Then

(' l +  m+

e

f

n

n; f

4

)

>

= ' l

�

+  m

�

+

e

f

n

n

�

+ f

4

e

�

: (15.76)

Next we set

eq

1

= 	

1

	F �	

1

		

2

�

�1

2

(

e

f

n

n

�

+ f

4

e

�

);

eq

2

= 	

2

�

�1

2

�

1

	F �	

2

�

�1

2

(�

1

		

2

�

�1

2

+ I)(

e

f

n

n

�

+ f

4

e

�

):

(15.77)

Applying these notations in (15.73) and (15.74) we get

[B

(1)

(D;n)U

(1)

℄

+

=

�

[P

(1)

(D;n)U

(1)

; �

(1)

(D;n)u

(1)

4

℄

+

�

>

=

= �	

1

		

2

�

�1

2

(' l

�

+  m

�

) + eq

1

; (15.78)

[B

(2)

(D;n)U

(2)

℄

�

=

�

[P

(2)

(D;n)U

(2)

; �

(2)

(D;n)u

(2)

4

℄

�

�

>

=

= �	

2

�

�1

2

(�

1

		

2

�

�1

2

+ I) (' l

�

+  m

�

) + eq

2

=

= �	

1

		

2

�

�1

2

(' l

�

+  m

�

) + eq

2

; (15.79)

sin
e

�	

2

�

�1

2

[�

1

		

2

�

�1

2

+ I ℄ = �[	

2

�

�1

2

�

1

	 + I ℄	

2

�

�1

2

=

= �[(	

1

�	

�1

)	 + I ℄ 	

2

�

�1

2

= �	

1

		

2

�

�1

2

(15.80)

due to (15.58).

Substitution of the formulae (15.78){(15.79) into the interfa
e 
onditions

(15.68){(15.69) leads to the following system of 	DEs on S for the unknown

fun
tions ' and  :

�[	

1

		

2

�

�1

2

('l

�

+ m

�

)℄�l

�

=2

�1

(

e

F

(+)

l

+

e

F

(�)

l

�eq

1

�l

�

�eq

2

�l

�

); (15.81)

�[	

1

		

2

�

�1

2

('l

�

+ m

�

)℄�m

�

=2

�1

(

e

F

(+)

m

+

e

F

(�)

m

�eq

1

�m

�

�eq

2

�m

�

): (15.82)

This system 
an also be rewritten as

M

G

h = q; (15.83)
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where h = (';  )

>

is the sought for 2-ve
tor, q = (q

1

; q

2

)

>

is the given

2-ve
tor,

q

1

= 2

�1

(

e

F

(+)

l

+

e

F

(�)

l

� eq

1

� l

�

� eq

2

� l

�

);

q

2

= 2

�1

(

e

F

(+)

m

+

e

F

(�)

m

� eq

1

�m

�

+ eq

2

�m

�

);

(15.84)

M

G

=

�

l

k

(K

G

)

kj

l

j

l

k

(K

G

)

kj

m

j

m

k

(K

G

)

kj

l

j

m

k

(K

G

)

kj

m

j

�

2�2

; (15.85)

K

G

= �	

1

		

2

�

�1

2

; (15.86)

in (15.85) the summation over repeated indi
es k and j is meant from 1 to 3.

Note that K

G

is a 4�4 matrix 	DO of order 1. As in the proof of Lemma

15.5 we easily derive that the prin
ipal homogeneous symbol matrix of the

operator K

G

reads as

�(K

G

) = ��(	

1

)�(	)�(	

2

)[�(�

2

)℄

�1

= �

�

[L

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1)

44

�

�

�M

�1

�

[L

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(2)

44

� �

[(K

(2)

)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�

with the sameM; K

(j)

; L

(j)

; and L

(j)

44

as in (15.54), due to formulae (15.20)-

(15.29) and (15.54). The last equation together with (15.56) implies

�(K

G

) =

�

[Z℄

3�3

[0℄

3�1

[0℄

1�3

Z

44

�

4�4

; (15.87)

where

Z

44

= 2L

(1)

44

L

(2)

44

[L

(1)

44

+ L

(2)

44

℄

�1

(15.88)

is a positive fun
tion, while

Z = �L

(1)

(K

(1)

)

�1

[L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄

�1

L

(2)

(K

(2)

)

�1

=

= f�K

(2)

(L

(2)

)

�1

[L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄K

(1)

(L

(1)

)

�1

g

�1

=

= [K

(1)

(L

(1)

)

�1

�K

(2)

(L

(2)

)

�1

℄

�1

(15.89)

is a positive de�nite 3 � 3 matrix (sin
e the matri
es (15.55) are positive

de�nite). When
e for arbitrary x 2 S,

e

� 2 R

2

n f0g, and � 2 C

3

there hold

the inequalities

Z

44

(x;

e

�) � 


0

j

e

�j; Z(x;

e

�)� � � � 


00

j

e

�j j�j

2

; (15.90)

with positive 
onstants 


0

and 


00

.

Lemma 15.9. The prin
ipal homogeneous symbol matri
es of the 	DOs

K

G

amd M

G

are positive de�nite.

Proof. The positive de�niteness of �(K

G

) follows from (15.87)-(15.90). In

the 
ase of the matrix M

G

, for arbitrary x 2 S,

e

� 2 R

2

n f0g, and � 2 C

2

,

we have

�(M

G

)� � � =



115

=

�

l

k

(x)l

j

(x)[�(K

G

)℄

kj

l

k

(x)m

j

(x)[�(K

G

)℄

kj

m

k

(x)l

j

(x)[�(K

G

)℄

kj

m

k

(x)m

j

(x)[�(K

G

)℄

kj

�

2�2

�

�

1

�

2

�

�

�

�

1

�

2

�

=

= [l

k

(x)l

j

(x)Z

kj

�

1

+ l

k

(x)m

j

(x)Z

kj

�

2

℄�

1

+

+[m

k

(x)l

j

(x)Z

kj

�

1

+m

k

(x)m

j

(x)Z

kj

�

2

℄�

2

=

= Z

kj

[l

j

(x)�

1

+m

j

(x)�

2

℄[l

k

(x)�

1

+m

k

(x)�

2

℄ =

= Z[�

1

l(x) + �

2

m(x)℄ � [�

1

l(x) + �

2

m(x)℄ �

� 


00

j

e

�j j�

1

l(x)+�

2

m(x)j

2

= 


00

j

e

�j j�j

2

;

due to the se
ond inequality in (15.90). Therefore, �(M

G

) is a positive

de�nite matrix as well. �

Corollary 15.10. The dominant singular parts of the operators (15:85)

and (15:86) are formally self-adjoint ellipti
 	DOs of order 1 with indi
es

equal to zero.

Next we re
all that J

G

(


1

) denotes the set of Jones eigenfrequen
ies for

the problem (G)

!

(see (9.54){(9.55)) and prove the following assertion.

Lemma 15.11. If ! 62 J

G

(


1

), then the operators

M

G

: [C

l;�

(S)℄

2

! [C

l�1;�

(S)℄

2

; 1 � l � k;

: [H

s

p

(S)℄

2

! [H

s�1

p

(S)℄

2

; S 2 C

1

; s 2 R; 1 < p <1;

: [B

s

p;q

(S)℄

2

! [B

s�1

p;q

(S)℄

2

; S 2 C

1

; s 2 R;

1 < p <1; 1 � q � 1;

are isomorphisms.

Proof. Again due to the general theory of 	DOs on 
losed smooth mani-

folds, it suÆ
es to show that the homogeneous version of equation (15.83)

(q = 0) has only the trivial solution in the spa
e C

1;�

(S). Let h = (';  )

>

2

[C

1;�

(S)℄

2

be some solution of the homogeneous equation and 
onstru
t

the ve
tors U

(1)

and U

(2)

by formulae (15.61){(15.62), where F = 0 and

f = l

�

'+m

�

 . Clearly, to the nontrivial pair (';  ) there 
orresponds the

nontrivial ve
tor f sin
e l

�

and m

�

are orthonormal (see (14.48)). On the

other hand it is evident that (U

(1)

; U

(2)

) 2 (C

1;�

(


1

) ; C

1;�

(


2

)\SK

m

r

(


2

))

and they satisfy the homogeneous 
onditions (15.66)-(15.69), whi
h are

equivalent to the homogeneous version of equations (7.5){(7.8). Therefore,

by Theorem 9.9 we 
on
lude U

(�)

= 0 in 


�

(� = 1; 2): Now, from the equa-

tion [U

(1)

℄

+

� [U

(2)

℄

�

= f = l

�

'+m

�

 = 0; it follows that ' =  = 0. �

With quite the same arguments as in the previous subse
tion (see proofs

of Theorems 15.7 and 15.8) we derive the following propositions.

Theorem 15.12. Let ! 62 J

G

(


1

) and 
onditions (15:72) be ful�lled.

Then the problem (G)

!

is uniquely solvable in the 
lass ([C

k;�

(


1

)℄

4

; [C

k;�

(


2

)\

SK

m

r

(


2

)℄

4

) and the solution is representable in the form of potentials (15:61)

{(15:62), where F and f are given by (15:70) and (15:71), respe
tively, and

where (';  )

>

2 [C

k;�

(S)℄

2

is the unique solution of the system of 	DEs

(15:83) with the right-hand side q 2 [C

k�1;�

(S)℄

2

:
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Theorem 15.13. Let ! 62 J

G

(


1

), S 2 C

1

; and

e

F

(�)

l

e

F

(�)

m

;

e

F

n

; F

4

2 B

�1=p

p;p

(S);

e

f

n

; f

4

2 B

1�1=p

p;p

(S); 1 < p <1:

Then the problem (G)

!

is uniquely solvable in the 
lass ([W

1

p

(


1

)℄

4

,

[W

1

p;lo


(


2

) \ SK

m

r

(


2

)℄

4

) and the solution is representable in the form of

potentials (15:61){(15:62), where F and f are given by (15:70) and (15:71),

respe
tively, and where (';  )

>

2 [B

1�1=p

p;p

(S)℄

2

is the unique solution of the

system of 	DEs (15:83) with the right-hand side q 2 [B

�1=p

p;p

(S)℄

2

:

15.3. Here we investigate the nonhomogeneous problem (H)

!

applying

the same approa
h as above. Again we start with the reformulation of the

interfa
e 
onditions (7.7){(7.10) to the equivalent equations

[U

(1)

℄

+

� [U

(2)

℄

�

= f; [�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

;(15.91)

[P

(1)

(D;n)U

(1)

� n℄

+

� [P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

n

; (15.92)

[u

(1)

� l℄

+

+ [u

(2)

� l℄

�

=

e

f

(+)

l

+

e

f

(�)

l

;

[u

(1)

�m℄

+

+ [u

(2)

�m℄

�

=

e

f

(+)

m

+

e

f

(�)

m

;

(15.93)

where

f =

�

[

e

f

(+)

l

�

e

f

(�)

l

℄ l+ [

e

f

(+)

m

�

e

f

(�)

m

℄m+

e

f

n

n; f

4

�

>

: (15.94)

Next we set

F = (' l +  m+

e

F

n

n; F

4

)

>

= ' l

�

+  m

�

+

e

F

n

n

�

+ F

4

e

�

; (15.95)

where ' and  are unknown s
alar fun
tions, while l

�

, m

�

, n

�

, and e

�

are

the same 4-ve
tors as in the previous subse
tion. Here we assume either

e

f

(�)

l

;

e

f

(�)

m

;

e

f

n

; f

4

2 C

k;�

(S);

e

F

n

; F

4

2 C

k�1;�

(S);

S 2 C

k+1;�

0

; k � 1; 0 < � < �

0

� 1;

(15.96)

or

e

f

(�)

l

;

e

f

(�)

m

;

e

f

n

; f

4

2 B

1�1=p

p;p

(S);

e

F

n

; F

4

2 B

�1=p

p;p

(S); S 2 C

1

; 1 < p <1:

(15.97)

Now we look for the solution to the nonhomogeneous problem (H)

!

in the

form of potentials (15.61){(15.62), where f and F are de�ned by (15.94)

and (15.95), respe
tively.

One 
an easily 
he
k that the 
onditions (15.91) and (15.92) are auto-

mati
ally ful�lled. It remains to satisfy 
onditions (15.93).

Note that (see (15.10), (15.11), (15.58))

[U

(1)

℄

+

= �

1

	(F �	

2

�

�1

2

f) = �

1

	(' l

�

+  m

�

) + eq

3

; (15.98)

[U

(2)

℄

�

= �

2

(�

�1

2

�

1

	F ��

�1

2

[�

1

		

2

�

�1

2

+ I ℄ f) =

= �

1

	('l

�

+  m

�

) + eq

4

; (15.99)
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where eq

3

and eq

4

are given 4-ve
tors:

eq

3

= �

1

	(

e

F

n

n

�

+ F

4

e

�

)��

1

		

2

�

�1

2

f;

eq

4

= �

1

	(

e

F

n

n

�

+ F

4

e

�

)� [�

1

		

2

�

�1

2

+ I ℄ f:

(15.100)

Therefore, the interfa
e 
onditions (15.93) lead to the system of 	DEs for

' and  on S:

�

1

	(' l

�

+  m

�

) � l

�

= 2

�1

[

e

f

(+)

l

+

e

f

(�)

l

� eq

3

� l

�

� eq

4

� l

�

℄;

�

1

	(' l

�

+  m

�

) �m

�

= 2

�1

[

e

f

(+)

m

+

e

f

(�)

m

� eq

3

�m

�

� eq

4

�m

�

℄:

(15.101)

We rewrite these equations in matrix form

M

H

h = q

0

; (15.102)

where h = (';  )

>

is the sought for 2-ve
tor, q

0

= (q

0

1

; q

0

2

)

>

is the given

2-ve
tor,

q

0

1

= 2

�1

[

e

f

(+)

l

+

e

f

(�)

l

� eq

3

� l

�

� eq

4

� l

�

℄;

q

0

2

= 2

�1

[

e

f

(+)

m

+

e

f

(�)

m

� eq

3

�m

�

� eq

4

�m

�

℄;

(15.103)

M

H

=

�

l

k

(K

H

)

kj

l

j

l

k

(K

H

)

kj

m

j

m

k

(K

H

)

kj

l

j

m

k

(K

H

)

kj

m

j

�

2�2

; (15.104)

K

H

= �

1

	; (15.105)

here again the summation over repeated indi
es k and j is meant from 1 to 3.

By formulae (15.20)-(15.29) and (15.54) we get

�(K

H

) = �(�

1

)�(	) =

�

[X ℄

3�3

[0℄

3�1

[0℄

1�3

X

44

�

4�4

; (15.106)

where

X = K

(1)

�

[L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄K

(1)

�

�1

=

= [L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄

�1

(15.107)

is a positive de�nite 3 � 3 matrix and X

44

= 2

�1

[L

(1)

44

+ L

(2)

44

℄

�1

> 0 for

arbitrary x 2 S and

e

� 2 R

2

n f0g.

Now by the same reasonings as in the previous subse
tion one 
an prove

the following propositions.

Lemma 15.14. The prin
ipal homogeneous symbol matri
es of the 	DOs

K

H

amd M

H

are positive de�nite.

Corollary 15.15. The dominant singular parts of the operators (15:104)

and (15:105) are formally self-adjoint ellipti
 	DOs of order �1 with indi
es

equal to zero.

Lemma 15.16. If ! 62 J

H

(


1

) (i.e., see (9:56), (9:57), then the operators

M

H

: [C

l�1;�

(S)℄

2

! [C

l;�

(S)℄

2

; 1 � l � k;

: [H

s

p

(S)℄

2

! [H

s+1

p

(S)℄

2

; S 2 C

1

; s 2 R; 1 < p <1;

: [B

s

p;q

(S)℄

2

! [B

s+1

p;q

(S)℄

2

; S 2 C

1

; s 2 R;
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1 < p <1; 1 � q � 1;

are isomorphisms.

Theorem 15.17. Let ! 62 J

H

(


1

), S 2 C

1

; and 
onditions (15:96)

[(15:97)℄ be ful�lled. Then the nonhomogeneous problem (H)

!

is uniquely

solvable in the 
lass

(U

(1)

; U

(2)

) 2 ([C

k;�

(


1

)℄

4

; [C

k;�

(


2

) \ SK

m

r

(


2

)℄

4

)

h

(U

(1)

; U

(2)

) 2 ([W

1

p

(


1

)℄

4

; [W

1

p;lo


(


2

) \ SK

m

r

(


2

)℄

4

)

i

and the solution is representable in the form of potentials (15:61){(15:62),

where f and F are given by (15:94) and (15:95), and where

(';  )

>

2 [C

k;�

(S)℄

2

h

(';  )

>

2 [B

1�1=p

p;p

(S)℄

2

i

is the unique solution to the system of 	DEs (15:102).
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