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ON THREE-DIMENSIONAL DYNAMICAL PROBLEMS OF THE

GENERALIZED THEORY OF ELASTOTHERMODIFFUSION

Abstract. For Green{Lindsay's and Lord{Shulman's models, three{

dimensional boundary value and contact dynamical problems of the

mathematical theory of elasticity are considered. By the Riesz{Fisher{

Kupradze method (the discrete singularity method), approximate so-

lutions are e�ectively constructed.

reziume. naSromSi grin-lindseisa da lord-Sulmanis modelebisa-

Tvis gamokvleulia drakadobis maTematikuri Teoriis samganzomilebiani

sasazGvro da sakontaqto dinamiuri amocanebi. ris-PiSer-kupraZis

meTodis gamoKenebiT (diskretuli gansakuTrebulobis meTodi) ePeq-

turadaa agebuli miaxloebiTi amonaxsnebi.

In the present paper, we investigate di�erent three-dimensional boundary

value and contact dynamical problems for new models of the mathematical

theory of elasticity with conjugate �elds. Intensively developing for the last

years new branches require the construction of a general theory of solvabil-

ity, the elaboration of analytic methods for solving complicated problems

dealing with the interaction of �elds of di�erent nature. One of the pos-

sible approaches allowing us to solve these problems is the well-elaborated

method of the potential theory and the theory of singular integral equations.

We present here a complete mathematical analysis of these problems as well

as give an e�ective algorithm for approximate construction of solutions of

boundary-value and contact problems. The results of our investigations in

this area can be found in [1, 2, 3] and in [4{14].

We consider a three-dimensional isotropic elastic medium in which ther-

modi�usion takes place. Deformation is described by the displacement vec-

tor v(x; t) = (v

1

; v

2

; v

3

)

T

= kv

k

k

3�1

(one-column matrix), the variation of

temperature v

4

(x; t) and the \chemical potential" of the medium v

5

(x; t);

x = (x

1

; x

2

; x

3

) are the points of the Euclidean space R

3

, t � 0 is time, and

the sign \T" stands for transposition.
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The objects of our investigations are the following systems of partial dif-

ferential equations of the generalized theory of elastothermodi�usion [1{3].

I. Green{Lindsay's model:
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(1)

where the elastic, thermal, di�usion and relaxation constants satisfy the

natural restrictions [3]

� >0; 3�+ 2� >0; � >0; �

k

>0; a

k

>0 (k = 1; 2); a

1

a
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2

12

>0;

�
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0

� 0 (�

1

= �

0

= 0 { is the classical case):

II. Lord{Shulman's model:
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(2)

here �

t

> 0 is a relaxation constant.

The non-stationary systems (1) and (2) will be written below in the

vector-matrix form

L

�

@

@x

;

@

@t

�

V (x; t) = 0; (3)

where V (x; t) = (v; v

4

; v

5

)

T

= kv

k

k

5�1

, LV = k(LV )

k

k

5�1

.

We consider two (possible) cases when unknown vector V (x; t) depends

on the time t:

(a) v

k

(x; t) = Re[e

�ipt

u

k

(x; p)], steady (stationary) oscillations with the

frequency p > 0;

(b) v

k

(x; t) =

1

2�i

R

�+i1

��i1

e

�t

u

k

(x; �) d�, � = �+ iq, � > 0 is the represen-

tation given by Laplace{Mellin's integral (general dynamical case), k = 1; 5.

It can be easily seen that in both cases the dynamical system (3) (and

hence the systems (1) and (2)) is reduced with respect to the vector U(x; !) =
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ku

k

k

5�1

to the form

L

�

@

@x

;�i!

�

U = 0; (4)

where ! = p > 0 in the case (a) and ! = i� in the case (b). L(

@

@x

;�i!)

is an elliptic matrix di�erential operator. Denote by �(x;�i!) a matrix

of fundamental solutions of this operator. It can be constructed explicitly

in terms of elementary functions and has the form [3, 13] �(x;�i!) =

k�

jk

k

5�5

= k

1

�;

2

�; : : : ;

5

�k

5�5

, where

k

� = (�

1k

;�

2k

; : : : ;�

5k

)

T

, k = 1; 5,

are column-vectors; �(x;�i!) =

P

4

k=1




k

(

@

@x

)

e

i�

k

jxj

jxj

, where 


k

(

@

@x

) are

explicitly speci�ed matrix di�erential operators and �

k

(!) are the so-called

characteristic constants expressed explicitly in terms of the coe�cients of

the di�erential operator under consideration. Behavior of the matrix of

fundamental solutions � depends on the properties �

k

(!); all the necessary

properties are established.

We have the following relation: �

T

(�x;�i!) =

e

�(x;�i!), where

e

�(x;�i!) is the matrix of fundamental solutions of the associate (conju-

gate) operator

e

L(

@

@x

;�i!) � L

T

(�

@

@x

;�i!).

For the systems (3) and (4), the basic initial{boundary and boundary

value problems for �nite and in�nite (unbounded) domains are investi-

gated; appropriate theorems for the uniqueness and existence of solutions

are proved; integral formulas convenient for numerical realizations are con-

structed. Along with general theoretical problems, great attention is given

to the approximate and e�cient construction of solutions [3,4,5,7,8,13, 14].

Principal boundary di�erential operators of this theory are of the form

P

(k)

�

@

@x

; n

�

U(x) =

�

T

�

@

@x

; n

�

u(x)� n(x)

2

X

l=1



l

(1� �

1

i!)u

3+l

;

� (�

1k

+ �

2k

)u

4

+ (�

3k

+ �

0k

)�

1

@v

4

@n

;

� (�

1k

+ �

3k

)u

5

+ (�

2k

+ �

0k

)�

2

@v

5

@n

�

T

;

Q

(k)

�

@

@x

; n

�

U(x) =

�

u; (�

1k

+ �

2k

)�

1

@v

4

@n

+ (�

3k

+ �

0k

)v

4

;

+ (�

1k

+ �

3k

)�

2

@v

5

@n

+ (�

2k

+ �

0k

)v

5

�

T

; k = 0; 3;

where T (

@

@x

; n) = k��

jk

@

@n

+ �n

j

@

@x

k

+ �n

k

@

@x

j

k

3�3

is a matrix di�erential

stress operator of the classical theory of elasticity [1], n(x) = (n

1

; n

2

; n

3

)

is the unit vector and �

jk

is the Kronecker symbol. The corresponding

associate operators are denoted by

e

P

(k)

,

e

Q

(k)

. Moreover,

e

Q

(k)

= Q

(k)

,

k = 0; 3.
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Let

1

D � R

3

be a �nite domain bounded by a surface S 2 L

2

(�), � > 0

[1], and

2

D = R

3

n

1

D be an in�nite domain. We consider the boundary

value problems for the system (4):

Problem P

j

(q)

(!). In the domain

j

D (j = 1; 2), �nd a regular vector

U = (u; u

4

; u

5

)

T

2 C

1

(

j

D) \ C

2

(

j

D) satisfying

8x 2

j

D : L

�

@

@x

;�i!

�

U = 0;

8z 2 S :

�

P

(q)

�

@

@z

; n

�

U

�

j

= F

(1)

(z);

where

�

P

(q)

�

@

@x

; n

�

U(z)

�

j

= lim

j

D2x!z2S

P

(q)

�

@

@x

; n

�

U(x):

Problem Q

j

(q)

(!). In the domain

j

D (j = 1; 2) �nd a regular vector

U = (u; u

4

; u

5

)

T

2 C

1

(

j

D) \ C

2

(

j

D) satisfying

8x 2

j

D : L

�

@

@x

;�i!

�

U = 0;

8z 2 S :

�

Q

(q)

�

@

@z

; n

�

U

�

j

= F

(2)

(z);

where

q = 0; 3; Q

(q)

F

(1)

2 C

0;�

(S); P

(q)

F

(2)

2 C

0;al

(S):

(In case j = 2, the solution U satis�es certain decrease conditions at in�nity

[3]).

General theory of solvability of the above-mentioned problems is con-

structed [3{14]. (Corresponding theorems for the existence and uniqueness

of the solution are proved; the problems of smoothness are considered and

the estimates with respect to the parameter are given).

Here we begin with the actual construction of solutions. Consider, for

example, Problem P

1

(q)

(i�). We denote Green's tensor of this problem by

G

P

(q)

(x; y; i�;

1

D). We have [1, 3]:

G

P

(q)

(x; y; i�;

1

D) = �(x� y; �)� g

P

(q)

(x; y; i�;

1

D);

where g

P

(q)

is a regular component. The representation

8x

0

2

1

D : U(x

0

) =

Z

S

�

Q

(q)

�

@

@y

; n

�

G

T

P

(q)

(x

0

; y; i�;

1

D)

�

T

F

(1)

(y) d

y

S (5)

is valid [1, 3].
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Thus we have [1, 3] G

T

P

(q)

(x

0

; x) =

e

G

P

(q)

(x; x

0

); where

e

G

P

(q)

(x; x

0

) =

e

�(x� x

0

)� eg

P

(q)

(x; x

0

) is Green's tensor of the associate problem

e

P

1

(q)

(i�)

(with x

0

as a pole):

8x 2 D

1

:

e

L

�

@

@x

; �

�

e

U = 0; 8y 2 S :

�

e

P

(q)

e

U

�

1

= 0:

Consequently, the representation (5) implies

8x

0

2

1

D : U(x

0

) =

Z

S

�

e

Q

(q)

�

@

@y

; n

�

�

T

(x

0

� y)

�

T

F

(1)

(y) d

y

S �

�

Z

S

�

e

Q

(q)

�

@

@y

�

eg

P

(q)

(y; x

0

)

�

T

F

(1)

(y) d

y

S: (6)

It turns out that we can �nd a value

e

Q

(q)

eg

P

(q)

(y; x

0

)j

S

, x

0

2

1

D without

solving the problem.

Let

2

e

S 2 L

2

(�) be an arbitrary closed surface covering

1

D and let

f

2

x

k

g

1

k=1

�

2

e

S be an everywhere dense countable set of points. Let

s

eg

P

(q)

,

s = 1; 5, be the s-th vertical vector eg

P

(q)

= k

1

eg

P

(q)

; : : : ;

5

eg

P

(q)

k

5�5

.

By the formula of general integral representation of the vector

s

eg

P

(q)

, we

have [1, 3]

Z

S

�

T

(y �

2

x

k

; �)

e

 

s

(y; x

0

) d

y

S = �(

2

x

k

; x

0

); (7)

where

�(y � x; �) = P

(q)

�

@

@y

; n

�

�(y � x; �);

e

 

s

(y; x

0

) =

e

Q

(q)

�

@

@y

�

s

eg(y; x

0

); x

0

2

1

D;

�(

2

x

k

; x

0

) =

Z

S

�

Q

(q)

�(y �

2

x

k

; �)

�

T

e

P

(q)

s

e

�(y � x

0

) d

y

S:

The vector equality (7) can be rewritten in terms of components as

Z

S

[

k

 (y)]

T

e

 

s

(y; x

0

) d

y

S = �

l

k

�

2

x

[

k+4

5

]

; x

0

�

; (8)

where

k

 (y) = P

(q)

�

@

@y

; n

�

l

k

�

�

y �

2

x

[

k+4

5

]

; �

�

; l

k

= k � 5

h

k � 1

5

i

; k = 1;1:

([k] is the integral part of the number k). The following theorem is valid.
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Theorem 1. A system of vectors f

k

 (y)g

1

k=1

is linearly independent and

complete in a vector (�ve-dimensional) Hilbert space L

2

(S) (i.e., this system

is a basis in this space).

For the proof of the theorem see [1, 3].

Determine now the coe�cients �

s

k

, k = 1; N , from the condition

min

�

s

k







e

 

s

(z)�

N

X

k=1

�

s

k

k

 (z)







L

2

(S)

:

(here the sign { stands for \complex-conjugate").

By Theorem 1 and the equality (8), we obtain a uniquely solvable alge-

braic system with respect to �

s

k

:

N

X

k=1

�

s

k

(

k

 ;

j

 ) = (

e

 

s

;

j

 ); j = 1; N; (9)

where for the scalar product we adopt the notation

(

k

 ;  ) =

Z

S

[

k

 ]

T

 dS = ( ;

k

 ):

According to the property of the Hilbert space L

2

(S), we have

lim

N!1







e

 

s

(z)�

N

X

k=1

�

s

k

k

 (z)







L

2

(S)

= 0: (10)

Introduce the notation:

N

e

 

s

(z) =

N

X

k=1

�

s

k

k

 (z) �

N

�

e

Q

(q)

;

s

eg(z; x

0

)

�

T

; s = 1; 5;

N

�

e

Q

(q)

�

@

@z

�

eg(z; x

0

)

�

�







N

(

e

Q

(q)

1

eg); : : : ;

N

(

e

Q

(q)

5

eg)







5�5

�

�





N

e

 

1

(z); : : : ;

N

e

 

5

(z)





5�5

�

�







N

X

k=1

�

1

k

k

 (z); : : : ;

N

X

k=1

�

5

k

k

 (z)







5�5

;

N

U(x

0

) =

Z

S

h

e

Q

(q)

�

@

@y

�

�

T

(x

0

� y)

i

T

F

(1)

(y) d

y

S �

�

Z

S





N

e

 

1

(y; x

0

); : : : ;

N

e

 

5

(y; x

0

)





T

5�5

F

(1)

(y) d

y

S:

(11)

Thus due to (6), (8), (10) and (11), we �nally have 8x

0

2

1

D [

2

D and

for an arbitrary natural N

�

�

U(x

0

)�

N

U(x

0

)

�

�

�
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�

5

X

s=1




e

 

s

(y; x

0

)�

N

e

 

s

(y; x

0

)





L

2

(S)

� kF

(1)

(y)k

L

2

(S)

: (12)

Consider now the so-called basic contact problem for an inhomogeneous

medium

1

D [

2

D [1]:

1

D and

2

D are �lled with di�erent homogeneous

isotropic elastic materials. Denote the elastothermodi�usion constants for

the domains

j

D, j = 1; 2, by

j

�,

j

�,

j

�, : : : , and the di�erential operators

by

j

L,

j

P

(q)

, and so on.

Problem A

c

(i�). De�ne in

1

D [

2

D a regular vector

U(x; �) = (u; u

4

; u

5

)T 2 C

1

(

1

D [

2

D) \ C

2

(

1

D [

2

D);

� 2 �

�

�

0

�

�

� : Re � > �

�

0

	

;

(�

�

0

> 0 is a given constant) satisfying

8x 2

j

D :

j

L

�

@

@x

; �

�

U(x; �) = 0; j = 1; 2;

8y 2 S :

�

1

Q

(k

0

)

�

@

@y

�

U(y; �)

�

1

�

�

2

Q

(k

0

)

�

@

@y

�

U(y; �)

�

2

= f(y; �);

�

1

P

(k

0

)

�

@

@y

�

U(x; �)

�

1

�

�

2

P

(k

0

)

�

@

@y

�

U(x; �)

�

2

= F (y; �);

(k

0

= 0; 3 is a �xed number) and the asymptotic conditions at in�nity

(jxj ! 1)

U(x; �) = O(jxj

�1

);

@

@x

k

U(x; �) = O(jxj

�2

); k = 1; 3:

Let

G

c

(x; x

0

; i�) =

j

�(x� x

0

; �)�

j

g

c

(x; x

0

; i�); x 2

j

D; x

0

2 R

3

nS;

where j = 1; 2 is Green's tensor of the contact problem A

c

(i�), x

0

is a pole

and

j

g

c

is a regular component. Denote g

c

(x; x

0

; i�) =

j

g

c

(x; x

0

; i�), x 2

j

D,

j = 1; 2, g

c

= k

1

g

c

; : : : ;

5

g

c

k

5�5

, where

s

g

c

is a column-vector, s = 1; 5. The

existence of this tensor and its basic properties are established as usual [1, 3].

By means of the latter we can write the formula of general representation of

the solution of Problem A

c

(i�). We can easily see that the following formula

is valid:

8x

0

2

1

D [

2

D : U(x; �) =

Z

S

n

�

1

e

Q

(k

0

)

e

G

c

(y; x

0

)

�

T

o

1

F (y) d

y

S �

�

Z

S

n

�

1

e

P

(k

0

)

e

G

c

(y; x

0

)

�

T

o

1

f(y) d

y

S; (13)

where

�

e

G

c

(y; x

0

)

�

T

= G

c

(x

0

; y);

e

G

c

(x; x

0

; i�) is Green's tensor of the conjugate Problem

e

A

c

(i�).
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Having written (13) in an expanded form, we obtain

8x

0

2

j

D : U(x

0

; �) =

Z

S

�

1

e

Q

(k

0

)

j

�

T

(x

0

� y)

�

T

F (y) d

y

S �

�

Z

S

n

�

1

e

Q

(k

0

)

eg

c

(y; x

0

)

�

T

o

1

F (y) d

y

S �

�

Z

S

�

1

e

P

(k

0

)

j

�

T

(x

0

� y)

�

T

f(y) d

y

S +

+

Z

S

n

�

1

e

P

(k

0

)

eg

c

(y; x

0

)

�

T

o

1

f(y) d

y

S (j = 1; 2): (14)

Taking into account (14), we make an important conclusion: in order to

construct (explicitly or approximately) the solution of Problem A

c

(i�), it is

su�cient to know on the surface S the following quantities:

h

1

e

Q

(k

0

)

�

@

@y

�

eg

c

(y; x

0

)

i

1

and

h

1

e

P

(k

0

)

�

@

@y

�

eg

c

(y; x

0

)

i

1

; y 2 S; x

0

2S:

With regard for the de�nition of

s

eg

c

(x; x

0

), s = 1; 5, the formula of general

integral representation of solution of boundary value problems of this theory

gives

8x 2

j+1

D :

Z

S

h

j

P

(k

0

)

�

@

@y

�

j

�(y � x)

i

T

h

1

e

Q

(k

0

)

�

@

@y

�

s

eg

c

(y; x

0

)

i

1

d

y

S �

�

Z

S

h

j

Q

(k

0

)

�

@

@y

�

j

�(y � x)

i

T

h

1

e

P

(k

0

)

�

@

@y

�

s

eg

c

(y; x

0

)

i

1

d

y

S =

=

j

�(x); (15)

where j = 1; 2,

3

D �

1

D,

1

� � 0,

2

� is a well{determined vector which is

expressed by

1

P

(k

0

)

1

��

2

P

k

0

)

2

� and

1

Q

(k

0

)

1

��

2

Q

k

0

)

2

�.

Introduce the notation:

e

 

s

(y; �) = k

e

 

s

k

k

10�1

=

=

�

h

1

e

Q

(k

0

)

�

@

@y

�

s

eg

c

(y; x

0

)

i

1

;

h

1

e

P

(k

0

)

�

@

@y

�

s

eg

c

(y; x

0

)

i

1

�

T

{ an unknown vector;

j

	(y � x; �) =

=











h

j

P

(k

0

)

�

@

@y

�

j

�(y � x)

i

T

5�5

; �

h

j

Q

(k

0

)

�

@

@y

�

j

�(y � x)

i

T

5�5











5�10

(j = 1; 2):

(16)

Hence (15) takes the form

8x 2

j+1

D :

Z

S

j

	(y � x; �)

e

 

s

(y; �) d

y

S =

j

�(x); j = 1; 2: (17)
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Let

1

e

S be a closed surface placed strictly in

1

D and f

j

x

k

g

1

k=1

�

j

e

S,

j = 1; 2, be an everywhere dense countable set of points. By (10) we have

Z

S

1

	(y �

2

x

k

; �)

e

 

s

(y; �) d

y

S =

1

�(

2

x

k

);

Z

S

2

	(y �

1

x

k

; �)

e

 

s

(y; �) d

y

S =

2

�(

1

x

k

):

(18)

Denote by

j

	

1

; : : : ;

j

	

5

the columns of the matrix

j

	

T

. Then the fol-

lowing theorem holds.

Theorem 2. The countable set of vectors

�

1

	

l

(y �

2

x

k

)

	

1; 5

k=1; l=1

[

�

2

	

l

(y �

1

x

k

)

	

1; 5

k=1; l=1

(19)

is linearly independent and complete in a vector (ten-dimensional) Hilbert

space L

2

(S).

(For the proof see [1, 3]).

Renumerate (19) as follows:

k

 (y) =

a

k

	

l

k

(y �

b

k

x

q

k

; �); k = 1;1; (20)

where

a

k

= k � 2

h

k � 1

2

i

; b

k

= 2

h

k + 1

2

i

� k + 1;

q

k

=

�

[

k+1

2

] + 4

5

�

; l

k

=

h

k + 1

2

i

� 5

�

[

k+1

2

]� 1

5

�

:

According to (18), the scalar product

(

k

 ;

e

 

s

) =

Z

S

[

k

 ]

T

e

 

s

dS =

Z

S

[

e

 

s

]

T

k

 dS = (

e

 

s

;

k

 ) =

a

k

�

l

k

(

b

k

x

q

k

);

k = 1;1 (21)

is known. Determine now the coe�cients �

s

k

, k = 1; N , s = 1; 5 from the

condition

min

�

s

k







e

 

s

(z)�

N

X

k=1

�

s

k

k

 (z)







L

2

(S)

:
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Repeating word by word the above-said, we obtain the following approx-

imate values:

N

e

 

s

(y) =

N

X

k=1

�

s

k

k

 (y);

N

�

1

Q

(k

0

)

�

@

@y

�

s

eg

c

(y; x

0

)

�

1

�

�

N

e

 

s

1

;

N

e

 

s

2

; : : : ;

N

e

 

s

5

�

T

�

�

N

X

k=1

�

s

k

�

k

 

1

;

k

 

2

; : : : ;

k

 

5

�

T

;

N

�

e

P

(k

0

)

�

@

@y

�

s

eg

c

(y; x

0

)

�

1

�

�

N

e

 

s

6

;

N

e

 

s

7

; : : : ;

N

e

 

s

10

�

T

�

�

N

X

k=1

�

s

k

�

k

 

6

;

k

 

7

; : : : ;

k

 

10

�

T

:

(22)

Substituting the above values in (14), we construct the vector

8x

0

2

j

D :

N

U(x

0

; �) =

Z

S

h

1

Q

(k

0

)

�

@

@y

�

j

�

T

(x

0

� y)

i

T

F (y) d

y

S �

�

Z

S

�

N

h

1

e

Q

(k

0

)

�

@

@y

�

eg

c

(y; x

0

)

i

T

�

1

F (y) d

y

S �

�

Z

S

h

1

e

P

(k

0

)

�

@

@y

�

j

�

T

(x

0

� y)

i

T

f(y) d

y

S +

+

Z

S

�

N

h

1

e

P

(k

0

)

�

@

@y

�

eg

c

(y; x

0

)

i

T

�

1

f(y) d

y

S (23)

(j = 1; 2):

Denote

�

h

1

e

Q

(k

0

)

�

@

@y

�

eg

c

i

T

�

1

= 	

Q

(y; x

0

) = k	

Q

ikk

5�5

;

�

h

1

e

P

(k

0

)

�

@

@y

�

eg

c

i

T

�

1

= 	

P

(y; x

0

) = k	

P

ikk

5�5

;

�

N

h

1

Q

(k

0

)

�

@

@y

�

eg

c

i

T

�

1

=

N

	

Q

(y; x

0

);

�

N

h

1

e

P

(k

0

)

�

@

@y

�

eg

c

i

T

�

1

=

N

	

P

:

From (14) and (23) we �nally �nd that

8x

0

2

1

D [

2

D :

�

�

U(x

0

; �)�

N

(x

0

; �)

�

�

�





	

Q

(x

0

)�

�

N

	

Q

(x

0

)





L

2

(S)

� kFk

L

2

(S)

+





	

P

(x

0

)�

N

	

P

(x

0

)





L

2

(S)

� kfk

L

2

(S)

:

It should be noted that this method can be extended to some other more

complicated problems.
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