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ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE

GOURSAT PROBLEM FOR SYSTEMS OF FUNCTIONAL PARTIAL

DIFFERENTIAL EQUATIONS OF HYPERBOLIC TYPE

(Reported on Otober 12, 1998)

In the retangle D

ab

= [0; a℄ � [0; b℄ let us onsider the system of funtional partial

di�erential equations of hyperboli type
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A partiular ase of the system (1) is, for example, the system of integro-di�erential

equations
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vetor and matrix funtions, respetively, while �

ik

: [0; a℄! [0; a℄ and �

ik

: [0; b℄! [0; b℄

(i = 1; 2; k = 1; 2; 3) are ontinuous funtions suh that
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(x) � x for 0 � x � a; �

ik

(y) � y for 0 � y � b (i = 1; 2; k = 1; 2; 3): (3)

Along with (1

0

), (2) onsider also the Goursat problem for the seond order hyperboli

system with retarded arguments, i.e., the problem
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u(0; y) = 0; for 0 � y � b; u(x; 0) = 0 for 0 � x � a; (5)
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is a ontinuous vetor funtion, while �

k
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Let the problem (4), (5) have a solution u. Suppose
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and E is the unit n� n matrix.

The inverse assumption is obvious: if the identities (8) are ful�lled and the problem
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), (2) has a solution (u
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; u
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), then the vetor funtion u given by the equality
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is the solution of the problem (4), (5). Thus the problem (4), (5) is equivalent to the

problem (1

0

), (2) for the ase, where g

i
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, �
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ik
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by the equalities (8).

In the ases, where �
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(y) � y (k = 1; 2; 3), �

ik

(x) � x, �

ik

(y) � y

(i = 1; 2; k = 1; 2; 3), the problems of the existene and uniqueness of a solution of

the problems (4), (5), and (1

0

), (2) were investigated by many authors (see, e.g., [1{9℄

and referenes therein). However, the problem (1), (2) as well as the problems (1

0

), (2)

and (4), (5) are studied insuÆiently in the general ase. The existene and uniqueness

theorems formulated below onern with this ase.

We shall use the following notation and de�nitions.

R
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is the spae of n-dimensional real vetors in whih under the norm kzk of an

arbitrary vetor z is meant a sum of absolute values of this vetor.
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are ful�lled on D

ab

. Then the problem (1), (2) has at least one solution.

Theorem 2. Let there exist positive numbers r, r
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From Theorems 1 and 2 we obtain the following propositions on the solvability and
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Corollary 3. Let there exist positive numbers l, r, and ontinuous nondereasing
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In the ase, where �
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(y) � y (k = 1; 2; 3), the results of Hartman{

Wintner [1℄ and Alexiewiz{Orliz [3℄ onerning the solvability of the Goursat problem

follow from Corollary 3.

Corollary 4. Let there exist positive numbers l, r, and ontinuous nondereasing

funtions ' : [0;+1[!℄0;+1[ and ! : [0;+1[! [0;+1[ suh that the inequalities (7)
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(12) and (15). Then the problem (4), (5) has one and only one solution.
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