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OSCILLATIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

ABSTRACT. Consider the first order delay differential equation
' (t) +p(t)x(t — 1) =0, T>0, t>to, (%)
and its discrete analogue
Tntl —Tn +PnZpp =0, k€EZT, n=0,1,2,.... (x)

Oscillation criteria are established for (x) in the case where 0 <
. t 1 . t ’
htrg;lfft_rp (9 < ¢ and hinsup L_Tp(s)ds < 1, and for (x)" when
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1. INTRODUCTION

Consider the linear delay differential equation
z'(t) + p(t)z(r(t) =0, t>T, (1)

where p and 7 are continuous functions defined on [T, 00), p(t) > 0,7(t) < t
for t > T, 7(t) is nondecreasing and lim;_, o, 7(t) = oo.

By a solution of the equation (1) we understand a continuously differ-
entiable function defined on [7(T}),00) for some Ty > T such that (1) is
satisfied for ¢ > T7. Such a solution is called oscillatory if it has arbitrarily
large zeros. Otherwise it is called nonoscillatory.
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The first systematic study for the oscillation of all solutions of the equa-
tion (1) was undertaken by Myshkis. In 1950 [25], he proved that every
solution of the equation (1) oscillates if

. o o 1
hﬁgp[t —7(t)] < o0, htn_1>g)1f[t —7(t)] -htn_1>&1fp(t) > = (Cy)

In 1972, Ladas, Lakshmikantham and Papadakis [19] proved that the
same conclusion holds if

t
lim sup /p(s)ds > 1. (C2)

t—o00

(t)

In 1979 Ladas [18] and in 1982 Koplatadze and Chanturiya [14] improved
(02) to

t—o00
r

t
1
liminf/p(s)ds > = (Cs)
(®)

Concerning the constant 1 in (C3), it is to be pointed out that if the in-
equality

| =

t
/ p(s)ds <
(t)

holds eventually, than, according to a result in [14], (1) has a non-oscillatory
solution.

In 1982 Ladas, Sficas and Stavroulakis [21] and in 1984 Fukagai and
Kusano [11] established oscillation criteria of the type of the conditions
(Cs) and (C3) for the equation (1) with an oscillating coefficient p(t).

It is obvious that there is a gap between the conditions (C2) and (C3)
when the limit

T

t
i | o
7(t)

does not exist. How to fill this gap is an interesting problem which has been
recently investigated by several authors.

Before the work of Erbe and Zhang [9] not much was known about the
class of linear delay differential equations for which neither (C3) nor (Cs)
was satisfied. As far as we know, only the papers [4, 11, 13] contained
results that could be applied also to some cases that were not covered by
the above mentioned results. In 1988, Erbe and Zhang [9] developed new
oscillation criteria by employing the upper bound of the ratio z(7(t))/z(t)



198

for possible nonoscillatory solutions z(¢) of the equation (1). Their result,
when formulated in terms of the numbers m and L defined by

t t
m:liminf/p(s)ds and Lzlimsup/p(s)ds,

t—o0 t—o00
7 (t) (t)

says that all the solutions of the equation (1) are oscillatory if 0 < m < 1
and

2

L>1—mT. (Cy)

Since then, several authors tried to obtain better results by improving the
upper bound for z(7(¢))/z(t). In 1991 Jian Chao [2] derived the condition

2
m
L>1——— C
Z T3 —m) ()
while in 1992 Yu and Wang [28] and Yu, Wang, Zhang and Qian [29] ob-
tained the condition
1—m—+v1-2m—m?

L>1- 5 . (Cﬁ)

In 1990 Elbert and Stavroulakis [7] and in 1991 Kwong [17], using dif-
ferent techniques, improved (Cy) in the case where 0 < m < % to the
conditions

1 2
L>1—(1—\/—/\_1) (Cy)
and
In\ +1
> &, (Cs)
Al

respectively, where \; is the smaller root of the equation A = e™*.
In 1994 Koplatadze and Kvinikadze [15] improved (Cg), while in 1996
Philos and Sficas [26] derived the condition

m2 2
L>1— ———— —/)\;. C
2T —m) 2 (Co)
Following this historical (and chronological) review, we also mention that
in the case where
t

¢
/p(s)dsz1 and lim /p(s)ds:l,
e

t—o0

7(t) (t)

this problem has been studied in 1993 by Elbert and Stavroulakis [8] and in
1995 by Kozakiewicz [16], Li [23], [24] and by Domshlak and Stavroulakis
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[5]. The methods previously used in [17] and [28] can be combined so that
the conditions (C2) and (C4)-(Co) may be weakened to

In\+1 1—m—+vV1—-2m—m?2
A1 2

L> (C1o)

where \; is the smaller root of the equation A = e™*. It is to be noted
that as m — 0, then all conditions (C4) — (Cy) and also the condition
(C10) reduce to the condition (C2). However the improvement is clear as
m — % For illustrative purpose, we give the value of the lower bound in
these conditions when m = %:

(C5) :  1.000000000
(C4): 0.966166179
(Cs): 0.892951367
(Cs): 0.863457014
(C;): 0.845181878
(Cs): 0.735758882
(Co): 0.709011646
(Ci0): 0.599215896

We see that the condition (C1) essentially improves all the known results
in the literature.
Consider next the delay difference equation

Azp +pntn_r =0, n=0,1,2,..., (1)

where {p,} is a sequence of real numbers, k is a positive integer and A
denotes the forward difference operator Ax,, = xp4+1 — . Note that the
equation (1)’ is a discrete analogue of the equation (1).

By a solution of the equation (1)’ we mean a sequence {z,} which is
defined for n > —k and which satisfies (1)’ for n > 0. A solution {z,} of
the equation (1)’ is said to be oscillatory if the terms z, of the solution
are neither eventually all positive nor eventually negative. Otherwise, the
solution is called non-oscillatory.

Erbe and Zhang [10] proved that if p,, > 0, then either one of the following
conditions

e k*
llnrglor(l)fpn > m, (CO)
or
n
lim su i > 1 Cs)'
m sup > pi (Cx)

i=n—k
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implies that all solutions of the equation (1)" oscillate. Then Ladas, Philos
and Sficas [20] proved that the same conclusion holds if p, > 0 and

1 n—1 k‘k
-~ ‘ A ,
it (z 32 ») > e ©
i=n—k

Therefore, they improved the condition (Cp) by replacing the p,, of (Cy)
by the arithmetic mean of the terms p,—g,...,pn—1 in (C3)’. A further
improvement of the above conditions is presented here as well as a sufficient
condition under which all solutions of (1)’ oscillate without the assumption
that p, > 0 for all n > 0.

2. MAIN RESULTS

We need the following lemmas which are also very interesting in their
own right.

Lemma 1 ([12]). Suppose that m > 0 and the equation (1) has an even-
tually positive solution x(t). Then m < 1/e and

)\1 S lln’llnfM < A2,
t—oo I t)

where A1 and Xy are the roots of the equation X = e™.

Lemma 2 ([28]). Let 0 < m < L and z(t) be an eventually positive solu-
tion of the equation (1). Then

2
lim supx(T(t)) < .
too () 1—-m—+v1—-2m—m?2
Lemma 3 ([27]). Assume that {p,} is a sequence of mon-negative real
numbers and that there exists M > 0 such that

n—1
hmnlg(ij Z pi > M.

i=n—k

If {z,} is an eventually positive solution of (1)', then for every sufficiently
large n there exists an integer n* withn — k <n* <n — 1 such that

Tn*—Fk 2\2
<(+)-
Tps — \M
Theorem 1 ([12]). Let 0 < m < 1/e and let 2(t) be an eventually positive
solution of the equation (1). Then

< 1+1I1)\1

L -M
> \ )

where A1 is the smaller root of the equation A = e™ and M = lim inf-2b_
t—oo x(7(t))
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Corollary 1. Consider the differential equation (1) and assume that when
L<1land0d<m< %, the following condition holds:

InM+1 1—m—+v1-2m—m?2
A1 2 ’

L> (C1o)
where \; is the smaller root of the equation A = e™*. Then all solutions of
the equation (1) oscillate.

Example. Consider the delay differential equation

0.6 T
z'(t) + ———=(2a + const)z(t — =) = 0,
0+ 2 Jelt - 3)

where o = %. Then
/ 1
lim inf / 0.6(2 + cos u)/(am + V2)du = -
t—o00 e
t—3
and

lim sup / 0.6(2¢ + cos u)/(am + V2)du = 0.6.

t—o00

"5

Thus, according to Corollary 1, all solutions are oscillatory. Remark
that none of the results mentioned in the introduction can be applied to
this equation.

Theorem 2 ([27]). Assume that there exists a sequence N, — oo such that

pn >0 forn € [ng, — (N +1)k,np] and

n—1 k k41
Z pi20>(m) for n€ny— Nk,n,], m=12,...,

N=1+

log4 — 2logc
loge+ (k + 1)(log(k + 1) — log k)

and [] denotes the greatest integer function. Then all solutions of the equa-
tion (1)" oscillate.

Theorem 3 ([27]). Assume that {pn} is a non-negative sequence of real
numbers and let k be a positive integer. Assume further that there exists
M > 0 such that

o n—1 ) n—1 M2
hnrglgf ' kai > M and hrrlnﬁsolip ' kai >1-— (7) .
=n— =n—

!

Then all solutions of the equation (1) oscillate.
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Remark. The results concerning the equation (1) can be extended to
advanced differential equations and inequalities (cf. [7]), to equations with
positive and negative coefficients (cf. [29]), to neutral differential equations
(cf. [3]) and also to higher order equations (cf. [6]) and essentially improve
the existing results in the literature. While the results concerning (1)" may
be applied to the case when the sequence {p,} is not assumed to be non-
negative everywhere and also when the conditions (Cp), (C3)" and (Cs3)’
fail.
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