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Abstract. A wide class of basic, mixed, and crack type boundary value
and interface problems for the steady state and pseudo-oscillation equa-
tions of the thermoelasticity theory of anisotropic bodies are considered.
The generalized Sommerfield-Kupradze type thermo-radiation conditions
are formulated and uniqueness and existence theorems are proved by the
potential method and the theory of pseudodifferential equations on mani-
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INTRODUCTION

Boundary value problems (BVPs) of the theory of thermoelasticity have a
long history. They encounter in many physical, mechanical, and engineering
applications where the thermal stresses appear. Therefore, the mathemat-
ical model of thermoelasticity have received considerable attention in the
scientific literature (for exhaustive historical and bibliographical material
see [45], [63]).

Without trying to discuss the history in detail we note that three-dimen-
sional regular problems of statics, pseudo-oscillations, steady state oscilla-
tions, and general dynamics of the thermoelasticity theory of homogeneous
isotropic elastic bodies are completely investigated by many authors (see,
for example, [45], [8], [24], [63], [66], [29]-[31] and references therein). The
main mathematical tools applied for the investigation of various aspects
of the above problems are variational and functional methods ([14], [63]),
the potential methods and the direct and indirect boundary integral equa-
tions (BIE) methods ([45], [29]-[31], [28]), different versions of the Bubnov-
Galerkin method and the method of generalized Fourier series (method of
regular sources) ([45]).

To the best of the authors’ knowledge the problems of thermoelastic
pseudo-oscillations and steady state oscillations for anisotropic bodies have
not been treated systematically in the scientific literature (cf. [33]).

In the present memoir we undertake to examine a wide class of the basic
regular, mixed, and crack type boundary value and interface problems for
the systems of differential equations of pseudo-oscillations and steady state
oscillations of the thermoelasticity theory of homogeneous anisotropic bod-
ies. We develop the potential method to prove the existence and uniqueness
theorems in various functional spaces and to establish the almost best reg-
ularity properties of solutions. We note that many problems considered in
this memoir have not been treated even in the isotropic thermoelasticity.

It should be mentioned that the methods, developed for the isotropic
case in the above cited references, unfortunately, are not always applica-
ble in the case of general anisotropy. It concerns, especially, the steady
state oscillation problems where quite new ideas are required. In partic-
ular, the exterior BVPs of steady state thermoelastic oscillations in the
isotropic case have been studied on the basis of the classical Sommerfeld-
Kupradze thermo-radiation conditions and the uniqueness theorems were
proved with the help of the well-known Rellich’s lemma, since components
of the displacement vector and the temperature in the isotropic case can be
represented as a sum of metaharmonic functions (for details see [45]).

In the anisotropic case we need a nontrivial generalization of the thermo-
radiation conditions at infinity. We notice that the basic difficulties in deal-
ing with the steady state oscillation problems are connected with a very
complicated geometrical form of the corresponding characteristic surfaces
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which play a significant role in the study of the far field behaviour of solu-
tions (cf. [80], [55]).

The monograph consists of six chapters and is organized as follows.

In the first chapter there are constructed the matrices of fundamental
solutions to the systems of pseudo-oscillation and steady state oscillation
equations of thermoelasticity theory by Fourier transform and limiting ab-
sorption principle, and their asymptotic properties at infinity and in a vicin-
ity of the origin are studied.

On the basis of the results obtained the generalized Sommerfeld-Kupradze
type thermo-radiation conditions are formulated and the Somigliana type
integral representation formulae for bounded and unbounded domains (with
compact boundaries) are derived.

We emphasize that the above mentioned fundamental matrices are not
represented explicitly in terms of elementary functions. This essentially
complicates the investigation of corresponding integral operators.

The second chapter deals with the detail formulation of boundary value
and interface problems for homogeneous and piecewise homogeneous (com-
posed) anisotropic bodies. Besides the usual classical setting in C**-con-
tinuous Holder functional spaces here is given a weak formulation of the
problems in the Sobolev W, (W) spaces with 1 < p < co. The weak
setting relies upon the definition of generalized boundary trace functionals
in the Besov Bj , spaces which are introduced and broadly discussed in
Section 4. Note that crack type and mixed problems, in general, do not
admit C®-continuous solutions (with @ > 1/2) in closed domains even for
C™-regular boundary data. Therefore, these problems are formulated only
in the natural weak setting.

In the third chapter there are proved uniqueness theorems of solutions to
the regular and mixed homogeneous boundary value and interface problems
in the appropriate functional spaces. Here the crucial moment is selection
of the functional classes where the homogeneous steady state oscillation
problems in unbounded domain admit only the trivial solution. This is done
with the help of the above mentioned generalized Sommerfeld-Kupradze
type thermo-radiation conditions.

Chapter IV is entirely devoted to the study of single and double layer po-
tential type operators and boundary integral (pseudodifferential) operators
generated by them. These results are the main tools used in the subsequent
chapters.

The existence theorems of solutions to the regular nonhomogeneous bo-
undary value and interface problems are proved in the fifth chapter. By the
potential method these problems are reduced to the equivalent systems of
pseudodifferential equations (PDE) on the boundary of the elastic body (or
on the interface of the composed body) under consideration. It is established
that these BIEs are elliptic systems (in general, in the sense of Douglis-
Nirenberg) with trivial null-spaces and zero indices. The general theory of
pseudodifferential equations on closed smooth manifold and corresponding
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embedding theorems then immediately lead to the existence results for the
above indicated nonhomogeneous problems in Ck2 functional spaces with
integer £ > 1 and 0 < a < 1 in the case of classical setting or in Wl} (WI}JOC)
spaces with 1 < p < oo in the case of weak setting (provided the boundary
data belong to appropriate natural spaces).

Finally, in the last sixth chapter the existence theorems of solutions to
the nonhomogeneous mixed and crack type boundary value problems and
to the mixed interface problems are proved again by the potential method.
These problems are reduced to the equivalent pseudodifferential equations
on some proper subset of the boundary (or of the interface). The investiga-
tion of these equations is carried out with the help of the theory of YDEs on
manifold with boundary. The BIEs are again elliptic systems of YDEs (in
general, in the sense of Douglis-Nirenberg) with positive definite principal
homogeneous symbol matricies, trivial null-spaces and indices equal to zero.
Making use of these results the existence of solutions to the problems indi-
cated above are proved in the Sobolev W, (W, . ) spaces with 4/3 < p < 4.
Applying the corresponding embedding theorems it is shown that the solu-
tions possess C*-smoothness (with arbitrary « < 1/2) at the crack edges
(in crack problems) and at the collision curves of changing boundary con-
ditions (in mixed problems) provided again that the boundary data belong
to appropriate natural spaces.

The authors like to appreciate very much the financial support of the
Deutsche Forschungsgemeinschaft under grant numbers 436 GEO 17/2/95,
436 GEO 17/4/96, 436 GEO 17/2/97.
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CHAPTER I
BASIC EQUATIONS. FUNDAMENTAL MATRICES.
THERMO-RADIATION CONDITIONS

In this chapter first we construct exponentially decreasing fundamental
solution to the system of pseudo-oscillation equations of the thermoelasticity
theory of anisotropic bodies and then by the limiting absorption principle
we obtain two fundamental matrices for the system of steady state oscilla-
tion equations. Further, we derive the asymptotic formulae for the entries
of these matrices and formulate the generalized Sommerfeld-Kupradze type
radiation conditions in anisotropic thermoelasticity.

1. BASIC DIFFERENTIAL EQUATIONS OF THERMOELASTICITY

In this section we collect an auxiliary material concerning the governing
equations and the basic mechanical and physical concepts of the thermoe-
lasticity theory (for details we refer to [63], [45]).

1.1. The system of equations of coupled linear thermoelastodynamics of
homogeneous anisotropic elastic medium reads (see [63], Ch. V)

chipg DjDgup(z,t) + Xi(z,t) = oDjuk(z,t) + BrjDjua(z,t),

(1.1)
ApgDpDgua(z,t) — coDyua(z,t) — ToBpgDiDpug(z,t) = —Q(z,1t),

where cpjpg = Cpghj = Cjrpg are elastic constants, A\py = Ay, are heat con-
ductivity coefficients, ¢g > 0 is the thermal capacity, Ty > 0 is the tem-
perature of the medium in the natural state, 3,, = B4p are expressed in
terms of the thermal and elastic constants, ¢ =const> 0 is the density
of the medium; u = (u1,u2,u3)" is the displacement vector, us is the
temperature, X = (X1, X,, X3)" is the bulk force, @ is the heat source;
x = (z1,%2,%3) denotes the spatial variable, while ¢ is the time variable;
here and in what follows the summation over repeated indices is meant from
1 to 3, unless otherwise stated; the superscript T denotes transposition and
D, =D,, :=0/0x,, D;:=09/0t.

In the sequel, we usually consider the homogeneous version of equations
(1.1), i.e., we assume X = 0, @ = 0. In addition, without any restriction of
generality o = 1 is assumed as well.

In (1.1) the term —Tp8pq Dy Dpuy(x,t) describes the coupling between the
temperature and strain fields. It vanishes only for a stationary heat flow.
In that case or if this term is neglected, we have the so-called decoupled
thermoelasticity theory.

In the thermoelasticity theory the stress tensor {oy;}, the strain tensor
{ek;} and the temperature field u4 are related by Duhamel-Neumann law
Okj = ChjpgEpq — BrjUa, €kj = 271(Dk’u]’ + Djuk), k,7 = 1,2,3; the k-th
component of the vector of thermostresses, acting on a surface element with
the unit normal vector n = (n1,ns,n3), is calculated by the formula

akjnj = ckququnj - BkjnjU4 = ckqunj unp - BkjnjU4, k= ]., 2,3. (12)
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The formal Laplace transform of the equations (1.1) (with respect to t)
leads to the so-called pseudo-oscillation equations of the thermoelasticity
theory

Ckipg DjDqup(w) = T7up(x) + BrjDjua(z),

1.3
ApgDpDgus(x) — Teoua(z) — 710 Bpg Dpug(z) = 0; (1.3)

here 7 = 0 — iw is a complex parameter with w € R and o € R\ {0}.
If all data involved in (1.1) are harmonic time dependent, i.e., ug(z,t) =

’Lll,k(iL‘) coswt + ak(a:) sinwt, £ = 1,2,3,4, w € R, then we get the so-called
steady state oscillation equations of the theory of thermoelasticity

Cripg DjDqup(x) = —w uk(x) + By Djua(z), (1.4)

ApgDpDgus(x) + iwcous (x) + iwTofBpg Dpug(z) =0, '
where the following notation wuy(zr) = i () + zak(a:), k=1,2,3,4,is em-
ployed.

It is evident that system (1.4) formally can be obtained from (1.3) pro-
vided ¢ = 0, but this similarity is a very formal one and it will become
apparent later on.

Finally, let us note that, if the displacement vector and the temperature
do not depend on the time variable ¢, then from (1.1) we obtain equations
of the so-called decoupled thermoelastostatics

Ckjpg DjDgup(x) = BrjDjus(z), k=1,2,3, (1.5)
ApgDpDguy(z) = 0. (1.6)

In this monograph we shall not systematically treat the equations of de-
coupled thermoelastostatics (1.5)-(1.6), since in this case all the boundary
value and interface problems, we intend to consider, are also completely de-
coupled into two independent problems for the temperature field and the dic-
placement field. The corresponding problems of elastostatics of anisotropic
bodies for the system (1.5) have been studied in [8], [56], while the problems
for the stationary distribution of the temperature field which, in fact, are
BVPs for the second order scalar elliptic differential equation (1.6) can be
found, for example, in [52].

1.2. In order to rewrite the above equations in the matrix form, let us
set

U = (ur,us,uz,us)’ = (wyuq) ', uw= (ui,us,u3)’,
C(D) = [Crp(D)]ax3, Cirp(D) = Ckjpq DjDy, .
A(D) =g DpDy, D=V = (Dl,DQ,Dg). (1.8)

For the sake of simplicity we shall use also the notation either [A], x, or
[Akplmxn for the m x n matrix A.
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Now we can represent equations (1.3) and (1.4) in the following form,
respectively,

A(D,r)U(x) =0, (1.9)
A(D, —iw)U(z) =0, (1.10)
where
C(D) — #* I3]sxs  [—BrjDjlsx1
A(D, ») = [ I , 1.11
(D, ) [—ToBrjDjlixs  A(D) =3¢y |, , (1.11)
Iy = [Okjlmxm stands for the identity m x m matrix, dj; is Kronecker’s
symbol.
Clearly, = 7 = 0 — iw corresponds to the pseudo—oscillations, while
» = —iw corresponds to the steady state oscillations, and s = 0 to the
decoupled thermoelastostatics.
Further we introduce the classical stress operator
T(D,n) = [Tip(D,n)lsx3 = [ckjpq 7j Dylsxs, (1.12)

and the thermoelastic stress operator
P(D,n) = [[T(D,n)lsxs, [=Brjnjlsxilsyy- (1.13)
Due to (1.2) we have
[P(D,n)Uly, = ogjn; = [T(D,n)uly — Brjnjus, k=1,2,3.
1.3. From the physical considerations it follow that (see [22], [63]):
a) the matrix [A,q]3x3 is positive definite, i.e.,
A(€) = Mpap€a > S0 €7, € €R®, b = const > 0; (1.14)

b) the quadratic form ¢y jpg€xjepq is positive definite in the real symmetric
variables er; = ej,

Ckjpg€kj€pg > 0 €rjer;, 6' = const > 0, (1.15)
which implies positive definiteness of the matrix C(¢), ¢ € R®\ {0}, defined
by (1.7), i.e.,

Cri (Onime > 61|€°nf?, & mn € R, 61 = const > 0. (1.16)

Inequalities (1.14) and (1.16) together with the symmetry properties of the
matrices [Ap,] and C(&) yield

C(&)n - n = Crj ()i > ulEP I, € € R, (1.17)
ApaMpTlg > 5O|77|2a (1.18)
for an arbitrary complex vector € C*. Here a-b = 3" ,_ arby denotes
the usual scalar product of the two complex vectors a = (a1, -+ ,an) and

b= (b, - ,by) in C™, while upper bar denotes complex conjugate. We
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shall also employ the following notation (“real” scalar product of complex
vectors)

m
(a, by =" apbg, a,beC™. (1.19)
k=1
1.4. We emphasize that the differential operator A(D, ») defined by
(1.11) is not formally self-adjoint. Denote by A*(D, ) the operator formally
adjoint to A(D, )

A*(D,%) = AT(=D,s) = AT (-D,%) =

[C(D) —3°L5)sxs  [3¢T0fk;Djlsxa
[BrjDjlixs A(D)—%Co id

Let us note here that throughout this memoir we shall use the following
notations (when no confusion can be caused by this):

(1.20)

a) if all elements of a vector v = (vq,...,0r,) (Mmatrix a = [axjlmxn)
belong to one and the same space X, we shall write v € X (a € X) instead
of v e [X]™ (a € [X]mxn);

b)if K : Xy x---xX,, 2V x---xY,and X; =---=X,, =X, V] =

-+ =Y, =Y, we shall write K : X — Y rather than K : [X]|™ — [YV]™.

Let QT C R? be a bounded domain with a C?—smooth connected bound-
ary S =90, QF = Qt U S and 0~ = R® \ QF. We assume that O+ (Q-)
is filled by a homogeneous anisotropic medium with the elastic and thermal
characteristics described above.

Now we present the so-called Green formulae for the operator A(D, x)
which will be used many times in the sequel.

Let U = (uy,us,us,us), V= (vi,v9,03,04)7 € CHQT)NCH(QF) (e,
U and V are regular vectors in Q) and A(D, »)U, A*(D, )V € Li(QF).
Then the following equations hold for arbitrary s € C (cf. [57], [55], [16]):

Jo+ AD, 59U - Vdx = [([B(D,n)U]" - [V]tdS — [, E(U,V)dz, (1.21)
Jor {A(D,)U -V = U - A*(D, )V} dx = [({[B(D,n)U]* - [V]T -
~[U]+- [Q(D,n,z)vﬁ} ds, (1.22)
fQJr { D V4 U]k ur + _T [A(D,J{)U]4 u,4} dr =
= _fQ+ {ijqupqukﬂj+%2|u|2+%%)\ijkU4Djﬂ4+%—?)|U4|2} dr+
+ [ {BO U @) + el 0]t} s, (1.23)
where

On =MD, n) := ApgnpDy, (1.24)

B(D,n) = [ ﬁfé”)kw E\—(gk’j%j]sxl LM, (1.25)
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[T(D,n)]sxs [2ToBrjnjlax1

D,n, = , 1.26
Q( ) [0]1 3 (D, n) s ( )
E(U, V)= Chjpg Dpugq Di0; + %211,165]6 — Brjus DU+

+ /\pq DQU,4 Dp§4 + corruqavy + %T054qu Dpuq. (127)

Here and in what follows n(z) denotes the exterior unit normal vector of
S at the point x € S. The symbols [ - ]* denote limits on S from QF.

Note that, if we consider the first three components of the U as the
displacement vector and the fourth one as the temperature, then the vec-
tor B(D,n)U has the following thermo-mechanical sense: the first three
components of the B(D,n)U represent the corresponding vector of thermal
stresses (see (1.13)), while the fourth component describes the heat flux
through the surface S.

The similar formulae hold valid also for the domain Q~, when 3 = 0 or
Resr > 0, with the following changes (related to the choice of direction of
the normal vector): the superscript “+” must be replaced everywhere by
the superscript “—” and in front of the surface integrals the sign “—” is to
be put.

In this case the vectors U and V have to satisfy the conditions

U,V eCQ)NCHQ™), A(D,»)U, A*(D,»)V € L1(Q27), (1.28)
A(D, 5)U and A*(D, »)V have compact supports and, in addition, U and
V' have the following asymptotic behaviour at infinity

[ o(1) for =0,
ui (@), vi () = { O(lz|N) for Rex=0>0, k=1,2,3,4, (1.29)
with an arbitrary fixed positive number N. In fact, it can be proved that, if
U and V are solutions of the corresponding homogeneous equations , then
the conditions (1.29) imply

O(|z|~ 118y for =0,
O(lz|™) for Rex=0>0, k=1,2,3,4,

where v is an arbitrary positive number, § = (81, 82,03) is an arbitrary
multi-index and |3]| = 1 + B2 + B3 (see, for example, [7], [44], [56].

The principal remark here is that for solutions U and V' of the steady state
oscillation equation (1.10) (i.e., when s = —iw) the Green formulae, similar
to (1.21)-(1.23), are not valid any more for the unbounded domain Q.

1.5. In this subsection, before starting the construction of the funda-
mental matrices, we shall analyse the so-called characteristic matrices cor-
responding to the above differential operators of the thermoelasticity theory.
They will play a fundamental role in the sequel.

Let us introduce the characteristic polynomial of the operator A(D, )

M (&, 52) = det A(—i€, ). (1.31)
Denote by N(—i€, ) the matrix adjoint to A(—i€, »), i.e.,

DPuy(z), Dy (x) :{ (1.30)
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Clearly, we have
[A(=i€, )] 7" = [M (& )] 7 N (=i, ), (1.33)

where [A(—i€, »)]7! is the matrix inverse to A(—i&, ). Equations (1.31),
(1.11), and (1.7) yield

%) = [_C(f) — I3]3><3 [iﬂk‘f‘]3x1 ]
M(E, )—det{ (150 Bst s o o

tdet [ 50 <f> = Il [jﬁAkgg]w ] = A(©) det{O(E) + 2 F-
iy [—C(&) — 5 I3]3xs  [Brj&ilaxt .
To det { [Bri&ilixa coTy szx N

= A(§) det[C(&) + 5 I3]—
—5¢T det {[—C(f)—;ﬁ I3)353 —[cg " ToBrj&iBaylaxs [ﬁkjfj]3x1] _
4x4

(013 Ty '

= A(€) det[C(€) + 52 I3] + seco det[C(€) + 52 T3], (1.34)
where C(£) and A(€) are defined by (1.7) and (1.8), respectively, and

C(€) = [Crp(©)]3x3 = C ) + [cg “ToBrjBpabitalsxs (1.35)

Cip(€) = (chipg + co ToBriBp)éi&ar ko0 =1,2,3.
Next, we set
V(€ %) = det[C () + »° Iy, (1.36)
U (&, 3) = det[C(€) + »° I). (1.37)

The relations (1.35) and (1.17) imply that the matrix C(¢) for any £ €
R? \ {0} is positive definite and, therefore,

C(&n-n=CE)n n+cy TolBri&ml* > o11¢ nf? (1.38)

for an arbitrary € C* and the same d; as in (1.17).
Thus, we have

M€, 30) = A(€)T(E, 5) + 5o (€, ). (1.39)

It is evident that, if || < 3¢y with some positive s, then there exists a
positive number g such that

[T(E, )| > 1, [T(E, )] >1, [M(E )] >1, (1.40)

for |£] > go; here go depends on 3¢ and the thermoelastic constants.

Lemma 1.1. Let T = 0—iw, Rer =0 >0 and £ € R®. Then M(£,7) #0
for any w € R. Moreover, [A(—i€, 7)1 € Ly(R?).
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Proof. Let us suppose that the assertion of the lemma is false, i.e., M (£, 1) =
0. Then the homogeneous system of linear algebraic equations

A(=i€,7) a=0 (1.41)

has some nontrivial solution a = (as,-+- ,as)" € C*\ {0}.
Multiplying the k—th equation of (1.41) by aj and summing the first
three equations we get

—Chjpg€j&qapln — T2 Okpapy + iBriéjasay = 0,
iTToﬁkjfjaka4 — /\qupfq|a4|2 — T00|a4|2 =0.

Deviding the latter equation by 77T}, taking the complex conjugate and
adding to the first one, we obtain

Cripg€i&qaaptr + T2 arar + T TP To] ™ Npebpéylaal® + coTy Haa|*> = 0.
Due to (1.17) we deduce by separating the real and imaginary parts
{ C©a-a+ (0> —w)al’ + of|7*To] " A(E)aal* + Ty 'aal* = 0,
w{20al® + [|7*To] " A(§)las|*} = 0,
where @ = (a1,az,a3) .
From this system and the inequality (1.14) it follows that a; = --- =
ay = 0, for any £ € R*, w € R, and ¢ > 0. This contradiction proves the

first part of the lemma.
The second part of the lemma is a consequence of the inequality

(i, < ~20 for ce W,

L+ (¢
where the positive constant ¢(o) does not depend on ¢ (it depends on ¢ and
on the thermoelastic constants of the medium in question). O

1.6. Now we shall analyse the characteristic polynomial M (£, —iw) of
the operator A(D, —iw). It can be easily shown that (see (1.36), (1.37),
(1.39))

M(fa —iLU) = A(f)(}(fa CU) - ich(’i;(fa CU), (142)
where

®(¢,w) = det[C(€) — w? I3] = ¥(&, —iw), (1.43)

B (€, w) = det[C(€) — w? Is] = U (&, —iw). (1.44)

Characteristic surfaces of the operator A(D,—iw) are defined by the
equation
M, —iw) =0, € €R?, (1.45)

which, in turn, due to (1.42), is equ1valent to the following system

4
d(¢
{ H(e _0 e RS, (1.46)
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Passing on the spherical co-ordinates
& =pcospsinh, & = psing sinf, & = p cosb,
0<o<+00, 0<p<2m, 0<O< T,
and, taking into account formulae (1.43), (1.44), (1.17) and (1.38), we con-
clude that each equation of the system (1.46) has three positive roots with
respect to o?. These roots are proportional to w?, and polynomials ®(¢,w)
and ®(&,w) can be represented in the form:

B(&,w) = ®(n,0)[0° —w?oi (8, 0)][0* —w?05(0, ©)][0® — w’05(6, )],
B(E,w) = B(1,0) [0* — w3} (8, 9)][0* — w?B3(8, ¥)][0* — w33 (B, )],
where n = £/0, 0 = [¢], ®(n,0) = detC(n) > 0, B(n,0) = detC(y) > 0;

here {03 (0, ¢)}3_, and {07(6,¢)};_, do not depend on w and are solutions
of the following equations (with respect to ¢?):

B(£,1) = 8(n,0)0° + 3@ (n)o* + @M (n)0* -1 =0, (1.48)
B(¢,1) = 3(n,0)0° + 3@ (n)o" + & (n)e* —1 =0, (1.49)

where ®) (1)) and ®() () are even, homogeneous functions of order 2; in g
(see (1.43), (1.44)).

In what follows we consider the so-called regular case, i.e., we assume the
following conditions to be fulfilled (cf. [55], [80]):

I°. Ve®(&,w) # 0 at real zeros of the polynomial ®(&,w);

(1.47)

II°. Gaussian curvature of the manifold, defined by the real zeros of the
polynomial ®(&,w), does not vanish anywhere.

From the above conditions I°-II° it follows that the real zeros of the
polynomial ®(¢, w) form nonselfintersecting, closed, convex two-dimensional
surfaces S;?, j = 1,2,3, enveloping the origin of co-ordinates. For an arbi-
trary vector z € R? \ {0} there exist exactly two points on each S?, namely
& = (&1,¢],€l) and & = —¢J, at which the exterior unit normal is parallel
to the vector z. We provide that at ¢/ the normal vector n(¢7) and = have
the same direction, while at fi they are opposite directed. Note that, if
¢ e S;-) and &% € S? correspond to the same vector z, then (due to the
convexity property of the above surfaces) (&7 - z) # (¢F - z) for k # j.

In the sequel, the & € S will be referred to as the point which corre-
sponds to the vector z (i.e., to the direction z/|x|).

Clearly, o = |w| 0x(6,) > 0, k = 1,2, 3, represent the equations of the
surfaces S§ in the spherical co-ordinates.

The set of points in R?® defined by the system of equations (1.46) may
have a very complicated geometric form. Among these forms we single out
and study the following regular case: The system (1.46) is either inconsis-
tent in R (i.e., it defines the empty set) or it defines a two-dimensional
manifold, i.e., equations (1.48) and (1.49) have m (1 < m < 3) common
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roots and, if 1 < m < 3, the remaining two groups of the roots form disjoint
sets for arbitrary values of # and ¢. We denote these common roots by
v1(0,9),-- ,vm(8,¢) (1 < m < 3) and without loss of generality assume
that

0<01(0,0)<02(0,0)<03(0,0), 0<vi(8,0)<---<vm(0,0).  (1.50)

Thus, in this case the characteristic equation (1.45) (i.e., the system

(1.46)) defines analytic (characteristic) surfaces Sf,---,Sg,, whose equa-
tions in the spherical co-ordinates read as ¢ = |w| v(0,9) > 0, k =
1,--- ’m.

The BVPs corresponding to the case m = 0 turned out to be very similar
to those of the pseudo-oscillation ones (see Remark 2.7) and therefore in
what follows we shall mainly consider the case 1 < m < 3.

1.7. From the above arguments it follows that

(€, ) =‘~1>(n,0)[a2+%20?(9,90)][02+%2a§(0, Q)l[0° +2 056, ¢)], (1.51)
(&, 2)=B(n,0)[0° +2°07 (8, 9)|[0° +3°05(6, ©)][0” + 303 (8, )], (1.52)

for any ¢ € R® and s € C.
Consequently, according to (1.39) we have

M(&, %) =®(n,0) A(€) [0® + 3701 (8, 9)][0” + 37 05(8, ¢)][0” + 27 03(6, ©)}+
+3eco B(n, 0) [0* + 5252 (8, )|[0” + 32858, 9)][0* + 52 55(8, )] =
= &,,(0,0, ;) U (0,0, p; ), (1.53)

where

(0,0, p; %) = P (&, 20) = P (=€, 5) = P (€, —2) =
= (=)™ [* + i (0,9)] - - [0° + v (0,0)], (1.54)
Ui (0,0,0550) = (€, 50) = U (=€, 50) =
= (=1)"™{®(n,0) A(&) [0 + A1 (8, 9)] -+ [0° + 2" X3_,, (0, 0)]+
+3eco (1, 0) [0 + 52X (0,9)] -+ [0° + 5 X3_ . (6, 0)); (1.55)

here A3(6, o) and X?(G,(p) denote the different (non-common) roots of the
equations (1.48) and (1.49), respectively. Note that formulae (1.51)-(1) are
valid for arbitrary ¢ € R® and s € C.

The multiplier (—1)™ in (1) ensures the inequality

B, (0, —iw) > 0 (1.56)

which will be employed later on.

Remark 1.2. Note that the polynomial ®,,(g,6,p; —iw) in g vanishes
on S, j = 1,---,m (i.e., when o = |w|v;(0,0)) while ¥,,(0,0,p; —iw)
is different from zero for any real ¢ and w. Therefore, for any fixed w
and gg there exists a positive number g such that |¥,, (o, 80, @; )| > 0 for
[Im | < &9, |Re 3| < go and |g| < 209, where o = o' +i0", 3 = 0 —iw.
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Now from equations (1) and (1) it follows that, if |[Res| = |o| < &
and |ov;(6,¢)] < eo, then the complex numbers + (w + io)v;(0,¢) =
+ixv;(6,9), j = 1,--- ,m, are the only zeros of the polynomial (1) with
respect to g in the strip |Im o| = |0"'| < €. As a consequence we have that
M(&, %) # 0 for € € R? and 0 < |o| = |Re 5| < eo. O

2. FUNDAMENTAL MATRICES

In this section with the help of the fundamental matrix of the pseudo-
oscillation equations we will construct maximally decreasing fundamental
matrices of the steady state oscillation operator by limiting absorption prin-
ciple (cf. [55]).

Denote by I'(z,7) a fundamental matrix of the operator A(D,7):
A(D,")l(x,7) =1, 6(x), T = 0 — iw, 0 # 0, where d(z) is Dirac’s distribu-
tion.

Let 0 < |Ret| = |o| < go with g9 > 0 from Remark 1.2 or & > 0. Then
due to the representation (1), Remark 1.2, equation (1.33) and Lemma 1.1
we have

M) #0, E€R, [A(=i&, )] € Lo(R?). (2.1)
Therefore, we can represent I'(z, 7) by the Fourier integral [57]

D(z,7)=F,, ([A=i&,)] ") = (2r) P lim [ [A(—ig, 7)) e "0de. (22)
T l|<R

By Fz—¢ and ‘7_—5_41)1‘ we denote the generalized Fourier and inverse Fourier

transforms which for summable functions are defined as follows (see, e.g.,

[20])
Fooelf] = fan fl@) et da,  Flg) = (2m)7" fon g(€) em 7 de.

From the conditions ¢ # 0 and (2.1), and properties of the Fourier
transform it easily follows that the entries of the matrix I'(z,7) together
with all derivatives decrease more rapidly than any negative power of |z| as
|z] = 400. The behaviour of this matrix in a neighbourhood of the origin
will be established below (see Lemma 2.1) (cf. [23]).

Let h be a cut off function with properties

h(€) = (=€), h € CT(RY), h(§ =1 for ¢ < o,

MO =0 for el > 200 2
with go from (1.40).
Now we decompose (2.2) into the two parts
L(z,7) =T (z,7) + T®(z,7)
where
(2, 7) = F 4, (1= h(OIA(=i&, ], (2.4)

r®(2,7) = FL, (MO [A(=ig, 7)) =

§—x
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= (2m) 7% [1¢| 20, R (E) [A(=i€, 7)) 7H ™ dE. (2.5)

The main result of this section will follow from two the lemmata which
we now present.

Let T(©)(z) be the homogeneous (of order —1) fundamental matrix of the
operator C'(D) (see [55], [56])

2m

IO(z) = Fl, (IC(=ig)] ) = (=8n%|z))~ bf (an)] ™" dp,  (2.6)

where z € R® \ {0}, @ = [ar;]3x3 is an orthogonal matrix with property
a’z’ = (0,0,|z))T, n = (cosp,sing,0)T. Further, let v(%(z) be the ho-
mogeneous (of order —1) fundamental function of the operator A(D) (see

[52])
7 O@) = F L, (A=) ™) = ~[a [L]P(L7 e o) 27 (@27)

E—x

with L = [Apglsxs, |L|=detL.

Lemma 2.1. The entries of the matriz T'V) (z,7) belong to C*(R* \ {0})
and for an arbitrary o € [—&g, o] together with all derivatives decrease more
rapidly than any negative power of |x| as |z| = +0oo.

The limit
lim D?TM (2,0 —iw) = DPTW (2, —iw)

oc—0

exists uniformly for |x| > § with an arbitrary § > 0 and in a neigbourhood
of the origin (say |z| < 1/2) the following inequalities

1 . 1 . k
IDETL) (2,0 — iw) — DETYY) (2, —iw)| < |o] ool (),
IDET (2,0 — iw) — DETy;(x)| < el ()

hold, where ¢ = const > 0 does not depend on o,

TO(2)]sx3  [0]3x1
[0]1><3 7(0)(1’.) 4><4,
o0 (@) =1, ¢ (@) = ~lnlz], ¢ (@) = la]', 122,
for 1<k j<3andk=j =4

00 (@) = 0™ (@) = ~Infal, PIkV(@) = o (@) = [a] ", m 21,
for k =1,2,3; 8 is an arbitrary multi-index.
Proof. Note that the relations D[A(—i¢, )]} = O([1 + [£[]7>7141) and

[A(=ig, 7)) = { [(C(=i&))Hsxs [0]5x1 } n

I(z) =

[0]1x3 [A(=i&)] ™

03¢l axs [0l s
* [ 03¢ ixs Ol ) ] !

hold for sufficiently large |£|.
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Now the proof follows from Lemma 1.1, equations (2.6), (2.7), and prop-
erties of the Fourier transform of homogeneous functions (see, for example,
[20], [54], Lemma 2.17, [55], Lemma 3.1). O

Now we analyse properties of the matrix I'®)(z, 7).

Going to the spherical co-ordinates in the integral (2) we get

2 200

e (@, 7) = (2m)7 fy, d%{ [+ FROIA(=ig, 7] e 02 do,  (2.9)

where ¥ is the unit sphere in R? centered at the origin.

Taking into account Remark 1.2, the analyticity of the integrand with
respect to g, and introducing the complex o = o' + 0" plane we can rewrite
(2.9) by Cauchy theorem as follows

PG r) = @m) fy, dm{ [IAiE D] e S0 do+

200
+ ' h©) [A(=ig, I e do) (2:10)
20
where [T = [0, |w|vy — 6] Ulféu[|w|ul +96, |wlva — 4] uliéu- . -ulfmu [lwlvm +
d,00], 6 > 0 is a sufficiently small number, l;;; [ljfd] is the semicircle in the
upper [lower] half-plane centered at |w|v; and radius ¢ oriented clockwise
[counter-clockwise]; in (2.10) the contour I*[I~] corresponds to the case
ow < 0 [ow > 0].
Now passing to the limit in (2.10) as o — 0+ we get

lim T (2,0 —iw) =
o—0

= (2m)® [ d { [1A(=ig, ~iw)] e #E0? do+
21 -
200

+ [ B(E) [A(=ig, —iw)] Fe "6 g2 do} = TP (z,~iw), ow >0, (2.11)
Qo
lim T®)(z,0 — iw) =
= (2m) [ dS { [A(=i¢, —iw)] e 60? do+
1 1+

+2fgoh(f) [A(—i€, —iw)] e it p? dg} =T (z, —iw), ow<0. (2.12)

Q0

These limits exist uniformly for |z| < Ry with an arbitrary Rp.
Such type of integrals have been studied in [55]. Applying the arguments
quite similar to that of [55] we arrive at the formulae

I‘(f)(a:, —iw) = (27) 73 Uig(lhbf 6h(£) [A(—i€, —iw)] " e~ d¢ +
m|>
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N (i€, —iw)e” ¢ 9?
+ . . sy |, (2.13
mz;zfl{ [0/00 @1 (0,0, p; —iw)]¥:m (0,0, ¢; —zw)}g:\w\w 1] (2.13)

where ®,, and ¥,, are defined by (1) and (1), respectively.

We need to go over to the integrals over S¢ in the last summand of (2).
To this end let us note that the exterior unit normal of S¥ is defined by the
equation

_ j VgCDm(f, _iw) c s _
n(§) = (—1)Jm, §e€sSj, j=1,...,m,
since due to (1), (1.50) and(1. 56)
(=1)7[8/80%m (&, =iw)]o=luly; >0, j=1,. : (2.14)
Further,
- [el o) = [ 2umnt —iw)} :
= { 0? o=w|u; = Ve (&, —iw)] o=y, i

Therefore, (2) implies
I‘f) (z, —iw) = (2m) {V.P.ngh(f) [A(—i€, —iw)] ! e 7€ de +

( Zfa —iw)e*imﬁ .
:I:mz SC |VtI> (€, —iw) | ¥ (€, —iw) de], (2.15)

j=1
where

V.P. fh (=i, —iw)] "' 7 dg =

= lim / h(€) [A(—i€, —iw)] T e "¢ de.
02018, (¢, ~iw)|>6
Existence and asymptotic behaviour of integrals similar to the above ones
are investigated in [21], [81], [82]. Namely, in [81] there are analysed the
following functions (n-dimensional version of the case in question)

zz§
f|V<I> )|de, j=1,...,m, (2.16)
J(z) = V.P. fRnf(I(f:?: d¢, n>2, (2.17)

where

i) diam(supp f) < o0; f, @, € C(R™),

i1) the equation ®,,(¢) = 0, £ € R", defines (n — 1)-dimensional closed
nonselfintersecting surfaces S¥, j = 1,...,m, with the Gaussian curvature
different from zero everywhere; moreover, V®,,(£) #0 for £ € S

i4i) for an arbitrary unit vector n the system

$,(§) =0,
{ V®,, ()| VP, ()7 = £, (2.18)
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has only a finite number of solutions with respect to £.

Clearly, in the case under consideration the above conditions for the
functions occured in (2) are fulfilled due to (2.3) and I°-II°. Moreover,
P, (¢, —iw) = ,,(¢,iw) = ®,,(—¢&,iw), and the corresponding system of
type (2.18) defines 2m points +&7 € S¢j=1,...,m (the so—called station-
ary points); we emphasize also that the unit exterior normal vector n(¢7)
has the same direction as i, while n(—&7) is opposite directed.

We assume the function @,,(¢) in (2.16) and (2.17) to possess the anal-
ogous symmetry property with respect to &.

Now let |z| be sufficiently large, n = z/|z|, and let +&/ € S¢, ) =
1,...,m, be the stationary points corresponding to 7, i.e., n(&) = n,
n(=¢) = -n(¢) = —n.

According to the results in references [21], [81], we have then the following
asymptotic formulae for the functions I; and J:

Li(z) = [ajeizgi +aje—ix£j] |x|—(n—1)/2 + O(|x|—(n+1)/2),

Tw) = Sl +Tye =Y o] 0/2 4 o(jaf-i0rz), 1Y
j=1
where
(€)= (97 (n1)/ 1 f(&9) —i(n—1)7)
a = o) = Co" N e R ¢
~ ~ ; n— 1 f(_é-]) i(n—1)mw
=) = O G R e 220

bj = ima;sgn(n - Vu(¢')) = in(=1)'ay,
b V&, (=¢)) = —in(~1)d;,

b = ima;sgn(n -
%(€) is the Gaussian curvature at the point £ € Sj.

The asymptotic formulae (2.19) can be differentiated any times with
respect to z.

It is easy to see that the symmetry properties of S imply

k() = K(=E), VOnu(=E) = -VPpn(¢) (2.21)

forany £ € S5, j=1,...,m.
By virtue of (2.16), (2.17), and (2.19) we derive

T+ A in(=1) () = 3 im(=1[(1+ Nagee
Jj=1 j=1
—(1 = Naje™ €] |g|~ (=12 4 O(|z|~(*+1/2) (2.22)

with a; and @; defined by (2.20) and an arbitrary A.
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Lemma 2.2. Entries of matrices (2) belong to C*°(R?) and for sufficiently
large |x| the asymptotic formulae

(x, —iw) Z (3 e g7 + O(|j2|72) (2.23)

hold, where the point & € S¢ corresponds to x (i.e., n(&) = z/|z|) and

G D igi v qhi L N7, —iw)
e =¢" (¢, —iw):=(-1) 27K (E0)]1/2 |V @, (87, —iw) | ¥ (67, —iw) (2.24)
1 N(—ifj, —iCU) -

) — oW ed )= (—1)d ;
c” Cy (5 ) ZCU)- ( ) 27T[Ii(£-7)]1/2 |vq)m(£],_lW)|\I’m(€],—’LW)’
moreover, (2.23) can be differentiated any times with respect to x.

Proof. The first part of the lemma is evident due to (2.3) and I°-I1°. To
prove the asymptotic formulae (2.23), we first perform the change of variable
& by =€ in (2) and afterwards rewrite it as follows

T (2, —iw) = (27)3[J(z) + Ziﬂ'(—l)jlj (z)], (2.25)

where I;(z) and J(z) are given by (2.16) and (2.17), respectively, with
n = 3; moreover,
\I’m (fa —ZOJ)
h(€), ®m (€, —iw), and ¥, (£, —iw) are defined by (2.3), (1), and (1), respec-
tively; here we have used the fact that h, ®,,, and ¥,, are even functions
in &.
Now (2.23) follows from (2.25), (2), (2.21), (2.26), and (2.20). O
Thus, we have proved that there exist one sided limits of the matrix (2.2)
asRer=0c—>0+.
Let us set

ow>0: lin%) D(z,0 —iw)=T"(z, —iw)—l—I‘f) (x,—iw)=:T(z,w,1), (2.27)
o—>

ow<0: lin%) [(z,0 —iw)=TW(z, —iw)+I‘(_2) (z,—iw)=:T(z,w,2), (2.28)
o—

where T'(1)| I‘f) and T are given by (2.4), (2.11) and (2.12), respectively.
Combining the two latter formulae we have
D(z,w,r) = fgﬂ[(l — (&) {A(—i&, —iw)} ']+
+(27) 2 V.P. fh (=i, —iw)} "' e de+

r T m (—16, —iw)e*izg ) ~
H 32 D (&, —iw) | T (&, _iw)de, r=1,2. (2.29)

Jj=1
Now we formulate the main result of this section.
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Theorem 2.3. The matriz—functions T'(z,w,r), r = 1,2, defined by
(2), are fundamental matrices of the operator A(D,—iw) and satisfy the
following conditions:

i) T(-,w,r) € C*(R®\ {0}) and in a neighbourhood of the origin (|z|<1/2)

|DETy (w,w,1) = DETy;()] < cpls (2), = const >0, k,j=1,...,4,

181
(kj)

where T'y;(x), P15 €= const > 0 and B are the same as in Lemma 2.1;

it) for sufficiently large |x|

Iz —y,w,r) Zc(] ,—iw) e~ D Hia—y)e? ||t + O(|z|2), (2.30)

where c( D are defined by (2.24), & € S¢ corresponds to the vector x and the
range of the variable y is a bounded subset of R?; the equation (2.30) can be
differentiated any times with respect to x and y.
Proof. Tt follows immediately from Lemmata 2.1 and 2.2. O
Remark 2.4. Note that, if in (2.30) the vector (z — y) is replaced by
—(x — y), then the point &/ is to be changed by —¢7, simultaneously, since
to the vector —z there corresponds the point —&/ € S (—z/|z]| = n(-¢7)).
As a result the exponential factor in (2.30) will not be changed. O
Remark 2.5. The fundamental matrix of the adjoint operator A*(D, 1),
clearly, has the form

T (2, 7) = Fo A (—i&, D)} 1 = F L (AT (i6,7)} 1] =
= Fe {AT(=i&, )} 1 = (2m) 72 [ou[AT (—ig, 7))~ eive dg =
=TT (-2,7), T=0—iw, o #0, (2.31)

where I'(z, 7) is given by (2.2).
Therefore, there exist limits similar to (2.27) and (2.28)

* T * 1 T(_ _TT(_ —
r (a:,w,r)—;lg%)l" (:IZ‘,T)—}I_I)I%)F (—z,7)=TT(—z,w,r), r=1,2, (2.32)

where (—1)"ow > 0 is assumed.

The entries of matrix (2.5) and their derivatives decrease more rapidly
then any negative power of |z| as |z| = 400 if 0 < |o] < g9 (see Remark 1.2).
The asymptotic formulae for I'* (z, w, r) follow from (2.32) and Theorem 2.3

I (z,w,r) = ZE@e(_l)wﬁ" |z|! + O(l2|7?),
j=1

where |z| is sufficiently large, & = [c&j)(—fj, —iw)] " with 7 defined by
(2.24), and ¢/ € S5 corresponds to x.

From Lemmata 2.1, 2.2, and Theorem 2.3 together with the equations
(2.5), (2.32), and I'(z) = I'(z) = I'" (z) = [(—=z), T(tz) = t~'T'(z), t > 0,
we infer that the matrices I'(z, 1), I'(z,w,r), I'*(z, 1), and I'*(z,w, r) have
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the matrix I'(z) as the dominant singular part in a neighbourhood of the

origin. d
Remark 2.6. Equation (2.30) implies the following representation
= (9)
Nz —y,w,r) = Z T (z—y,w,r),
j=1

where for sufficiently large |z|
€ ;
I (@ —y,w,r) = ) el

() . (4)
Dxp r (x_vavr) +Z(_1)T§Z r (x_vavr) = O(|$|_2)a

j=1....m, p=1,2,3, r=1,2,

r+1 (

@& 1571 4 O(|z|2),

e S5 corresponds to x and the range of y is again a bounded subset of
R3; here the matrices ) are given by (2.24). O

Remark 2.7. If the system of equations (1.46) is inconsistent in R® for
some w > 0, then M (¢, —iw) = detA(—i&, —iw) # 0 for arbitrary £ € R3

and w € R, and
[(z, —iw) = F L, ([A(—i€, —iw)]™") € C®(R® \ {0}) (2.33)

E—x

is a fundamental matrix of the operator A(D,—iw) whose entries together
with all derivatives decrease more rapidly than any negative power of |z
as |z| = 4o00. The main singular part of (2.33) in a neighbourhood of the
origin is again the matrix I'(z). Therefore this case is very similar to the
pseudo-oscillation one [57]. O

3. THERMO-RADIATION CONDITIONS. SOMIGLIANA TYPE INTEGRAL
REPRESENTATIONS

In this section we formulate the generalized Sommerfeld-Kupradze type
radiation conditions in the thermoelasticity theory of anisotropic bodies and
derive Somigliana type integral representation formulae.

3.1. Let us introduce the classes SK'(27) of vector-functions defined on
an unbounded domain of type Q= (which is the complement to a compact
region O+ in R?).

A vector-function U = (uy,us,us,us)’ belongs to the class SK*(Q7),
r=1,2, if it is C'-smooth in Q~, and for sufficiently large |z| the following
relations hold (no summation over the repeated index j in the last equation)

™ (j j ; ;
v@ =Y 0w, U=, DT =0l

j=1
() _ () , _
DyU (z) +i(-=1)"& U(xz) = O(lz| ), p=1,2,3, j=1,...,m, (3.1)

where ¢/ € S% corresponds to the vector .
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Clearly, this definition is essentially related to the operator A(D, —iw)
and its characteristic equation (1.45). The conditions (3.1) will be referred
to as generalized Sommerfeld-Kupradze type radiation conditions in the ther-
moelasticity theory of anisotropic bodies (cf. [45]).

A four-dimensional vector U = (uy,--- ,u4) ", satisfying conditions (3.1),
will also be referred to as (m,r)—thermo-radiating vector. We say that a
4 x 4 matrix belongs to the class SK]*(27) if each column of the matrix is
a (m,r)—thermo-radiating vector.

Remark 2.6 implies that T'(-,w,r) € SK["(R?® \ {0}).

In the isotropic case m = 1 and S¢ is defined by the equation ¢*> = k?
with k7 = w?p~" (u is the Lamé constant and w is the oscillation parame-
ter). Therefore the point ¢! € S§, which corresponds to the given direction
(vector) m, is given by ¢! = kim, n = x/|z|, and conditions (3.1) are equiv-
alent to the well-known thermoelastic radiation conditions (see, e.g., [45],
Ch. III).

3.2. Let U = (ug,---,us)’ be a regular vector-function in Q% i.e.,
U e C?(QF) nCcHO).

In addition, let A(D,7)U € Li(Q%) and conditions (1.30) be satisfied (in
the case of the domain Q7). If we assume that either 0 < |Rer| = |o| < &9
or o > 0, and use the identity (1.22), by standard arguments we obtain the
following integral representation formulae (see, for example, [56], [16])

inl“(w—y,T)A(DyJ)U(y)dy ig{[Q(Dy,n(y%T)FT(w—y,T)]T[U(y)]i—

T T +
e =y BT as, = { 00 TR @)

where boundary operators B and @ are given by (1.25) and (1.26), respec-
tively, and the fundamental matrix I'(z, 1) is defined by (2.2); n(y) is the
outward unit normal vector of S at the point ¥y € S and S is a C2-smooth
surface.

From the representation formula (3) it follows that any solution of equa-
tion (1.9) for o > 0, satisfying the condition (1.29), actually, is a C*°-regular
in Q% vector-function which decrease, together with all derivatives, more
rapidly than any negative power of |z| as |z| — +o0.

Due to Theorem 2.3 and equalities (2.27), (2.28) analogous representation
formulae can be written by means of the fundamental matrices I'(z,w,r) in
the case of the domain QF. One needs only to replace A(D,7) and ['(z,T)
in (3) by A(D,—iw) and T'(z,w,r), respectively. Concerning the domain
Q~ we will prove the following proposition.

Theorem 3.1. Let 30~ = S be a C*-smooth surface and U be a reg-
ular (m,r)—thermo-radiating vector in Q~, i.e., U € C*(Q7)NCH(Q~) N
SK™"(Q27). Let, in addition, A(D,—iw)U have a compact support and belong
to the space L1 (Q7). Then

U(a:) = f F(il’,‘ —Yy,w, T) A(Dy7 —ZOJ)U(y) dy +
a-
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+£ {F(CE - yawar)[B(Dwn(y))U(y)]__
_[Q(Dyan(y)a _iw)FT(x - yawar)]T[U(y)]i} dSy7 S Qi; (33)

here B, @ and n are the same as in (3).

Proof. Let R be a sufficiently large positive number and QF C Bp := {z €
R® : |z| < R}. We assume also that supp A(D, —iw)U C Bg. Denote

Q, = Q" N Bg and 0B = Yg. Then the vector-function U is regular in
5. Therefore, we can write the following integral representation (cf. (3))

U(z) = [T(z —y,w,r) A(Dy, —iw)U(y) dy +

Qp
+{ [ = [HQDy, 1), —i)T T (@ = y,0,7)] T (W) -
Yr S
(&~ 3,0, B, nW)UW)]} dS,, = € U, (3.4)

where n(y) is the exterior normal on the both surfaces S and ¥g; clearly,
n(y) = y/R for y € L. Note that in the first integral the domain Q, can
be replaced by @, since A(D,, —iw)U has a compact support.
Our goal is to show that the integral over X i tends to zero as R — +oo.
To this end, denote the right-hand side expression in (3.1) by 7[U]. Then
by integrating of (3) from v to 2v with respect to R and deviding the result
by v, we get U(x) = T[U](z) + X (v), where

X0) =3 f dR [ 1@, ~i) (@ = o U]

—T(z —y,w,r)[B(Dy,nU(y)]} dXr, n=n(y)=y/R.

Next we prove that X (v) — 0 as v — +o0.

It can be done by applying the arguments similar to that of [80]. In fact,
for definiteness, let » = 1. Then due to the thermo-radiation conditions
(3.1)

n NG
B(D,,mU(y) =Y _ B(i&,n)U (y) + O(R™?),

j=1

where ¢/ € S5 corresponds to the vector .

According to Remarks 2.4, 2.6, and Theorem 2.3 analogous formulae
hold also for [Q(Dy,n, —iw)l' T (z — y,w,1)]T and T'(z — y,w, 1) (note that
z is some fixed point in Q%). The terms corresponding to O(R™?) in the
expression of X (v) decay as O(r~!), while all other summands have the
following structure

0a) = 2 [ R 000 (R () R a5,
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where ¢ € C* (%), n € X4, g5 and h¢ (s,t = 1,--+ ,m) are smooth func-
tions satisfying the following inequalities

lgs(Rn)| <cR™',  |0/0Rgs(Rn) —ips(n)gs(Rn)| < cR™2,
|he(Rn)| <cR™",  |8/ORhi(Rn) — ipe(n)he(Rn)| < cR™2,
pi(n) = (n-€) >0, ¢=const >0,

due to (3.1).
The last inequality is a consequence of (2.14), since

BRLY V(I)m(fj,—ZOJ) L eJ —
=1 (lwm(@,—iwn f)
|£7]

0 C
|V‘I>m (fj, —iw)| [%Cbm(ga, _,LW):| £=¢i >0

(n-€) = (n(&) - &)
= (-1y
Now we proceed as follows

1w ¥(n) :
USt(V) - ,“/.[ dR Ejl‘ us(n) + Ht(ﬂ)[ H’S(n) gs(Rn) ht(Rn)+

+9s(Rn) ipe(n) he(Rn)] R* d%, =
-2 [ 0 —h -3 2 9p
“awd ®) {us(n) () BR 9e B he(Bn)] + O(R )} R*dR
_ 1 f p(n)

= i_’/zl m{@’/) 9s(2vn) he(2vn) — v=gs(vn) he(vn)—

—}Vgs(Rn) hi(Rn)2RdR}dS; + O(v ) = O(v™ ).

Thus, X (v) — 0 as v — 400 which completes the proof. O

Remark 3.2. From the above proof it follows that, if U satisfies the
assumptions of Theorem 3.1 and R is a sufficiently large positive number
such that supp A(D, —iw)U C Bg, then

Ef {[Q(Dya n(y)a _iw)FT(x —Yw, T)]T[U(y)]_

—I(z - y,w,r)[B(Dy,n(y))U(y)]} dEr =0
for an arbitrary x € BN Q™. O

Corollary 3.3. Let U be the same as in Theorem 3.1. Then the deriva-
tives DU are again (m,r)—thermo-radiating vectors for an arbitrary multi-
index 3 and the asymptotic representation of DPU at infinity can be obtained

by the direct differentiation from the corresponding asymptotic formula of
U.

Corollary 3.4. Let A(D, —iw)U(z) =0 in R® and U € SK]"(R?). Then
U=0inR3.
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Corollary 3.5. Let F = (Fy,...,Fy)T € C'(R?) and diamsupp F <
+00. Then the equation A(D, —iw)U(x) = F(x), x € R® is uniquely solvable
in the class C*(R®) N SK™(R?) and the solution is representable by the
following convolution type integral

U(x) = [T(z—y,w,r) Fly)dy, = cR.
R3
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CHAPTER II
FORMULATION OF BOUNDARY VALUE
AND INTERFACE PROBLEMS

Here we present the classical and weak formulations of the boundary
value and interface problems of the thermoelasticity theory which will be
investigated in the subsequent chapters.

4. FUNCTIONAL SPACES

In this section we introduce some functional spaces which will be needed
in the formulation of boundary value and interface problems. We recall here
some properties of these spaces and for details refer to, for example, [78],
[79], [49], [47], [1].

Let QF, 0, and S be the same as in Subsection 1.5.

By CF(QF), C*(QF), C*(S), and CH>(QF), Ch*(QF), CF*(S), with

integer ¥ > 0 and 0 < a < 1, we denote the usual k-smooth and Holder
(k,a)-smooth function spaces. Note that here we assume S to be a C*°-
smooth manifold. Further, C5,,(27) stands for the class of C*-regular
functions with compact supports in Q~, C(Q*) and C(S) denote the spaces
of continuous functions in QF and S, respectively, and C* := C%® for
0<a<l.
By W, (Q%F), W2 ,.(9F), and W} o (2F) we denote the usual Sobolev
spaces, i.e., spaces of measurable, in general, complex-valued functions that
together with their first order generalized derivatives are p-integrable, lo-
cally p-integrable, and compactly supported p-integrable functions, respec-
tively, in corresponding domains. Further, L,(Q%), L, 10c@Q%), Ly comp @),
and L,(S) denote the usual (Lebesgue) measurable function spaces.

Let se R, 1<p<oo,1<qg<oo, and S € C®. Then Bf)’q(ﬂi),
BE 10c(25), By (S), and H(QF), HE | .(F), H5(S), stand for the Besov
and the Bessel-potential spaces, respectively.

Next, let S; be a submanifold of S with a C*-smooth boundary 90S;.
We introduce the following spaces on Si:

By (S1) ={fls, : f€ B, ,(S)}, Hj(S1)={fls, : feHS)},
B3 (1) ={f € B, (S) : supp f CSi},
H3(S1) = {f € H3(S) : supp f C S1},

where f|s, denotes the restriction of f to Sy, and s, p, and ¢ are as above.
The appearance of the Besov and Bessel-potential spaces with p # 2 and
q # 2 is not only of mathematical interest. The case is that for particular
mixed and crack type boundary value and interface problems with specific
geometry studied in mathematical physics and mechanics it is well known
that, in general, solutions or their derivatives have singularities at the col-
lision curves of changing boundary conditions or edge points of cracks and
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they do not belong to the class of C'-regular functions in closed domains
(see,e.g.,[74], [84]).

Because of this fact and in order to allow a wide class of boundary data,
on one side, and to establish optimal regularity properties of the solutions,
on the other hand, we state the basic and mixed interface (transmission)
problems in Sobolev spaces with p > 1. If we invoke that u € Wp1(9+)

(W 10c(27)] implies u|pg= € B;,;,l/p(aﬂi), then the need of Besov spaces
in formulation of our BVPs and interface problems becomes transparent.
Clearly, here u|g is defined in the trace sense.

We recall that Hf = W5 = B5,, W! = B! , and H} = W}, for any
s € R, for any positive and non-integer ¢, and for any non-negative integer
k.

It is evident that first order derivatives of functions from W, (2) and
W 10c(27) belong to Ly,(27) and Ly 10(927), respectively, and, in general,
they have no traces on S. However, for vector-functions U € W, (Q%)

(W!..(27)], satisfying, in addition, A(D,»)U € L,(2") [Lp10c(27)] the

p,loc
functionals [P(D,n)U]E € [Bpa/"(S)]? and [MD,n)UJ§ € Bpa/?(S), ie.,
the functional [B(D,n)UJ¥ € [Bp_,;/p(S)]4 (see (1.25)), can be defined cor-
rectly by means of the Green formulae (1.21).

To this end, let us set

([B(D,n)U)E, [V]E)s == [EWU,V)dz + [ AD,)U-Vdz (4.1
Q+ Q+

(B mUJ5, [VIg)s i= = | BUV)ds — [ AD,»)U Vis|, (42)

where E(U,V) is given by (1.27), and V € W, (Q%) [V € W) 0mp(27) ],

1/p+1/p' = 1. Clearly, by the trace theorem [V]E € le),jpl,/pl (S).

It is easy to see that the right-hand side expression in (4.1) [(4.2)] gives
the same value for arbitrary vector-functions V. € Wy (QF) [V €
Wy comp(©27)] having the same traces on S (provided U is fixed). This
in turn shows, that the functionals defined by the above equations are, ac-
tually, supported on S. We also note that, if U € C'(QF) [U € C'(Q7)]
and A(D,3)U € Ly (%) [ L 1oc($27) ], then the above introduced function-
als correspond to the usual boundary values [B(D,n)U]" and [B(D,n)U] ",
respectively. Therefore, we can consider { - , - )s in (4.1) and (4.2) as

dualities between the spaces B;;/p(S) and B;,/f,, (S). Note that

4
(fy9)s=[(f,9)dS= [ fjg;dS
S S j=1
for the smooth vector functions f = (fi,---,f1)" and g = (g1, -+ ,g4) ",
i.e., the above duality extends the usual “real” Ls-scalar product.
Throuhgout this monograph all boundary and interface conditions for
the displacement vector and temperature always are understood in the trace
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sense, while for the stress vector and heat flux they are to be concidered in
the above duality sense, i.e., in the sense of continuous linear functionals.
Remark 4.1. Let us note the following two simple things. Firstly, the
condition [B(D,n)U]* = F on S, where U € [W}(QF)]*, A(D,»)U €
[L,(Q)]*, and F € [B_l/p(S)]4 means in the above functional sense that
Jor EUV)da + [, A(D, U - Vde = (F, [V])s (4.3)
for arbitrary V' € [W, (Q)]*.

Secondly, let U € [W2(QN)]*, A(D,»)U € [L,(QD)]%, F € [By,/"(S1)]*,
where S; is a submanifold of the surface S as described above. Then the
condition [B(D,n)U]" = F on S, is understood as follows

JEUV)dz+ [AD,)U -Vdr=(F,[V]§)s=:(F, [V]g1 ys, (4.4)
Q+ Q+

for arbitrary V € [W),(Q)]* whose trace [V]§ is supported on Si, ie.,
[VI4s, = 0. Bvidently, [V]§, € [B,/%,(S1)]*. Here (-, - )s, is the duality
between the spaces [B _1/p(51)] and [B) Bl/P (Sl)] . Boundary conditions for
the exterior domain 2~ are understood qu1te analogously. We have only to
change the sign “4” by the sign “—” in front of the volume integrals in the
left-hand sides of (4.3) and (4.4), and the superscript “+” is to be replaced
by the superscript “—” in the right-hand sides. Moreover, a test function V'
is to be taken from the same type of Sobolev spaces as above but now with
a compact support in Q7. O

5. FORMULATION OF THE BASIC AND MIXED BVPs

In this section and in what follows boundary value and interface prob-
lems for the pseudo-oscillation and steady state oscillation equations will be
marked by the subscripts 7 and w, respectively (unless otherwise stated).
We note that in the pseudo-oscillation problems 7 = ¢ —iw with ¢ > 0 and
w € R

We start by the formulation of the so-called basic and mixed boundary
value problems for the bounded domain Q7 and its unbounded complement
Q. As above, we assume that S = 9QF is a C*-smooth manifold. More-
over, U = (u,u4)" is again a four-dimensional vector-function whose first
three components correspond to the displacement vector, while the fourth
component describes the temperature field.

We consider the following BVPs.

Find a solution U to the system of differential equations (1.9) [(1.10)] in
OF satisfying one of the boundary conditions on S:

Problem (P))¥ [(P1)E]:

W=7 f=h.ffs), (5.1)
[’LL4]:|: = f47 (52)

i.e., the dicplacement vector and the temperature are prescribed on S.
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Problem (Py)F [(P2)F]:

[u]* = f, (5.3)
[A(D,n) us]* = Fy, (5.4)
i.e., the dicplacement vector and the heat flux through the surface S are
given on S. Here A\(D,n) = 3, is given by (1.24). The case [0 us]t = 0

describes a thermal insulation over the surface bounding the body.
Problem (P3)* [(P3)E]:

[P(D.)UT* = F, F=(F,FF), (5.5)
[ua]* = fa, (5.6)
i.e., the vector of thermal stresses and the temperature are given on S. Here

P(D,n) is defined by (1.13).
Problem (P,)* [(P4)E]:

[P(D,n)UJ* =F, (5.7)
[A(D,n) ug]* = Fy, (5.8)

i.e., the vector of thermal stresses and the heat flux are prescribed on S.
Problem (Pp,i.)E [(Pmiz)E]:

(W = FO and [u]® = £" on Sy, FO = (M, f FNT (5.9)
,n ZN an , N )U4 = on o2,
[P(D,n)UJ* = F® and \(D,n)us* = F{*) on S

- (5.10)
F@ = (F?, 7Y BT,

where S; USs =S, S1NSy =@, S; #@, j =1,2; we assume here that the
common boundary of 057 = 955 is also a smooth curve.

The functions fy, Fy, f,gl) and F,52) are given functions and in the sequel
they will be referred as boundary data of the BVPs.
Let us introduce the matrix boundary operators

B(1)(D,n) :=11=[0kjlaxa, B)(D,n):= {[lg]lm [)?(]g(al”)LM’

(5.11)
B(g)(D,n):: [T(D7n)]3><3 [_/Bkjnj]3><l ,B(4)(D,TL>:ZB(D,TL),
[0]1x3 1 A
x4
where T'(D,n) and B(D,n) are given by formulae (1.12) and (1.25), re-

spectively. The boundary conditions corresponding to the above problems
(Pe)E [(Pr)E] can be then written as follows

(B (D,n)U)*F =g, k=1,2,3,4, (5.12)

where the four-dimensional vector g is constructed by the boundary data of
the corresponding problem.

By a solution of the interior BVPs (Pj) and (Py)} we understand a
vector U from the space either C'(QF) N C*(Q*) or W}(Q*) with p > 1.
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The mixed BVPs (Ppi;)f and (Ppie)f will be considered only in the
space W, (1) since, in general, they have no solutions in the space of
smooth functions C'(Q+).

Clearly, in the case of the Sobolev spaces W (2F) the differential equa-
tions (1.9) and (1.10) are to be considered in the distributional (weak) sense,
while the boundary conditions are to be understood in the functional-trace
sense described in the previous section.

Moreover, in the exterior BVPs for the domain 2~ we provide that a so-
lution to the pseudo-oscillation equations (1.9) has to satisfy the conditions
(1.29) at infinity (i.e., (1.30)), while a solution to the steady state oscil-
lation equations (1.10) has to meet the generalized Sommerfeld-Kupradze
type (m,r)—thermo-radiation conditions (3.1). It is also evident that in
the exterior problems for the homogeneous pseudo-oscillation equations we
may assume U € WI}(Q’) (due to the required asymptotic behaviour at
infinity), while in the exterior problems for the homogeneous steady state
oscillation equations we have to look for solution in the space W;JOC(Q’).

We remark that every solution to the homogeneous elliptic equations
with constant coefficients (1.9) and (1.10) is C*°-regular in QF and Q.
Therefore, we have to control the smoothness of the solutions only near the
boundary S.

Concerning the boundary data in the above formulated problems we note
that the precised functional spaces for them will be given below when we
start the systematic study of the existence of solutions to the nonhomoge-
neous BVPs (see Chapter V).

However, we mention here only some necessary (compatibility) condi-
tions. Namely, when we look for a solution U € C'(Q%), then the bound-
ary functions fi and Fj (k = 1,---,4) have to belong to some subspaces
of C'(S) and C°(S), respectively, while the following natural conditions
fr € B;E,l/p(S) and Fj, € B;;,/p(S) must be satisfied when we seek a so-

lution U in the space W, (Q%) [W),.(2F)]. Analogously, in the mixed

BVPs we have to require the natural restrictions f,gl) € B,l,,;,l/p(Sl) and
F® € Byy/?(Ss).

We note here that in the elasticity theory of isotropic bodies the basic
BVPs in the classical setting by potential methods have been exaustively
investigated in [45], while the mixed BVPs have been studied in [50], [13],
[75], [76] (Lo-setting) (see also references therein). The same problems of
the elasticity theory of anisotropic bodies are considered in [56], [8], [59]
(classical and L,-setting).

6. FORMULATION OF CRACK TYPE PROBLEMS

This type of problems appear when the elastic body under consideration
has interior cracks of the form of two-dimensional open manifolds. We
consider the case when these crack surfaces are disjoint and do not hit the
boundary of the body.
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We deal with the following model problems.

Let S; be an open, two-dimensional, C*-regular, two-sided, connected
manifold with C*°-regular boundary 85;. Moreover, we assume S; to be a
subset of some closed C*°-regular surface S surrounding a bounded domain,
say QT. Further, let ]R?él =R\ S;, S; = 81 UIS,, and as usual, 0~ =
R? \ QF. We choose that direction of the unit normal vector on S; which
corresponds to the outward normal vector on S (with respect to Q). Due
to this choice, the symbols [-]* denote again limits on S; from Q¥ either
in the usual classical-trace sense or in the functional-trace sense described
in Section 5.

Let the whole unbounded domain ]R%l be filled up by an anisotropic
elastic material with thermoelastic characteristics introduced in Section 1.

The crack type problems in the thermoelasticity theory are formulated
as follows (cf. [16], [38]).

Find a solution U = (u,uy)’ € W;’IOC(RBSJ, p > 1, to the system of
steady state oscillation equation (1.10) in R% satisfying the generalized
Sommerfeld-Kupradze type (m,r)—thermo-radiation conditions at infinity
(3.1) and one of the following boundary conditions on S:

Problem (CR.D),:

{[u1+=f<+), o {[U]zf”,) 6.1)

[t = fi7, [wd]™ = £,

where f£ = (f&, f£, 157, f£=(f5, - DT
Problem (CR.N),:

P(D +=FH) P(D - _ F(=)
POV =F, PO =FO
[A(Da n)u4]+ = F4 ) [/\(D7 n)u4] = )
where ﬁi = (FliaF;i:th)Tv Fi = (Flia 7F4i)T'
The boundary data fki and Fli belong again to the natural spaces
fEeBLYP(S), FfeB,M/PS), k=1, 4 (6.3)

Moreover, we assume
fif = fo € BI2YP(S), Ff—F, €B;lP(S)), k=1,---,4, (64)

which is stipulated by the fact that an arbitrary solution U to the equation
(1.10) is C*®-regular in R and, obviously,

[U]* —[U]” =0 and [B(D,n)U]" — [B(D,n)U]” =0, on S\ S;. (6.5)

The formulation of crack type BVPs for the pseudo-oscillation equations
are similar to the above ones.

In this case we look for a solution U = (u,us)” € W} (RY ), p > 1, to the
system of equations (1.9) in R satisfying the decay conditions (1.30) at
infinity, and either the boundary conditions (6.1) (in Problem (CR.D),) or
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the boundary conditions (6.2) (in Problem (CR.N);) on S;. The boundary
data fki and FF are supposed again to meet embeddings (6.3) and (6.4).

If one considers the crack type problems for the domains Q% with the
interior cut Si, then to the above boundary conditions (6.1) and (6.2) on
S1, clearly, one has to add one of the basic boundary conditions on S cor-
responding to the BVPs (Py)* [(Px)E]. As it becomes transparent later
on, these type of BVPs can be investigated by slight and evident modifica-
tions of our analysis developed in the next chapters. Therefore, we confine
ourselves to deal with only the above formulated model problems.

We remark that analogous problems of elastostatics of isotropic and
anisotropic bodies have been investigated in [13], [17], [18] (see also ref-
erences therein). The above formulated crack problems for the pseudo-
oscillation equations of the thermoelasticity theory in the general anisotropic
case have been treated in [16].

7. BASIC AND MIXED INTERFACE PROBLEMS

In this section we formulate the basic and mixed interface problems of
the thermoelasticity theory for piecewise homogeneous anisotropic bodies.
In the scientific literature the mixed interface problems are called also as
interface crack problems.

The most general case of the structure of a piecewise homogeneous elas-
tic body under consideration can be mathematicaly described as follows. In
three-dimensional Euclidean space R® we have some closed, smooth, con-
nected, nonselfintersecting surfaces S1,85,...,5, (§] NS, = o, Jj# k).
By these surfaces the whole space R? is devided into several connected do-
mains Qq,..., ;. Each domain is supposed to be filled up by an anisotropic
material with corresponding, in general, different thermoelastic coefficients.

Common boundaries of the two distinct materials are called interfaces
or contact surfaces of the piecewise homogeneous elastic body. If some do-
mains represent empty inclusions, then corresponding to them surrounding
surfaces are called boundary surfaces of the composed elastic body in ques-
tion. Such type of piecewise homogeneous structures encounter in many
physical, mechanical and engineering applications. Therefore, besides the
theoretical importance of the transmission problems we intend to study, this
interest is also motivated by their fundamental applications to many areas
of science and technology.

7.1. For illustration of the method suggested we consider the following
model problems. We assume that the piecewise homogeneous composed
anisotropic body consists of two elastic components occupying bounded
domain Q' = Q% and its unbounded complement 92 = Q~ = R*\Q*;
00+t =5, Qv = Q* U S, 1 = 1,2. Thus, the whole space R® can be consid-
ered as a piecewise homogeneous anisotropic body with the single contact
(interface) surface S.
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Let a smooth, connected, nonselfintersecting curve [ C S devide the
contact surface S into two open parts S; and Sp: S = S, US, U, S =
SlﬂSQZg,gj :SJ‘UZ, j=1,2.

We treat the two groups of interface conditions:

I. Basic interface problems. On the whole contact surface S there are
given

a) jumps of the displacement vector, the temperature, the vector of ther-
mal stresses, and the heat flux (Problem (C)) or

b) jumps of the temperature, the heat flux, and the normal components
of the displacement and the stress vectors; in addition to these conditions,
the limits of either the tangent components of the stress vectors (Problem
(G)) or the tangent components of the displacement vectors (Problem (7))
are given from both sides of the interface (cf. [45], [29], [32], [34])-

IT. Mixed interface problems. On the submanifold S; the conditions
of Problem (C) are prescribed, while on S there are given:

a) the conditions of Problem (G) (Problem (C — G)) or

b) the conditions of Problem (#) (Problem (C — H)) or

c) the displacement vector and the temperature (on the both sides of S5)
(Problem (C — DD)) or

d) the thermal stresses and the heat flux (on the both sides of Sz) (Prob-
lem (C — NN)) or

e) the displacement [stress] vector (on the both sides of S;) and the
jumps of the temperature and the heat flux (Problem (C —DC) [Problem
(C —NC)]) (cf. [58], [33], [35], [41], [40]).

The analogous basic interface problems in the classical elasticity and
thermoelasticity of isotropic bodies have been studied by the potential and
variational methods in [45], [32], [67], [84] (see also [75], [61], [62]). In
anisotropic elasticity the basic interface problems have been considered in
[34], [41], [22], while the mixed interface problems have been investigated in
[35], [58], [67], [41], [9].

7.2. Before we start the mathematical formulation of the above interface
problems let us introduce some notations.

We assume that the domain Q* (u = 1,2) is filled up by elastic material

whose thermoelastic constants are cgc’;.)pq, A gl e with the same

properties as in Section 1. The displacement vector and the temperature in
Q* are denoted by u(#) and ui” ), respectively. All operators and thermo-
mechanical characteristics corresponding to the elastic material occupying
the domain Q* we mark with the superscript p. For example, the basic
equations of pseudo-oscillations and steady state oscillations now read as
(see (1.7)-refnl.12)

AWD, UM () =0 in O, (7.1)
AW(D, i) UMW (z) =0 in Q. (7.2)
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The symbols T (D, n), P4 (D,n), and A\*)(D,n) stand now for the cor-
responding classical stress operator, thermo-stress operator, and heat flux
operator, respectively (see (1.11), (1.13), (1.24)).

First we formulate the basic interface problems for the steady state os-
cillation equations of thermoelasticity.

Find vector functions U (u = 1,2) that solve the equations (7.2) in
O and that satisfy the following interface (transmission) conditions on S:

Problem (C),:

w1 — W] = f, w1 - = £ (7.3)
[P(l)(D,n)U(l)ﬁ _ [P(2)(D,n)U(2)]7 = ﬁ,
DD, n)u'F — NO(D,n)uf]~ = Fi,

where f = (f,f)7, f = (fi. o, f2)7, F = (F,F})T, F = (F, F3, F3) .
Problem (G),:

(7.4)

[POD,mUD -1t = KD [PODmU® -mt = EH, (75
[PO(D,n)U 1]~ = F ) [PO(D,n)U -m]~ = F), 7.6

w® )t —[w® )" = f,, [POD,R)UD . n]t -

Problem (#),: conditions (7.7), (7.8), and

[u(l) X l]+ — }';H'), [U(l) . m]+ = fy()j), (79)
W = 7, e ] = . (7.10)

Here and in what follows we denote by n(z) again the outward (to Q%) unit
normal vector at the point € S, and by I(z) and m(z) orthogonal unit
vectors in the tangent plane. The orthogonal local co-ordinate system n, [,
and m at x € S is orientated as follows: [ X m = n, where - X - denotes the
vector product of two vectors.

The conditions (7.5)—(7.6) and (7.9)—(7.10), in fact, represent limits on S
of the tangent components of the thermo-stress vector and the displacement
vector, respectively, while the second equation in (7.4) represents the jump
of the heat flux on S.

The conditions (7.3) and (7.4) can be written then as follows:

(UM —[UP]~ =f on S, (7.11)
[BD(D,n) UM — [BD(D,n)UP]" =F on S, (7.12)

where B")(D,n) is defined by (1.25).
Next, we rec&ll that S; and S, are the two disjoint submanifolds of S
such that S; USs =S, and formulate the mixed interface problems.
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Find vector functions U™ (u = 1,2) that solve the equations (7.2) in
QH and that satisfy one of the following mixed interface conditions on S:
Problem (C — DD),:

vt — @)= = fM
&mhx$m%+—wmuxmmm—:Fm} on Si,  (7.13)

[U(l)]+ =), [U@)], =o) on S, (7.14)
where
ﬂU—@ifﬁf,fﬂzwwjﬁ,ﬁf,ﬂﬂzam%ﬂ%t
FO=(F, B F)T, o9 =35, 6l)T, 5 = (o™, 04" o).

Problem (C — NN),: conditions (7.13) on S; and
[BY(D,n) UMt =) [BO(D,n)UP]" =& on S, (7.15)
) — ((I)(:I: (i)) ) — (q,gi),q)gi), q,gi))r_
Problem (C — DC),,: condition (7.8) on S and
Mt — w®]" = O (PO(D,n) UM —
—[PA(D,n)UP]" =FD on S, (7.16)

[Pt =3 [w?]" =) on S.. (7.17)
Problem (C — NC),: conditions (7.8) on S, (7.16) on S;, and
[POD,n) UMt =) [PA(D,n)UP]- =& on S,. (7.18)
Problem (C — G),,: conditions (7.8) on S, (7.16) on S, and
[u®) - mJ* [u(2) ] = ﬁ?) ~ } on Sz, (7.19)
[ﬂ%amU n)t = [PO(D,n)U? -n]~ = F?

DU -1t =3 (POD,n)UD .m)t =3 on S,
P(( U@ .11~ =37, [PO(D,m)U -m]” =3 on S,.
(

Problem
and

[
[
C —H),: conditions (7.8) on S, (7.16) on Sy, (7.19) on Sa,

@t =3, D mlt =3 on S,
W " =g w®mm =3 on S,

In the all above steady state oscillation problems we require that the
vector function U(?) satisfies the (m,r)—thermo-radiation conditions at in-
finity.

Moreover, by a solution to the above interface problems we understand
a pair of vector-functions ("), U(?)) satisfying the conditions of the corre-
sponding problem.
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We note that the basic interface problems formulated above will be
studied in both the regular (C'(Q1),C'(Q2)) and the Soboley (W, (Qh),
W) 16(Q2)) spaces.

Therefore, the given data of the interface problems belong to the cor-
responding natural functional spaces, and the transmission conditions are
to be understood in the classical sense and in the functional-trace sense,
respectively.

Particularly, in the regular case, all data corresponding to the displace-
ment vector and the temperature are embedded in Cl(S ) space, while the
data corresponding to the thermo-stress vector and the heat flux are em-
bedded in C°(S) space. In the case of weak setting (in Sobolev spaces),
these data are in Bp,"/?(S) and B, /" (S) spaces, respectively.

The above mixed type interface problems will be treated only in the weak
setting, i.e., in this case we look for the unknown vector functions U®) and

U® in the Sobolev spaces
UM e wWh(Q') and U® e W},.(9%) NSK(Q%), 1<p<co. (7.20)

This implies that the data of the mixed interface problems have to meet
the following natural restrictions caused by (7.20):

fi€ By,1P(S), Fye B, /P(S),

RYeBL I (s), BYeB/ S, o .87, 80) € B (S.),
o F® 3 ) e BI1/r(S,), k=T4. (7.21)

Moreover, the inclusions (7.20) lead also to the following necessary (com-

patibility) conditions:
a) in the problem (C — DD),,:

_ f(l) on Sl, 1-1/ 1.
/= { o) — =) on Sy, felBy, P95 (7.22)
b) in the problem (C — NN),:
F on S, ny A
= { ) — (=) on Sy, F e [B, (5% (7.23)
¢) in the problem (C — DC),,:
F_ f(l) on Sy, ~ 1-1/ 3.
F={L0 o o Fempimers @
d) in the problem (C — NC),:
Fo o on Sy, F e B-YP(S)B: 795
) ) -3 on S, € (B, (S (7.25)
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e) in the problem (C — G),:

~ £, S ~ _
f”:{f;@)" o Ol f e B R(S), (7.26)

on Ss,

~ ) on Sy, ~ Yy
F={ . ~ ~ ~ ~ " Fe[B,,/P(S))3(7.27
{[@}“—q>§—>]z+[q>£j>—q>£;>]m+F,E2>n on Sy, | CLPr(SIHT2T)

f) in the problem (C — H),:

[‘EZH)_%(_)]I‘H ) —Pm ]m+]§(¢2)n on Ss,
= {ﬁ'(l)-n on Sy,

~ (F _
f:{f 7 ~(+) _ () o0 S Fe (Bl P(S)P, (7.28)

_ 7 -1/p
= 15752) on S, F, € Bp;'"(S). (7.29)

In the sequel all these conditions are supposed to be fulfilled. Note that
the conditions (7.22), (7.24), (7.26), (7.28), and (7.23), (7.25), (7.27), (7.29),
hold for arbitrary functions satisfying (7) with 1 < p < 2 and 2 < p < oo,
respectively. This follows from the multiplication properties of Besov spaces
(see [79], Ch. 3, Section 3.3.2).

Finally, we note that for the domains of general structure, described in the
beginning of the section, the basic and mixed transmission problems math-
ematically could be formulated quite similarly: on the contact surfaces the
conditions one of the interface problems stated above are assigned, while on
the boundary of the composed body the conditions of the basic (or mixed)
boundary value problemes are given. We observe that the all principal dif-
ficulties arising in the study of problems for the composed bodies of general
structure are presented in the above model problems as well.

7.3 The basic and mixed interface problems for the pseudo-oscillation
case are formulated in the same way. The only difference is that a solution
U® to the equation (7.1) in 2 has to satisfy the natural decay condition
(1.30) at infinity. Therefore, in the weak setting, we look for solutions in
the spaces

UM ewy(QY) and UP e WHO?), 1<p< . (7.30)

These problems, due to the above agreement, we denote by symbols (C),,

(G)r, (H)r, C—DD),, (C—NN);, (C—DC)r, (C—NC)7, (C—G)r, (C—H),
respectively.

The interface conditions on S in the regular and weak setting of these
problems read again as in the steady state oscillation case.
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CHAPTER III
UNIQUENESS THEOREMS

In this chapter we study the homogeneous versions of the above problems
and prove the corresponding uniqueness theorems. The problems in the
classical formulation will be analysed completely, while the problems in the
weak setting will be treated only partially. Namely, we consider here the
case p = 2. The general case (p > 1) will be considered later together with
the existence questions.

8. UNIQUENESS THEOREMS FOR PSEUDO-OSCILLATION PROBLEMS
8.1. Let us begin with the consideration of the basic BVPs of pseudo-
oscillations.

Theorem 8.1. The homogeneous versions of the problems (Py)T, k =
1,2,3,4, have only the trivial solutions in the class of regular vector func-
tions C*(QF).

Proof. Let U = (u,us)T € C'(QF) N C>®(QT) be a solution to one of the
homogeneous BVPs indicated in the theorem. Making use of the identity
(1.23) with »x =7 = 0 — iw, where ¢ > 0 and w € R, we get

fQ+ {kquDp“qu“j + 72 [ul? + ?LTO/\quq“lep“fl + %|U4|2} dr = 0,(8.1)

since the two other integrals in (1.23) vanish due to the homogeneity of the
differential equation (1.9) and the boundary conditions (see (5.1)-(5.8)).
Separating the real and imaginary parts leads to the system of equations

Jo+ {ckquDp“qu“j + (0% —w?)|ul*+

a [ Co 2 _

+—|T|2T0 ApgDquaDpuy + TO|U4| } dz =0, (8.2)

201uf’ + 2 ApyDyus Dz } di = 0 8.3

waJr{ U|U’| + |T|2TO pgl/qUa pu4} T = U. ( . )

Hence, by (1.14) and (1.15), we infer that v = 0 and us = 0 in QF. O

Theorem 8.2. Let U = (u,uy)’ € W3 (QF) be a solution to one of the
homogeneous BVPs (Py)t, k=1,2,3,4. Then U =0 in QF.

Proof. We prove the theorem for the problem (P;)}. The other problems
can be treated analogously.

In the case under consideration the homogeneous boundary conditions
(5.7) and (5.8) (with F = 0) are understood in the functional-trace sense
described in Section 4. Invoking the definition (4.1) with 3 = 7, and noting
that A(D,7)U(z) =0 in QF, we conclude

([BD,m)U]S, [VI§)s = [o+ E(U,V)dz, (8.4)
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where V = (v,v4) ", with v = (vy,v2,v3) ", is an arbitrary vector function of
the space [W3(Q1)]*, and E(U,V) is given by (1.27). Clearly, (8.4) implies

([P(D, U], 1§ )s =

= fQJr {ijqupquk”j + TQUP% - quu4Dp”q} dz, (8.5)
(IMD,n)ud]g , [m2]§ )s =
= [or {MpaDquaDpvy + coTuss + TTo0s By Dpuy } dz, (8.6)

where v= (v, vs,v3) " and vy are arbitrary elements of the spaces [IW3 (Q1)]?
and Wy (Q1), respectively.
Multiplying (8) by (7Tp) !, taking its complex conjugate, and adding
the result termwise to the (8) lead then us to the equation
([P(D,n)Ug , []§ )s + 35 (D, n)ualg , [3]§ )s =

= fQ+ {ijqup“quUj + 72“1)% — BpqluaDpvg — vaDpu,] +

2 Ay Dyt Dy + 570504 } d. (8.7)

It is evident that, if U is a solution to the homogeneous BVP (P4)F, then
the left-hand side expression in (8.7) vanishes. Whence

fQ+ {ckquDp“quUj + T2up% — BpgluaDpvg — vaDpugl+
+ 2 Ay DyuaDyvs + ;,—gu—m} dz =0 (8.8)

for arbitrary v; € W3 ("), j = 1,4. Since we are allowed to put here
v; = u; and apply the arguments of the proof of Theorem 8.1, we get
uj =0 (j =1,4) in QF.

Now we make some remarks concerning the other homogeneous boundary
value problems. First of all we note that the starting point to prove the
uniqueness of solutions in Sobolev spaces always is the formula (8.4). For
example, let us consider the homogeneous problem (P;)7F, and let some
vector-function U € W3 (%) be its solution. Due to the homogeneity of
the problem, obviousely, [U]* = 0 on S in the usual trace sense. Next, let
us calculate the corresponding thermo-stress vector and the heat flux on S,
i.e., the vector [B(D,n)U]& which is understood in the functional sense. To
this end we have to apply the definition (4.1) which in the case in question
reads as (8.4). Surely, we may substitute the solution U € W3 (QF) in the
place of the vector-function V' € W, () in the equations (8.4)—(8.8). Since
the trace [U]% vanishes on S, we again arrive at the equations (8) and (8.3).
Whence U = 0 in QF follows. O

Theorem 8.3. The homogeneous mized BVP (Pui.)T in the class
WE@QT) has only the trivial solution.

Proof. Denote by U = (u,us)’ € W3 () an arbitrary solution of the
homogeneous mixed problem (P, ). Clearly, [U ]gl = 0 in the usual trace

sense and, therefore, [U]'g2 € g;g(é}), since U € B;,/;(S). Further, let us
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note that the homogeneous boundary conditions for the vector U on S,
due to Remark 4.1, imply

Jor BU,V)dz = ([B(D,n)UTE, , [V]E, )s, =0 (8.9)

for arbitrary V' € W3 (") with the property [V]E € Bl/2(52). Clearly,
the equation (8.9) is equivalent to (8.8), where we may again substitute the
vector-function U in the place of V, since the U satisfies the restrictions
required above for V in (8.9). Therefore, with the help of the arguments in
the proof of Theorems 8.1 and 8.2 we easily conclude that u; =0 (j = 1,4)
in Q. O

The uniqueness theorems for the exterior basic BVPs for the pseudo-
oscillation equations can be proved quite analogously.

Theorem 8.4. The homogeneous BVPs (Py);, k = 1,2,3,4, and
(Pmiz)> have only the trivial solutions in the space W3 (Q7).

Proof. We will prove the theorem only for the problem (Pp;;), , since for
the other problems it is verbatim.

Let U = (u,uq)’ € WH(Q7) N C>®(Q7) be an arbitrary solution to
the mixed homogeneous BVP for the pseudo-oscillation equations. Then,
in addition, the U satisfies the decay condition (1.30) at infinity. Due to
Remark 4.1 and the homogeneity of the boundary conditions for stresses on

S> the following equation

([BOD, U5, , VI, )s = — fo- B(UV)dz=0  (8.10)

holds for arbitrary V € W3 oo (27) with [V]5, € Byls (S2), i.e., [V]5, = 0.
As in the proof of Theorem 8.2 we can easily show that (8.10) yields

fQ {Ckmq pquk”] + 7 UpVp — Bpg[uaDpvy — vaDpug] +

TTO /\qu usDpvy + 72 U4’U4} dr = 0. (8.11)

Note that C*-regular vector functions having compact supports in Q—
and zero traces on S; are densely embedded in the space X = {V €
W3(Q) : [V]g, = 0}. Thus, for V. € X we can choose a sequence
{vim ¢ Ccomp( -) [V(”)]g1 = 0} which converges to the vector function
V in the W} (Q27)-norm. Therefore, simple limiting arguments yield that
(8.11) is valid for V € X. Now, we may substitute u, in the place of vy in
(8.11). As a result we finally obtain

Ja- {eripa Dpg Diuj+72|ul* + =5 Apg Dyua Dpug + 3 Jug|* } dz=0, (8.12)

which completes the proof (see the proof of Theorem 8.1). O
8.2. Now we consider the crack type problems.

Theorem 8.5. The homogeneous problems (CR.D), and (CR.N), have
only the trivial solutions in the space W3 (RY, ).
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Proof. Let U € W, (R% ) be some solution to the homogeneous problem
(CR.D),. Clearly, [U] =0 and [U]g, = 0 in the usual trace sense. Recall
that S; C S, where S = 00T for some bounded domain QF. Next, let
us calculate the functional traces [B(D,n)U]S. Note that [B(D,n)U]§\51
aS = [B(D,n)U];\S_1 since
U e CM(R%). We apply again the definitions (4.1) and (4.2) to write the
equations

exist in the usual trace sense and [B(D,n)U]|L

([B(D,n)Ug, VI§)s = [o+ EU,V) da, (8.13)

([B(D,n)Ug, [V'lg)s = = Jo-BU, V') dz (8.14)

where V = (v,04)7 € WHQH), V! = (') € W27comp(Q*), v o=
(v1,v2,v3) T, v' = (v}, vh,v4)T. Making again use of the limiting arguments

from the proof of Theorem 8.4, we easily conclude by virtue of (8.13) and
(8.14)

Jor E(U,V)da + [ E(U,V')dz =
=([B(D,n)U]S, [VI§)s — ([B(D,n)U]g, [V1s)s (8.15)

for arbitrary V' € [W3 (QF)]* and arbitrary V' € [W3 o, ()]
By the same manipulations as in the proof of Theorem 8.2, we derive
from (8.15)

Jo+ {ckquDpquk”j + T2upTy — Bpg[usDpvg — vaDyug] +
_T /\qu U,4Dp’l)4 + & U41)4} dx +
+ fo- L ehipa Dytig D + up0p — Byg[us Dyl — vy Dyug] +
+7/\qu usDpvy + 2 _vfl}dz =
=([P(D,n)U]§, [0]§ )s + = (IND, n)ual§ , [w3]§ )s —
~([P(D,n)U]5 , [v']5)s = = (D, nudls , [lls)s.  (8.16)
We may substitute in this equation V = U|g+ and V' = Ul|q-, where Ulq+
denotes the restriction of U onto Q*. Taking into account the equalities
[U]§1 =0, [B(D, n)U]S\S = [B(D,n)U];\S_l, and [U]WSL\S_1 = [U];\S_l, we
easily see that (see also Remark 4.1)
([P(D,m)UT§, [@ls)s + =5 (D, n)ual§ , [@alg)s —
—([P(D, U5, [@s)s — 715 (IND,n)ua] , [@lg )s =
= ([P, )T 5 [ 5 ) sy + 7 (D, el o [l 5 s, —
—([P(D;n)

Therefore, (8.16) implies

U]S\S ) [ ];\S_1>S\Sil - %([A(D n)u4]s\s 7[“4]5\5 )S\S1 0.

ng {ck]pq pgDuj + 72 ul? + 1T0 ApgDgusDpuy + %—‘;|u4|2} dz = 0.
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Whence U =0 in R follows. O

8.3. To prove the uniqueness theorems for the basic and mixed homo-
geneous interface problems, one has to apply the arguments quite similar
to the above ones to derive the following basic equation for solutions of the
indicated homogeneous problems

Z S {ck]pq puqﬂ)Dku(u) + a2 4 1 -\ “)D u4“) D, u(“)

(n)
4 B u|? }dz = 0. (8.17)

For regular solutions this formula can be obtained from the following Green
identities for Q" (p=1,2)

Jou {W) (D, YUy w4+ S [AW(D, DT uf } do =

u+1f { B (D n)U(“)] “)[u(u)k](u)+

ckm Dpug“) Dku(”)j-i—

+h [ugw](m AW (D, n)W4]<u>} ds - [, {
2|'u,(“ |2 + +—%,10 )\(ﬂ) Dku(u) D U #) -|- |’LL | } dx, (8.18)

where [[|M) := []& and []® = []5.

For solutions of the homogeneous problems in the Sobolev spaces W3 (Q#)
formula (8.17) follows from the definitions of functional traces given in Sec-
tion 4.

Now we formulate the uniqueness results for the interface problems of
thermoelastic pseudo-oscillations.

Theorem 8.6. The homogeneous basic and mized interface problems
(C)T7 (g)‘ﬁ (H)T7 (C - DD)T7 (C _NN)‘H (C - DC)T7 (C _NC)T7 (C - g)T7
(C—"H)+, have only the trivial solutions in the corresponding Sobolev spaces,

e., if (U, U?) € (W5 (QL),W(Q?)) solves one of the above homogeneous
problems, then UM =0 in Q*, p=1,2.
Proof. By the reasonings similar to the already applied ones in the previous
subsection, we can easily conclude that for the pair of vector functions
(U, U?) € (W5 (Q1), W4 (Q?)), which is solution to one of the homogeneous
problems indicated in the theorem, the formula (8.17) holds. Whence the
proof follows. O
We remark that the regular case (i.e., when (UM, U®) € (C'(Q1),
C'(02))) is covered by this theorem.

9. UNIQUENESS THEOREMS FOR THE STEADY STATE OSCILLATION
PROBLEMS

9.1. First we shall establish some auxiliary results concerning the co-
efficients of asymptotic formulae (2.30) and ascertain the structure of the
matrix functions (2.24).
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We recall that

N (=8, —iw) = [Ny (=i, —iw)]axa (9-1)
is the adjoint matrix to
e N [w2 I = C(laxs [iBri&ilax1
A( 'Lga lw) = [WTOBkjfthS —Al(jf)]+7:w00 4)(47 (92)

where C'(€) and A(£) are defined by (1.7) and (1.8), respectively, while
Ny;j(—i&, —iw) denotes the cofactor of the element Aji(—i{, —iw) of the
matrix (9.2) (cf. (1.32), (1.33)).

Let us set

Céw)=w’I3 - C(€), C(§w) =w’ I3 - C(€), (9.3)

where C'(€) is given by (1.35). Denote by C*(£,w) and C*(€,w) the corre-
sponding adjoint matrices.
Due to (1.43) and (1.44) we have

C(f,W) C*(f,W) = —@(f,W) I3a é(faw) é*(f,W) = —&)(f,W) I3- (94)
From the condition I° (see Subsection 1.6) it follows that rankC'(§,w) = 2

and, consequently, rankC* (£, w) = 1 for an arbitrary £ € SP. Moreover (for
the same & € SP) there exists an orthogonal real matrix G(&,w) such that

100
GT(Ew) C*(&w)G(&,w) = M Ty, To= [ 00 0|, (9.5)
000

where Ay = A1(&,w) # 0 is a real eigenvalue of the matrix C*(¢,w) (two
other eigenvalues are equal to zero; for details see [55]).
Further, let d(¢,w) = —wep[A(€)] 7! and

d(€,w)G T (&,w) C* (€ w)G(&,w) = [bi; (€, w)]axs. (9.6)
Lemma 9.1. Let { € S5, j =1,...,m, where Sj are the characteristic
surfaces defined in Subsection 1.6. Then the matrix N has the following
structure
N(:l:'LE, —iW) — [N(f, w)]3><3 [0]3><1 ,
[0]1xs 0 4x4
where N'(€,w) = —=A(E)[1 + ibui (& w)AT (& w)]C* (€, w).
Proof. Let § € S§ be an arbitrary point (1 < j <m). Clearly, £ belongs to
some surface S, 1 <1 < 3, as well (see Subsection 1.6). Therefore,
N44(:|:i€7 —iW) = —CI)(f,W) = Oa (97)
due to (1.46).
By direct calculations we get
Nug(—i€, —iw) = —iwTyNpa(—i€, —iw), k=1,2,3, (9.8)

Npq(_ifa —'L.LU) = _A(g)C;q (gaw) + iwcoé;q (E,W) =
= Npy (i€, —iw), 1 < p,q < 3. (9.9)
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The condition I° of Subsection 1.6 implies (see (1.42)) VM (, —iw) =
AV (E,w) —iwepVE(§,w) # 0, since A(§) # 0 on Sj.
This relation together with the equations (1.31), (1.32), (1), and
det A(—i¢', —iw) = det A(i¢', —iw) = M (¢, —iw) = M(¢', —iw), ¢ € R?,
yields
rankA(ig, —iw) = 3, rankN (i€, —iw) =1, (9.10)
i.e., any two columns (rows) of the matrix (9.1) are linearly dependent.
Taking into account the equations (9.8) and (9.7) it can be easily proved
that Nk4(—if, —iw) = 0, N4k(—if, —iw) = 0, k= ].,2,3.
Thus, we have obtained the following representation
N(:l:’if, —iw) — [N(O) (f,W)]3><3 [0]3><1
[0]1><3 0 4x4
with
NO(E,w) = [Npg (i€, —iw)]axs, (9.11)
where Ny, (i€, —iw) = Ngp(i€, —iw) are given by (9.9).
Now from (9.9) and (9.11) together with (9.5) and (9.6) it follows
NO(E,w) = —A(€)C* (€,w) +iweoC* (€, w)
GT(EwINO(£,w)G(&w) = A& (§w)To +

{/\1 & w)+ibyy ibiy ib13-|
’Lb12 ibQQ ’ib23 ,(912)
L ib13 iba3 Z'b33J

+iwegG (€, w)C* (&, w)G(

where by, are real functions defined by (9.6).
By virtue of (9.10) we have rankN(®) (¢, —iw) = 1, and, consequently,

rank [GT (£, w) N (¢, w)G(&,w)] = 1,

since G is an orthogonal matrix. This, in turn, implies that the matrix (9.12)
has only one linearly independent column (row). Inasmuch as A; # 0, there
exist complex numbers a = ay + ias and 8 = 1 + i32 such that

b1 A1+ by ib13 A1+ by
ib22 =« iblg , ibgg = B iblg - (913)

Equating the corresponding elements and separating the real and imag-
inary parts lead to the equations (a2 + a3)\1 = 0, (87 + B32)\1 = 0, ie.,
a = = 0. But then from (9.13), (9.12), and (9.5) we derive

0)(570‘)) = ( ){/\1(67 ) (fa )I()GT(E,LU) +
+ib11(€7w)G(£7 )ZOGT(fa )} = _A( )[/\1 (faw) +
+ib11(€7w)]G(€7w)IOGT(€7 ) - A(E)[l (ga )bll(ng)]c* (f:w)a

which completes the proof. a
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Remark 9.2. Due to equation (2.24) and Lemma 4.1 we get (for arbitrary
£€S;, j=1,...,m,and r = 1,2)

i) = dy(e, —iw) | fg Ea Pl ]y
with

e A+ AT E @) (€]

46 =) = ) O P IV B (€, —i0) | W (6, )]

Lemma 9.3. Let U = (u,u4)" be a regular vector in Q= of the class
SK™(Q27), and let A(D,—iw)U have a compact support.
Then for sufficiently large |z|

w(z) = 32 [2]1d; (€, —iw)e D i€ O% (¢, w)b(€9) + O(Jz]2), (9.15)

j=1

us(x) = O(|z|~2), (9.16)

with the same d; as in Remark 9.2; here C*(&,w) is the adjoint matriz to

C(&w), b= (b1, b, b3) " is uniquely determined by the vector U (see below
(9.18)), and the point & € S§ corresponds to the vector x/|z].

Proof. Denote by Q the support of A(D,—iw)U. Then by Theorems 2.3,
3.1 and Remark 2.6 we have (for sufficiently large |z|)

U = 3 | [lal el G (¢, i) AD,, —iw)U ()] dy +
]:

+ [ |a| e a0 (D (e —iw)[B(Dy, n(y)U (y)]~ dS, —
. / | =10 E=NELQ((—1)"igd, ny), —iw) X
X[ (61, —iw) YU ()] dS, } +
+0(|z]72) = i o ~Le=D" i€ (I (¢, —iw) b(&T) + O(J2|72), (9.17)

where

b(g7) = (&), ba(€)T = [ e HELA(D,, ~iw)U )] dy +

+ge(*1)”y§j [B(Dy,n(y))U(y)]~ dSy —

— [V WEQT((=1)rigd, n(y), —iw)[U (y)] ~ dSy; (9.18)
s
here &7 corresponds to the vector z/|x|.
Now (9.15) and (9.16) follow immediately from (9.17) and (9.14). Note
that the vector b(&7) is represented explicitly by (9.18). O
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Remark 9.4. From (9.15) with the help of equation (9.5) we get the
following equivalent asymptotic formula for u

w(z) = 30 Je| 1D N (6, W) G(ET, W) ToGT (€11, w)ald) (&, w) +

j=1
+0(|z|72), (9.19)
where
D (¢,w) = d; (¢, —iw) B(EY), (9-20)
d; and b are the same as in Lemma 9.3. Note that due to (9.5)
ToGT a9 = ([GT a'P]1,0,0)7. (9.21)

9.2. In this subsection we assume S = 9Q~ to be a connected C'-regular
surface and prove the following uniqueness theorem.

Theorem 9.5. Let U be a regular solution to the homogeneous exterior
problem (Py), (k=1,...,4) and U € SK"(Q") withr =1 for w > 0 and
r=2 for w <0.

Then U =0 in Q.

Proof. Let R, Br, X and Qf be the same as in the proof of Theorem 3.1.
Since U satisfies the homogeneous conditions of the problem (Py), , from
(1.23) (with QT = Q5 and p = —iw) it follows that

Joz {ckijvg Dptiq Diij — w? |ul* — i(wTo) ™" Aj Diug Djlia+

teo(To) Hua?} do = [ {[BD, UL [1] = S lua] [0a7] b dS,
YR
where B(D,n) and 0, are defined by (1.25) and (1.24), respectively.
Owing the fact that cijpq Dpuy Di@; and Aj Dyug DT, are non-negative
real quantities, from the last equation by separating the imaginary part we
get

n{ [ { B0V @) - s (@) 0,1 (2)] ) dSa ) +

Yr

+ 215 Jor Mei Diua(e) Dy () de =0, (9.22)

where ) = z/|z| is the unit outward normal at the point z € Xg.
Due to Lemma 9.3 it is easily seen that

fQ;% /\kj Dk’LL4(a?) Djﬂ4(a:) der = fQ— /\kj DkU4(£L‘) Djﬂ4 (a:) dr + O(R_l),
Js,, [ua(x) 0yu4(z)| dSk = O(R™?), [, lua(z) T (2)|dEr = O(R™"),
as R — 400 (k=1,2,3). Clearly, 0,, = 0,, on Xp.

Taking into account (1.25) and applying the above relations to (9.22) we
obtain

Im{zf [T(Da, n)uls ] dZR} + ok Qf_ AijDruaDjiigdr=0(R1), (9.23)

where T'(D,n) is the stress operator of elastostatics defined by (1.12).
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In the same way as in the proof of Theorem 3.1 (by integrating with
respect to R from v to 2v and deviding the result by ») from (9.23) we
derive

mfL [ [Ir(

VZR

z,n u]k[uk]dERdR} wTO f/\ijkU4Djﬂ4d£I}‘:O(V_l),(9.24)
o

where v is large enough.
Further, by Lemma 9.3 the first summand in the left-hand side of (9.24)
can be transformed as follows

F( —Im{ f f Dnu]k uk]dERdR}

VZR

v Xr j=

:Im{ f [ E DR (¢, —iw) x

x (=0 T (el ) O (7, w)b(ET)]), X
X f [R1d; (€7, —iw)el - e’ O*(gl,w)@]k dEr dR + 0(1/1)} =

=1

¥ =1

:Re{( TS (e, i) & [T, m) O (€ B x

2v

x[C* (¢, ) ( Dk (f 1™ iR () —pa ()] dR) dEl} +O0( 1), (9.25)

v

where pj(n) = (n- &) and & corresponds to the vector z/|z|.
It can be easily proved that p;(n) # wi(n) if j # 1 (see Subsection 1.6).
Therefore, if j # [, clearly,

2v
[ eXifilusm—mml 4R = O(1),
and (9.25) implies

T(& m)C* (&, w)a) - C* (€ w)al) S |+

P

Flv) = Re{(—l)’"+

1M

+O(r1) (9.26)

with al/) defined by (9.20).
In view of the symmetry property of C*(£,n) and equality 77 (£,n) =
T (n, &) we have from (9.26)

7-

Fr)=1 f [T(¢9,m) +
31

(n,fj)]C*(fj ) U ad dS; + 0w ). (9.27)
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Now passing to the limit in (9.24) as v — 400 and bearing in mind (9.25)
and (9.27) we arrive at the equation

- fﬁ [ Ej(¢,w)dS; =0 (9.28)

f /\kj Dyuy Djﬂ4 dr + (=L
- j=13%,

1
wTy
with
E;(€,w) = C* (¢, w)[T(E,n) + T(n,€)]C* (¢!, w)a? -al?, (9.29)
where &/ € S§ corresponds again to 7, i.e., n(&7) = 1.
In what follows we claim that the integral in the second term of (9.28) is

a non-negative function for all ¢/ € S5.
To see this, let us note that

where n = n(§), 0/0n(§) = n(§) Dy is a dlrectlonal derivative, C'(£) and
C(&,w) are defined by (1.7) and (9.3), respectively.

We recall that in Subsection 1.6 we introduced the two sets of surfaces
{85}, and {Sp}5_; defined by equations (1.46) and by the first equation
of the same system, respectively. Therefore, each S coincides with some
SO for some p = p(j). Let us fix this correspondence, i.e., S¢ = Sg(].).

Further, we proceed as follows. Note that

_ [C*(E,w) (%C(E,w)) C*(ﬁ,w)] _
— ey [C* (&, w)C (&, w)C* (&, w)] = [%(b(f,w)] 0% (£.0) (9.30)

for all £ = &7 € S5 (see (9.4)).
With the help of (9.5), (9.30), and (9.29) we deduce

Ej(¢,w) = { [ 50526 w)] C*(gw)a) -a} =

g=¢i
= { [0 )| M(ETGT (€0 - e wa ] =
= {[Farcw|new [[67Ea], ] . @31
Now we show that the function
(O = |75 2w M(Ew), €€ 55, (9.32)

is strictly positive.
Since A1 (£, w) is the only nonzero eigenvalue of the matrix C*(£,w) for
£ €S¢=S), we have

P (& wheess = 1SpC7 (€, W) Feess = {011 (6 w) + 0 (6 w) + 0336 W) feess =
1 {8 w? = Cu(é) —Ca() —C13() }
gese

0 —C12(§) w® = Cn(§) —Cas(é)
—C13(8) —C23(8) w? — C33()

T 2w
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__i i ——L i - 4p 202
. { m@(f,w)}w_ L { awq>(f,w>}£eso_q><g,0)w (B

—03)(02 — 03) + 03 (02 — 07) (02 — 03) + 03 (02 — 01) (0} — 03)} =
{2 w)}e:w = (- [ W eesy | 933)

where ¢ = £/|¢|, ®((,0) > 0; here we employed the representation (1.47).
It is easy to check that the exterior unit normal vector of SS is calculated
by the following formula

n(€) = (-1)r! Zoee) e e 50,

= (-1t

Therefore,

0
{Bnﬁ

s}, = {0 S Vo) =

€€SS €€Sy

= {(-)rH Ve, w (9.34)

|}£ESO )
which together with (9) yields
(€)= IVB(Ew)| M(Ew)| >0 for £€50=55  (9.35)
Hence by virtue of (9.31)-(9.35) we get

. 12
Ej(§,w) = {|V<I>(€,w)l Mgl |67 w)a] | } > 0. (9.36)
§=¢7
Now from (9.28) it follows that Ag; Dyusa(z) Djus(z) = 0, z € Q7
Ej(¢,w) =0, &€ 85, if (=1)" 1w > 0.
Applying (1.18), (9.35), (9.36), and (9.19)—(9.21) we conclude that u4(z) =
0in Q~ and [GT(¢/,w)aP (¢ w)]; =0, i.e.,

DPu(z) = O(|z|7?) as |z| = 400 (9.37)

for an arbitrary multi-index (.

Thus, we have obtained that wu is a solution to the steady state oscillation
equations of elasticity theory C(D)u(z) + w?u(z) = 0, z € Q~, satisfying
the homogeneous boundary condition either [u]~ = 0 or [Tu]” = 0 on S
(see (5.1)-(5.8)) and the decay condition (9.37) at infinity.

Due to Lemma 3.4 in [41] (see also [55], Section 4) we then have u(xz) =0
in Q~, which completes the proof. O

9.3 In this subsection we consider the same basic BVPs (Py), (k =
1,4) together with the mixed BVP (P,,;,); in the weak setting in the
Sobolev space Wy ,.(Q27). Here the principal difference in comparison with
the pseudo-oscillation case is that the steady state oscillation equations do
not admit nontrivial square integrable in {2~ solutions, as it can be seen from
the previous subsection (see the corresponding results for the Helmholtz
equation and for the elastic oscillation equations, for example, in [10], [11],
[80], [83], [45]).
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As it is evident from the proof of Theorem 8.5, one of the central moments
to establish the uniqueness of solutions to the homogeneous steady state
oscillation problems is the derivation of formula (9.22) which follows from
the corresponding Green identities for regular functions. In the sequel we
shall show that the same type formula can be derived for weak solutions as
well.

Theorem 9.6. The homogeneous exterior BVPs (Py), (k=1,...,4) and
(Pmiz)s, have only the trivial solutions in the class W ,,.(27) N SK*(Q7)
with r =1 for w > 0 and r = 2 for w < 0.

Proof. For definiteness, let U € Wy ,,.(27) NSK;"(27) be a solution of the

homogeneous problem (Py)_ .
Due to the definition (4.2) the homogeneous boundary condition

[B(D,n)U]~ = 0, which is understood in the functional sense, is equiva-
lent to the equation
([B(D,n)Ulg, [V]5)s = — [o- E(U,V)dx =0, (9.38)

where V' € Wy .omp(Q27) is an arbitrary vector function and E(U,V) is
defined by (1.27) with s = —iw.

In the same way as in the proof of Theorem 8.2 we easily derive from
(9.38)

([P(D,n)U5 , [0]5)s — 77 (IN(D,n)udls , W25 )s =
== Jo- {ckipg Dpuug DiTj — w uTy, — Bpqlus DpTy — vaDylig] —
— 5= Apg Dyt Dpvs + £TUa04} dae = 0. (9.39)
Further, let hr(z) be a real cut off function with the following properties:
hr € C°(R3?), hgr(z) =1 for |z| < R, hg(z) =0 for |z| > 2R, (9.40)

where R > 0 is an arbitrary real number such that the open ball By = {z €
R® : |z| < R} contains the closed domain Q+ as a proper subset. Recall
that BBR = ER.

Next, we set Vg(z) := hr(z)U(z). Clearly, Vr(z) € W3 omp(27) N
C(Q7). Substitution of this vector function in (9.39) in the place of V
implies

E1+E =0, (9.41)
where
& = [ { chingDyug Dii; ~w|uf = 5y Dy Dyua+ 58 |us [} d, (9.42)
Qg

&= [ {ckipg Dpuq Di(hrt;) — w’hg|u> = Bpglus Dp(hrt,)—
B>r\Br

—hRuaDylly) — — 5= Apg Dyl Dy(hrus) + ;—ghR|u4|2} dr;  (9.43)

here Qp = Q™ N Bpg.
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The integration by parts in (9.43) leads to the equation

E=— [ [ADD,—iw)Ulyughrde+ 5= [ [A(D,—iw)U]ushpdr—
B>r\Br Bar\Br
_fE [P(D,n)Ulxur dXg + #ﬂfﬁ] W’IM d¥p =
_ _sz{ (D,n)Ulxur, — W—TO[/\(D n)U4]u4} d¥g, (9.44)

since A(D, —iw)U =01in Q™ and n =7 on XTg.
Therefore, (9.41), (9.42), and (9.43), due to the formulae (1.13) and
(1.25), yield

Im {sz {[B(Dan)U]kUk o __\(D, n)u4]U4} dXp+
wTO fQ_ ApaDq “4Dpu4dﬂ7} =0 (9.45)

for arbitrary solution U € Wy, .(2) to the homogeneous problem (P), .
Thus, we have obtained again the relation (9.22). This formula can be
derived in the same way for weak solutions of the other basic and mixed
BVPs indicated in the theorem. Now applying the same analysis as in the
proof of Theorem 9.5 we can show that U =0 in Q™. O
9.4. The uniqueness theorems for the homogeneous crack type problems
of thermoelastic oscillations can be proved by quite the same approach as
above. To avoid the repetition of the arguments outlined in the previous
subsections, we only note here that with the help of the identity (9.45)
these problems by the analysis given in the proof of Theorem 9.5 are again
reduced to the corresponding homogeneous BVPs of steady state oscilla-
tions of the elasticity theory with the displacement vector which behaves
like O(|z|~2) at infinity. Therefore, due to the results in [55], [56], [17], [41],
such a displacement vector identically vanishes in the domain of analyticity.
This finally leads to the corresponding uniqueness results for the above men-
tioned homogeneous crack type problems of the steady state thermoelastic
oscillations. As a consequence we have the following uniqueness theorem.

Theorem 9.7. The homogeneous crack type BVPs (CR.D),, and (CR.N),,
have only the trivial solutions in the class Wy, (R% )NSK" (R, ) withr = 1
forw>0andr =2 forw <O0.

9.5. For the homogeneous basic and mixed interface problems of the
steady state thermoelastic oscillations we have a different situation since
not all of them have only the trivial solution.

Let us first consider the basic homogeneous problem (C), (see (7.3),
(7.4)).

Theorem 9.8. The homogeneous problem (C),, has only the trivial so-
lution in the class (C*(Q), C*(Q2) N SK™(Q?)) with r = 1 for w > 0 and
r=2 for w <0.

Proof. Let (UM, U?)) be a solution of the homogeneous problem (C),, from
the class indicated in the theorem. Further, let R, Bg, £, and Qp =: Q%
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be the same as in the proof of Theorem 9.6. By the Green formula (1.23)
then we have

—_ 1) (1)
f{cgclj)qupugl)Dkug-l)—w2|u(1)|2 S Ay Dgul )Dpu£1)+%|u(1)|2}dw:
(92}

= [o{[BO @, mUOf O] = [l O (D, nyul )+ L as,  (9.46)
f{CIEiLquué”Dku?)—w2|u<2>|2—wé A D Dy 4+ “I2}d”“°:
Q%

= f{ B@(D,n)UD]: [u®),]~ - ﬁb[uf)r[/\@)(p,n)ﬁdf} 45+

+ f{ (D, U] — eI (D, n)u,]} dSr. (9.47)
Whence
Jor Ly Dyl D) = 2O — D D) Dy +

O
+%—0|u(1)|2}da:+f9%{ (2) Dpu,(f)Dkug.Z) —w2|u(2)|2_

Ckipq

. — @
— T /\(2)D ufl ) Dpuf) + c:,,°—0|u(2)|2} dr =

= Jy,, {[BP(D,mUC ] — e [uP AP (D, n)u®,]} dSp,(9.48)

due to the homogeneity of the transmission conditions.
In turn (9.48) implies (if we look at the imaginary part)

1 { [, {[BO (D, mUC L] — S [l N (D, n)ul] } dSp | +
2 [ A DY DyuDda + L Joz Aot Doui® Dyuldda = 0.(9.49)

From this equation, as in the proof of Theorem 9.5, we can show that
%(11) =0in Q, uf) =0in 02, and u® =0 in Q2 with r = 1 for w > 0 and
r =2 for w < 0.

Next, the homogeneous interface conditions (7.3) and (7.4) imply that
(UMWt =0 and [BM(D,n)UM]+ = 0 on S, which together with the fol-
lowing general integral representation formula of the solution U") in Q*

= [ {IQW(D,n, —iw)[TD (z — y),w,r)]T]T [UO]F—
~I(z - y,w,r) [BO(D,n) UM+ }dS, =€, (9.50)

completes the proof. O
It is evident that in the case of the homogeneous problems (G),, and (H).,,
we again obtain the equation (9.49). Therefore,

UP(@)=0 in Q2 (9.51)
uW(z)=0 in Q. (9.52)
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From these equations and the corresponding homogeneous transmission con-
ditions we conclude:

i) In the case of the homogeneous problem (G), the displacement vector
u(M) solves the following BVP

CH(D)uM (z) + w?uM(z) =0 gl
in ,
B Dy () = 0

TOMD,n)uM*t =0 and [ -n]" =0 on S.  (9.54)

(9.53)

ii) In the case of the homogeneous problem (7),, the displacement vector
u(M) solves the following BVP

CH(D)uM (z) + w?uM(z) =0 .
in ,

[u(l)]-l- —0 and [T(l)(D,n)u(l) n]tT=0 on S. (9.56)

(9.55)

These homogeneous problems for the elastic field have not, in general, the
only trivial solutions.

Denote by Jg(2!) and J3(2!), respectively, the set of values of the fre-
quency parameter w for which the above problems (9.53)-(9.54) and (9.55)-
(9.56) admit nontrivial solutions. Obviously, Jg(Q') is the intersection of
the spectral sets of the so-called second and third interior BVPs of the the-
ory of steady state elastic oscillations (in terms of the monograph [45]),
while J3,(Q') is the intersection of the spectral sets of the first and fourth
interior BVPs.

Such frequencies are called also Jones eigenfrequencies, while the cor-
responding nontrivial solutions are referred to as Jomes modes. Spectral
problems similar to (9.53)-(9.54) encounter also in the fluid-structure inter-
action problems (see, e.g., [26], [27], [48], [36], [39], and references therein).

Clearly, Jg(Q') and Jy(Q') are at most countable and to each Jones
eigenfrequency there correspond only finitely many linearly independent
Jones modes (cf. [56]). In general, Jg(Q') and Jy (') are not empty (see
[45], [42]), hoewer there exist domains for which they are empty sets (for
details see [45], [25], [37]).

The above arguments easily lead to the following proposition.

Theorem 9.9. The homogeneous problems (G),, and (H),, have only the
trivial solutions in the class (C1(QY), C'(Q2) N SK™(Q?)) with r = 1 for
w >0 and r = 2 for w < 0, provided that w is not a corresponding Jones
eigenfrequency.

Analogous uniqueness theorems hold valid also in the case of the weak
formulation of the basic steady state oscillation interface problems.

Theorem 9.10. The homogeneous interface problem (C), has only the
trivial solution in the class (W3 (Q'), W}, (@) NSK™(Q?)) withr =1 for
w>0andr =2 for w < 0.

JJoc
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Theorem 9.11. The homogeneous interface problems (G), and (H),
have only the trivial solutions in the class (Wy ('), Wy (%) NSK*(2%))
with r = 1 for w > 0 and 7 = 2 for w < 0, provided that w is not a

corresponding Jones eigenfrequency.
The proofs of these assertions are quite similar to the proof of Theo-

rem 9.6.
The uiqueness theorems for the homogeneous mixed interface problems
requires some new ideas which will be presented below.

Theorem 9.12. The homogeneous mized interface problems (C —DD),,,
(C=NN),, (C-DC),, (C=NC)y, (C=G)u, (C—H),, have only the
trivial solutions in the class (Wy(Q'), Wy,,.(2%) N SK(Q?)) with r = 1
for w >0 and r =2 for w < 0.

Proof. We demonstrate the proof for the problem (C — DD),, since it is
verbatim for the other problems.

Let (U™ ,U®)) be an arbitrary solution of the homogeneous interface
problem (C — DD),, of the class indicated in the theorem. By the same
analysis as in the proof of Theorems 9.6 and 9.8 we again arrive at the
equations (9.51) and (9.52). To see this, one has to apply the identities (9)
and (9) where the surface integrals over S should be replaced by the ap-
propriate duality relations, in accordance with the definitions of functional
traces, and afterwards to take into account the homogeneity of the corre-
sponding transmission and boundary conditions of the problem in question
(see (7.13), (7.14)).

As aresult we obtain that the vector function U™ = (u(V),0)T € Wi (Q!)
has to satisfy the conditions:

AYD, -y UMD () =0 in Q (9.57)
[UM]F =0 on S=35,US,, (9.58)
[BY(D,n)UMN* =0 on 5. (9.59)

Note that we may apply the representation (9.50) for the vector-function
UM under consideration (see Theorem 10.8, item ii) in Section 10). There-
fore, we have

UM () = [o, TH(z — y,w,r) [BX(D,n)UMITAS, z € Q', (9.60)

where [BM) (D, n) UM ¢ E;;/Q(SE) due to the condition (9.59).
It is evident that we can extend the vector function U from Q' onto
the whole R by the same formula (9.60) since the right-hand side integral

is defined in R, . Denote this extension by the symbol v
From the above representation it follows that (cf. Theorem 10.8)

T € W3 100 (BE, ) NSK" (R, ), (9.61)
UMD =0 and [UM]"=0 on S, (9.62)
AD(D, —iw) UV (z) =0 in RE . (9.63)
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The second equation in (9.62) is a consequence of the “continuity” property
of the so-called single layer integral operator (9.60) (see below Theorem
10.8).

Thus, we have established that the vector function U given by the
integral (9.60) solves the homogeneous crack type problem (9.61)-(9.63) in
the sapce W21710C(]R3§2) NSK™(RY, ) where r and w are as in Theorem 9.12.

Due to Theorem 9.7 we then conclude that U!) vanishes in R%, , which
completes the proof. O

We note that properties of surface potentials similar to (9.60) and bound-
ary integral operators corresponding to them will be studied in detail in
various functional spaces in the next chapter.
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CHAPTER IV
POTENTIALS AND BOUNDARY INTEGRAL OPERATORS

In this chapter we introduce and study the generalized single and double
layer potentials of the thermoelastisity theory of anisotropic bodies. We
investigate their smoothness properties in the closed domains, asymtotic
behaviour at infinity and establish jump relations on the surface of inte-
gration. We analyse also boundary integral (pseudodifferential) operators
generated by these potentials and consider their mapping properties in var-
ious functional spaces. Note that the analogous questions for the potential
type operators in the elasticity theory of isotropic and anisotropic bodies
have been exaustively studied in [45], [8], [34], [35], [59], [17], [41], [13], [56],
[32].

In Section 10 we examine in detail properties of the thermoelastic steady
state oscillation potentials and afterwards, in Section 11, we briefly treat
the same topics for the pseudo-oscillation potentials.

10. THERMOELASTIC STEADY STATE OSCILLATION POTENTIALS

10.1. Let us introduce the following generalized single and double layer
steady state oscillation potentials constructed by the fundamental solution
(2.29)

V(g)(z) := gf(w —y,w,r)g(y)dSy, xR \S, (10.1)

W(g)(z) :ZQQ(Dyan(y), —iw)I'"(z — y,w,1)] T g(y)dS,, z€R*\ S, (10.2)

where § = 09%, g = (g1,...,94) " = (§,94) 7, 7 = (91,92,93) ' ; the operator
Q(D,n,—iw) is defined by (1.26) with s = —iw.

Note that here and in what follows, for simplicity of the notations, we do
not mark with the subscript w the steady state oscillation potentials and
the integral operators corresponding to them.

To investigate the existence of solutions to the nonhomogeneous BVPs
posed in Chapter IT we need special mapping properties of the above po-
tentials and the boundary integral (pseudodifferential) operators generated

by them.
Let

Ho() = [T =y0,) g) Sy, €5, (10.3)

Kig(:) = [P Dz,n DT(z — y,w,7)] g(y) dS,, = € S, (10.4)

K29(2) = [1QUDyn(y), )0 (= = 3.0 9(0) S, 2€5, (105)

cig(z): lim  B(D,,n(2)W(g)(x), z€S, (10.6)

Qf>z—2€S
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where the boundary differential operator B(D,n) is given by (1.25). Here
the integrals (10.4) and (10.5) are understood in the Cauchy principal value
sense.

In the sequel everywhere the two positive numbers « and o are subjected
to the inequalities 0 < a < o' < 1.

Lemma 10.1. Let k > 0 be an integer and S € CF1" . Then for an ar-
bitrary summable g the potentials V(g) and W (g) are C*°-smooth solutions
to the equation (1.10) in QF and belong to the class SK (7).

The following formulae

[V(g) ()" =[V(9)(2)]” =Hg(2), g€ C(S), (10.7)
[B(D,n)V(9)(2)]* = (F27" Ia + K1) g(2), g € C*(S), (10.8)
[W(g)(2)]F = (£27' 11 + K3) g(2), g € C*(5), (10.9)
hold and the operators
H o Che(S) = CHHha(s), (10.10)
Ki, Ko : Ch¥(8) = Ch(8S), (10.11)
Vo ChY(S) — (), (10.12)
W o Ch¥(S) = Che(QF), (10.13)

where 0 <[ < k, are bounded.

Proof. The first part of the lemma follows immediately from the properties
of the fundamental matrix I'(z — y,w,r) and is trivial, since the columns of
I'(z — y,w,r) are solutions of the homogeneous equation (1.10) for z # y.
To prove the second part, we proceed as follows.
From equations (1.25), (1.26), and Theorem 2.3 we have

Iz —y,w,r)—T(z—y) =T(z—y,w,r), (10.14)
B(D,n) = Bo(D,n) — B(n), (10.15)
Q(D,n, —iw) = By(D,n) — iwTyB(n), (10.16)

where |D5fkj(z,w,r)| < cgol(g‘j)(a:), k,j = 1,...,4, in a vicinity of the

origin,
By(D,n)= [aif?:n)]sxz E?OJSXILM’ g(n)zugkiz Eﬁkm]’]zn B

here I'(z), 3, c and cp‘(glj) are as in Lemma 2.1.
Therefore, we can single out the dominant singular terms in the above
potentials and represent them in the form

V(9)(@) = Volg)(@) +V (9) (), (10.17)
W (9)(x) = Wol9)(@) + W (9) () (10.18)
)

+
) + ;
B(D,n)V(g)(z) — Bo(D,n)Vo(g)(x) =: R(g)(x),
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where

Vo(g)(x) = S{F(w —y) g(y) dSy,

Wo(g)(z) = 5fy[Bo(Dy, n(y))T(z —y)] " g(y) dS,.
The kernels of the potentials V(g), W(g) and R(g) have singularities of type
O(|z —y|™') as |z —y| = 0. Therefore, V, W, and R are continuous vectors
in R?® provided g €C(9).
It is easy to see that

Volg) = @2 @),0 (9))T, Wolg) = (@), w” (g2))7,
Bo(D,n)Vo(9) = (T(D, )o@ (), 8,01 (94)) ",

where v(%) (§) and w(®) () are single and double layer potentials of elastostat-
ics (corresponding to the operator C'(D)) constructed by the fundamental
matrix T©(z):

v (g)(x) == g IO (z — y) G(y) dS,, (10.19)

w?(9)(z) := SI[T(Dy, n(y)TO(y —2)]" gly)dS,,  (10.20)

while v( )(g4) and w4 (g4) are potentials of the same type (corresponding to
the homogeneous operator A(D)) constructed by the fundamental function
7 (2):
vy (94) g —y) 94(y) dS,, (10.21)
wi” (92)(@) = [ 007y — ) 9a(y) dS, (10.22)
s
(see Lemma 2.1).

The properties of the latter potentials and boundary integral operators
on S, generated by them, are studied in detail for regular function spaces
in [8], [52], [56], [67], [59].- The results in the above mentioned references
together with the representation formulae (10.17)-(10.18) yield equations
(10.7)-(10.9) and mapping properties (10.10)- (10.13). O

For a pseudodifferential operator (¥DO) K on S we denote by (K)o and
o(K)(z,€) (z € S, € € R? \{0}) the dominant singular part and the principal
homogeneous symbol, respectively. As usual, if no confusion arises, in the
sequel the arguments z and £ will be omitted.

Lemma 10.2. The operators H, £271I, + K, and £27'I, + K5 are
elliptic WDOs of order —1, 0, and 0, respectively, with index equal to zero.

Proof. From equations (10.14)-(10.16) and (10.3)-(10.5) it follows that

[H 355  [0]3%1
Olixs  H ’

4x4

(H)o = (10.23)
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[£271 1 + K353 [0]3x1

+27' L+ K)o =
( 1+ K1)o |:[0]1><3 i2*1[1+IC510)

[£271 5 + K353 [0]3x1

(:|:271[4 + ’CQ)() = * (0)
[0]1><3 :|:2_1[1 +’C4

where

HO G(z) = gl“(o) (z =) 3y dSy, HY ga(2) = [¥ Oz — y) ga(y) dS,,

K© g(z) = ngy, n()IO(y — )] §(y) dS,,
K ga(= f8 YOz —y) galy) dSy,

K ga(2) = [, w7 Oy — 2) galy) dS,.

(10.26)

Due to the general theory of ¥DOs (see, e.g., [77], [20]) we have to show

that the principal symbol matrices of the operators (10.23), (10.24), and

(10.25) are nonsingular and that the indices of these operators are equal to
7€ro.

It is evident that K(© [ ] and IC(O) [IC(O)] are mutually adjoint sin-
gular integral operators while # (%) [7—[ )] is a formally self-adjoint integral
operator with a weakly singular kernel of the type O(|z — y|™1).

For the principal symbols we have (see [56], [59], [39])

CHO) = — & [[C(@e) ™ ds = —= [ [Cae) d&s,  (1027)
" —00

o(F27 ; + K©) = L [ T(ag,n) [C(al)] L dé; =
[F

=[o(£271; + i*c(0>)]T, (10.28)
+oo
o(HY) = —& [[A@)] 1des = —& [ [Aa)] 1 dEs <0,  (10.29)
¥ —00
o2 + K9 = f)\ (a&,n) [Aad)] ! dé; =
—o(£2 1L + K0) = +271, (10.30)

where € = (€,&3), €= (£1,&) € R2\ {0}, A(&,n) is defined by (1.24),

li(z) ma(x) m(z)
a(z) = | la(z) ma(z) na(x)
ls(x) ma(x) ns(z)
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is an orthogonal matrix with deta(z) = +1,1 = (I1,15,13) T, m = (my,ms,
m3)" and n = (ni,n2,n3)" is a triple of orthogonal vectors at = € S (I
and m lie in the tangent plane at z € S and n is again the exterior unit
normal), I~ (I*) is a closed clockwise (counter-clockwise) oriented contour
in the lower (upper) complex half-plane & = &} + i€} enclosing all roots of
the equations det C(af) = 0, A(a&) = 0, with respect to & with negative
(positive) imaginary parts. The last equation in (10.30) follows due to the
fact that the kernel-function of the integral operators IC&O) and fcfj’) have
weak singularities of type O(|z — y|=2t%") on a C'*-smooth manifold.
The entries of the matrices (10.28) are homogeneous functions of order
0, while (10.27) and (10.29) are homogeneous functions of order —1 in €.
Moreover, all the above principal homogeneous symbols are nonsingular for
|§~| = 1, the corresponding integral operators are elliptic ¥DOs of order 0
and —1, respectively, and their indices are equal to zero (for details see [56],
(59], [41], [16)).
Now (10.23), (10.24), and (10.25) imply
0
0'(7‘[) — [ [U(H( ))]3><3 [O]Bx(lo) :| ’ (10-31)
[0]1><3 U(Hzl ) Ax4

o(X27 ', + K1) = [0(x27 T, + k)] T =

0(£2 5 + K )axs  [0]5x1
0125 o(£27 + K

] . (10.32)
4x4

which together with equations (10.23)—(10.25) completes the proof. O

Remark 10.3. More subtle analysis of the fundamental solution I'(z, w, )
shows that in a vicinity of the origin the following representation

[(z,w,r) = D(z) +il"(z) — wTo[['(z)] T +T"(z,w,r),  (10.33)

<o [ 0lsxs  [Thy(2)]sxa
IM(z) = (015 0'“4 o

holds, where I'(z) is the same as in Lemma 2.1 and f}c4 (z) is independent

of w; first order derivatives of f;c .(x) are homogeneous functions of order

—1 and |Dﬂf;€4(a:)| < cgol(gf) () with the same cp‘(gf) (z) as in Lemma 2.1;

the second order derivatives of the entries of the matrix I''(z,w,r) have
singularities of the type O(|z|™").

Remark 10.4. Note that the operator —H (%) [—Hflo)] is a positive operator
which implies that the corresponding principal homogeneous symbol is a
positive definite matrix [is a positive function] (see [56]). Therefore, the
principal homogeneous symbol matrix o(—7) is also positive definite due
to the equation (10.31) and the inequality (10.29).
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10.2. Now we turn our attention to the equation (10.6). To prove the
existence of limits (10.6) and to study properties of the operators £* we
need some auxiliary results which are now presented.

Lemma 10.5. Let U = (u,u4) ' be a regular solution of the homogeneous
interior problem (P1)}. Then us(z) = 0 in QF and u is a solution to
the following interior homogeneous BVP of steady state oscillations of the
elasticity theory

C(D)u(z) + w?u(r) =0 in QF, (10.34)
[u(z)]" =0 on &, (10.35)

satisfying, in addition, the equation Bi;Djur =0 in Q.
Proof. The equation us(z) = 0 in QF follows from the identity (1.23), if
we look at the imaginary part. Then we obtain the BVP (10.34)-(10.35)
for the displacement vector u with the additional equation indicated in the
lemma due to the homogeneous conditions of the problem (P;)}. O
By Z[(P1)f] we denote the spectral set corresponding to the problem
(P1)} (i-e., the set of values of the parameter w for which the homogeneous
problem (Py)] possesses a nontrivial solution). Note that the spectral set
corresponding to the problem (10.34)—(10.35) is at most countable. There-
fore, Lemma 10.5 implies the following proposition (cf. [56]).

Corollary 10.6. The set X[(Py1)]] is either finite or countable (with the
only possible accumulation point at infinity).

Now we are ready to examine the properties of the hypersingular opera-
tors L*.

Lemma 10.7. Let S € C>® and g € C(S). Then limits (10.6) exist
and

LT g(z) =L g(z) = Lg(z), z€S. (10.36)
Moreover, the operator

L b)) 5 che(s), Se k2 k>0, 0<I<k, (10.37)

is a bounded singular integro-differential operator with nonsingular positive
definite principal homogeneous symbol matriz and with index equal to zero.

Proof. First we prove the existence of limits (10.6). With the help of
equations (10.15), (10.16), and (10.33) we deduce

B(Dz,n(x))[Q(Dy,n(y), —iw)FT(a: - y,w,r)]T = I?B(xayax - y) +
K (2, y,2 — y) + wTo Ky (2, y,7 — y)] + K1 (2,9, 2 — y;0), (10.38)
where
Ks(z,y,2 —y) = Bo(Dy,n(x))[Bo(Dy,n(y)T(y — 2)]" =

[T(Dz,n(2))[T(Dy,n(y))L(y — )] ]axs  [0sx1
[0]1><3 an(z)an(y)’)/(o) (y - .’17) 4x4
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is a hypersingular kernel with the entries of the type O(|z—y|=3) as |z —y| —
0, while

Kj(z,y,@ — y) = iBo(Da,n(2)){ Bo(Dy, n(y))[[' (@ - y)] T} —

—B(n(x))[Bo(Dy,n(y)T(z —y)]"

and

K3(x,y,@ = y) = —Bo(Da,n())[Bo(Dy, n(y))T'(z — )] —

—i[Bo(Dz,n(x))L(z = y)IBT (n(y))

are singular kernels on S with the entries of the type O(lz—y|7?) as |z—y| —

0, and the entries of the matrix K;(z,y,z — y;w) have singularities of the

type O(|z — y|=1). Note that here either z € Q* or 2 € Q.

In turn, (10.38) implies
B(Dz, n(2))W (9)(x) = (T (D, n(2))w'® (§) (@), Bugaywy” (9) (2) T +
+ [[Kh(z,y,x - y) + wTo Ky (2,y,7 — y)] g(y) dS, +
5

+ [ Ki(z,y,2 — y;0) g(y) dS,, (10.39)
S

where w(© (§) and wﬁo) (g4) are defined by (10.20) and (10.22), respectively.
It can be shown (see [56], [59], [16], [39]) that the limits

lim  T(D,,n(z)w® @) (z) = £LOF(2), (10.40)
Qfsz—2€8

. 0
gedim Buyui” (92)(2) = L7 0a(2) (10.41)

exist for any g €CH*(S), k= 1,...,4, and that the operators £(®) and Eflo)
are non-negative, formally self-adjoint singular integro-differential operators
with positive definite principal symbols

o(L©) = -5 f T(a&,n)[C(ag)] ' TT (a&,n)dés,  (10.42)
o) =~%J A2 (a&,n) [A(ag)] " dés = —[Ao(H)]~". (10.43)
1+

Here the contours [T are the same as in formulae (10.27)-(10.30).
The operators £(°) and 5510) are elliptic ¥DOs of order 1 with index equal
to zero and they possess mapping property (10.37) (for details see [16]).
Further, Remark 10.3 yields that there exist limits on S from QF of the
second term in the right-hand side expression of (10.39)

. ~ 71 —
Qialirgzesg[l(z(w, y,z —y) +whKy (z,y,2 — y)]g(y) dS, =

= [0/ (2) + wToalt (2)]9(2) + Kb g(2) + wTo KY g(2),
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where 16’2 and 16’2' are singular integral operators with singular kernels I~(§
and K7, respectively; o/, and o/, are some smooth matrices independent of
w (we do not need their explicit expressions for our purposes).

The existence of the limits on S (from Q%) of the third term in the right-
hand side of (10.39) is evident. It is also obvious that these limits are equal
to each other and that the boundary operator I%l, generated by this term,
is a weakly singular integral operator (¥DO of order s < —1).

Thus, the existence of the operators £* is proved in the space C1(S)
and we have
[LOG(2)]sxs  [0]sx1
[0]1x3 £ gi(2) 1,

+ali(2) + wTo &L (2)]g(2) + Kb g(2) + wTo Kf g(2) + K1 g(2). (10.44)

LFg(z) = +

We also see that the operators (10) possess the mapping property (10.37).
It remains to show £ = L.
The integral representation formulae (3.2) and (3.3) of a regular vector
U we rewrite as follows

U(z) = £{W([U))(2) - V(BUI")(2)}, @€ QF, (10.45)

provided A(D, —iw)U(z) = 0 in QF and U € SK*(Q7); here W and V are
double and single layer potentials operators (see (10.1) and (10.2)).
Due to Lemma 10.1 from (10.45) we have

(=27, + Ko)[U]F = H[BU*, (27'I + K)[U]™ = H[BU]™,

where the operators 7 and Ky are defined by (10.3) and (10.5), respectively.

If in these equations we substitute U(z) = W (g)(z) with an arbitrary
g €CH2(S), apply the same Lemma 10.1 and the above results concerning
the limits (10.6), we arrive at the following relations

(—2_1[4 + KQ)(2_114 + IC2) g= HL g,

1 1 . _ (1046)
(2 Iy + ’C2)(_2 I, + ’CQ)g =HL g.

Whence
H(LTg— L g)=0. (10.47)

By (10) we have Lt g— L~ g =: h € C*(S) and, therefore, V' (h) is a regular
vector in QF.

Now, on one side, (10.47) yields that V' (k) is a regular solution to the
homogeneous roblem (P;), and we conclude V(h)(z) =0, =z € Q, due
to Theorem 9.5.

On the other side, the same equation (10.47) implies that V' (h) is a regular
solution to the homogeneous problem (P;)} as well, and, by Corollary 10.6,
we get V(h)(z) =0, =z € QF, provided w & X[(P1)}].

The above equations imply h = [BV (h)]” — [BV (h)]" = 0.
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Thus, we have proved that LT g = £~ g for all ¢ € C"%(S) if w ¢
Y[(P1)}], which according to (10) leads to the equation

[0y (2) — @l (2)lg(2) + wTola{ (2) — a”(2)]g(2) = 0.

Consequently, o/ (2) = o' (2), o/[(z) = o' (2), and (10.36) holds for
an arbitrary value of the parameter w.

It is also evident that the dominant singular part (£)o of the operator £
and the corresponding principal homogeneous symbol matrix read

[ £@5xs [0]3x1

(L)o = [ Oies L0 ]m, (10.48)
[ [o(£)]sxs  [0]sx1

o(L) = [ O]1 05 (9 LX4 (10.49)

(see (10.40)—(10.43)). Whence the positive definiteness of the matrix (10.49)
and the formally self-adjointness of the operator (10.48) follow immediately,
since the matrix 0(£(?)) is positive definite and, as formulae (10.46), (10.29),
and (10.30) show

(™) = —[40(H)] > 0. (10.50)

The proof is completed. O

10.3. In this subsection we collect the known results concerning some
properties of the above introduced single and double layer potentials in
Besov and Bessel-potential spaces. The proof of the theorem below is, in
fact, the same as proof of analogous theorem in the elasticity theory (or
even in the theory of harmonic functions). One has to relay on the fact that
regular function spaces are densely embedded in Besov and Bessel-potential
functional spaces, and apply the usual limiting extension procedure together
with the duality and interpolation principles (for details we refer to, for
example, [16], [17], [13], [53]).

Theorem 10.8. The operators (10.12), (10.13), (10.10), (10.11), and
(10.37) can be extended by continuity to the following bounded operators

V i B3, (S)—Hy TP (Qb) (B (S) - HIL P (@) nSKT (@),
: (SHBS““/’”(W) [Bs,(S) =B P (@ )nsK (27)],
W f,p(SHH”””(Q*) [Bs,(S) = H? /P (Q7)nSKI (7)),
: Bs ()= By /M) B, (S) =B P (@ )nSK Q)
H o s<s> — H3PL(S) B3 ,(S) = Batl(S)],
Ki,Ks = H(S) = H5(S) B3 ,(S) = Bi,(5)],
L HS“(S)—)HS(S) [B;fql(S)—)B;,q(S)],

for arbitrary s € R, 1 < p< 00, 1 < q < oo, provided S € C*. Moreover,
i) for these extended operators the formulae (10.7), (10.8), (10.9), and
(10.36) remain valid in the corresponding spaces;
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ii) the integral representation formula (3.3) remains valid for U € W, (™)
N SK (7)) with A(D, —iw)U = 0 in Q~; the integral representation for-
mula (3.2) in QF remains valid for U € W, (Q%) with 7 = —iw and
A(D, —iw)U =0 in QF.

11. THERMOELASTIC PSEUDO-OSCILLATION POTENTIALS

In this section we deal with the single and double layer pseudo-oscillation
potentials which are defined as follows

Ve(9)(x) == gl“(x —y,7)g(y)dS,, zeR\S, (11.1)
W-(g)(x) := 5{[Q(Dy,n(y),T)FT(a: —y,m)]" g(y)dS,, zeR*\S, (11.2)

where I'(z — y,7) is the fundamental matrix defined by (2.2), S = 0%,
9="(91,-.-,92)" = (3,94)7, G = (91,92,93)"; the operator Q(D,n,T) is
defined by (1.26) with s = 7.

Due to the results of Section 2 it is evident that the mapping properties
and the jump relations of the above pseudo-oscillation potentials and the
steady state oscillation potentials (10.1)—(10.2) are the same. It is also
obvious that the asymptotic behaviour of the potentials (11.1)—(11.2) at
infinity is quite similar to the asymptotic behaviour of the fundamental
matrix I'(z — y,7) since S is a compact surface.

Next, we introduce the boundary integral (pseudodifferential) operators
generated by the pseudo—oscillation potentials

= [¢T(z—y,7)g(y)dS,, z€S, (11.3)

K1, rg fs Dz,n NE(z =y, D]g(y)dSy, z€S, (11.4)
Ko -rg fS Dyan )FT(Z -y, T)] 9(y) dSy, z €5, (11.5)
Ei: (2) = QiBI;IEZGSB(DI,n(z))WT(g)(aj), z €S, (11.6)

where the boundary differential operator B(D,n) is given again by (1.25),
and the integrals (11.4) and (11.5) are understood in the Cauchy principal
value sense.

The properties of the above introduced operators are described by the
following propositions.

Theorem 11.1. Let k > 0 be an integer and S € 1" Then for
an arbitrary summable g the potentials Vi:(g) and W.(g) are C*-smooth
solutions to the equation (1.9) in QF and together with all derivatives they
decrease more rapidly then any negative power of |z| as |z| = +o0.

Moreover, if 0 <1 <k, then

i) the operators

Vy o Ch(8) = (), (11.7)
W, : Ch¥(S) - Cche(QF) (11.8)



73

are bounded, and

[V (9) ()" = [V (9)(2)]” = Hr g(2), g€ C(S), (11.9)
[B(D,n)V,(9)(2)]F = (727" Lu + K1.-) 9(2), g € C*(S), (11.10)
(W (9) ()] = (£27 Ly + Ka2.2) 9(2), g € C*(S), (11.11)
Lig=Lrg=1Lrg, g€ C (S), k>1; (11.12)
ii) the operators

H, che(8) - (), (11.13)

Kiz Kar che(s) - ¢h(9), (11.14)

L, CciHbe(g) - ¢he(9), (11.15)

are bounded.

Theorem 11.2. The operators H,, 227 [, +K; ;, 227 [, + K> ;, and L,
are elliptic ¥DOs of order —1, 0, 0, and 1, respectively, with index equal to
zero. Moreover, the principal homogeneous symbol matrices of the operators
—H. and L, are positive definite.

Theorem 11.3. The operators (11.7), (11.8), and (11.13)—(11.15) can
be extended by continuity to the following bounded operators

Vo o Bs,(S) = HyPTVP(QF) [Bg(S) = By ),

W, = B3,(S) = HPYPQF) (B, (8) = By P (),

He o HS(SHHSH(S) [B:,(S) = Bt (S)],
Kir Koy @ HS(S)— HS(S) [BS.,(S) = B5,(S)],

L, HPN(S) - H3(S) [B5+1(S) = B; ,(S)],

for arbitrary s e R, 1 < p< 00, 1 < q < 00, provided S € C>. Moreover,

i) for these extended operators the formulae (11.9)-(11.12) remain valid
in the corresponding spaces;

ii) the integral representation formula (3.2) remains valid for U € W) (Q%)
with A(D,7)U = 0 in QF, provided that U satisfies the decay condition
(1.30) at infinity in the case of the domain Q™.

Clearly, the proofs of these theorems are verbatim the proofs of the anal-
ogous propositions in the previous section and, therefore, we omit them (for
details see [16]).

We note here that the formula similar to (10.46) holds also for the pseudo-
oscillation operators and read as

(_271-[4 + IC2,T)(271I4 + IC2,T) = HT‘CT'

Applying the general integral representation formula (3.2) for U(z) =
Vi (g)(z) we can also easily derive the following identity

(_271-[4 + K:l,r)(271-[4 + ICLT) - ETHT-

Remark 11.4. The results of Section 2 imply that the dominant singular
parts and the principal homogeneous symbol matrices of the operators H.,

(11.16)

(11.17)
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+27 ' + Ky 7y 2271 + Ko 7, and £, read as (cf. (10.23)-(10.25), (10.48),

(10.31), (10.32), (10.49))

_ [H(O)]SXB
(Hr)o = { [0]1x3

[0](3)x1 }

0 )

Hy 4x4
[:|:2_113 + ’C(O)]3><3

+27 M+ Ky, :[
E2 L+ Karo=| o,

—17, 4+ KO
(27 i +Ka o= [ B2 s + K os

[0]1x3
T IO [0]sx1
(£T)0 - |: [0]1><3 Eg[)) :|4X47
and

0'(:|:2_1]4 + ’CLT) = [O'(:l:2_114 + ’C277—)]T

[0(£27 I + K )axs [0]sx1
o275 + k)

[0]1x3
[ o(H)axs  [0]sx1
o(H,) = { 015 o (1) ]4X4,
[ e(£O)]sxs  [0]3x1
o(L;) = [ [0]1 x5 U(ﬁgo)) ]4)(4.

[0]3%1
+27'7 + K0

:|4><4

4x4

[0]351
:|:271I1 + K:4(10)

] )
4x4

(11.18)

, (11.19)

, (11.20)

(11.21)

(11.22)

(11.23)

(11.24)

The matrices (11.22)—(11.24), as it has been shown in the previous sec-
tion, are nonsingular. Moreover, 0(—H,) and 0(L;) are positive definite.
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CHAPTER V
REGULAR BOUNDARY VALUE AND
INTERFACE PROBLEMS

Here we consider the nonhomogeneous regular basic boundary value and
interface problems formulated in Chapter II for the pseudo-oscillation and
steady state oscillation equations of the thermoelasticity theory of anisotropic
bodies. The existence theorems will be proved in the Hélder continuous and
Sobolev functional spaces with the help of the boundary integral equation
method.

12. Basic BVPs oF PSEUDO-OSCILLATIONS

12.1. Let us first consider the regular problem (P;)f (see (5.1) and
(5.2)) S € C>*.

We look for a solution in the form of the double layer potential (see
(11.2))

U(z) = Wr(g9)(x), =e€QF, (12.1)
where g = (g1,--- ,94)" € C*(S) is the unknown density. As above, here
and in what follows we again provide that 0 < a < o' < 1.

Applying the jump formula for a double layer potential (see Theorem
11.1, item i)) and taking into account the boundary conditions of the prob-
lem in question we arrive at the boundary integral equation (BIE)

N{t}g(z) =27 + Ko, g(z) = G (z), z €S, (12.2)

where G = (fy,---, f1)T € CH%(S) is the given vector function on S (see
(5.1)-(5.2)), and K ; is defined by (11.5).

Due to Theorem 11.2 the singular integral operator in the left-hand side
of (12.2) is an elliptic ¥DO with zero index.

Further, we show that the homogeneous version of the equation (12.2)
(i.e., when G™) = 0) has only the trivial solution. Let go € C*(S) be an
arbitrary solution of the equation

2 ' +K2r]g(z) =0, z€S. (12.3)
It is evident that the vector function

Uo(z) = Wi (g0)(z) € CH*(QF) (12.4)
represents then a regular solution of the homogeneous problem (P;)} due
to (12.3). Therefore, by the uniqueness Theorem 8.1 we conclude Up(z) =0
in QF which, in turn, implies

[B(Dan)U0]+ =L:9=0 on &5,
where £, = LF is defined by (11.6).
In accordance with equation (11.12) we get

[B(D,n)Up]” =0 on S, (12.5)
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where Uy is given again by (12.4) in Q™.
Thus, we have obtained that the vector function

Uos(z) = Wr(go)(z) € CH*(Q™) (12.6)
represents a regular solution to the problem (P»); . Therefore, Up(z) = 0

in 2~ due to Theorem 8.1.
As a result we have for arbitrary z € S

[Uo(2)]* = [Uo(2)]™ = [Wr(g0)(@)]" = [Wr(g0)(2)]” = g0 =0

which proves that the equation (12.3) has only the trivial solution.

According to the general theory of singular integral equations (see, e.g.,
[51], [45], Ch.IV), the nonhomogeneous equation (12.2) is uniquely solvable
for an arbitrary right-hand side. Moreover, the corresponding embedding
theorems for the solution of SIE on closed manifold yield that, if S € ch+be’
and f € CF(S), then g € CF(9).

Finally, we arrive at the following existence theorem.

Theorem 12.1. Let S € CF*1 and f; € CH(S) where j = 1,4
and k > 1 is an arbitrary integer. Then the problem (P1)} (i.e., (1.9),
(5.1), (5.2)) is uniquelly solvable in the space C**(QF) and the solution is
representable in the form (12.1), where g € C*%(S) solves the BIE (12.2).

Remark 12.2. Note that, if one looks for a regular solution to the BVP
problem (P;)} in the form of a single layer potential (see (11.1))

U(z) =V (h)(z), z€QF, (12.7)
then one gets the YDE

Hoh(z) =GW(z), ze€b, (12.8)
due to Theorem 11.1 (see (11.9)).

Applying again the uniqueness Theorem 8.1 and properties of the single
layer potential, by the arguments similar to the above ones it can be easily
shown that ker H, is trivial. Note that —7, is an elliptic ¥DO of order
—1 (with positive definite principal homogeneous symbol matrix) and its

index equals zero. Invoking the general theory of YDO on closed smooth
manifolds (see,e.g., [77]) we conclude that the operator

H, o Ch(S) - CHL(S), SeCh 0<i<k—-1, k>1, (129)
is an isomorphism. Therefore, the equation (12.8) is uniquely solvable in
the space CF~1%(S) provided that S € C** and f € CH*(S) (k > 1).
As a result we obtain that the solution of the problem (P;)} can also be
uniquely represented as a single layer potential (12.7), where h € C¥=19(9)
is the unique solution of the equation (12.8). Clearly, we again have U =
Vy(h) € CF2(QF).

We remark that applying the equation (11.17) one can show that, in fact,
the operator

HoL L OHbe(9) 5 Che(S), SeCh 0<I<k-1, k>1, (12.10)
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which is inverse to the operator (12.9), is a singular integro-differential oper-
ator (i.e., a ¥DO of order 1). Obviously, the principal homogeneous symbol
matrix of the operator —H_! is also positive definite.

It should be noted that to prove the existence of a regular solution by
the single layer approach, as it is evident from the above arguments, che's
smoothness of the boundary surface 90" = S is sufficient, while by the
double layer approach we need S € oz

12.2. Let us look for a regular solution of the problem (Ps)} (see (5.3)—
(5.4)) again in the form (12.1). The boundary conditions of the problem
in question and the properties of the double layer potential lead to the
following system of equations for the unknown density g on S

{27 L+ Ko7 ] 9(2)}; = fi(x), 7=1,2,3, (12.11)
{L; g(2)}a = Fu(z). (12.12)

Note that the operators involved in the first three equations are singular in-
tegral operators (SI0), i.e., ¥DOs of zero order, while in the fourth equation
we have singular integro-differential operators, i.e., ¥DOs of order 1.

In order to rewrite these equations in the matrix form we set

+ [(271]4 +K2,T)pq]3><4
N o= (o)l » (12.13)

with p=1,2,3 and ¢ =1,4.
Clearly, then (12.11) and (12.12) are equivalent to the equation

N g(z) =GP(z), z€S, G =(fi,fo fs,Fs)". (12.14)

We assume that G € [CF*(S)]? x [CF~12(9)], ie.,
Seckthe’ e che(s), j=1,2,3, F, € Chb(g), (12.15)
where k > 1, 0 < a < a' < 1. Moreover, we seek the unknown density
vector g in the space [CF*(8)]*.

The system of ¥DEs (12.13) is elliptic in the sense of Douglis—Nirenberg
(cf. 3], [2], [85]) and its principal symbol matrix

[0(27113 +/C(0))]3x3 [0]351

W) = 0]15 (L)

(12.16)
4x4

is nonsingular for arbitrary z € S and |§~| =1 (see Remark 11.4, the formulae
(10.26), (10.28), (10.41), (10.43), and the proofs of Lemmata 10.2 and 10.7).

The index of the operator N;'T is equal to zero, since the index of the
corresponding dominant singular part is zero.

Next, we show that the system (12.11)-(12.12) (i.e., (12.14)) can be equiv-
alently reduced to the system of singular integral equations (SIEs). To this
end we formulate the following lemma which will be frequently used in the
sequel (see, e.g., [60], [20]).
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Lemma 12.3. The scalar operator

Rh(z) =& [|lz—y| 'h(y)dS,, ze€S, SeC, (12.17)
S

generated by the harmonic single layer potential, is a formally self-adjoint,
equivalent smoothing lifting DO of order —1, (i.e., R h = 0 implies h = 0)
with the principal homogeneous symbol equal to |{—:|’1 (i.e., O'(R)(a:,é) =
€I, z €S, e R\ {0}).

Due to this lemma it is evident that the system (12.11)—(12.12) is equiv-
alent to the system of SIEs on S

{27 i+ Ko rlg(@)}; = fi(@), §=1,2,3, (12.18)
R{L, g(x)}s = RF4(x), (12.19)
which can also be written as
RaNy, g(z) = G, (12.20)
where . .
el O] e
and
GO = (fi, f2, f3, RFY)T. (12.22)

Clearly, (12.20) is an elliptic STE with index zero.

Further, we prove that the nonhomogeneous system (12.11)-(12.12) (i.e.,
(12.14) and (12.20)) is uniquely solvable. Invoking again the theory of SIEs
on smooth manifolds ([51], [45]), we have to show that the homogeneous
version of the system (12.11)-(12.12) admits only the trivial solution. It is
an easy consequence of the corresponding uniqueness theorem and the jump
relations of the double layer potential, and can be shown by the same argu-
ments as in the previous subsection. These results imply that the equation
(12.20) has a unique solution g € C*%(S) for arbitrary G2 ¢ che(s).
This immediately leads to the following assertion.

Theorem 12.4. Let conditions (12.15) be fulfilled. Then the problem
(Po)T (ice., (1.9), (5.3), (5.4)) is uniquely solvable in the space C**(Q+F)
and the solution is representable in the form (12.1), where g € CH(S)
solves the system of BIEs (12.11)—-(12.12) (i.e., (12.20)).

Let us note here that the single layer aproach is again applicable and leads
to the existence of a unique solution in the space C**(QF) (cf. Remark
12.2).

12.3. In this subsection we consider the nonhomogeneous problem (P3);
(see (5.5)—(5.6)). We look for a regular solution U again in the form (12.1)
which yields the following system of BIEs on S:

{‘C‘r g(w)}j = Fj(w)7 J=123, (1223)
{271 + Kar] g(@) b = fa(w), (12.24)
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where we provide
Se QMY Fedhh(s), j=1,2,3, fieCh(S)  (12.25)

with the same k, o', and « as in (12.15). The unknown density g is again
assumed to belong to the class C**(S).
We set
L7)pqlaxa
NG = _ [(£7)pgla 12.26
3 (27 Ly + Ko r ) ag]i xa Axd ( )
with p=1,2,3, and ¢ = 1,4.
The equations (12.23)-(12.24) can be then written in the matrix form as

Ny, g(a) =GP (2), zes,

(12.27)

G® = (P, Py, Fy, f) T € [CFH2(S)) x CB2(S).
The operator ./\/’3?L _ is elliptic (again in the sense of Douglis-Nirenberg) with
the nonsingular principal symbol matrix

_ [ o(£0)sxs [0]5x1
o(N5,) = [ 01 x5 oL + k) LX4 (12.28)

(see Section 10 and Remark 11.4) and the index equal to zero.
Introduce the matrix operator
[I3R]3x3  [0]3x1 ]
4x4

(12.29)

R = [ [0]1x3 I

where R is the equivalent lifting operator (12.17).
Now it can be easily seen that

RaNif, 9(2) =GP, P = (RF,RE,RFs, f2)7 € CH2(S), (12.30)

is an elliptic system of SIEs equivalent to (12.23)—(12.24), due to Lemma
12.3.

As in the previous subsection we can easily establish that the homoge-
neous version of the system (12.23)—(12.24) admits only the trivial solution.
Therefore, the nonhomogeneous system (12.30) and, consequently, (12.23)—
(12.24) are uniquely solvable in the class C*®(S) if the boundary data meet
the conditions (12.25). Thus, we have proved the following existence result.

Theorem 12.5. Let conditions (12.25) be fulfilled. Then the problem
(P3)i (ice., (1.9), (5.5), (5.6)) is uniquely solvable in the space C*®(Q+F)
and the solution is representable in the form (12.1), where g € CH(S)
solves the system of BIEs (12.23)—-(12.24) (i.e., (12.30)).

We emphasize that the single layer aproach is again applicable.
12.4. Here we consider the nonhomogeneous boundary value problem
(Py)T (see (5.7), (5.8)). We look for a regular solution U again in the form
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(12.1) which now leads to the hypersingular BIE (¥DE of order +1) on S
-NZ_T g(a?) =L g(a;') = G(4) (x)a

GW = (Fy,--- ,F4)T c [Ckil’a(S)]‘l‘ (12.31)

Due to Remark 11.4 the dominant singular part and the principal homo-
geneous positive definite symbol matrix of the singular integro-differential
operator N4+7T := L, are given by formulae (11.21) and (11.24), respectively.
Moreover, the index of £, is equal to zero.

The ¥DE (12.31) is equivalent to the elliptic system of SIEs

RN, g(2) =G, G = (RR, - ,RF)T e Ch(S),  (12.32)

where
R4 = [I4R]axa (12.33)
with R defined by (12.17).

Applying uniqueness Theorem 8.1 and formula (11.12) we conclude that
the homogeneous version of equation (12.31) has only the trivial solution.
Therefore, the nonhomogeneous systems (12.32) and (12.31) are uniquely
solvable in the space C¥'¥(S). This implies the following proposition.

Theorem 12.6. Let S € C*t1 and F € [CF=12(9)]* with the same F,
o', and « as in (12.15). Then the problem (Py)} (i.e., (1.9), (5.7), (5.8)) is
uniquely solvable in the space Ck’a(Q_+) and the solution is representable in
the form (12.1), where g € C**(S) solves the system of BIEs (12.31) (i.e.,
(12.32)).

Remark 12.7. The classical single layer approach for the problem (P4);
(see (12.7)) reduces the BVP to the system of SIEs on S € che’ (k>1)

(=27 I, 4+ Ky 7)) h(z) = GW,

12.34
GW = (Fy,--- ,Fy) T e ck=be(g). ( )

The SIO in the left-hand side is elliptic with index zero. Moreover, Theorems
8.1 and 11.1, item i) imply ker(—27'I; + K1) = {0}. Therefore, the
mapping

27 4+ Ky, CHY(S) = Ch(S), 0<I<k-—1, (12.35)

is an isomorphism.

These arguments show that the equation (12.34) is always solvable in the
space C¥~1%(8). This, in turn, proves that the unique solution to the BVP
(P4)F is representable also in the form of a single layer potential

Uz) = V2 (h)(z) € CH2(QF),

where h € CF71%(S) solves the SIE (12.34).

12.5. The existence theorems of solutions to the basic exterior BVPs for
the pseudo-oscillation equations of thermoelasticity theory can be proved
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by the word for word repetition of the arguments outlined in the previ-
ous subsections. Therefore, we confine oureselves by formulation the final
results.

; (n=
1,4), formulated in Section 5 (see (5.1)—(5.8)) are uniquely solvable in the
space CF*(Q~) provided that

Theorem 12.8. The basic exterior nonhomogeneous BVPs (Py);

S e, feCh(s), Fect (), j=T4  (12.36)

where 0 < a < o’ <1 and k > 1 is an arbitrary integer. The solutions are
representable in the form of a double layer potential

U(z) =W, (9)(z), =€, (12.37)

where g € CH*(S) solves the elliptic (in general, in the sense of Douglis-
Nirenberg) system of boundary integral (pseudodifferential) equation on S

Norg(z) = G (). (12.38)
Here the BIOs are defined as follows
N =21 + Ky, o = Lo, (12.39)
MM:{K—EétﬁﬁMwﬂ |
T 4x4 (12.40)

=27y 4+ Kor)aglixa

where p = 1,3, ¢ = 1,4, and K2, and L. are given by (11.5) and (11.12),
respectively.

The right-hand side vector functions G™ in (12.38) are constructed by
the boundary data of the BVPs under consideration and read as

=wwan[N%wﬂ

= (fi. fo, fa, Fa) T € [CRA(S)PP x CF71e(s),
= (P, By, B, f) T € [CF12(8)] x Ch(s),
(F1,--- Fa) T e [CFho(9)]".

Note that the mappings

Mﬂ:{u [(£0) gl LM’

(12.41)

N [CR @) = [Ch(9)Y, 0<i<E,

Now o [CH () = [CH(S)] x C8(S), 1<I<E,

Ny, o [CPO* = [C(9)P x Ch(S), 1<I<k,
= |

AR (S ) LR (SO ) NS R B

are again isomorphisms. Moreover, the equations (12.38) (n=2,3,4) can be

equivalently reduced to the corresponding elliptic SIEs by the same lifting
procedure as above with the help of the lifting operators R,,.
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Finally, we remark that one can apply the single layer approach in the
all above exterior BVPs to prove the existence theorems.

12.6. In this subsection we shall study the above considered problems
in the weak setting. Let us first treat the problems (P;)*. We again look
for the solutions U € WI} (%), 1 < p < oo, in the form of double layer
potentials (12.1) and (12.37). Now the unknown density vector function g
should be found in the natural space B,l,,;,l/p(S) since W, : B;;,l/p(S) —
W, (Q%) (see Theorem 11.3 and Section 4).

In what follows, for simplicity, we illustrate our approach for the case
S € C™, and at the same time notice that, actually, some finite smoothness
is sufficient for our purposes (for details see [59]).

Applying again Theorem 11.3 and taking into account the boundary con-
ditions (5.1)—(5.2) we arrive at the BIEs on S

Nlﬂj-r g(.’l?) = [:I:2_1[4+’CQ,T] g(w) = G(l) (QZ), G(l) = (flv e vf4)T7 (1242)

which formally coincide with the equations (12.2) and (12.38) (for n = 1).
But now here

GW e B.2UP(S) (12.43)
and we look for the unknown vector function g in the same space, i.e.,
ge B MP(S), 1<p<co. (12.44)

Now we prove the following proposition.
Lemma 12.9. The operators

NiE o[BS (S = [BS,(S)]* (12.45)

1,7

are isomorphisms for arbitrary s € R, 1 <p < o0, and 1 < g < 0.
Proof. We outline the proof for the operator ./\/’f,T. For Ny, it is verbatim.

The mapping property (12.45) follows from Theorem 11.3. Since Nfr L is
an elliptic DO on closed smooth manifold S, the null-space ker./\flf - and
the index ind/\/ﬂL . are the same for arbitrary two pairs (s1,p1) and (s2, p2),
where s1,s52 € R and p1,p2 € (1,00), and for arbitrary 1 < ¢ < oo (see
[4], [43], [77], Ch.2). Let s = 0 and p = ¢ = 2, and prove that in this
particular case the null-space of the operator Nf - is trivial and the index
equals zero. In fact, let go € B3 ,(S) = La(S) be some solution to the
homogeneous equation ./\f1+ - 90 = 0. The embedding theorems for solutions
of elliptic SIEs (see, e.g., [45], Ch.4) imply that, actually, go € che(s)
for any k > 0, due to the smoothness of the boundary surface S and the
right-hand side of the homogeneous SIE in question. The double layer
potential Up(xz) = Wr(go)(z) represents then a regular vector function of
the class C*(Q+) which solves the homogeneous BVP (P;)}. Therefore,
in the same way as above (see Subsection 12.1) we conclude that go = 0 on
S, which proves that keerf - is trivial in L,(S). According to the above
remark it then follows that keer , is trivial also in the space B,  (S) for
arbitrary s € R, 1 < p < 00, and 1 < ¢ < o0.
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Finally we note that the equality ind ;" = 0 follows from Theorem 11.2
which completes the proof. O
This lemma yields the following existence results.

Theorem 12.10. Let the boundary data meet the condition (12.43). Then
the BVP (P1)f [(P1);] is uniquelly solvable in the Sobolev space W, (Q)
(W (Q7)] with 1 < p < 0o and the solution is representable in the form of a

double layer potential (12.1) [(12.37)] with the density g € B;,;,l/p(S) which
solves the corresponding SIE (12.42).

Proof. Solvability of the problems (P;)F is a ready consequence of Lemma
12.9 (for s =1 —1/p and g = p).

Now let us prove that the homogeneous BVP (P;)} has only the trivial
solution in the space WI} (QF) for 1 < p < oo. Obviously, this implies that
the corresponding nonhomogeneous problem is uniquely solvable in the same
space. Note that the case p = 2 has already been considered in Section 8.

We proceed as follows. Let U € W, (Q") be some solution to the ho-
mogeneous problem (P;)F. Then by Theorem 11.3, item ii), U can be
represented as (cf. (3.2))

U(z) = W-([U]")(z) = V- ([B(D,n)U]")(x) =
= -V ([B(D,n)U|")(z), =z € QT (12.46)

since by assumption [U]" =0 on S.
On the other hand the same homogeneous boundary condition and the
representation (12.46) together with Theorem 11.3, item i) imply

U]t = —H.([B(D,n)U]T)=0 on &S, (12.47)

where [B(D,n)UJ*+ € By./(S).

Noting that =, : By (S) — Bs1'(S) is an elliptic ¥DO on the closed
smooth surface S (with the positive definite principal homogeneous symbol
matrix) we conclude that the null-space kerH, and the index indH, in the

spaces B,  (S) do not depend on s € R, 1 < p < 00, and 1 < g < o0, and

are the same as, for example, in the sapce B;;/Q(S) = H;1/2(S). Apply-

ing the embeding theorem for the solution of the elliptic ¥DEs on closed
smooth manifold (see, e.g., [77], Ch.2) we easily show that ker?#, is trivial

in B;;/2(S). Further, we observe that the operator —H, : B;éﬂ (S) —
B;(;(S) and its adjoint —H} have the same mapping properties, i.e., —H}

B;;/Q(S) — B;/QQ (S). Since the dominant singular part of the operator #.,
is self-adjoint we conclude that indH, = 0 in B, %/ %(S). Therefore, the

equation (12.47) has only the trivial solution in the space B, ;,/ P(8) for ar-
bitrary p > 1. Thus, [B(D,n)U]* = 0, which shows that U = 0 in QF due
to (12.46).

The proof for the BVP (P;)_ is verbatim. O
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The analogous theorems hold valid for the problems (P,);, n = 2,3,4.
The proofs rely upon the following assertions which can be proved by the
arguments quite similar to that ones applied in the proof of Lemma 12.9.

Lemma 12.11. Let s€e R, 1 < p< 00, and 1 < g < 0.

Then the mappings
Nst, o (B (S)]* = [By 4 (S) x By M(S),

NE 2 B S = B, (S % By, (9.
sy

», a (
Nit : (B, (9)]) = 1By (
are isomorphisms.
Here ./\/’2{:7, ./\/’fr, /\/’fr are defined as in Subsections 12.1-12.5.
Proof. One needs only to apply the equivalent lifting operator R,,, defined
by formulae (12.21), (12.29), and (12.33), to the operators /\/lir and show
that the mappings

RnNTZIET : [B;,q(S)]4 - [B[s)7q(S)]47 n = 273747

are isomorphisms. Since the operators Rn./\/’,fr are elliptic singular opera-
tors (i.e., ¥DOs of order 0) on the closed smooth manifold S, we can use the
same arguments as in the proof of Lemma 12.9 to see that kear./\/’,fT = {0}
and indR,N;E. = 0 in the space [BS (S)]*. Whence kerA;f, = {0} and
ind./\/’,fr = 0 (in the corresponding functional space) follow immediately. O

This lemma (for s = 1 — 1/p and ¢ = p) together with Theorem 8.2
implies the following existence theorem.

Theorem 12.12. Let 1 < p < oo and the boundary data in (5.3)—(5.8)
meet the conditions

fi € B Y?(S), F;eB,"(S), j=T4. (12.48)
Then the BVP (P,)f (n = 2,3,4) are uniquelly solvable in the Sobolev

:
spaces Wpl(ﬂi) and the solutions are representable in the form of double

layer potentials (12.1) and (12.37) with the density g € B;,_pl/p(S) which
solves the corresponding WDE on S
Ni g=G". (12.49)
Here Nni,‘r are the same as in Subsections 12.1-12.5.

Proof. For illustration of the method we outline the proof in the case of
BVP (P4),. For the other problems it is quite analogous.
Let us look for a solution in the form of a double layer potential (12.37),

where g belongs to the natural space B,l,,;,l/p(S). Then due to Theorem 11.3
and the boundary conditions (5.7)—(5.8) we get the following ¥DE on S for
the unknown density g

Ni g:=Lrg(x) =G, (12.50)
where GW := (Fy,--- ,Fy)7 € By 3/*(S).
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By Lemma 12.11 (for s = 1 — 1/p and ¢ = p) the equation (12.50) is
uniquely solvable in the space g € Bp,'/?(S). Whence W, (g) € H)(Q7) =
B, (") = W) (Q7) by Theorem 11.3. Moreover, W, (g) represents a so-
lution of the BVP in question due to (12.50). Now by virtue of Theorems
8.2 and 11.3, and the arguments in the final part of the proof of Theorem
12.10, we conclude that the vector function U(zx) = Wr(g) € W,(Q7) is a
unique solution of the problem (P4), which completes the proof. O

Remark 12.13. It is evident that one can apply a single layer approach
to obtain the same existense results in the Sobolev spaces W (QF) (see
Remarks 12.2 and 12.7).

We illustrate this alternative approach for the problem (P;)*. We look
for a solution in the form of a single layer potential (12.7) where the den-

sity h is to be found in the appropriate space B;;/p(S). We recall that

Vr o B;ll,/p(S) - Wy (%) (see Theorem 11.3). Taking into account the
boundary conditions (5.1)—(5.2) and applying the trace properties of a single
layer potential, we arrive at the elliptic BIE (elliptic ¥DE of order —1)

H,h=GW, (12.51)
where
GW = f=(fi, . f)T € B 7(S). (12.52)
By the same arguments as above we can easily show that the mapping

—H, : B?

p.q

(S) = B;L1(S), (12.53)

where s € R, 1 < p < 00, and 1 < g < o0, is an isomorphism.

Therefore, there exists the unique solution h € B, ,1,/ P(S) of the equation
(12.51) with the right-hand side (12.52). Further, invoking Theorem 8.2 it
can be established that the single layer potential U(x) = V;(h)(x) represents
the unique solution to the problems (Py)¥ in the space W} (Q%).

We note that the elliptic ¥DO of order +1

—H7' e BSEN(S) = B (S) (12.54)
is a singular integro-differential operator with a positive definite principal
homogeneous symbol matix. Here ! stands for the inverse of H,, and
seER, 1<p<oo,and 1 < g < o0.

A ready consequence of the above results is that every solution U €
Wa(Q%), 1 < p < oo, of the homogeneous equation (1.9) can be uniquely
represented in the form of the single layer potential

Ulz) = Vo (H, L {U)F)(2), =e€QF, (12.55)

T

where [U]* are the traces of the solution U on S from QF.
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13. BASIC EXTERIOR BVPS OF STEADY STATE OSCILLATIONS

In this section we shall investigate the basic exterior BVPs for steady
state oscillation equations of thermoelasticity theory. In what follows we
provide that r =1 for w > 0 and r = 2 for w < 0.

13.1. First we present the following lemma which will essentially be used
below in the proof of existence theorems.

Lemma 13.1. Let g € CV*(S), S € C>*, and
U(z) =W(g)(x) +po V(g)(x), zeR\S, §=00%,  (13.1)
po=p1+ip2, p1 >0, ppw <O, (13.2)

where V. and W are single and double layer potentials defined by (10.1) and
(10.2), respectively, while w is the frequency parameter.

If the vector U wvanishes in Q1 then the density g =0 on S.
Proof. Due to Lemmata 10.1 and 10.7 we have

g=[UI" -[U]” =[UT, (133)

—pog = [B(D,n)U]" — [B(D,n)U]~ = [B(D,n)U]", '

whence
[B(D,n)U]* = —po[U]* on S (13.4)
follows.
Since U is a regular vector in Q% we can apply the identity (1.23). Taking
into account (13.4) and separating the imaginary part, we arrive at the
equation

otc Jo+ Akj Drua Dyjtigdz —ps [ |[ul T dS + B g|[u4]+|2 dS = 0.

In view of (1.18), (13.2), and (13.4) from this equality it follows that

[U]" = 0 and by (13.3) we get g = 0. O
In the sequel we fix the complex number py as follows
po =1—iw. (13.5)

Remark 13.2. In what follows we shall use the representation (13.1)
to prove the existence of solutions to the exterior BVPs for the steady
state oscillation equations of the thermoelasticity theory. The similar rep-
resentation for the Helmholtz equation has been first applied in the papers
[6], [64], [46]. This type of representation of solutions proved to be very
useful since it reduces the exterior BVPs to the uniquely solvable BIEs for
arbitrary values of the frequency parameter w (for details see below).

Remark 13.3. In contrast to the pseudo-oscillation case the classical single
layer or double layer approach reduces the exterior BVPs of steady state
oscillations to the BIEs which for a countable set of the so-called excep-
tional values of the frequency parameter w are not solvable for arbitrary
boundary data (see [83], [45], [10], [11]). To investigate the solvability of
these BIEs one needs to find explicitly all eigenvalues and eigenfunctions of
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the corresponding boundary integral operators and their adjoint ones (for
details see [83], [45]).

13.2. We start with the problem (P1),. We look for a solution of
the problem in the form (13.1) with po defined by (13.5). By virtue of the
boundary conditions (5.1)—(5.2) and Lemma 10.1, we get the following ¥DE
on S for the unknown density vector g

Nogi=(—2"'Ii+ Ky +poH)g = GV (13.6)

with G = (f1,..., f1)T € CP2(S).
Lemma 13.4. Let

S e CH1e" with integer k> 1 and 0 < a < o < 1. (13.7)
Then the WDE (13.6) is an elliptic SIO with index zero, while the mapping
N = =2+ Ky +poH : CHY(S) = CH(S), 0<I<Ek, (13.8)

s an isomorphism.

Proof. First let us note that the operator A is an elliptic singular integral
operator with index equal to zero and possesses the mapping property (13.8)
due to Lemmata 10.1 and 10.2. Therefore, it remains to prove that

N g=0 (13.9)

has only the trivial solution in C>*(S).

Let g be some solution of (13.9) and construct the vector U by for-
mula (13.1). Applying the embedding theorems for solutions to a singular
integral equation of normal type on closed smooth manifold we infer that
g € C2(8) (see, e.g., [45], Ch. 4). This implies that U is a regular vector in
Q. Now the equation (13.9) yields that [U]~ = 0 on S, and, consequently,
U(z) =01in Q~ follows immediately by Theorem 9.5, since U € SK"(Q7).
Then g = 0 by Lemma 13.1. Therefore (13.8) is a one-to-one correspondence
and N|~ is invertible. a

The material collected until now is enough to prove the existence theorem.

Theorem 13.5. Let S, k, o, and a be as in (13.7) and let f; € CH(S)
(j = 1,...,4). Then Problem (P1), has a unique regular solution of the
class CF*(Q=) N SK™(Q™) and the solution is representable in the form
(13.1) with the density g € C**(S) defined by the uniquely solvable SIE
(13.6).

Proof. Tt follows from Lemmata 10.1, 13.4, and Theorem 9.5. d

Remark 13.6. We note that the special representation (13.1) reduces
the BVP (Py1); to the equivalent boundary integral equation (13.6) for an
arbitrary value of the frequency parameter w. If one seeks the solution in
the form of either single or double layer potential then such equivalence will
be, in general, violated (see Remark 13.3).
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13.3. We look for a regular solution to the problem (Ps), again in

the form (13.1). Then the boundary conditions (5.3) and (5.4) lead to the
following system of WDEs on S for the unknown density g
N5 9= {Be)(D,m)[W(g) +p V(9)l} =G, G = (fu. fo, 5, Fi) T,

ie.,

{[-27'" 1y + Ks + poH] g}y = fo» q=1,2,3, (13.10)
{[L+po (27 I, +K1)] g}s = Fu, (13.11)
where (13.12)
f, € CR(8), F, e CF1(S), ¢=1,2,3. (13.12)
Therefore, the operator N5 is represented as
4 B
el B PSR A ol IR SL S L

q=1,2,3, [=1,...,4,

where (N5 )o is the dominant singular part of N, . Due to (10.25), (10.48),
and Lemma 10.1 we have

_ 91 C(0) 0]
(N3 )o = [[ 205+ K | 3“] . (13.14)
>0 [0]1x3 ‘64(10) 4x4

The entries of the first three rows of the matrix ./VQ_ are weakly singular
integral operators (¥DOs of order s < —1), while the fourth row contains
singular integral operators (¥DOs of order s < 0). It is easy to see that
(13.14) is a ¥DO elliptic in the sense of Douglis-Nirenberg.

Now it is also evident that the operator R», defined by (12.21), is an
equivalent lifting operator which reduces the system (13.10)-(13.11) to the
equivalent system of singular integral equations

RNy g =GP, GO = (fi, fo, £, RF)T.
For the principal homogeneous symbol matrix we have
O'(R2N2_) = [U(_2_1[3 + I*C(O))]3X3 [0]3X1
[0]1 <3 oRLY) |,
which is nonsingular due to Lemmata 10.2, 10.7, and 12.3.
Lemma 13.7. Let conditions (13.7) be fulfilled. Then the ¥DO
Ny [CHY(9)]F = [Ch(S))P x Ct1(S), 1<I<E, (13.15)

s an isomorphism.

)

x4

Proof. The mapping property (13.15) of the operator N, is an easy conse-
quence of Lemmata 10.1 and 10.7. Clearly, the invertibility of the operator
(13.15) is equivalent to the invertibility of the operator

RoNy = [CH(9)]* = [CH¥(S)]*, 0< 1<k, (13.16)
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according to Lemma 12.3.

Now from Lemmata 10.2, 10.7, and 12.3 it follows that RaN5 is an
elliptic singular integral operator with index zero. By the arguments applied
in the proof of Lemma 13.4 we can show that the homogeneous equation
N5 g =0, where g € C»*(S), has only the trivial solution g = 0. Further,
by Lemma 12.3 we conclude that the null-space of the operator Ro N5 in
C"*(S) is trivial, which completes the proof. O

Theorem 13.8. Let conditions (13.7) and (13.12) be fulfilled. Then
the problem (P»)7 has a unique regular solution of the class C**(Q=) N
SK"(Q27) and the solution is representable in the form (13.1) with the den-
sity g € CM*(S) defined by the uniquely solvable ¥DEs (13.10)~(13.11).
Proof. It is a ready consequence of Lemmata 10.1, 13.7 and Theorem 9.5.

d

13.4. Here we consider the problem (P3);. Applying again the same
representation formula (13.1) and taking into account the boundary con-
ditions (5.7) and (5.8), we arrive at the following system of WDEs for the
unknown density g on S:

Ny g:=1{B)(D,n)[W(9) +p V(g)}  =G®, G® = (P, P, Fs, f4)",

ie.,

{[L+po2 'L+ K1) g}y =F,, q¢=1,2,3, (13.17)

{[-27' s + K2 + poH] g}a = [, (13.18)
where

F, e C*te(9), fye Ch¥(S), ¢=1,2,3. (13.19)

Clearly, NV, is representable in the form

~_ [ HL+po@7 L+ K1) }lsxa P
No = [{_2_1[(31 + K2) +p07‘[}il]31><4 :|4><4 - (NS Jo +N3 ) (13.20)

=123, [=1,...,4,
where
(N )o = [£O]5xs  [0]3x1
e [0]1 3 27 + K

4x4
is the dominant singular part of N~ due to (10.25) and (10.48); the operator
/\73_ contains ¥DOs of order s < 0 in the first three rows and ¥DOs of order
s < —1 in the fourth row. Obviously, N3 is again an elliptic ¥DO in the
sense of Douglis-Nirenberg.

The diagonal operator Rs, defined by (12.29), is an equivalent lifting
operator which reduces (13.17)-(13.18) to the equivalent system of singular
integral equations

RNy g=GY, GP) = (RF|,RFy,RF;, f1)".
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The principal homogeneous symbol matrix of the operator Rz N3 reads
[0(RLO)]axs  [0]3x1

R , ) = *
o(RsN3 ) Ol15 o(=2 1T, + KO

4x4
and is nonsingular according to the results of Section 10.

Now in the same way as in the previous subsection we can prove the
following assertions.

Lemma 13.9. Let the conditions (13.7) be fulfilled. Then the ¥ DO
Ny 2 [CH(S)) = [CTH ()P x Ch(S), 1<I<K,

is an isomorphism.

Theorem 13.10. Let the conditions (13.7) and (13.19) be fulfilled. Then
the problem (Ps); has a unique regular solution of the class C**(Q=) N
SK'(Q27) and the solution is representable in the form (13.1) with the den-
sity g € CF(S) defined by the uniquely solvable ¥ DEs (13.17)~(13.18).

13.5. The representation (13.1) of a regular solution and the boundary
conditions (5.7), (5.8) reduce the BVP (Py4);; to the system of ¥DEs on S

Nrg=[L+po2 'L +K)]g=GY, GY = (F,...,F)T. (13.21)
For the dominant singular part we have the following elliptic ¥DO (of order
1) (N7 )o = (£)o, where (L) is given by (10.48). It is easy to check that
the diagonal operator Ry = 4R with R defined by (12.17), is a lifting

operator, which reduces equivalently the equations (13.21) to the following
elliptic system of singular integral equations with index equal to zero

RNy g=GY, ¢ =(RFR,...,RF)".
The proofs of the next lemma and theorem are quite similar to the proofs
of Lemma 13.4 and Theorem 13.5.
Lemma 13.11. Let the conditions (13.7) be fulfilled. Then the ¥ DO
Ny o2 Che(S) = ¢l7he(s), 1<I<Ek,
s an isomorphism.

Theorem 13.12. Let the conditions (13.7) be fulfilled and F; € CF~1*(S),
Jj= ri Then the problem (P4),, has a unique reqular solution of the class
Ch*(Q=) NSK™(Q™) and the solution is representable in the form (13.1)
with the density g € C**(S) defined by the uniquely solvable W DE (13.21).

13.5. In this subsection we consider the problems (P,); (n = 1,4) in

the Sobolev space W, ,,.(227). The corresponding existence theorems can
be proved with the help of the following lemma (cf. Lemmata 12.9 and

12.11).

Lemma 13.13. Let S be a C*-regular surface and let s € R, 1 < p < 00,
1 < g <oo. Then the mappings

NT (B (9) = (B ,(S)*
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Ny (B ((S)] = (B () x B, H(9),

p;

Ny o (B (S = By, () x B; ,(5),
No 1By (O = By ()]

are isomorphisms.
Here the YDOs N, Ny, Ny ,and N are given by formulae (13.8),
(13.13), (13.20), and (13.21), respectively.

Proof. The mapping properties indicated in the lemma follow from Theorem
10.8. The operators N, (n = 1,4) have zero indices since N, — N, are
compact operators in the corresponding functional spaces due to the results
of Section 2 and since indN,;, = 0 (n = 1,4) (see Lemmata 12.9 and 12.11).
Here the operators N, are the same as in Section 12.

It remains to prove that kerN, is trivial. To see this, let us consider
the homogeneous equations A7 g = 0 which are equivalent to the SIEs
RN, g =0, where R, (n = 2,4) are the same invertible lifting operators
as in Section 12, Ry = Iy, and g € B; (S). Bearing in mind that RN,
(n = 1,4) are elliptic SIOs on the closed smooth manifold S we infer that
any solution g € Ly(S) to the above SIEs, actually, belongs to the space
Ch%(S) due to the embedding theorems. Moreover, by the above men-
tioned equivalence we get N, g = 0. These relations imply that the linear
combination of the double and single layer potentials W (g)(z) + po V (9)(x)
constructed by the density g € C'**(S) and po given by (13.5), belong to the
class C*(Q2~)NSK™(Q~) and solves the homogeneous exterior BVP (P,,).
By the uniqueness theorems (see Section 9) W(g)(z) + po V(g9)(xz) = 0 in
Q= whence g = 0 on S follows by Lemma 13.1. Thus, kerR,N,, is trivial
in the space Ly(S). It is then trivial also in the space B, ,(S) for arbitrary
seR 1< p<oo,and 1 < g < oo (see the reasonings in the proof of
Lemma 12.9). Terefore, kerR, N, = {0} again due to the invertibility of
the operator R, (n = 1,4) which completes the proof. O

This lemma implies the following existence results.

Theorem 13.14. Let 1 < p < oo and the boundary data in (5.1)—(5.8)
satisfy the conditions

fj € B),'P(S), Fye Byy/%(S), j=T4.
Then the BVP (Py,),, (n = 1,4) are uniquely solvable in the class W (")

N SK'(27) and the solutions are representable in the form (13.1), where
the density g € le,,;,l/p(S) solves the corresponding ¥ DE on S

Nyg=G", n=T4
Here G™ are the vectors given by (12.41).

Proof. Tt is quite similar to the proof of Theorems 12.10 and 12.12. In-
deed, the solvability of the BVPs indicated in the theorem follows from
Lemma 13.13. To prove the uniqueness of solutions in the class W, 1,.(27)N
SK"(©27), we can again apply the general integral representation formula
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(see Theorem 10.8, item ii)) and show that all solutions to the homogeneous
BVPs (Py,), of this class, actually, belong to the class of regular vector func-
tions C*(Q~) N SK”*(Q7) due to the ellipticity of the corresponding ¥DEs
on closed smooth surface S. This completes the proof. d

14. Basic INTERFACE PROBLEMS OF PSEUDO-OSCILLATIONS

In this section we shall construct an “explicit” solution to the basic non-
homogeneous interface problem (C), which will essentially be employed af-
terwards in the study of the other regular and mixed interface problems.

14.1. Let us consider the problem (C),, i.e., we look for four-dimensional

vector functions UM = (u®, )T € C1(@QT1) and U® = (u®,u)T €
C'(Q2) which are solutions of the pseudo-oscillation equations

AVD, UV (@) =0 in Q) (14.1)
APD,UP @) =0 in Q3 (14.2)

and satisfy the transmission conditions on the interface S
T = @) = F T - ) = fo, (14.3)

[PO(D,n) UM+ — [PO(D,n)UP)]~ = F, }

14.4
AO(D, n)uTF = A (D, )] = Fy, (14.4)

where P(*)(D,n) and A#)(D,n) are the thermostress and heat flux opera-
tors defined by (1.13) and (1.24), respectively. Here

SeChhe’ feche(s), Fecktes), j=14,
f=U 0 f)', F=(F,....,F)",

where as above k > 1 is an integer and 0 < a < o' < 1.
Making use of the notation (1.25) the above transmission conditions can
be written as follows

oW - =, (14.6)
[BY(D,n) UM — [B@(D,n)UP]” = F. (14.7)

(14.5)

We look for a solution to the problem (C), in the form of single layer
potentials

UMD (z) = VIO[H) gD (2), = e, (14.8)
U (z) = VAHD)Y gD (2), = e, (14.9)

where g(#) = (ﬁ(“),ggu))—r, g = (gi”),gé”),géu))—r, i = 1,2, are unknown

densities and (H\"))~! is the operator inverse to H'*) (see Remark 12.2).
Here and in what follows the superscript u (¢ = 1,2) denotes that the
corresponding operator is constructed by the thermoelastic characteristics
of the elastic material occupying the domain Q.
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Due to Theorem 11.1, the transmission conditions (14.3) and (14.4), i.e
(14.6) and (14.7), lead to the following system of boundary equations on S:

g =g = 7, (14.10)
(~27' L + KD HD) g™ — @7 L+ KEHHP) g = F, (14.11)
where IC(“ , i =1,2, are defined by (11.4).

Let
M= (=27 L + KDY HI) Y, Moy = =27 L+ KE)(HE)
N, = NM + Nor. (14.12)
Then equations (14.10) and (14.11) yield:
g = f+g®, (14.13)
N,g® =F - Ny, f. (14.14)

Now we will study properties of the boundary operators N7, N3 -, and N;.

Lemma 14.1. Let S be as in (14.5). Then

Noy Njp o Ch(8) = ¢he(s), j=1,2, 1<I<E, (14.15)
are bounded operators with the trivial null-spaces.

Operators Ny, Nj ., j = 1,2, defined by (14.12) and (14.15), are iso-
morphisms.

Proof. The mapping property (14.15) is an easy consequence of Theorem
11.1, item ii), since the operator (H¥))~1 : Ch*(S) — C!=1%(S) is an
isomorphism due to Remark 12.2.

From Remark 12.7 it follows also that the equations N; ; h =0 (j = 1,2)
have only the trivial solutions. Therefore, the operators Nj,, (j = 1,2)
defined by (14.12), (14.15) are invertible and their inverses are bounded.

It remains to prove that the null-space of the operator N is trivial as well.
Let h = (hi,...,hs)" € Cl’a(S) be an arbitrary solution of the equation
N:h=0,ie, N, h+/\/2 »h = 0. Then it can be easily seen that the vectors
UD(z) = v“)[(H )7 h)(z), z € Q' and U (z) = VD [(HP)1h)(2),
x € 02, are regular and they solve the homogeneous problem (C),, since

[U(l)]+ = h, [U(2)]— = h, and [B(I)U(l)]+ _ [3(2)U(2)]— = N,h = 0.
Therefore, by Theorem 8.6 we have U = 0 in Q' and U® = 0 in Q2,
whence h = 0 on S follows immediately. O

Lemma 14.2. The principal homogeneous symbol matrices of the oper-
ators Ni-, ./\/’277, and N are positive definite.

Proof. Here again o(K)(z,¢) with z € S and £ € R2\{0} denotes the
principal homogeneous symbol of the pseudodifferential operator .
Equations (14.12) imply

ON7) = 0(Ni) + 0Nay), O(NLL) = 0(=27 L + K) [o (M),
o(Noyy) = —0 (27 L + KP)) [o(HP)] (14.16)

T
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In the same way as in the proof of Lemma 10.2 we can easily show that
o(HM) = a(HM)g), a(K) = a((KM)g), where (HW))o and (K®)),

7
are 4 x 4 matrix boundary operators on S:

(H(“))og = [(TW(z—y)gly)dS,, = €S,
(KW g(z) = [l B“‘ (Dayn(@))TW (z — y)] g(y) dS,, = € S,

with g = (§,94)" and § = (g1,92,93) " ; here T(®)(z) is given by (2.8) and

(W) (D,n)]3x3 3x1

[0]1x3 AW (D, n)
Therefore,
HEO 55 [0]3%1
20y, — { [ x x ] , 14.17
(Ko Olixs MO x4 ( )
K#0]355  [0]3%1
) :{[ x x ] , 14.18
(K)o Olis K00 » ( )

where H(#0) | C(1:0) "and 7—[51”’0), ICE;”’O) are 3 x 3 matrix and scalar operators,
respectively, generated by the single layer potentials constructed by the
fundamental matrix T(#0) (z) and the fundamental function (0 (z)] (see
(2.6), (2.7), (10.19)—(10.22), (10.26)):

HEO G(z) = [(TEO) (z — y) Gly) dS,,
Hflﬂ,o) g4(a:) — fS /Y(M,O)( y) [ (y) dSy, (1419)
Klw fs [T ”) (Dz,n(z )F w0) (z —y)]g(y) dSy,

)
/Cz(;“ 0) 94(33) - fs A (D, n(z))y 0 (x — y) ga(y) dSy.

Taking into account the structure of the matrices (14.17) and (14.18) we
get from (14.16)

OWNir) =0 (=27 a+ (KW)o) [o(HD))] 7 = (14:20)
= [U(_2_1[3+K(170))[U(H(170))]_1]3><3 [0]3x1
. l [Olis a(—2111+/c§1’°>>[am§17°>>11L;
oNay) = —0 (271, + (K®)o) [0 (HP)o)] ™! = (14.21)
__ [ Bk HEN (051
N l [Ol:x3 0(2—111+K£2’°>>[a(%£2’°>>1—1]4x4

Next, let us note that the following Green formulae hold for regular solutions
to the system of classical elastostatics C*) (D) u®) = 0 and to the elliptic
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scalar equation /\(“.)DkD~u(“) =0 in QH:
Jop B, ()( O Wy dz = [0, [uDHTD (D, n)uV]* ds,
Jne B ) de = — [, . u (2)]_[T(2)(D,n)u(2)]_ ds,
le/\(l.)D u“)D-u“) dz = [,0, VT O (D, n)ulD]* ds,
Jo A Dy Djull) de = — [0 [u$P)7 NP (D, n)ulP]~ dS,

(14.22)

where E(()“) (u) um)) = cgj‘;quug“) Djug;‘) > 0 (see (1.15)), the classical

stress operator T*) (D, n) and the co-normal derivative (the heat flux op-
erator) A (D, n) are given by (1.12) and (1.24), respectively; moreover,
u(® = o(1) and ug ) = = o(1) at infinity.

Further, if we substitute in these formulae the corresponding single layer

potentials v(”’o) and v{") (see (10.19), (10.21)) with densities (H(*0)~1§

and (Hi”’o))’lg4, respectively, in the place of u(*) and ug“), we can show

that (=215 + KLO)(H L)1 and — (271 I3 + KZ0)(HZ9)~ are non-
negative 3 x 3 matrix pseudodifferential operators with positive definite
principal symbol matrices, while (—2711; +IC (1 0))(7-[(1 0) )~'and —(27' I +
ICf’O))(Hf’O))_I are non-negative scalar ¥DOs with positive principal sym-
bol functions (here we note that the Fourier transform is unitary and that
the principal symbol of the product of two operators is equal to the prod-
uct of the principal symbols of these operators; for details see the proof of
Lemma 4.2 in [41]).

Therefore, the equations (14.20) and (14.21) together with (14.16) yield
that 0(N7,7), 0(N2,-), and 0(N;) are positive definite matrices for arbitrary
z €S and £ € R2\{0}. O

Corollary 14.3. Let S, k, o/, and « be as in (14.5). Then the operator
NL, inverse to the operator N, defined by (14.15), is an isomorphism;
consequently, N.71 cl=he(8) = Cb¥(S), 1 <1 < k, is a bounded operator.

Applying the above results we get from (14.13) and (14.14):

gV = N UF + Nas f), 9 = N U(F = Ny f). (14.23)
Clearly, gt e C*2(S), (1 = 1,2) if conditions (14.5) are fulfilled. Now we

are ready to formulate the following existence results.

Theorem 14.4. Let S, k, o/, a, f and F meet the conditions (14.5).
Then the nonhomogeneous problem (C); is uniquely solvable, and the
solution is representable in the form of potentials

U (z) = VO [(H(Tl))’lN;l(F +Nos f)] (x), zeQ, (14.24)
U@ (z) =V [(H(f))‘l/\/;l(F —Nix f)] (z), z€Q (14.25)
Moreover,

UM e che@r), p=1,2, (14.26)
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and

WU (i ko) < Co [I1Fll(s.k.0) + [1Fll(sk-1,0)] s Co=rconst >0, (14.27)

where || - ||(r1,k,a) denotes the norm in the space che(M).
Proof. Tt follows from (14.8), (14.9), (14.23), Corollary 14.3 and Remark
12.2. d

14.2. In this subsection we assume S € C™, and establish the existence
results for the problem (C), in the weak setting with 1 < p < oc.

First we prove the following statement.

Lemma 14.5. The operators (14.15) can be extended by continuity to
the following bounded elliptic ¥ DOs (of order —1)

Ni, Njroo HETH(S) = HS(S) [BSEH(S) = B (9] (14.28)

for arbitrary s € R, 1 < p < 0o, 1 < g < co. Moreover, the operator N,
defined by (14.28) is invertible.
Proof. The boundedness, ellipticity, and mapping properties (14.28) of the
operators N, and N, easily follow from Theorem 11.3 and Lemma 14.2.

The invertibility of the operator N, is a consequense of the embed-
ding theorems for solutions of elliptic pseudodifferential equations on closed
smooth manifold (see the proof of the analogous assertions in Section 12).
In fact, any solution h € H5+(S) [B5!'(S)] of the homogeneous pseudo-
differential equation N, h = 0, belongs also to the space C*%(S), where
k > 1is an arbitrary integer and 0 < a < 1. Therefore, we can derive h = 0
on S, due to Corollary 14.3. Thus kerN; = {0}. Moreover, indN, = 0,
since the principal homogeneous symbol matrix of N, is positive definite.
These results imply the unique solvability of the nonhomogeneous equation
N:h = f in the spaces H5™'(S) [B5t'(S)] for the arbitrary right-hand side
vector f € Hy(S) [B; ,(S)]- O

Now we are able to prove the existence theorem.

Theorem 14.6. Let

SeC™, fjeBi t/P(S), Fe B, }/7(S), j=T,4, 1<p<oo. (14.29)
Then, the problem (C); is uniquely solvable in the space (W (Q'), W, (Q?))
and the solution is representable by formulae (14.24)-(14.25).
Proof. Let conditions (14.29) be fulfilled. Then Lemma 14.5 and Theorem
11.3 imply that the pair of vectors (U("), U(?)) defined by (14.24) and (14.25)

represent a solution to the problem (C); of the class (W, (Q'), W, (Q?)).
Next we show the uniqueness of solution to the problem (C), in the
Sobolev spaces (W, (Q'), W, (Q?)).
Let (UM, U®) € (W}(OQ),W}(Q?)) be some solution to the homoge-
neous problem (C),. We recall that U*) € C*°(Q*). Then Theorem 11.3,
item ii) yield

U @) =W (D)) (@) -V (BOD,m U] (@), e, (14.30)
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U (@) =-W ([UD)) (@) +v (B2 (D,m)UP]") (2), 2€0?,(14.31)

where [UV]F, [U®)]- € B, '/7(S), [BD(D,n)UD]*, [BE(D,n)UR]~ €

B;;/p(S). The homogeneous transmission conditions read as (see (14.6),
(14.7))

U = U@, [BOD,mUOT = [BOD,mU@]. (14.32)
Denote

U =g, [BY(D,n) UV =: h. (14.33)

Then (14.32) along with (14.30), (14.31), and Theorem 11.3 implies that

the vector functions h and g solve the homogeneous system of boundary
UDEs:

~(HY + HY b+ (K] + K2 g =0, (14.34)
(KN + K b+ (LD + L2y g =o. (14.35)

From the positive definiteness of the principal symbol matrices —U(’Hﬁ")),

o(L%) (see Theorem 11.2), and the equation U(Ké’fr)) = [U(IC%‘T))]T, it
follows that the system of $DEs (14.34) and (14.35) is strongly elliptic in
the sense of Douglis-Nirenberg. Therefore, by the embedding theorems we
conclude that h and g are smooth vector functions on S, i.e. h € C*~1(S9)
and g € CH*(S) for any £ > 1 and 0 < a < 1. But then the vectors
UMW, = 1,2, given by (14.30) and (14.31), are regular due to the for-
mulae (14.32), (14.33), and Theorem 11.1. Now the conditions (14.32) and
Theorem 8.6 complete the proof. a

Remark 14.7. Using the representation formulae (14.30) and (14.31) we
can solve the problem (C), by the so-called direct boundary integral equa-
tion method. This method reduces the transmission problem in question to
the strongly elliptic (in the sense of Douglis-Nirenberg) system of ¥DEs on S

Grp=Q, (14.36)

where ¢ = (¢',4")T is the unknown vector with o' = [B1) (D, n)UM]+
and ¢" = [UM]*; the matrix operator G is given by formula

[=HY =1 Nawa (K5 + K awa

a, =
[~ K = K axa €8+ L£P)axa

)

8x8

while the given on S right hand-side 8-vector @) reads as
Q= ((2—114 +KE) f=HOF, L f 4+ 27 - K2) F)T .
Actually, in the proof of Theorem 14.6 we have shown that the operators
Gr o+ [CERS) x [CH(S)]) = [CM(S)]* x [CFhe ()
[Hy ($))* x [HyTH ()] = [HT(S)]* x [Hp(S)]*
[B} 4 (SN* x [By R (S = (B4 () x [B; ,(S)]*
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are invertible.
Therefore, the unique solution to the problem (C), can be represented
also in the form

UD (@) = Wi (") (@) - Vi (@) (@), (1437)
UP(@) = ~W2 (" = ) + V2 @' = F)(a), |
where 1 solves the system of ¥DEs (14.36).
Note that the conclusions of Theorems 14.4 and 14.6 remain valid for the
vectors defined by (14.37) if the conditions (14.5) and (14.29) are fulfilled.
14.3. In this subsection we investigate the problem (G),.

First let us rewrite the transmission conditions (7.5)—(7.8) in the following
equivalent form

u® - plt —[u® .n)” = me

POD, )T )t + [PO(D,n)U® 1~ = FP + F), 14.38
[POD,n)UD - m]* + [PA(D,n)U? -m]” = F() + E) 14.39
[POD,n)UD 1)t = [PO(D,n)U 1]~ = F) - F, 14.40
[P

[

[

P(l)(D,n)U(l) -TL]+ [ ( ,n)U u®. TL]_ = Fna
W1 = ) = i, DOD, )] = DO D,m)ul] = Fy,
)

Clearly, due to (14.40), (14.41), (14.43), and (14.44), the vector
[BO(D,n) UMD — [B®(D,n)UP]~ = F is a given vector on S with

( )
( )
( )
V(D,n)UD -]t = [PP(D,n)UP .m]” =FH —F) (14.41)
( )
( )
( )

~ ~ ~ ~ ~ T
F= ((F,(*) BN+ (BSD — FO)ym+ Fyn, F4) . (14.45)
Denote
Wt —w® 0" =y, W em)t = [w® m)T =y,  (14.46)

where ¢; and ¢, are the unknown scalar functions. Equations (14.42),
(14.44), and (14.46) imply [UM]+ — [UP)]~ = f, where

f=l+dam+ fan, f2)" (14.47)

Now let us look for a solution to the problem (G), in the form (14.24) and

(14.25), where F and f are given by (14.45) and (14.47), respectively. Then

from the results of the previous subsection it follows that the transmission

conditions (14.40)-(14.44) are automatically satisfied. It remains to satisfy

only the conditions (14.38) and (14.39). Taking into account Theorem 11.1
and the equations (14.12), we get from (14.24) and (14.25):

[BD(D,n)UMT = [(PY(D,n) UM X(D, n)uy) )T =
=N N7HF + Moz f),

[B2(D,n)UPD]™ = [(PP(D,n)UP XD(D,n)us) ]~ =
= —No N7 (F = Nio ).
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Further, we put
" =[(1,0) "ax1, m* =[(m,0) a1, n* =[(n,0) Jax1, (14.48)

where [, m and n are again the tangent and the normal vectors introduced

in Subsection 7.2.
Conditions (14.38) and (14.39) then imply

[PO(D,n)UD -t + [PP(D,n) U - 1]” =
= [BY(D,n)UD . 1*]* + [BA (D, n)UP -] =
(N = No ) NTVF 15+ 2N NN f 1 = B+ B,
[PO(D,n)UY -]t + [PO(D,n)UP -m]~ = [BO(D,n)UD - m*]* +
+[BA(D,n)U? -m*|” = (N1 ; = Na)NTLF-m* +
+2No NN A f - = FD + ), (14.49)

since N2 ;NN » = N1 NN, -, By virtue of (14.47) from (14.49) we
have the following system of YDEs for the unknown functions v; and )s:

3
> INo NN )k (1l + om) i = i, (14.50)
k=1
3
> IWN2e NN (8 + pam) Iy, = go, (14.51)
k=1

where
o =2"HED + B = (Wi = No )NTHF 17} —

3 3
= IWo e NN ka falle = Y [(No e N NG )i (Fam) i
= N N b=t (14.52)
¢ =2 HED + F) — (M = No )N F -m*) -
3 3
= S I No NN ) pafalmn = 3 [(Nor NN ks (Pl
k=1 k,j=1

are given functions on S.
Now let
MG’ T o=

)

[ N2 e NN D ily e (No s NN ) kg
me (N NN ily mi(Na m NTYNG ) jmy oxy

We recall that the summation over repeated indices is meant from 1 to 3.
Clearly, (14.50) and (14.51) can be written in the matrix form as

Mart=q" (14.53)

with the unknown vector 1 = (i1,%¢»)' and the right-hand side ¢* =
(q1,92) " given by formulae (14.52).
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Lemma 14.8. The operator Mg ; is an elliptic WDO of order 1 with a
positive definite principal homogeneous symbol matriz and the index equal
to zero.

Proof. The equations (14.12), (14.20), and (14.21) imply that Mg, ; is a
¥DO of order 1 with the principal homogeneous symbol matrix

_ lklekj lkijkj _ T
O-(MG7T) - |: mkl]Ek] mkijkj yo - EIEEl ) (1454)

where

El — |: l17 l27 l37 0 :| ,
2x4

my, Mz, ms, 0
E = oWNo-NT'WNi) =0(WNar)o(NTHo(N L) =
O-(NZT)[O—(NLT) + O-(N2,T)]710-(N1,T)-

Due to Lemma 14.2 the matrices 0 (N ), j = 1,2, are positive definite

for arbitrary z € S and £ € R2\0 (see (14.20), (14.21)). Therefore, the
matrix E is positive definite as well. Next, for arbitrary n = (n1,7:) " € C?
we have

o(Mg)n-n=(EEE ) -n=E(En)-(E[n) =
= E(I*n +m*nz) - (I*n +m*na) > clé||ml* +nom*|? =
=clgl (Im]* + In2?), ¢ >0,

whence the positive definiteness of the matrix (14.54) follows. This implies
that the index of the operator M ; is equal to zero since the positive
definiteness of 0 (Mg, ;) yields the formally self-adjointness of the dominant

singular part of the Mg ;. a
Lemma 14.9. Let S, k, «, and &' be as in (14.5). Then the operator
Mg, :Ch(S) = C71(S), 1<I<k, (14.55)

is an isomorphism.
If S € C*, then (14.55) can be extended by continuity to the following
bounded, invertible, elliptic ¥ DO (of order 1)

Mear: H;H(S) — H;(S) [B;jzl(S) — B;Q(S)],
sER 1<p<oo, 1< qg<o0.

Proof. Tt is quite similar to the proofs of Lemmata 14.1 and 14.5. d
The above results yield the following existence theorems.

Theorem 14.10. Let S, k, o/, and « be as in (14.5), and let
F®, F, Foy e C1(S),  fu fa € CH2(S).

Then the problem (G), is uniquelly solvable, and the solution is representable
in the form (14.24) — (14.25) with F' and f given by (14.45) and (14.47),
where 1, ¥y € CH*(S) are defined by the system of WDEs (14.50) and
(14.51) (i.e., (14.53)). Moreover, (14.26) and the inequality (14.27) hold.



Theorem 14.11. Let S € C* and
F®E®, Fyy Fre ByYP(S),  fu, fa € BLMY(S).

Then the problem (G) is uniquely solvable in the space (W, (Q'), W, (2?)),
and the solutions are representable by the formulae (14.24)—(14.25) with F
and f given by (14.45) and (14.47), where 11, 12 € B;,;,l/p(S) are defined
by the system of ¥DEs (14.50) and (14.51) (i.e., (14.53)).

The proof of these theorems are quite similar (in fact, verbatim) to the
proofs of Theorems 14.4 and 14.6. d

14.4. In this subsection we shall study the problem (#),. As in the
previous subsection let us rewrite the transmission conditions of the problem
(see Subsection 7.2) in the equivalent form

[u A [u i AT+ + fl ’ (14.56)
[w® )t + [w? m] = f 4 ) (14.57)
W [u® 1 = 7(+> 7O, (14.58)
D = ® ] = F — Fo) (14.59)
[u alt = [u 2) . e ]”Fm (14.60)
[PO(D,n)UY - n]* — [PO(D,n)U? .n] = F,, (14.61)
s T = i1 = S DO D)) = AP (D n)u? ] = Fi. (14.62)

Equations (14.58)—(14.60) imply [U(M)]t — [U®)]~ = £, where f is a given
vector on S

.
f= (D =T+ G = Fm+ Fan, f1) - (1463)

It is also evident that [BM (D,n)UM]+ — [B®)(D,n)U®P)]~ = F with
F = (1l + thym + Epn, Fy) 7, (14.64)

where F, and Fj are given functions on S, while ¢y = [P()(D,n)UM 1]+ —
[PC)(D, m)U™ -1}~ and ¢, = [PD (D, n)UD -m]* — [PO)/(D,n)U® -m]",
are yet unknown scalar functions.

We look for a solution to the problem (#), again in the form (14.24)-
(14.25), with F' and f defined by (14.63) and (14.64), respectively. It can
be easily checked that the transmission conditions (14.58)-(14.62) are then
automatically satisfied, while the equations (14.56) and (14.57) lead to the
following system of ¥DEs for the unknown vector 1 = (¢1,1,) " on S:

Mu-v =", (14.65)

where

Mp, = N Dkily bWV rgmy

’ mirNDkily me(N7Yem; (14.66)

2X2
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and the right hand-side vector ¢* = (g1, ¢2) " is defined by formulae:
a = 2T IV e = NLF T
= [WVF kg (Fang) e = (N7 ka Fallr,
@ = 2D+ IV Ve = N f T}
— [Nk (Fang)lmg = (V7 ka Falm;
here I* and m* are given by (14.48).

By quite the same arguments as in Subsection 14.3 we can easily show
that Mg - is an elliptic invertible ¥DO of order —1 with a positive definite
principal symbol matrix.

Therefore the operators

Mp, = CFhe(8) - cbo(s), Se ke
Hy(S) — H;H(S), S e C™,
By ,(S) = B;Zl(S), S e C™,
are isomorphisms.

These results lead us to the following existence theorems.
Theorem 14.12. Let S, k, «, and &' be as in (14.5) and let

A;(i)a ~r(ni)a f’:;l: f4 € Ck’d(s)a ﬁn: F4 € Ckil,a(s)'

Then the problem (H), has the unique solution representable in the form
(14.24)—(14.25) with f and F given by (14.63) and (14.64), where ¢, ¢ €
Ck=12(S) in (14.64) are defined by the system of WDEs (14.65).

Theorem 14.13. Let S € C*° and

9, 759, Fuy fre BLVP(S),  F,, Fye B, L/7(S).

Then the problem (H). is uniquely solvable in the space (W, (Q'), W} (Q?)),
and the solution is representable by the formulae (14.24) and (14.25) with
f and F given by (14.63) and (14.64), where ¢, ¢ € Bp_,ll,/p(S) in (14.64)
are defined by the system of ¥DEs (14.65).

Again proofs are verbatim the proofs of Theorems 14.4 and 14.6.

15. BASIC INTERFACE PROBLEMS OF STEADY STATE OSCILLATIONS

In this section we deal with the basic interface problems (C),, (G)., and
(H),, of steady state thermoelastic oscillations formulated in Section 7. In
contrast to the pseudo-oscillation case, one can not here apply the single
layer approach to obtain the “explicit” solution to the basic interface prob-
lem (C), for an arbitrary value of the frequency parameter w, since the
integral operator H (see (10.3)) is not invertible for the so-called excep-
tional values of w. Therefore, we offer another approach which relays on the
representation of a solution in the form of a complex linear combination of
the single and double layer potentials (see Section 13).
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15.1. Here we again assume that the conditions (14.5) are fulfilled and
look for the solution to the nonhomogeneous interface problem (C), (see
(7.3)—(7.4) or (7.11)-(7.12)) in the following form

U (z) =wW (W) (z), zeql, (15.1)
U (z) =W (g)(x) + po VO (9?)(x), =€ (15.2)

where W) and V(") are the double and single layer potentials constructed
by the fundamental solution ") (z — y,w,r) (see (10.1)-(10.2)), ¢ =

(g§“), e ,gi"))—'— (1 = 1,2) are unknown densities, and py is given by (13.5).
Moreover, in the sequel we again provide that
r=1 for w>0 and r=2 for w<O. (15.3)

Taking into account the properties of the above potentials and inserting
the representations (15.1)-(15.2) into the transmission conditions (7.11)-
(7.12), we get the system of ¥DEs on S for g(®) (u = 1,2):

27 L+ KW — =27 L+ K8 + poH®] 9@ = £, (15.4)
LD g 2™ 4 po2' + £ g® = F, (15.5)

where 7™, K kc$ ) and £ (i = 1,2) are defined by (10.3), (10.4),
(10.5), and (10.6), respectively.

To investigate the solvability of the above system of DEs we first prove
the following lemma.

Lemma 15.1. Let ¢ € C»%(S) (1 = 1,2) and let the vector functions,
represented by (15.1)-(15.2), vanish in Q' and Q2, respectively.

Then g™ =0 (u=1,2) on S.
Proof. Obviously, the regular vector function UM, defined by (15.1), can
be extended by the same formula from the domain Q' into Q2. Denote the
extended vector function again by U"). By Lemmata 10.1 and 10.7 then
we have

UM~ = —¢M and [BYD,n)UM]" =0 on S, (15.6)

in accordance with the assumption U™") = 0 in Q'. Since U™ is a (m, r)-
thermo-radiating regular vector function, we deduce by virtue of Theorem
9.5 and the second equation in (15.6) that U™ =0 in Q2, whence gtV =0
on S follows.

The assertion for ¢(?) is a ready consequence of Lemma 13.1. O
In the matrix form the system (15.4)-(15.5) reads
Mcg=0Q, (15.7)

where g = (91, g, Q@ = (f,F)7, and

271 + K§1)14x4 2711, — IC§2) — poHP)4xs

Mc =
[E(l)]4x4 [_£(2) — p0(271[4 + ’C§2))]4><4

. (15.8)
8x8
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Next, let us introduce the following operators

& =211, + kY, Ty = LW, (15.9)

By = -2+ K2 + poH@, Ty =L +po211 + £P), (15.10)
and rewrite the system (15.4)-(15.5) as

B, g — 8,93 = f, (15.11)
T, g —0,¢® =F (15.12)
Note that the mappings
d, : CH(S)—Ch(S), 0<I<E, (15.13)
T, : Ch(S) = b)), 1<I<Ek, (15.14)

are isomorphisms due to Lemmata 13.4 and 13. 11. Therefore, (15.11)-
(15.12) equivalently can be reduced to the system

9P =71 ®, gV — @5, (15.15)

[T — Uy &, B3] g = F — Uy 851 f. (15.16)

Remark 15.2. Note that the system (15.4)-(15.5) (i.e., (15.11)-(15.12)) is
equivalent to the following system of STEs

&, g — 8,93 = f, (15.17)

Ra¥y gM — Ry Uy g =Ry F, (15.18)

where the equivalent lifting matrix operator R4 is given by (12.33).

Lemma 15.3. The operator Mc is elliptic in the sense of Douglis-Ni-
renberg with index equal to zero. The mapping

Me = [CH(S)F = [P x [CThS))Y, 1<i<k,  (15.19)
is an isomorphism.
Proof. First we show that M¢ is an elliptic ¥DO in the sense of Douglis-
Nirenberg. To this end let us remark that, due to the results of Section 10
(see (10.23)—(10.30),(10.48), (10.49)), for the principal homogeneous symbol
matrices of the operators (15.9) and (15.10) we have the following expres-
sions:

_ { [KM]sxs  [0]sx1

o(®1) = 0((27 I + KP)g) = Ol1es K(l)} , (15.20)
44 4x4

K33 [0]3x1

]m, (15.21)

(1) )
o () = o((LW)y) = { [L[O] lsxa [(Eg) } , (15.22)
1x3 4x4

[L®]3x3  [0]3x1 }
4x4

15.23
Ohixs LY ( )

o(w) = (L)) = |
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where (K)o denotes again the dominant singular part of the operator K;
here we employed the notations:

W) = (271 L + K1) = [0(2 15 + K0T, (15.24)
K® = g(=271; + K@) = [o(—2-11; + KEO)T,  (15.25)
KW =0@ '+ K0) = L, (15.26)
KP =0(-27 + K&V = -1, (15.27)
LW = g™y, n=1,2, (15.28)
L = o) = —[4o(HO) T > 0, p=1,2 (15.29)

where by IE(“’O), JZON Ial“’o), K#:0) - £(10) and Ei“’o) are denoted again

the operatos (10.26), (10.40), and (10.41) corresponding to the thermo-

elastic characteristics of the medium occupying the domain Q# (cf. (14.19)).
In Lemma 3.3 of the reference [41] it has been proved that

[K(l)]BXS _[K(2)]3><3 :|
0. = det 0 15.30
[ LO0hs [~LOs |, 7 (15.30)

for arbitrary z € S and £ € R? \ {0}.
Let us now consider the symbol matrix of the operator Mo

(1) —0(®2) ]
o(Mc) = 15.31
( C) [ U(\I’l) _0.(\1,2) . ( )
and show that the corresponding determinant does not vanish for arbitrary
r € S and ¢ € R? \ {0}, which in turn implies the usual ellipticity of the
system (15.17)-(15.18) (or the ellipticity of the system (15.4)-(15.5) in the

sense of Douglis-Nirenberg). By virtue of formulae (15.20)-(15.29) we get
from (15.31) after some simple rearrangements

[KM]3s [0lsx1 —[K®]3x3  [0]3x1

det 0(Mc) = det O3 : (O] <2 s =
¢/ = [LM]zys  [Olsx1 [~LP]3xz  [0]3x1 N
1 2
[O]1><3 L4(14) [0]1><3 _L44) 8x8

1

K] —[K®)] 1 1
= det [ 3x3 3x3 ] det [ 2 2 ] =
[L(l)]3X3 [_L(2)]3X3 6x6 L&) L4(124) 2x2

=1 (1) + 1)) o, # 0, (15.32)

due to (15.29) and (15.30).
Next we show that the index of the operator M¢ equals zero. To see
this, let us note that the index does not depend on a compact pertubation,
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and consider the following operator

~ viO) (2
Mo = | Meloa [IMc o) (15.33)
(M laxa M laxa [ o
where
MW — (2715 + K105, [0]3x1 -I
I =(1,0) ’
[0]1 x3 2L + Ky J4><4
o |2 - K20 — {320}]5,5 [0]3x1
c *
L [0]1x3 2_111—’C512’0)—{7{£2’0)} i
~ (L0355 [0]3%1
e |l x x ’
‘ (013 51(1170) 4x4
M"(ﬁl) — [ [ - 5(2’0) —{271]—3+’C(2’0) }]3><3 [0]3><1 :|
&= Ol T

Clearly, the dominant singular parts (Mc¢)o and (MO)O coincide. In-
deed, these dominant singular parts in the both cases can be represented in
the form (15.33) where the summands in curly brackets are removed.

The corresponding formally adjoint operator to M reads as

_ T T
My, = l Mo Taxa IMe Daa ] , (15.34)
[ME laxa M laxa [ o

where
M = 275 +’C(170)]3><3 [0]3x1 ]

¢ [0]1x3 2711 4+ k(Y r
@+ [ [£8Tsxs [0)sxa ]

= i ,

“ L [0]1><3 ﬁé(l ) Axd
M) = (271 — K20 — 0], . Ol ]

¢ [0]1x3 2-1r — ’CEE’O) _ Hf,o) 4X4,
M(fl)* _ [— £(2,0) _ 2—1[3_]C(2,0)]3X3 [0]3><1

“ - *

[0]1x3 _L20 _g-1p, _ (20 y

We again recall that the operators involved in (15.33) and (15.34) are defined
in Section 10. Moreover, here we have applied that the operators £
Eiu,o), H#0) and 7—[51“’0) are formally self-adjoint (see [34], [59]).

In what follows we prove that the homogeneous equations

Mep =0, p= (D, 07T, o0 = (.- oINT, j=1,2, (15.35)
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and
Meap =0, ¢ = (0, )T @D =@ ... pINT j=1,2, (15.36)

have only the trivial solutions.

Due to the above established ellipticity we consider these equations in
the regular space of C"**-smooth vector functions.

Note that the system (15.35) can be decomposed into the following two
independent systems:

[2_1[3 + ]*C(I,O)] Q’E(l) — [— 2_113 + ’*C(270) + H(270)] (,’\0/(2) = 0, (1537)
£1.0) 51 [£(2,0) + 27 + K203 =,

2 M+ KOOl — [ =2 4 KOO I =0 1 g )
ﬁgl,o) (p(l) _ [5(2 )+2 ir +IC20)] =0,

where 30 = (o), o, o7, j = 1,2.

These systems are generated by the following interface problems for the
equations of elastostatics and the stationary distribution of temperature

C Dy =0 O, u®) = W uf) w7, p=1,2,
[uM]t = [uP]~ =0 and [TW(D,n)u]t—

—[T®(D,n)u®]~ =0 on S, o
u®(z) = o(1) as |z| = 400,
and
MDD =0 in %, p=1,2,
[uz(ll)]+ _ [uf)]* =0 and [A(l)(D,n)US)F_ (15.40)

—N(D,n)uP]" =0 on S,
ul? (x) = o(1) as |z| = +oo,
where C(#)(D), T (D,n), and A¥) (D, n) are given by (1.7), (1.12), and
(1.24), respectively.
If one looks for solutions (v, u®) and (u{",u{?) in the form of follow-
ing potentials (see (10.19)—(10.22))

1M (@) = [JITD(Dy, n(y))LEO (y —2)]T 31 (y) dS, =:
= w0 (30 (x), (15.41)

u® (@) = [[T(Dy,n(y))LO (y —2)]T 32 (y) dS, +
+ [sTCO(y — 2) §3) () dS, =: w0 (FP)(x >+v<2’°><~<2>><x>, (15.42)

u (@) = [ XDy, n(y)y 0 (y — 2) o (y) dS, =

wi (o) (), (15.43)

uf? (z) = [s A (Dy,n(y ))7(“)(11 )57 (y) dS, +
+ e 70y — ) 9 (v) S, =2 w* (D) (@) + 0V (W) (@), (15.44)

one arrives at the systems (15.37) and (15.38).
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Using the usual Green identities (14.22) it can be easily shown that the
homogeneous problems (15.39) and (15.40) have only the trivial solutions.

These uniqueness results and standard arguments of the potential theory
imply that the systems (15.37) and (15.38) possess only the trivial solutions
as well.

Indeed, let (o1, )T be some solution to the homogeneous system
(15.37), and let us construct by these densities the potentials (15.41) in Q!
and (15.42) in Q2. Due to the above uniqueness u*) (z) = 0in Q*, u =1, 2.
Applying the jump properties of the single and double layer potentials of
elastostatics (see [8], [34], [56]) we conclude that (1) = ¢(®) =0 on S. For
the system (15.38) the proof is verbatim. Thus, kerM¢ = {0}.

To prove that kerﬂé = {0}, we decompose analogously the system
(15.36) into the two systems

(2175 + K10 (1) 4 £10) ) =,

[— 2717, + K(2:0) 4 ’}-[(270)] 1;(1)4_ (15.45)
L@ o1, 4 ;%(2,0)] D2 =0,

20+ KO el + £y =0,

[ 2710+ KP4 1O g+ (15.46)
HEE 4211, + KPP o

Denote by (12(1),1;(2))T some solution of the homogeneous system (15.45)
and by these densities construct the vectors (see (15.41)—(15.44))

0l (z) = v G0) (@) + 0O FD) (@) in O =02, (15.47)
ug)(a:) = @9 (P (2) + w29 ($P)(z) in QT = QL (15.48)

Obviously, CO(D)ul” =0 in O~ = Q2 and C®(D)u!? = 0in O+ = QL.
It can be also easily verified that the equations (15.45) correspond to the
conditions

[T M(D,n)ul’) =0, (15.49)
[T (D, n)ul”1* + [WP]* = 0. (15.50)

Therefore, uﬁl) is a solution of the homogeneous exterior stress problem

in Q~, while ui2) represents a solution to the Robin type problem in Q7.
By uniqueness theorems, which can be established again with the help of
(14.22), we conclude u? =0in Q~, and u? = 0in Q. The jump relations

then lead to the equations

W) = 9@, Oyl = 0,

() = =, [TO(D,n)ul) =90, e



whence

[TO(D, n)ulVTF + [T (D, n)u®]™ =0. (15.52)
Making use once again of Green formulae (14.22) together with homoge-
neous conditions (15.52) we obtain that ug) =0in Q1 and ug) =0in Q.
Now (15.51) shows /() = 4)(2) =0 on S. In the same way we can show that
the system (15.46) has also only the trivial solution. Thus, ker M & = {0} as
well, and, therefore, indﬂc = 0, which proves the first part of the lemma.
Next we prove that the mapping (15.19) is an isomorphism. Due to the
first part of the lemma it remains to check that the homogeneous equation
Mec g = 0 admits only the trivial solution. Let g = (¢)),¢®)T be an
arbitrary solution of this equation. Then the potentials (15.1) and (15.2)
solve the homogeneous problem (C), and by Theorem 9.8 they vanish in
the corresponding domains. Now Lemma 15.1 completes the proof. O
Corollary 15.4. Let S € C* andlet s e R, 1 < p< oo, 1 < g < 0.
Then the operators

Me o [Hy(S)P = [Hy(9)] x [Hy7 (9],
(B ,(S))* = [B; ,(S)]* x [By ' (S)]*
are isomorphisms.

Proof. 1t follows from the fact that, due to the general theory of elliptic
UDEs on closed smooth manifolds, the uniqueness of solution implies the
corresponding existence results for the nonhomogeneous equation (15.7) in
the Besov B, ,(S) and the Bessel-potential H,(S) spaces (see the proof of
Lemma 12.9). O

We are now ready to present the solution of the system (15.4)-(15.5) (i.e.,
(15.17)-(15.18)) in terms of explicitly given boundary integral operators and
their inverses. To this end we need the following lemma.

Lemma 15.5. Let S, k, and a be as in (14.5). Then the mapping
[T — Ty &, 1] = [CHY(9))* = x[CH*(S))*, 1<I<EK, (15.53)
is an elliptic invertible VDO of order +1.

Proof. First we show the ellipticity of the principal homogeneous symbol
matrix of the operator in question. Due to the equations (15.20)-(15.29) we
have

M =0 — Uy &, &) = 0(¥;) — 0(¥2)[0(P2)] Lo (®) =
={0()[0(®1)]7" — 0 (Vs)[0(B2)] 7"} 0(1) =

([l ][5 -
[ 11 )
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y { [KM]3xs [0l3x1 ] _

[0)1x3 27t |
_ { [LO(KWY=1 — L) (K@) ]g, 4 [0]351 } y
[0)1x3 2Ly + 2L
KW 0
<| o e | (1554

We used here that the matrices K" and K () defined by (15.24) and (15.25)
are not singular (see, e.g., [34], [56]) and employed the following simple facts:
if

Y= { [X]sxs  [0]sx1 LX4 and V= { Vaxs  [0ax LM’

0]ix3  Taa Olixs  Yaa
then
_[[XY]3x3  [0]3x1 an S [UX) ™ sxs [0]3xa
Xy= { [0]1x3 1744:U44LX4 dx= [ [0]1 %3 ($44)_1]4X4

where det X # 0 and z44 # 0 are assumed.

We recall that the matrices (15.28) are nonsingular, too. Moreover, by
the arguments similar to that of applied in the proof of Lemma 14.2 we can
show that the matrices

LYK=Y and — LA (K®)~! (15.55)
are positive definite (for details see [41], [59], [34], [57]). Therefore, the

matrix
[LO(KM)=L = L (K®)1]5, 4 [0]5x1

. (15.56
[0]1x3 or{y +2L) |, ( )

x4

0=

is positive definite. Consequently, the matrix M defined by (15.54), which
represents the principal homogeneous symbol matrix of the operator (15.53),
is nonsingular. Thus, the operator (15.53) is an elliptic ¥DO.

Further, from (15.54) it follows that the dominant singular part of the
operator (15.53) can be represented as the composition of two operators
where the first one is the operator with the positive definite principal symbol
matrix (15.56), while the second one is the following invertible operator

271 + K095y [0]3%1

-
(013 2 4x4

which corresponds to the second matrix multiplyer in (15.54). These facts
yield that the index of the operator (15.53) is equal to zero.

Next we prove that the operator (15.53) has the trivial null-space . Let
the homogeneous equation

[\Ill - \1’2 (I>2_1 (I)l] gl = 07 gl = (gia o 7gzll)T7 (1557)
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admits a nontrivial solution g’ #0. Then the nontrivial vector (g', &, *®; ¢') "
# 0 solves the system (15.11)—(15.12) (with f = 0, F = 0). This contra-
dicts to Lemma 15.3. Therefore, (15.57) has only the trivial solution, which
completes the proof. O

Corollary 15.6. Let S € C* andlet s e R, 1 < p < o0, 1< g < 0.
Then the operators

U -0 @y @y [Hy(S)]' = [HyTH(S)]
(B (9] =[B! (S)]*
are elliptic invertible ¥ DOs of order +1.

Proof. Tt is verbatim the proof of Corollary 15.4. O
Let us introduce the following ¥DO of order —1

U=[0; — Uy &, ' &) . (15.58)

From Lemma 15.5 it follows that we can represent the solution of the system
(15.7) “explicitly” by formulae

gV =0 F -0 T,3;" f, (15.59)
g =010, OF -3 (B, 0T, ®;" + 1) f, (15.60)

where [ is again the identity operator.
Substituting (15.59) and (15.60) into (15.1) and (15.2) we obtain the
following representation of solution of the problem (C),,:

UD(z) =W (T F - T, 85" f) (2), (15.61)
U@ (z) = (W<2> + o V<2>) (B, @ T F—
—®, " [® VT, &, + I f) (2), (15.62)

where F' and f are the boundary data of the interface problem under con-
sideration (see (7.3)—(7.4) or (7.11)—(7.12)).

Now we are in the position to formulate the basic existence results in the
form of the following propositions.

Theorem 15.7. Let conditions (14.5) be fulfilled. Then the formulae
(15.61)—(15.62) define the unique regular solution to the problem (C), of the
class

U, U®) e (chr @), [Ch(@2) nSKHQ*)])') (15.63)
(with r and w as in (15.3)).

Proof. 1t is a ready consequence of the uniqueness Theorem 9.8 and Lem-
mata 10.1, 15.3, and 15.5. g

Theorem 15.8. Let S € C*°, 1 < p < oo, and
feBLIPS)Y, FelB, L 9" (15.64)
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Then the formulae (15.61)—(15.62) represent the unique solution to the prob-
lem (C)., of the class

U, UB) e (W (@], Wy 100(27) N SK(Q)]) (15.65)

(with r and w as in (15.3)).

Proof. Solvability of the problem (C),, in the class indicated in the theorem
is an immediate consequence of the formulae (15.61)-(15.62), and Theorem
10.8 (with s =1 — 1/p).

To prove the uniqueness of solution to the problem (C), for arbitrary
p € (1,00), we have to repeate word for word the arguments of the proof
of Theorem 14.6. The case is that the key integral representation formulae
similar to (14.30)-(14.31) we can also write for a solution (U™, U()) to
the homogeneous problem (C),, of the class (15.65) (see Theorem 10.8, item
ii)). O

15.2. In this subsection we present the existence results for the prob-
lem (G),. First we transform the interface conditions (7.5)—(7.8) to the
equivalent equations on S (cf. Subsection 14.3):

[BY(D,n)UM]T — [B' (D n) U]~ =F, (15.66)

[t n]t = w® ] =, W] - W) = A, (15.67)

[PO(D,n)UD - 1+ + [P<2>( U - =FD L O (15.68)

[PO(D,n)UD -m]t +[PP(D,n)UP -m]~ = F(H) + F)| (15.69)
where

F= ((17}(*) —EO) 1+ (FH - FO)ym + Fyn, F4)T , (15.70)

and I, m, and n are as in Subsection 7.2.
We seek the solution of the problem (G),, in the form of potentials (15.61)-
(15.62), where F is given by (15.70), and

UOF —[UD]" = fF=(pl+vm+ fun, f1). (15.71)

Here ¢ and ¢ are unknown scalar functions of the space C**(S), while
Fl(i), F,(ni), F,, Fy, fn, and f4 are given functions on S. We assume that

EX B B,y Fyoe CY(S), fo, fr € CR(S),

15.72
SeCkbe E>1 0<a<a <1 ( )

From the results of the previous subsection it is evident that the vectors U1
and U®) given by (15.61) and (15.62) are regular solutions to the steady
state oscillation equations of thermoelasticity theory (7.2). Moreover, they
automatically satisfy the conditions (15.66) and (15.67). It remains to fulfil
the conditions (15.68) and (15.69) by choosing the unknown functions ¢
and ¢ appropriately.
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Due to the jump relations of the single and double layer potentials (see
Lemmata 10.1 and 10.7) we have from (15.61)-(15.62) (see also (15.9),
(15.10) and (15.58))

[BO(D,n) UMt = LOT[F - Ty &, f]l =T, U[F - Ty 8, f] =
=0 OF U U0, 0" (pl+m+ fan, f1)7, (15.73)
[BA(D,n)UP]~ = [£®) + po(27'I, + K{P)] &5 [, U F —
—(P1 T T @y + )] = Vo @y (B U F — (2 VT2 0, +1)f] =
=08, B UF — U8, (&, 00,85 + 1) (@l +ypm+ fun, f1) 7. (15.74)
Now let I*, m*, and n*, be the 4-vectors defined by (14.48) and let
e* =(0,0,0,1)". (15.75)
Then
(l+vm+ fan, )T =@l* +m* + fun* + fre". (15.76)
Next we set
Q=0 UF -0, 00, &, (fyn*+ fre), 1577
=08 0 UF — Uy &, (B, U U, &, + I)(fun* + foe*).

Applying these notations in (15.73) and (15.74) we get

.

(BO(D,mUMTF = ([POD,mUO A (D,n)uV]F) - =
=0, UV, &5 (pl* +¢m*) + G, (15.78)

T
[BA(D,mU]~ = ([PO(D,m)U®, A(D,n)uf?]) =
=0, &, (BT T, B+ 1) (@l* +ym*) + G =
=0, T, &, (pI* +m*) + Ga, (15.79)
since

— B[RO U, B T = [Ty B D, T 4+ )T, &5 =

=—[(T, — T DT+ T, = -0, T T, §;! (15.80)

due to (15.58).

Substitution of the formulae (15.78)—(15.79) into the interface conditions
(15.68)—(15.69) leads to the following system of ¥DEs on S for the unknown
functions ¢ and :

—[W OB, (@l +pm*)] 1 =27 (B D + B ) — gy 15— p-17),  (15.81)
[T U5 (ol +pm*)]-m* =27 L (ES + B =G -m* —o-m*). (15.82)
This system can also be rewritten as

Meh=q, (15.83)
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where h = (p,9)7 is the sought for 2-vector, ¢ = (qi,¢2)" is the given
2-vector,

G = 271(1’_\7/}(4‘) + ﬁ‘l(_) _ Z]vl . l* _ Z]v2 . l*),

~ _ (15.84)
@ =2""FP +F) g -m" +@ m),
(Ka)kily U (Ka)rjm;
Mg = it JMm , 15.85
“ m(Ka)kily  me(Ka)ejmi |y, ( )
Kog=-000,d,", (15.86)

in (15.85) the summation over repeated indices k and j is meant from 1 to 3.

Note that K¢ is a 4 x4 matrix DO of order 1. As in the proof of Lemma,
15.5 we easily derive that the principal homogeneous symbol matrix of the
operator g reads as

(1)
o(Kg) = —0(¥1)0(2)0(¥2)[0(R)] ! = — { [L%]3x3 [Ol3xa ] y

Olixs LYY

e e U [

with the same M, K4, LU and Lgl) as in (15.54), due to formulae (15.20)-
(15.29) and (15.54). The last equation together with (15.56) implies

Z)sxsz  [0]3x1 ]
ko) = | | 15.87
otke) = | ol O (15.87)
where

Zy =208 L2 (L) + L (15.88)

is a positive function, while
Z = —LM(KM)~1 [L(l)([((l))—l _ L(Q)(K(2))—1]—1L(2) (K@)t =
- {_K(2)(L(2))71[L(l)(K(l))fl — L(z)(K(2>)*1]K(1)(L(1>)*1}*1 -
= [KW@M)~1 - K& (L)1) (15.89)
is a positive definite 3 x 3 matrix (since the matrices (15.55) are positive

definite). Whence for arbitrary z € S, £ € R? \ {0}, and € C? there hold
the inequalities

Zaa(w,€) > ¢ |E], Z(x,&n-n> "€ nl?, (15.90)
with positive constants ¢’ and ¢”.

Lemma 15.9. The principal homogeneous symbol matrices of the ¥ DOs
Ka amd Mg are positive definite.
Proof. The positive definiteness of 0(K¢) follows from (15.87)-(15.90). In

the case of the matrix M, for arbitrary z € S, £ € R? \ {0}, and n € C?,
we have

o(Ma)n-n=



o, o], [3}a)-

o)l (x) Ziym + e (z)mj(z) Zignam, +
+m ()l (x) Zijm + mi(2)m;(x) Zkin21ms =
= Zyj[li(@)m + mg(x)na][lk(2)7; + me(x)h,] =
= Z[ml(z) + nom(z)] - [Iml(z) + nem(z)] >

> "[€] Im (@) +mm(@)|? = ¢"|¢] [nf?,

due to the second inequality in (15.90). Therefore, 0(Mg) is a positive
definite matrix as well. O

—

Corollary 15.10. The dominant singular parts of the operators (15.85)
and (15.86) are formally self-adjoint elliptic W DOs of order 1 with indices
equal to zero.

Next we recall that J(Q') denotes the set of Jones eigenfrequencies for
the problem (G),, (see (9.54)—(9.55)) and prove the following assertion.

Lemma 15.11. If w & Jg(Q'), then the operators
Mg+ [CHS)P =[O (S, 1<I<E,
[H3(S)]? = [Hy ' (S)]?, SeC™, seR, 1<p< oo,
[B: () = [BS,'(9)]?, S€C™, seR,
1<p<oo, 1<qg< oo,

are isomorphisms.
Proof. Again due to the general theory of ¥DOs on closed smooth mani-
folds, it suffices to show that the homogeneous version of equation (15.83)
(¢ = 0) has only the trivial solution in the space C"**(S). Let h = (@,9)" €
[C(S)]? be some solution of the homogeneous equation and construct
the vectors U1 and U® by formulae (15.61)-(15.62), where F = 0 and
f =1"¢p+m*y. Clearly, to the nontrivial pair (¢, 1)) there corresponds the
nontrivial vector f since I* and m* are orthonormal (see (14.48)). On the
other hand it is evident that (U, U®?) € (Ch*(Ql), CH*(Q2)NSK™(0?))
and they satisfy the homogeneous conditions (15.66)-(15.69), which are
equivalent to the homogeneous version of equations (7.5)—(7.8). Therefore,
by Theorem 9.9 we conclude U™ = 0 in Q* (p = 1,2). Now, from the equa-
tion [UW]H —[UP]~ = f =1*¢ +m*y = 0, it follows that ¢ =+ =0. O

With quite the same arguments as in the previous subsection (see proofs
of Theorems 15.7 and 15.8) we derive the following propositions.

Theorem 15.12. Let w & Jq(Q') and conditions (15.72) be fulfilled.
Then the problem (G),, is uniquely solvable in the class ([C**(Q1)]*, [CH*(Q2)N
SK™(02)]*) and the solution is representable in the form of potentials (15.61)
—(15.62), where F' and f are given by (15.70) and (15.71), respectively, and
where (,1)T € [CH*(8)]? is the unique solution of the system of WDEs
(15.83) with the right-hand side q € [C*~2(S)]2.
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Theorem 15.13. Let w & Jo(Q'), S € C*, and
F S, Foy Fy € B,y/(S), fay fr € By, 7(S), 1<p < oo,

Then the problem (G). is uniquely solvable in the class ([W}(Q)]*,
[WI}JOC(QQ) N SK™(22)]*) and the solution is representable in the form of
potentials (15.61)—(15.62), where F and f are given by (15.70) and (15.71),
respectively, and where (p,1))T € [Bll,;,l/p(S)]2 is the unique solution of the
system of WDEs (15.83) with the right-hand side q € [B;Zl,/p(S)P.

15.3. Here we investigate the nonhomogeneous problem (%), applying
the same approach as above. Again we start with the reformulation of the
interface conditions (7.7)—(7.10) to the equivalent equations

U =01 = £, DD muTE = A0, n)ui?]” = Fy, (15.91)

[PO(D,n)UD - n]t — [PA(D,n)UP .n]~ = F,, (15.92)
AT = R (15.93)
w®  m]t + [u® m] = fGD 4 ), '

where
f= (DTN T - FIm+ Fana 1) (15.04)
Next we set

F=(pl+ym+F,n, F)T =@l*+¢ym* +F,n* + Fye*, (15.95)

where ¢ and ¢ are unknown scalar functions, while I*, m*, n*, and e* are
the same 4-vectors as in the previous subsection. Here we assume either

Al(i)a NT(ni)a ~n7f4 € Ck7a(s)a ﬁna Fy € Ck_La(S)a

, 15.96
SeCHLY k>1 0<a<a <1, ( )
or
FE) P F o pl-l/p(g
1 s Jm Ty Jny J4 DD ( )7 (1597)

Fo,Fy € B,1/7(S), S€C™®, 1<p< oo.

Now we look for the solution to the nonhomogeneous problem (#),, in the
form of potentials (15.61)—(15.62), where f and F' are defined by (15.94)
and (15.95), respectively.

One can easily check that the conditions (15.91) and (15.92) are auto-
matically fulfilled. It remains to satisfy conditions (15.93).

Note that (see (15.10), (15.11), (15.58))

(U] =@ W(F - Wy ;' f) = & ¥ (pl" +ym*) + s, (15.98)
U] =3, (8,1 @, O F — 8,1 [®, U T, B, + 1] f) =
=0, U (pl" +Ym*) + @, (15.99)
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where g3 and ¢4 are given 4-vectors:
Gs =0, (Fyn* + Fye*) —®, U0, 8! f,
Q= U (Eyn*+ Fye*) — [& U0, &, + 1] f.

Therefore, the interface conditions (15.93) lead to the system of ¥DEs for
pand ¥ on S:

O U (ol +pm*) -1 =2 [+ f Gt~ 1],

(15.100)

~)  ~ - 15.101
<I>1\P(<pl*+¢m*)-m*:2_1[]?}”+)+f7(n)—q3-m*—q4-m*]. ( )
We rewrite these equations in matrix form

Mgh=¢, (15.102)

where h = (p,v) " is the sought for 2-vector, ¢ = (¢}, q5)" is the given

2-vector,

¢ =2+ 1 - =1,

oo T N (15.103)
g =2""[fSD + ) =@ -omt =@ -m],
lk(KH)k'l' lk(/CH)k'm~ :|
My = it imj , 15.104
" { mi(Ke)kily  me(Ke)egmy |, ( )

Ky =&, ¥, (15.105)

here again the summation over repeated indices k and j is meant from 1 to 3.
By formulae (15.20)-(15.29) and (15.54) we get

otkm) = otaorn = | [l O] o)

where
X = KO ([LOK®) - L(2>(K(2>)—1]K<1>)‘1 _
= [LO(KMW)=t — @) (g@)H-1~1 (15.107)

is a positive definite 3 x 3 matrix and X44 = 27 '[L{Y) + L]~ > 0 for
arbitrary z € S and £ € R? \ {0}.

Now by the same reasonings as in the previous subsection one can prove
the following propositions.

Lemma 15.14. The principal homogeneous symbol matrices of the ¥ DOs
Ky amd My are positive definite.

Corollary 15.15. The dominant singular parts of the operators (15.104)
and (15.105) are formally self-adjoint elliptic W DOs of order —1 with indices
equal to zero.

Lemma 15.16. Ifw & Jy(Q') (i.e., see (9.56), (9.57), then the operators
Mg+ [C7D(S)P = [Ch(S)?, 1<1<E,
[H;’(S)]2 — [HI“;‘“(S)]Q, SeC® seR, 1<p< oo,
[B; ,(S)? = [By1H(S)?, SeC™, seR,



1<p<oo, 1<q< o,

are isomorphisms.

Theorem 15.17. Let w & Jg(QY), S € C*, and conditions (15.96)
[(15.97)] be fulfilled. Then the nonhomogeneous problem (H). is uniquely
solvable in the class

(UD,U) € ([Co @D, [CH(@) NSK(92)]Y)
(@D, U € (WY, W106(92) N SKF(Q2)])]

and the solution is representable in the form of potentials (15.61)—(15.62),
where f and F are given by (15.94) and (15.95), and where

(0. 0)" € [C ()P [(w,0)" € (B, 7 (S)P]
is the unique solution to the system of WDEs (15.102).
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