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ON BOUNDARY VALUE PROBLEMS FOR N -TH ORDER

FUNCTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES

Abstract. A boundary value problem is considered for an N-th or-

der functional di�erential equation with impulses. It is reduced to

the same boundary value problem for another equation of the same

order without impulses. The reduction is based on constructing of

an isomorphism between the space of the functions which are piece-

wise absolutely continuous up to the (N�1)-st derivative and sat-

isfy the impulse conditions, at the discontinuity points and the space

of the functions which are absolutely continuous up to the (N�1)-

st derivative. The approach allows to derive conditions on the sign

preservation for the Green function of the considered boundary value

problem.

reziume. ganxilulia sasazGvro amocana N-uri rigis Punqcio-

nalur-diPerencialuri impulsebiani gantolebisTvis. igi daiKvaneba

igive sasazGvro amocanaze imave rigis uimpulso gantolebisaTvis. daK-

vana emKareba izomorPizmis agebis Semdeg or sivrces Soris:erTis mxriv,

im PunqciaTa sivrce romelTac aqvT N�1 rigamde haTvliT uban-uban

absoliturad uCKveti kerZo Carmoebulebi da CKvetis CertilebSi

akmaKoPileben impulsis pirobebs, xolo meores mxriv N�1 rigamde

haTvliT absoluturad uCKvet PunqciaTa sivrce. es midgoma saSuale-

bas iZleva dadgenili iqnas ganxiluli sasazGvro amocanis grinis Pun-

qciis niSanmudmivobis pirobebi.

1. Introduction

Consider the following equation

(Lx)(t) � x

(n)

(t) +

k

X

j=1

(T

j

x)(t) = f(t); t 2 [0; b]; (1.1)

x(t

i

) = �

i

x(t

i

� 0); i = 1; 2; : : : ;m; (1.2)

1991 Mathematics Subject Classi�cation. 34K10.

Key words and phrases. Functional di�erential equation, boundary value problem,

isomorphism, Green operator.



51

where

�

i

> 0; i = 1; : : : ;m; 0 = t

0

< t

1

< � � � < t

m

< t

m+1

= b;

T

j

: C(0; t

1

; : : : ; t

m

; b)! L(0; b);

are linear bounded Volterra operators acting from the space of piecewise

continuous functions x : [0; b]! R into the space of summable functions.

Particular cases of the operators T

j

are

(T

j

x)(t) =

Z

t

0

K

j

(t; s)x(s) ds;

(T

j

x)(t) = p

j

(t)x(h

j

(t)); x(�) = 0; � < 0;

where p

j

2 L(0; b), K

j

satis�es standard smoothness conditions (see, for

example, [6]), h

j

are measurable and h

j

(t) � t, t 2 [0; b].

Equations of the type (1.1){(1.2) are intensively studied. A large number

of publications devoted to these equations has been published recently (see,

e.g., [2], [3], [4], [5]).

Let D(0; t

1

; : : : ; t

m

; b) stand for the Banach space of all piecewise con-

tinuous functions x : [0; b] ! R having absolutely continuous on every

interval [t

i

; t

i+1

), i = 0; 1; : : : ;m, derivative x

(n�1)

, and satisfying (1.2) at

t

i

, i = 1; 2; : : : ;m, (1.2).

Denote by D(0; b) the Banach space of all functions y : [0; b]! bR with

absolutely continuous on [0; b] derivative y

(n�1)

.

Let l

i

: D(0; t

1

; : : : ; t

m

; b)! R, i = 1; : : : ; n, be linear bounded function-

als.

If the boundary value problem (1.1), (1.2), (1.3), where

l

i

x = 0; i = 1; : : : ; n; (1.3)

has a unique solution for every f 2 L(0; b), then the solution to this problem

can be represented in the following integral form

x(t) =

Z

b

0

G(t; s)f(s) ds;

where G(t; s) is called the Green function of the problem (see [1], [6]).

The aim of this paper is to obtain some positivity (nonpositivity) condi-

tions for the Green function G(t; s) for di�erent boundary value problems

to impulsive equations (1.1), (1.2). Positivity of the Green function allows

to estimate solution of the boundary value problem. For example, from the

inequality

(Lz)(t) � (Lx)(t) � (Ly)(t); t 2 [0; b]

and the equalities

l

i

z = l

i

x = l

i

y; i = 1; : : : ; n;

it follows that z(t) � x(t) � y(t), t 2 [0; b].
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The most important application of the positivity of G(t; s) is connected

with the famous regularization scheme for investigation of nonlinear bound-

ary value problems. Di�erent variations on this scheme can be found in ([3],

[4], [5]).

To study (1.1), (1.2), (1.3), we compare solutions of the above equation

with solutions of some auxiliary equation, constructed using an isomorphism

between D(0; t

1

; : : : ; t

m

; b) and D(0;b). Indeed, the following isomorphism

between the two spaces can be established:

x(t) = y(t) +

h

�

[t

1

;t

2

)

(t) + �

[t

2

;t

3

)

(t)�

2

+ (1.4)

+ �

[t

3

;t

4

)

(t)�

3

�

2

+ � � �+ �

[t

m

;t

m+1

)

(t)�

m

�

m�1

� � ��

2

i

(�

1

� 1)y(t

1

) +

+

h

�

[t

2

;t

3

)

(t) + �

[t

3

;t

4

)

(t)�

3

+ �

[t

4

;t

5

)

(t)�

4

�

3

+ � � �+

+ �

[t

m

;t

m+1

)

(t)�

m

�

m�1

� � ��

3

i

(�

2

� 1)y(t

2

) +

+

h

�

[t

3

;t

4

)

(t) + �

[t

4

;t

5

)

(t)�

4

+ �

[t

5

;t

6

)

(t)�

5

�

4

+ � � �+

+ �

[t

m

;t

m+1

)

(t)�

m

�

m�1

� � ��

4

i

(�

3

� 1)y(t

3

) + � � �+

+

�

�

[t

m�1

;t

m

)

(t) + �

[t

m

;t

m+1

)

(t)�

m

�

(�

m�1

� 1)y(t

m�1

) +

+ �

[t

m

;t

m+1

)

(t)(�

m

� 1)y(t

m

):

Here

�

[t

i

;t

i+1

)

(t) =

(

1 if t

i

� t < t

i+1

0 t 62 [t

i

; t

i+1

)

: (1.5)

A short expression for (1.4) is:

x(t) = y(t) +

m

X

i=1

q

i

(t)y(t

i

); (1.6)

where

q

i

(t)=

�

�

[t

i

;t

i+1

)

(t) +

m�i

X

j=1

�

[t

i+j

;t

i+j+1

)

(t)

j

Y

k=1

�

i+j�k

�

(�

i

�1); i=1; : : : ;m:

Note that q

i

(t) = const on each semiinterval [t

i

; t

i+1

), i = 1; : : : ;m.

Substituting (1.6) into (1.1), we obtain

y

(n)

(t) +

k

X

j=1

(T

j

y)(t) +

k

X

j=1

�

T

j

m

X

i=1

y(t

i

)q

i

�

(t) = f(t); t 2 [0; b]; (1.7)
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Changing the order of summation, we get

(

e

Ly)(t) = y

(n)

(t) +

k

X

j=1

�

T

j

y

��

t

�

+

+

m

X

i=1

h

k

X

j=1

(T

j

q

i

)(t)

i

y(t

i

) = f(t); t 2 [0; b]; (1.8)

i.e., a non-impulsive functional-di�erential equation in the space D(0; b).

By the construction, the following result is proved:

Lemma 1.1. A function x 2 D(0; t

1

; : : : ; t

m

; b) is a solution of (1:1) �

�(1:2) if and only if the function y 2 D(0; b), corresponding to x by (1:6),

is a solution of (1:8).

The lemma reduces the investigation of (1.1){(1.2) to study of (1.8),

which is easier in many cases.

2. On a class of boundary value problems for impulsive

equations

Let l

i

: D(0; t

1

; : : : ; t

m

; b)! R, i = 1; : : : ; n, be linear bounded function-

als.

Add to (1.1), (1.2), boundary conditions

l

i

x = 0; i = 1; : : : ; n; (2.1)

and consider the boundary value problem (BVP) (1.1), (1.2), (2.1).

Let us discribe the class of problems under investigation by the following

De�nition 2.1. BVP (1.1), (1.2), (2.1) belongs to the class A if for any y,

z 2 D(0; t

1

; : : : ; t

m

; b) such that z(0) = y(0), z

(i)

(t) = y

(i)

(t), i = 1; : : : ; n�

1, t 2 [0; b], the following equalities hold: l

j

z = l

j

y, j = 1; : : : ; n.

Examples of BVP from the class A are the problems with the following

boundary conditions:

x

(i)

(0) = 0; i = 0; : : : ; n� 2; x

0

(b) = 0; (2.2)

x

0

(0) = x

0

(t

1

) = x

0

(t

2

) = � � � = x

0

(t

n�2

) = 0: (2.3)

Theorem 2.1. Suppose that

1) Impulsive BVP (1:1), (1:2), (2:1) belongs to the class A;

2) The Green function of the non-impulsive BVP (1:8), (2:1) preserves

its sign;

3) �

i

> 1, i = 1; : : : ;m.

Then the Green function G(t; s) of the impulsive BVP (1:1), (1:2), (2:1)

preserves the sign.
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To prove Theorem 2:1, it is su�cient to take into account the isomorphism

(1.4) establishing the correspondence between solutions of the impulse equa-

tion (1.1), (1.2) and the non-impulsive equation (1.8). The inequalities

�

i

> 1, i = 1; : : : ;m, guarantee, by virtue of (1.4), that the nonpositivity of

y implies the nonpositivity of x.

Consider the equation

x

(n)

(t) +

k

X

j=1

p

j

(t)x(h

j

(t)) = f(t); t 2 [0; b]; (2.4)

h

j

(t) � t; t 2 [0; b];

x(t

i

) = �

i

x(t

i

� 0); i = 1; : : : ;m; x(�) = 0; � < 0: (2.5)

Introduce the functions p

+

j

and p

�

j

: p

j

(t) = p

+

j

(t)� p

�

j

(t); where p

+

j

� 0,

p

�

j

� 0 and de�ne

�

j

(t) = t� h

j

(t); �

�

= max

1�j�m

vraisup

t2[0;b]

�

j

(t); �

�

= max

1�i�m

�

i

:

Theorem 2.2. Let n be an even number, �

i

> 1 for i = 1; : : : ;m, and the

folowing inequalities be ful�lled:

�

�

n

p

m(�

�

� 1)�

2

� � ��

m

+ 1

n

v

u

u

t

k

X

j=1

p

�

j

(t) �

n

e

; t 2 [0; b]; (2.6)

and

�

m(�

�

� 1)�

2

� � ��

m

+ 1

�

k

X

j=1

p

+

j

(t) �

n!(n� 1)

b

n

; t 2 [0; b]: (2.7)

Then the Green function of the BVP (2:4), (2:5), (2:2) is nonpositive in the

square t, s 2 [0; b].

For the proof it is enough to mention that inequalities (2.6), (2.7) guar-

antee, by virtue of [9], [10], that the Green function of the nonimpulsive

BVP (1.8), (2.2) is nonpositive in square t, s 2 [0; b]. Reference to Theorem

2.1 completes the proof. �

3. On the (n� 1; 1) boundary value problem

In some cases it is possible, using results on BVP from the class A,

to obtain statements for some problems not depending on A. One of the

possible schemes of such kind is given by the following Theorem 3.1.

Consider the two-point boundary value problem (BVP) for (1.1){(1.2):

x

(i)

(0) = 0; i = 0; 1; : : : ; n� 2; x(b) = 0: (3.1)

Let us determine conditions under which the Green function G(t; s), t, s 2

[0; b] of (1.1){(1.2), (3.1) preserves its sign.
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Theorem 3.1. Let �

i

> 1, i = 1; : : : ;m, and suppose that the Green func-

tion

e

G

c

(t; s), t; s 2 [0; c] of the BVP

(

e

Ly)(t) = f(t); t 2 [0; c]; (3.2)

y

(i)

(0) = 0; i = 0; 1; : : : ; n� 2; y

0

(c) = 0;

exists and is nonpositive for every c 2 (0; b). Then the Green function

G(t; s) of the BVP (1:1){(1:2), (3:1) is nonpositive for t, s 2 [0; b].

Proof. Assume, on the contrary, that G(t; s) changes its sign. Then there

exists a function f(t) � 0, t 2 [0; b], such that the solution x of the consid-

ered problem changes its sign at t

�

2 (0; b).

By (1.6), x

(i)

(t) = y

(i)

(t), t 2 [0; b], i = 1; : : : ; n � 1. It is evident that

there exists c 2 (t

�

; b) such that x

0

(c) = 0. But it means that also y

0

(c) = 0.

The solution y of (3.2) has the representation

y(t) =

Z

c

0

e

G

c

(t; s)f(s) ds:

From the nonpositivity of

e

G

c

(t; s) it follows that y(t) � 0 for t 2 [0; b]. Using

(1.6), we obtain the inequality x(t) � y(t) for t 2 [0; b], which contradicts

our assumption that x(t) changes its sign on (0; b). �

Corollary 3.1. Let

1) �

i

> 1, i = 1; : : : ;m;

2) p

j

(t) � 0, j = 1; : : : ; k, t 2 [0; b];

3) [m(�

�

� 1)�

2

� � ��

m

+ 1]

P

k

j=1

p

j

(t) �

n!(n�1)

b

n

, t 2 [0; b].

Then the Green function G(t; s) of the BVP (2:4){(2:5), (3:1) is nonpos-

itive for t, s 2 [0; b].

Proof. Every BVP (3.2) is equivalent to the integral equation

y(t) = (


0c

y)(t) +

Z

c

0

G

c

(t; �)f(�) d�; t 2 [0; c]:

Here G

c

(t; �), s � � < t � c, is the Green function of the boundary value

problem

y

(n)

(t) = f(t); t 2 [s; c]; y

(i)

(s) = 0; i = 0; 1; : : : ; n� 2; y

0

(c) = 0:

The operator 


sc

: C(0;b) ! C(0;b) (C(0;b) being the Banach space of

continuous functions y : [0; b] ! R with the Chebyshev norm), is de�ned

by

(


sc

y)(t) = �

Z

c

s

G

c

(t; �)

m+k

X

j=1

p

j

(�)y(h

j

(�)) d�:

The condition 2) guarantees that 


0c

is a positive operator and the condition

3) guarantees that j


0c

j < 1. Therefore there exists the positive inverse

operator (I�


0c

)

�1

. Each nonnegative f yields a nonpositive solution x to
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the BVP (3.2), i.e., the Green function

e

G

c

(t; s) is nonpositive. Employing

Theorem 3.1 we complete the proof. �
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