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ON BOUNDARY VALUE PROBLEMS FOR FUNCTIONAL

DIFFERENTIAL EQUATIONS

Abstract. A general theorem (principle of a priori boundedness) on

solvability of the boundary value problem

dx(t)

dt

= f(x)(t); h(x) = 0

is established, where

f : C([a; b];R

n

)! L([a; b];R

n

) and h : C([a; b];R

n

)! R

n

are continuous operators. As an application, a two-point boundary

value problem for the system of ordinary di�erential equations is con-

sidered.

reziume. damtkicebulia zogadi Teorema (aprioruli Semosa-

zGvrulobis principi)

dx(t)

dt

= f(x)(t); h(x) = 0

sasazGvro amocanis amoxsnadobis Sesaxeb, sadac f : C([a; b];R

n

) !

L([a; b];R

n

) da h : C([a; b];R

n

) ! R

n

uCKveti operatorebia. am

Teoremis saPuZvelze gamokvleulia orCertilovani sasazGvro amocana

hveulebriv diPerencialur gantolebaTa sistemisaTvis.

1. Statement of the problem and main notation

Let n be a natural number, I = [a; b] be a segment of the real axis, and

let f : C(I ;R

n

)! L(I ;R

n

) and h : C(I ;R

n

)! R

n

be continuous operators

satisfying for every � 2]0;+1[ the conditions

sup

�

kf(x)(�)k : x 2 C(I ;R

n

); kxk

C

� �

	

2 L(I ;R);

sup

�

kh(x)k : x 2 C(I ;R

n

); kxk

C

� �

	

< +1:

Consider the functional di�erential equation

dx(t)

dt

= f(x)(t) (1)
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with the boundary condition

h(x) = 0: (2)

Under the solution of the equation (1) we mean an absolutely continuous

vector function x : I ! R

n

which almost everywhere on I satis�es this

equation, and under the solution of the problem (1), (2) we mean a solution

of the equation (1) satisfying (2).

The theorem on the existence of a solution of the problem (1), (2) which

will be proved below and be called the principle of a priori boundedness,

generalizes Conti{Opial type theorems [2, 3, 7, 10{13] and supplements

earlier known criteria for the solvability of boundary value problems for

systems of ordinary di�erential and functional di�erential equations [1{14].

On the basis of the above-mentioned principle of a priori boundedness,

we have obtained e�ective criteria for the solvability of the boundary value

problem

dx(t)

dt

= f

0

(t; x(t)); (3)

x(t

1

(x)) = A(x) x(t

2

(x)) + c

0

; (4)

where f

0

: I�R

n

! R

n

is a vector function satisfying the local Carath�eodo-

ry conditions, c

0

2 R

n

and t

i

: C(I ;R

n

)! I (i = 1; 2) and A : C(I ;R

n

)!

R

n

are continuous operators.

The use is made of the following notation:

I = [a; b], R =]�1;+1[, R

+

= [0;+1[;

R

n

is the space of n-dimensional column vectors x = (x

i

)

n

i=1

with the

components x

i

2 R (i = 1; : : : ; n) and the norm kxk =

P

n

i=1

jx

i

j;

if x = (x

i

)

n

i=1

, then sgn(x) = (sgnx

i

)

n

i=1

;

x � y is the scalar product of the vectors x and y 2 R

n

;

R

n�n

is the space of n�n matrices X = (x

ik

)

n

i;k=1

with the components

x

ik

2 R (i; k = 1; : : : ; n) and the norm kXk =

P

n

i;k=1

jx

ik

j;

C(I ;R

n

) is the space of continuous vector functions x : I ! R

n

with the

norm kxk

C

= maxfkx(t)k : t 2 Ig;

L(I ;R

n

) is the space of summable vector functions x : I ! R

n

with the

norm kxk

L

=

R

b

a

kx(t)k dt.

2. The Principle of a Priori Boundedness

To formulate our basic result, we will need the following

De�nition 1. The pair (p; l) of continuous operators p : C(I ;R

n

) �

C(I ;R

n

) ! L(I ;R

n

) and l : C(I ;R

n

) � C(I ;R

n

) ! R

n

is said to be

consistent if:

(i) for any �xed x 2 C(I ;R

n

) the operators p(x; �) : C(I ;R

n

)! L(I ;R

n

)

and l(x; �) : C(I ;R

n

)! R

n

are linear;
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(ii) for any x and y 2 C(I ;R

n

) and for almost all t 2 I the inequalities

kp(x; y)(t)k � �(t; kxk

C

) kyk

C

; kl(x; y)k � �

0

(kxk

C

) kyk

C

are ful�lled, where �

0

: R

+

! R

+

is nondecreasing and � : I � R

+

! R

+

is summable in the �rst argument and nondecreasing in the second one;

(iii) there exists a positive number � such that for any x 2 C(I ;R

n

),

q 2 C(I ;R

n

) and c

0

2 R

n

an arbitrary solution y of the boundary value

problem

dy(t)

dt

= p(x; y)(t) + q(t); l(x; y) = c

0

(5)

admits the estimate

kyk

C

� �(kc

0

k+ kqk

L

): (6)

Theorem 1. Let there exist a positive number � and a consistent pair

(p; l) of continuous operators p : C(I ;R

n

) � C(I ;R

n

) ! L(I ;R

n

) and

l : C(I ;R

n

) � C(I ;R

n

) ! R

n

such that for any � 2]0; 1[ an arbitrary

solution of the problem

dx(t)

dt

= p(x; x)(t) + �

�

f(x)(t) � p(x; x)(t)

�

; (7)

l(x; x) = �[l(x; x) � h(x)] (8)

admits the estimate

kxk

C

� �: (9)

Then the problem (1), (2) is solvable.

Proof. Let �, �

0

and � be the functions and numbers appearing in De�nition

1. Set

(t) = 2��(t; 2�) + sup

�

kf(x)(t)k : x 2 C(I ;R

n

); kxk

C

� 2�

	

;



0

= 2��

0

(2�) + sup

�

kh(x)k : x 2 C(I ;R

n

); kxk

C

� 2�

	

;

�(s) =

8

>

<

>

:

1 for 0 � s � �

2� s=� for � < s < 2�

0 for s � 2�

; (10)

q(x)(t) = �(kxk

C

)

�

f(x)(t)� p(x; x)(t)

�

;

c

0

(x) = �(kxk

C

)

�

l(x; x)� h(x)

�

:

(11)

Then  2 L(I ;R), 

0

< +1, and for every x 2 C(I ;R

n

) and almost all

t 2 I , the inequalities

kq(x)(t)k � (t); kc

0

(x)k � 

0

: (12)

hold.
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For an arbitrarily �xed x 2 C(I ;R

n

), let us consider the linear boundary

value problem

dy(t)

dt

= p(x; y)(t) + q(x)(t); l(x; y) = c

0

(x): (13)

By virtue of the condition (iii) from De�nition 1, the homogeneous prob-

lem

dy(t)

dt

= p(x; y)(t); l(x; y) = 0 (13

0

)

has only the trivial solution. However, by Theorem 1.1 in [9], the conditions

(i) and (ii) from De�nition 1 and the absence of nontrivial solutions of the

problem (13

0

) guarantee the unique solvability of the problem (13). On the

other hand, by virtue of the conditions (ii) and (iii) from De�nition 1 and

the inequalities (12), the solution y of the problem (11) admits the estimate

kyk

C

� �

0

; ky

0

(t)k � 

�

(t) for almost all t 2 I; (14)

where �

0

= �(

0

+ kk

L

), 

�

(t) = �(t; �

0

)�

0

+ (t).

Let u : C(I ;R

n

)! C(I ;R

n

) be an operator which to every x 2 C(I ;R

n

)

assigns the solution y of the problem (13). Due to Corollary 1.6 from [9],

the operator u is continuous. On the other hand, by (14) we have

ku(x)k

C

� �

0

; ku(x)(t)� u(x)(s)k �

�

�

�

t

Z

s



�

(�) d�

�

�

�

for s and t 2 I:

Consequently, the operator u continuously maps the ball C

�

0

= fx 2

C(I ;R

n

) : kxk

C

� �

0

g into its own compact subset. Therefore, owing

to Schauder's principle, there exists x 2 C

�

0

such that u(x)(t) = x(t) for

t 2 I . By the equalities (11), x is obviously a solution of the problem (7),

(8), where

� = �(kxk

C

): (15)

Let us show that x admits the estimate (9). Suppose the contrary. Then

either

� < kxk

C

� 2�; (16)

or

kxk

C

> 2�: (17)

If we assume that the inequality (16) is ful�lled, then because of (10)

and (15) we have � 2]0; 1[. However, by the conditions of the theorem, in

this case we have the estimate (9) which contradicts (16). Suppose now

that (17) is ful�lled. Then by (10) and (15), we have � = 0. Hence x is a

solution of the problem (13

0

). But this is impossible because (13

0

) has only
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the trivial solution. The above-obtained contradiction proves the validity

of the estimate (9).

By virtue of (9), (10) and (15), it is clear that � = 1 and hence x is a

solution of the problem (1), (2). �

Following [10], we introduce

De�nition 2. Let p : C(I ;R

n

)� C(I ;R

n

) ! L(I ;R

n

) and l : C(I ;R

n

) �

C(I ;R

n

) ! R

n

be arbitrary, while p

0

: C(I ;R

n

) ! L(I ;R

n

) and l

0

:

C(I ;R

n

) ! R

n

be linear operators. We say that the pair (p

0

; l

0

) belongs

to the set E

n

p;l

if there exists a sequence x

k

2 C(I ;R

n

) (k = 1; 2; : : : ) such

that for every y 2 C(I ;R

n

) the following conditions are ful�lled:

lim

k!1

t

Z

0

p(x

k

; y)(s)ds =

t

Z

0

p

0

(y)(s)ds uniformly on I;

lim

k!1

l(x

k

; y) = l

0

(y):

De�nition 3. We say that the pair (p; l) of continuous operators

p : C(I ;R

n

) � C(I ;R

n

) ! L(I ;R

n

) and l : C(I ;R

n

) � C(I ;R

n

) ! R

n

belongs to the Opial class O

n

0

if:

(i) for any �xed x 2 C(I ;R

n

) the operators p(x; �) : C(I ;R

n

)! L(I ;R

n

)

and l(x; �) : C(I ;R

n

)! R

n

are linear;

(ii

0

) for any x and y 2 C(I ;R

n

) and for almost all t 2 I , the inequalities

kp(x; y)(t)k � �(t)kyk

C

; kl(x; y)k � �

0

kyk

C

are ful�lled, where � : I ! R

+

is summable and �

0

2 R

+

;

(iii

0

) for every (p

0

; l

0

) 2 E

n

pl

the problem

dy(t)

dt

= p

0

(y)(t); l

0

(y) = 0 (18)

has only the trivial solution.

By Lemma 2.2 from [10], if (p; l) 2 O

n

0

, then the pair (p; l) is consistent.

Therefore from Theorem 1 we have

Corollary 1. Let there exist a positive number � and a pair of operators

(p; l) 2 O

n

0

such that for every � 2]0; 1[ an arbitrary solution of the problem

(7), (8) admits the estimate (9). Then the problem (1), (2) is solvable.

De�nition 4. The linear operator p

0

: C(I ;R

n

) ! L(I ;R

n

) is said to be

strongly bounded if there exists a summable function � : I ! R

+

such that

for every y 2 C(I ;R

n

), the inequality kp

0

(y)(t)k � �(t)kyk

C

is ful�lled

almost everywhere on I .
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Let p(x; y)(t) � p

0

(y)(t) and l(x; y) � l

0

(y), where p

0

: C(I ;R

n

) !

L(I ;R

n

) is a strongly bounded linear operator and l

0

: C(I ;R

n

)! R

n

is a

bounded linear operator. Then by De�nition 3, for the condition (p; l) 2 O

n

0

to be ful�lled, it is necessary and su�cient that the problem (18) have only

the trivial solution. Therefore from Corollary 1 follows

Corollary 2. Let there exist a positive number �, a linear strongly bounded

operator p

0

: C(I ;R

n

) ! L(I ;R

n

) and a linear bounded operator l

0

:

C(I ;R

n

) ! R

n

such that the problem (18) has only the trivial solution

and for every � 2]0; 1[ an arbitrary solution of the problem

dx(t)

dt

= p

0

(x)(t) + �

�

f(x)(t)� p

0

(x)(t)

�

; l

0

(x) = �[l

0

(x)� h(x)]

admits the estimate (9). Then the problem (1), (2) is solvable.

3. Theorem on the Solvability of the Problem (3), (4)

As is mentioned in Section 1, we investigate the problem (3), (4) under

the assumptions that the vector function f

0

: I�R

n

! R

n

satis�es the local

Carath�eodory conditions, and the operators t

i

: C(I ;R

n

)! I (i = 1; 2) and

A : C(I ;R

n

)! R

n�n

are continuous.

Assume

I

0

=

�

t

1

(x) : x 2 C(I ;R

n

)

	

;

kA(x)k

0

= max

�

kA(x)yk : y 2 R

n

; kyk = 1

	

:

The following theorem holds.

Theorem 2. Let there exist summable functions g

1

: I ! R, g

2

: I ! R

+

and a number � 2]0; 1[ such that

f

0

(t; x) � sgn[(t� t

0

)x] �

� g

1

(t)kxk+ g

2

(t) for t 2 I; t

0

2 I

0

; x 2 R

n

(19)

and

exp

�

t

2

(x)

Z

t

1

(x)

g

1

(t) dt � sgn(t

2

(x)� t

1

(x))

�

kA(x)k

0

�

� � for x 2 C(I ;R

n

): (20)

Then the problem (3), (4) is solvable.

Proof. For every x and y 2 C(I ;R

n

), we suppose f(x)(t) = f

0

(t; x(t)),

h(x) = x(t

1

(x)) �A(x)x(t

2

(x)) � c

0

,

p(x; y)(t) =

�

g

1

(t) sgn(t� t

1

(x))

�

y(t); l(x; y) = y(t

1

(x)):

Obviously, the operators p : C(I ;R

n

) � C(I ;R

n

) ! L(I ;R

n

) and l :

C(I ;R

n

)� C(I ;R

n

)! R

n

are continuous and the pair (p; l) is consistent.
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By Theorem 1, to prove Theorem 2 it su�ces to establish the uniform

with respect to � 2]0; 1[ a priori boundedness of solutions of the problem

dx(t)

dt

= (1� �)

�

g

1

(t) sgn(t� t

1

(x))

�

x(t) + �f

0

(t; x(t));

x(t

1

(x)) = �

�

A(x)x(t

2

(x)) + c

0

�

:

Let x be an arbitrary solution of this problem for some � 2]0; 1[. Suppose

u(t) = kx(t)k. Then by (19),

u

0

(t) sgn(t� t

1

(x)) � g

1

(t)u(t) + g

2

(t) for t 2 I: (21)

On the other hand,

u(t

1

(x)) � kA(x)k

0

u(t

2

(x)) + kc

0

k: (22)

The inequality (21) implies

u(t) � exp

�

t

Z

t

1

(x)

g

1

(s) sgn(s� t

1

(x)) ds

�

u(t

1

(x)) + �

1

for t 2 I; (23)

where �

1

= exp(kg

1

k

L

) kg

2

k

L

. This, with regard for (20) and (22), yields

u(t

2

(x)) � �u(t

2

(x)) + kc

0

k exp(kg

1

k

L

) + �

1

and, consequently,

u(t

2

(x)) � �

2

; (24)

where �

2

= (1 � �)

�1

[kc

0

k exp(kg

1

k

L

) + �

1

]. However, as it is clear from

(20),

kA(x)k

0

� � exp(kg

1

k

L

):

According to this inequality, from (22){(24) there follows the estimate (9),

where �

0

= � exp(2kg

1

k

L

)(��

2

+kc

0

k)+�

1

is a positive constant, which does

not depend on � and x. �
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