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UNCERTAIN DYNAMIC SYSTEMS ON TIME SCALES

Abstract. Utilizing the framework of the theory of dynamic sys-

tems on time scales for measure chains, stability of moving invariant

sets is discussed. These results include both continuous and discrete

dynamic systems.

reziume. naSromSi ganxilulia iseTi dinamiuri sistemebis moZravi

invariantuli simravleebis mdgradobis sakiTxi, romelTa drois Skala

SeiZleba iKos rogorc uCKveti, aseve diskretuli.

1. Introduction

Nonlinear di�erential equations with uncertain parameters may cause

change of equilibrium states. To investigate such situations, Siljak, Ikeda

and Ohata [8] have introduced the notion of parametric stability and dis-

cussed its study which is interesting in itself.

A fundamental feedback control problem is that of obtaining some desired

behavior from the given system which has uncertain information. Leitmann

and associates [1, 2, 9] have dealt with such a problem in a series of papers.

They have investigated continuous and discrete uncertain systems by means

of Lyapunov functions.

Recently, a theory known as dynamic systems on time scales has been

built which incorporates both continuous and discrete times, namely, time

as an arbitrary closed set of reals, and permit us to handle both systems

simultaneously [6]. This theory allows one to get some insight into and bet-

ter understanding of the subtle di�erences between discrete and continuous

systems.

To study uncertain systems, a di�erent idea is employed recently [5],

which exhibits moving invariant sets as the parameter changes. By reduc-

ing the problem to a simpler comparison problem, the stability of moving

invariant sets is discussed employing comparison method. The derivative of

the Lyapunov function involved is estimated from opposite directions rela-

tive to suitable sets in phase space that depend on the moving parameter.
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In this paper, utilizing the framework of the theory of dynamic systems

on time scale, we will investigate uncertain dynamic systems on time scale

relative to stability of moving invariant sets. As an application of our results,

we will consider the control of uncertain dynamic system on time scales and

obtain the desired stability behavior of moving invariant sets.

2. Preliminaries

Let T be a time scale (any subset of R with order and topological struc-

ture de�ned in a canonical way) with t

0

� 0 as a minimal element and no

maximal element. Since a time scale T may or may not be connected, we

need the following concept of jump operators.

De�nition 2.1. The mappings �; � : T! T de�ned by

�(t) = inf [s 2 T : s > t] and �(t) = sup[s 2 T : s < t]

are called the jump operators.

De�nition 2.2. A nonmaximal element t 2 T is called right-dense (rd) if

�(t) = t, right-scattered (rs) if �(t) > t, left-dense (ld) if �(t) = t, left-

scattered (ls) if �(t) < t. In the case T = R, we have �(t) = t, and if

T = hZ, then �(t) = t+ h.

De�nition 2.3. The mapping �

�

: T ! R

+

de�ned by �

�

(t) = �(t) � t

is called graininess. If T = R, then �

�

(t) = 0, and when T = Z, we have

�

�

(t) = 1.

De�nition 2.4. The mapping u : T ! X , where X is a Banach space is

called rd-continuous if it is continuous at each right-dense t 2 T, and at

each left-dense t, the left-sided limit u(t

�

) exists.

Let C

rd

[T; X ] denote the set of rd-continuous mappings from T to X . It

is clear that a continuous mapping is rd-continuous. However, if T contains

left-dense and right scattered points, then rd-continuity does not imply

continuity. But on a discrete time scale the two notions coincide.

De�nition 2.5. A mapping u : T! X is said to be di�erentiable at t 2 T,

if there exists an � 2 X such that for any � > 0 there exists a neighborhood

N of t satisfying

ju(�(t)) � u(s)� �(�(t) � s)j � �j�(t)� sj for all s 2 N:

Let u

�

(t) denote the derivative of u. Note that if T = R, then � = u

�

=

du(t)

dt

and if T = Z, then � = u

�

= u(t+ 1)� u(t). It is easy to see that if

u is di�erentiable at t, then it is continuous at t, if u is continuous at t and

t is right-scattered, then u is di�erentiable and

u

�

(t) =

u(�(t))� u(t)

�

�

(t)

:
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De�nition 2.6. For each t 2 T, let N be a neighborhood of t. Then we

de�ne the generalized derivative (or Dini derivative), D

+

u

�

(t), to mean

that, given � > 0, there exists a right neighborhood N

�

� N of t such that

u(�(t))� u(s)

�

�

(t; s)

< D

+

u

�

(t)+� for s 2 N

�

; s > t; where �(t; s) = �(t)�s:

In case t is rs and u is continuous at t, we have, as in the case of the

derivative,

D

+

u

�

(t) =

u(�(t))� u(t)

�

�

(t)

:

De�nition 2.7. Let h be a mapping from T to X . The mapping g : T! X

is called the antiderivative of h on T if it is di�erentiable on T and satis�es

g

�

(t) = h(t) for t 2 T.

Following De�nition 2.6, de�ne D

+

V

�

(t; x(t)) for V 2 C

rd

[T� R

n

; R

+

]

to mean that, given � > 0, there exists a right neighborhood N

�

� N of t

such that

1

�(t; s)

[V (�(t); x(�(t))) � V (s; x(�(t)) � �(t; s)f(t; x(t)))] <

< D

+

V

�

(t; x(t)) + �

for each s 2 N

�

, s > t. As before, if t is rs and V (t; x(t)) is continuous at t,

this reduces to

D

+

V

�

(t; x(t)) =

V (�(t); x(�(t))) � V (t; x(t))

�

�

(t)

:

We need the following comparison results in terms of Lyapunov-like func-

tions. See [6].

Theorem 2.1. Let V 2 C

rd

[T�R

n

; R

+

], V (t; x) be locally Lipschitzian in

x for each t 2 T which is rd, and let

D

+

V

�

(t; x) � g(t; V (t; x));

where g 2 C

rd

[T � R

+

; R], g(t; u)�

�

(t) + u is nondecreasing in u for each

t 2 T, and r(t) = r(t; t

0

; u

0

) is the maximal solution of u

�

= g(t; u), u(t

0

) =

u

0

� 0, existing on T. Then, V (t

0

; x

0

) � u

0

implies that V (t; x(t)) �

r(t; t

0

; u

0

), t 2 T, t � t

0

.

A result giving the lower estimate is also true.

Theorem 2.2. Let V 2 C

rd

[T�R

n

; R

+

], V (t; x) be locally Lipschitzian in

x for each t 2 T which is rd, and let

D

+

V

�

(t; x) � g(t; V (t; x));

where g 2 C

rd

[T� R

+

; R], g(t; u) �

�

(t) + u is nondecreasing in u for each

t 2 T, and �(t) = �(t; t

0

; u

0

) is the minimal solution of u

�

= g(t; u), u(t

0

) =
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u

0

� 0, existing on T. Then, V (t

0

; x

0

) � u

0

implies that V (t; x(t)) � �(t),

t 2 T, t � t

0

.

We need both comparison results in our discussion below.

3. Main Results

Consider the dynamic system on time scales

x

�

= f(t; x; �); x(t

0

) = x

0

; t

0

2 T; (3.1)

where f 2 C

rd

[T� R

n

� R

d

; R

n

], � 2 R

d

is an uncertain parameter and T

is a time scale. Consider also the comparison dynamic equation

u

�

= g(t; u; �); u(t

0

) = u

0

� 0; (3.2)

where g 2 C

rd

[T� R

2

+

; R] and � = �(�) � 0 is a parameter depending on

�.

Let �

0

� r

0

� r � � be depending on �. Then we will say that the

set B = [x 2 R

n

: �

0

� jxj � �] is conditionally invariant with respect to

A = [x 2 R

n

: r

0

� jxj � r] and is uniformly asymptotically stable (UAS)

relative to (2.1) if

(I) r

0

� jx

0

j � r implies �

0

� jx(t)j � �, t 2 T, t � t

0

;

(ii) given � > 0 and t

0

2 T,

(a) there exists a � = �(�) > 0 such that r

0

� � � jx

0

j � r + �

implies �

0

� � < jx(t)j < �+ �, t � t

0

, t 2 T;

(b) there exist a �

0

> 0 and a T = T (�) > 0 such that r

0

� �

0

�

jx

0

j � r+ �

0

implies �

0

� � < jx(t)j < �+ �, t � t

0

+T , t 2 T;

where x(t) = x(t; t

0

; x

0

) is any solution of (3.1).

Relative to the comparison equation (3.2), we will say that 
 = [u 2

R

+

: R

0

� u � R] is invariant and is UAS relative to (3.2) if

(I) R

0

� u

0

� R implies R

0

� u(t) � R, t � t

0

, t 2 T;

(ii) given � > 0 and t

0

2 T,

(a) there exists a � = �(�) > 0 such that R

0

� � � u

0

� R + �

implies R

0

� � < u(t) < R+ �, t � t

0

, t 2 T;

(b) there exists a �

0

> 0 and a T = T (�) > 0 such that R

0

��

0

�

u

0

� R+ �

0

implies R

0

� � < u(t) < R+ �, t � t

0

+ T , t 2 T,

where u(t) = u(t; t

0

; u

0

) is any solution of (3.2).

Let us de�ne the usual classK of functions byK = [a 2 C[R

+

; R

+

] : a(u)

is strictly increasing in u with a(0) = 0 and a(u)!1 as u!1].

We can now prove the following result on UAS of the conditionally in-

variant set B with respect to A, relative to the system (3.1). Let us de�ne

the sets 


r

, 


r

0

by 


r

= [x 2 R

n

: x 2 A and jxj � r], 


r

0

= [x 2 R

n

:

x 2 A and jxj � r

0

].

Theorem 3.1. Assume that
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(A

0

) for each � 2 R

d

, there exist r = r(�), r

0

= r

0

(�), r

0

� r satisfying

r ! 0 as j�j ! 0 and r

0

!1 as j�j ! 1;

(A

1

) there exists V 2 C

rd

[T � R

n

; R

+

] such that V (t; x) is locally Lips-

chitzian in x for each right dense t 2 T and for a

i

, b

i

2 K, I = 1; 2,

b

1

(jxj) � V (t; x) � a

1

(jxj) if x 2 


r

;

b

2

(jxj) � V (t; x) � a

2

(jxj) if x 2 


r

0

;

(A

2

) if x2


r

, D

+

V

�

(t; x)�g(t; V (t; x); r), and if x2


r

0

, D

+

V

�

(t; x)�

g(t; V (t; x); r

0

), where g 2 C

rd

[T�R

2

+

; R], g(t; u; �)�

�

(t)+u is non-

decreasing in u for each (t; u);

(A

3

) for each r

0

� r, there exists R

0

� R such that R = a

1

(r) = b

1

(�)

and R

0

= b

2

(r

0

) = a

2

(�

0

), where �

0

� r

0

� r � � and R ! 0 as

r ! 0, R

0

!1 as r

0

!1;

(A

4

) the set 
 is invariant and is UAS with respect to (3:2).

Then the set B is conditionally invariant with respect to A and is UAS

relative to the system (3:1).

Proof. We will �rst prove that B is conditionally invariant with respect to

A and (3.1). If not, there would exist a solution x(t) = x(t; t

0

; x

0

) of (3.1)

with r

0

� jx

0

j � r and t

0

< t

2

such that either

(i) jx(t

2

)j > � and r

0

� jx(t)j, t 2 [t

0

; t

2

] \ T,

or

(ii) jx(t

2

)j < �

0

and jx(t)j � r, t 2 [t

0

; t

2

] \ T.

Because of (A

2

), using comparison Theorems 2.2, 2.3, we get either

V (t; x(t)) � r(t; t

0

; V (t

0

; x

0

));

or

V (t; x(t)) � �(t; t

0

; V (t

0

; x

0

));

for t 2 [t

0

; t

2

] \ T, where r(t; t

0

; u

0

) and �(t; t

0

; u

0

) are the maximal and

minimal solutions of (3.2). Hence using (A

3

) and (A

4

), in the case (i) we

have

b

1

(�) < b

1

(jx(t

2

)j) � V (t

2

; x(t

2

)) � r(t

2

; t

0

; V (t

0

; x

0

)) �

� r(t

2

; t

0

; a

1

(jx

0

j)) � r(t

2

; t

0

; a

1

(r)) � a

1

(r) = b

1

(�);

or, in the case (ii), we get

a

2

(�

0

) > a

2

(jx(t

2

)j) � V (t

2

; x(t

2

)) � �(t

2

; t

0

; V (t

0

; x

0

)) �

� �(t

2

; t

0

; b

2

(jx

0

j)) � �(t

2

; t

0

; b

2

(r

0

)) � b

2

(r

0

) = a

2

(�

0

):

Thus, we have a contradiction in both cases and hence B is conditionally

invariant with respect to A and (3.1).
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Let 0 < � < �

0

and t

0

2 T be given. Since (A

4

) holds and a

1

(r) =

b

1

(�) = R, R

0

= b

2

(r

0

) = a

2

(�

0

), given a

2

(�

0

� �), b

1

(�+ �), there exist �

1

,

�

1

, � > 0 such that

R

0

+ �

1

= a

1

(r + �) < b

1

(�+ �) = R+ �

1

;

and

R

0

� � = a

2

(�

0

� �) < b

2

(r

0

� �) = R

0

� �

1

;

satisfying

R

0

� �

1

< u

0

< R+ �

1

implies R

0

� �

1

< u(t) < R+ �

1

; t � t

0

; t 2 T;

where u(t) = u(t; t

0

; u

0

) is any solution of (3.2). We claim that with this

� > 0, the set B is US relative to A, that is,

r

0

� � < jx

0

j < r + � implies �

0

� � < jx(t)j < �+ �; t � t

0

; t 2 T:

If this is not true, there would exist a solution x(t) of (3.1) with r

0

� � <

jx

0

j < r + � and a t

2

> t

0

such that either

(a) jx(t

2

)j � �+ � and jx(t)j � r

0

, [t

0

; t

2

] \ T,

or

(b) jx(t

2

)j � �

0

� � and jx(t)j � r, [t

0

; t

2

] \ T.

Consider (a). As before, we obtain

V (t; x(t)) � r(t; t

0

; V (t

0

; x

0

)); [t

0

; t

2

] \ T;

and therefore, we arrive at the contradiction

b

1

(�+ �) � b

1

(jx(t

2

)j) � V (t

2

; x(t

2

)) � r(t

2

; t

0

; V (t

0

; x

0

)) �

� r(t

2

; t

0

; a

1

(jx

0

j)) � r(t

2

; t

0

; a

1

(r + �)) < b

1

(�+ �):

Similarly, in case (b), we �rst get

V (t; x(t)) � �(t; t

0

; V (t

0

; x

0

)); [t

0

; t

2

] \ T;

and then

a

2

(�

0

� �) > a

2

(jx(t

2

)j) � V (t

2

; x(t

2

)) � �(t

2

; t

0

; V (t

0

; x

0

)) �

� �(t

2

; t

0

; b

2

(jx

0

j)) � �(t

2

; t

0

; b

2

(r

0

� �)) � b

2

(r

0

) = a

2

(�

0

� �);

which is again a contradiction. Hence the set B is US relative to A.

To prove UAS of the set B relative to A, let us �x � = �

0

and designate

�

0

= �(�

0

) so that we have

r

0

� �

0

< jx

0

j < r + �

0

implies 0 < jx(t)j < �+ �

0

; t � t

0

; t \ T:

Let 0 < � < �

0

and t

0

2 T. Since 
 is UAS, given a

2

(�

0

� �), b

1

(�+ �) there

exists a T = T (�) > 0, with t

0

+ T 2 T such that

b

2

(r

0

��

0

) < u

0

< a

1

(r+�

0

) implies a

2

(�

0

��)<u(t) < b

1

(�+�); t� t

0

+T:
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We claim that whenever r

0

� �

0

< jx

0

j < r + �

0

, we have

�

0

� � < jx(t)j < �+ �; t � t

0

+ T; t 2 T:

If this is not true, there would exist a solution x(t) of (3.1) such that

(a) jx(t

2

)j � �+ �, t

2

� t

0

+ T, t

2

2 T,

(b) jx(t

2

)j � �

0

� �, t

2

� t

0

+ T, t

2

2 T, where r

0

� �

0

< jx

0

j < r + �

0

.

As before, using (A

2

) and (A

3

), we get successively

b

1

(�+ �) � V (t

2

; x(t

2

)) � r(t

2

; t

0

; a

1

(r + �

0

)) < b

1

(�+ �);

and

a

2

(�

0

� �) � V (t

2

; x(t

2

)) � �(t

2

; t

0

; b

2

(r

0

� �

0

)) > a

2

(�

0

� �);

which are contradictions. Hence we have B is UAS with respect to

A relative to the system (3.1) and the proof is complete. �

Remarks. If T = R, then (3.1), (3.2) reduce to the continuous di�erential

systems. Since, in this case, �

�

(t) = 0, the results of Theorem 3.1 reduce

to those in [4]. Note that the conditions (A

1

) and (A

2

), which are su�cient

to prove UAS, are then weaker. If, on the other hand, T = Z, so that

�

�

(t) = 1, (3.1) and (3.2) reduce to di�erence equations, and consequently,

one needs stronger conditions (A

1

), (A

2

). Theorem 3.1 o�ers results in this

special case.
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